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Abstract:

An open architecture that achieves seamless binding between networking and multime-
dia devices is proposed. The building blocks of the binding architecture consist of a set of
interfaces, methods and primitives. The former abstract the functionalities of multimedia
networking devices and are organized into a binding interface base. The methods and
primitives are invoked for implementing binding applications. The binding architecture is
embedded into a reference model for multimedia networking architectures that supports
a clean separation between binding interfaces and binding algorithms. Communication
between the interfaces of the architecture is supported by CORBA. Public interfaces in
the binding interface base are specified using CORBA IDL. The architecture is illustrated
with a simple connection management algorithm and an example of computational bind-

ing.
1. Introduction

We start by presenting the motivation for our work. This is followed by a review of some
of the pertinent literature and a description of the methodology employed for designing a
binding architecture for multimedia networks.

1.1 Motivation

Binding is the process of associating (interconnecting) different components of a system.
The binding architecture of multimedia networks dictates how its entities are modeled
and how these entities are associated with each other in order to provide the user of a
service with a “holistic” picture. The architecture itself consists of a binding interface base
and binding algorithms. Binding architectures and applications for networking and multi-
media computing have been developed for the most part independently. As a result,
there is no uniform terminology in these fields: connection management, binding, signal-
ling protocols, etc. are words often used interchangeably.

Connection management in telephone networks is resolved by defining a User/Network
Interface (UNI) and a Network/Node Interface (NNI). These interfaces are realized
through the Q.93b and CCSS #7 (Common Channel Signalling System), respectively.
International standards bodies are considering the CCSS #7 together with the Q.93b
interface as the basis for signalling in broadband networks. There are a number of prob-
lems with this solution, however.
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The UNI and the NNI concepts, introduced in the 60s, rightly recognized that the Cus-
tomer Premises Equipment (CPE) had a low level of intelligence in comparison with the
switching equipment. That has now changed as the customer might possess the latest
powerful workstation or parallel machine. In fact, the customer equipment is often at
least as intelligent as the switching controllers. Broadband networking requirements for
defining and manipulating virtual networks and multicasting are readily modeled as high
level objects. It is natural, therefore, to provide higher level language constructs in
describing connection management operations. Note that in this context, the UNI/NNI
model is akin to a low level programming language. Development of signalling protocols
based on object-oriented call models does not change this basic assessment.

The Internet community has developed connection management capabilities as part of
the TCP/IP suite. Currently, in order to support extensions of the architecture to multime-
dia services, reservation protocols are being investigated. An evolutionary path towards
interworking with future broadband networks is not yet available.

The Interactive Multimedia Association (IMA) is considering proposals for interoperability
of distributed multimedia systems. While the networking aspects have not yet been con-
sidered, CORBA and IDL have gained wide acceptance for implementing any such sys-
tems. The IMA recommended practice is likely to gain wide acceptance in the computer
industry.

While there has been considerable work in the individual areas of signalling protocols,
object based network architectures and on addressing the issue of interworking of multi-
media devices, there has been little work on defining a seamless architecture that will
integrate all these concerns. It is our belief that such an architecture is needed to support
a multitude of applications such as connection management, distributed computing, sig-
nalling protocols, etc. The need to design and implement a binding architecture as will be
discussed in this paper has been first recognized in [19].

1.2 Related Work

In [11] the facilities required to control and manage multiservice applications in ATM net-
works are examined in detail. The requirements necessary for dealing with diverse ser-
vice configurations are defined. As such, issues pertaining to multimedia services and in
particular, Quality of Service (QOS), are not addressed.

Another perspective which focuses on specifying the service description of a system
rather than its individual components was proposed in [14]. Here, the work concentrates
on developing service primitives and their sequence of invocations at service access
points for multimedia multiuser services. Architectural and implementation issues were
deliberately omitted.

Defining a signalling protocol capable of supporting complex multimedia services is cen-
tral to the investigations in [26]. Although object-oriented in nature, the model presented
limited itself to representing only call related aspects of the network and omits any dis-
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cussion of the architectural aspects of how these may be realized and integrated within
an overall architecture.

The ATM Forum is investigating the applicability of a subset of the Q.93b UNI [7] for
broadband applications in the local environment. [12] is representative of this work. Work
describing the NNI and the CCSS #7 can be found in [8].

In the areas of protocols that guarantee QOS, one of the more promising developments
has been the proposal of two reservation-based protocols for the Internet. The RSVP
protocol [29], is a receiver-oriented simplex protocol that can accommodate heteroge-
nous receivers in a multicast group and allow dynamic changes in group membership
through maintenance of a ‘soft-state’ in each node. As opposed to this, the sender-initi-
ated approach is adopted by the ST-II protocol [28]. The protocol uses multiple simplex
reservations to create stream-based multicast trees. Since reservation is on a per-tree
basis, ST-Il cannot accommodate heterogeneous receivers.

The initial version of the Touring Machine project [5] focused on providing a simple,
point-to-point desktop video communication service. The second generation system pro-
vides APIs for application developers to aid widespread deployment. In both instances,
the emphasis was on building a workable prototype so that showcase multimedia appli-
cations can be developed rather than on building a generic architecture.

On a different track and much wider in scope, the work by the TINA consortium [3], [4]
centers on the development of an Information Networking Architecture that would bring
together distributed computing, telecommunications and management standards into a
single framework. TINA has not yet addressed the problem of interworking with multime-
dia devices. The same applies to the substantial contributions put forth by ANSA [2] and
the follow up ODP architecture [25].

The methodology developed for binding multimedia objects in Multimedia Systems Ser-
vices (MSS) [15] is based on modern foundations of distributed algorithms and software
engineering [1], [9]. The MSS proposal is object-oriented. The interfaces are specified in
the IDL interface definition language [17]. In order to support interaction among distrib-
uted interfaces, MSS depends upon the Object Management Group’s (OMG) Common
Object Request Broker Architecture (CORBA) [10].

1.3 Methodology

An ad-hoc approach for interconnecting a multimedia system such as MSS to a broad-
band network specified via an UNI would be to present it with the Q.93b interface. This
approach, however, exhibits the limitations already mentioned in section 1.1. We, there-
fore, advocate a solution based on a different modeling paradigm.

In this paradigm, the binding architecture and binding applications are clearly separated.
The architecture itself is open and hence possibly subject to standardization efforts. The
binding applications, however, might not be. Binding entities in the architecture are mod-
eled as communicating objects. As in MSS, CORBA provides the high level location
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independent communication facilities. This allows for a seamless binding environment
between the network and the multimedia resources. Overall, binding operations exhibit a
much lower level of complexity.

This paper is organized as follows. In section 2 the modeling framework provided by the
Extended Integrated Reference Model is briefly reviewed and binding within this model
discussed. The architectural model of the binding architecture is presented in section 3.
The relationship between the binding architecture and other ongoing work is also dis-
cussed. The binding interface base, including the interface inheritance diagram and
some of the interface definitions are presented in section 4. Section 5 describes the bind-
ing methods and primitives. Examples of binding applications are given in section 6.
Conclusions and future directions are given in section 7.

2. Modelling Framework

In this section the framework for binding architectures provided by the Extended Inte-
grated Reference Model (XRM) is presented. The XRM is discussed in section 2.1. In
section 2.2 the positioning of binding within the XRM is described.

2.1 The Extended Integrated Reference Model (XRM)

In parlance of network architectures, Figure 1 is an abstract representation of the
Extended Integrated Reference Model (XRM) [19]. The XRM models the communica-
tions architecture of broadband networks and multimedia computing platforms. The foun-
dations for the operability of multimedia computing and networking devices is the same.
Both classes of devices can be modeled as producers, consumers and processors of
media. The only difference appears to be in the overall goal that a group of devices is set
to achieve in the network or the multimedia platform.

The restriction of the XRM to broadband networks is called the Integrated Reference
Model (IRM) [18]. The IRM incorporates monitoring and real time control, management,
communication, and abstraction primitives that are organized into the Traffic Control
Architecture, the Management Architecture, the Information Transport Architecture and
the Telebase Architecture, respectively. The subdivision of the IRM into the Management
and the Traffic Control Architectures on the one hand, and the Information Transport
Architecture on the other, is based on the principle of separation between controls and
communications. The separation between the Management and the Traffic Control
Architecture is primarily due to the different time-scales on which these architectures
operate.

The Integrated Reference Model is organized into five planes that model the above
architectures (Figure 1). The Management Architecture resides in the network manage-
ment or N- plane, and covers the functional areas of network management, namely, con-
figuration, performance, fault, accounting and security management. Manager and
agents, its basic functional components, interact with each other according to the client-
server paradigm. The Traffic Control Architecture consists of the resource control, or M-,
and the connection management and control, or C-, planes. The M-plane comprises the
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entities and mechanisms responsible for resource control, such as cell scheduling, call
admission, and call routing; the C-plane those for connection management and control.
The Information Transport Architecture is located in the user transport or U-plane, and
models the protocols and entities for the transport of user information. Finally, the Tele-
base Architecture resides within the Data Abstraction and Management or D-plane, and
implements the principles of data sharing for network monitoring, control and communi-
cation primitives, the functional building blocks of the N-, M-, and C- and U-plane mecha-
nisms. (A mechanism is a functional atomic unit that performs a specific task, such as
setting up a virtual circuit in the network [24].)
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Figure 1. The Extended Integrated Reference Model (XRM).

The restriction of the XRM to the multimedia computing platform has a similar functional-
ity as the IRM. The N-plane includes system management functionality, and the M-plane
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includes process scheduling, memory management, routing (when applicable), admis-
sion control and flow control. The D-plane also contains objects modeling multimedia
devices, the C-plane binding functionality, and the U-plane transport of user information
within the Customer Premises Equipment.

2.2 Binding within the XRM

Binding requirements arise in each of the planes of the XRM. However, dynamic binding
requirements are particularly demanding in the C- and M- planes. In order to better
understand and fullfil these requirements, a separation principle between the binding
architecture and applications running on top of it is defined. This separation principle
gives a clear focus towards what should be and what needs to be standardized within the
XRM. It also allows us to take a very general point of view towards binding.

The binding architecture resides in the M-,D- and C-planes of the XRM. Specifically, the
binding interface base resides in D- plane and the binding algorithms execute from within
the M- and C- planes. The binding architecture represents a software environment on top
of which all the binding applications execute. Scalability of this architecture is achieved
with a distributed object-oriented design. Binding interfaces can be added as the need
arises.

Binding applications run on top of the binding architecture. Examples of binding applica-
tions arise in connection set up for broadband networks, distributed systems implement-
ing synchronization protocols, resource allocation protocols such as those intended for
the Internet, multimedia computing platforms, etc. New binding applications can be
added without changing the underlying binding architecture. Note that, several propri-
etary binding algorithms supporting various applications can operate at the same time.

3. The Binding Architecture

An overview of the binding architecture on the system level is given below. Section 3.1
presents the architectural model. In section 3.2 the relationship between our binding
architecture and the MSS architecture is described. Finally, a brief comparison with the
OSI Network Management and ODP architecture is given.

3.1 Architectural Model

The binding architecture proposed here is open: all multimedia networking entities partic-
ipating in the binding process are modeled as communicating objects with well defined
interfaces that can be externally invoked. Interface methods and some global primitives
are used for these invocations. Binding algorithms operate upon these interfaces.

The interfaces are realized as objects modeling resources such as switches, links, multi-
media devices, etc. All interfaces reside in a data repository called the Binding Interface
Base (BIB). More abstractly, the BIB provides multimedia networking abstractions for
producers, consumers, and processors of media. Interfaces in the BIB are defined using
the CORBA IDL (Interface Definition Language) specification language. The BIB contain-
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ing all binding interface instances (called binding objects) reside in the D-plane of the
IRM. CORBA provides naming facilities to locate interface implementations and invoke
methods. A factory is used to instantiate an interface and one of the embedded methods
within the interface can be invoked to delete the interface instance.

Public methods are visible to different “multimedia networking clients” who can invoke
them. Multimedia networking clients are “clients” in CORBA sense. For example a bind-
ing algorithm that invokes binding interfaces is a multimedia networking client as is the
user of a “service” that invokes the BIB interfaces and binding algorithms. Scalability of
the binding architecture is readily achieved by adding new interfaces or by upgrading
existing ones. The addition of new binding algorithms can also be easily accomplished.

The components of the binding architecture consisting of the binding interface base and
the binding algorithms are depicted in Figure 2. This figure shows the distributed nature
of BIB interactions, and the distributed interactions amongst different binding algorithms.

3.2 Relationship to Binding for Multimedia

The reader has probably recognized by now a number of similarities between our binding
architecture proposal with the Multimedia Systems Services [15] platform considered by
the Interactive Multimedia Association (IMA). Recall that MSS constitutes a framework of
“middleware” — system software components lying in the region between the generic
operating system and specific applications. Its goal is to provide an infrastructure for
building multimedia computing platforms that support interactive multimedia applications
dealing with synchronized, time-based media in a heterogeneous distributed environ-
ment. It is under evaluation by the IMA and is expected to become a recommended prac-
tice within the computer industry.

How does the MSS framework fit into the XRM? Here we distinguish between facilities
for creating and removing objects as well as binding operations. In MSS a number of
interfaces have been defined to enable both the creation and destruction of objects that
participate in the binding process. Creation and destruction operations are D-plane
native. Binding algorithms on the other hand are C- and M- plane visible. Sizing of virtual
resources derived from QOS requirements is exported through M- and N-plane inter-
faces.

What are the differences between our architecture and the architecture of the MSS? We
believe that only the binding interface base should be standardized although there might
be a need to standardize some of the binding algorithms and applications for higher level
interoperability. We feel that management and control tasks, such as QOS control and
management that the current MSS architecture proposes to fullfil, are best modeled as
M- and C- plane binding algorithms. The fundamental abstractions that these algorithms
operate upon are modeled as BIB interfaces.

3.3 Relationship to the OSI Network Management Architecture and ODP

There are also important conceptual similarities between our binding architecture and
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the OSI management architecture [6]. As in OSI management, we propose to have an
object-oriented model for the entities of interest, a standard communication support and
a well defined set of interfaces that support basic (binding) operations. Both, the OSI
management architecture and the binding architecture, are separated from the manage-
ment and binding applications, respectively. There are of course a number of differences,
the main one being that the OSI management architecture is entirely centralized
whereas the binding architecture discussed here is entirely decentralized. Another major
difference is the time scale on which these architectures operate.

M- or C- Plane Algorithms

D- Plane

Figure 2. Distributed Binding Algorithm Interacting with Distributed BIBs

We note a number of similarities with the ODP architecture as well. For example, the
ODP information model, for expressing the meaning of information and information pro-
cessing tasks is analogous to our definition of the D-plane; the computational model for
expressing functional decomposition of the systems into distributable units with well-
defined interfaces corresponds directly to our standard object-based implementation; the
engineering model for describing components and structures needed in support of distri-
bution is expressed in our proposed use of RPC and CORBA both of which are stable
and well accepted; and finally the technology model for describing the makeup of a sys-
tem in terms of components that conform to appropriate standards fits in nicely with our
emphasis on CORBA and interworking with MSS.

4. The Binding Interface Base

In this section the inheritance diagram underlying the BIB is discussed. We briefly
present the structure and the semantics of some of the BIB interfaces.
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4.1 Interface Inheritance Diagram

The interface inheritance diagram for the BIB is depicted in Figure 3. In the future spe-
cialized interfaces will inherit from the generic interfaces, thus extending the diagram
horizontally. When new interfaces, such as those shown with shaded lines are added to
the architecture, the diagram is simply extended vertically. As with the OSI network man-
agement MIB, the BIB resides in the D-plane of IRM. Both are integral parts of the archi-
tecture of the Telebase.
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Figure 3. Interface Inheritance for Binding Interface Base

The BIB interfaces are defined in CORBA's [10] Interface Definition Language [17].
Adopting CORBA terminology, they are realized as object-implementations (servers). An
instantiation of an interface is an object within these object-implementations. Since
CORBA's view of interfaces is analogous to a “class” in object-oriented programming and
since we only employ an object-oriented implementation of interface definitions, the term
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“class” will be used interchangeably with “interface” and “object” interchangeably with the
notion of an “instantiation of an interface”.

Interface implementations contain many object management specific public interfaces
like creation and deletion of objects. These will be of no concern here. Our primary goal
is to show what are the various public interfaces pertinent to binding operations and what
are the local states that they manipulate. The following section briefly describes the
essence of our design. A more detailed specification is available in [21].

4.2 Interface Definitions

There are two standard interfaces namely Factory and Naming. They are both derived
from standard CORBA specifications. The Factory is a generic component that instanti-
ates and deletes other objects remotely. The Naming module deals with “CORBA spe-
cific’ naming conventions as well as registration and retrieval of interfaces as it is
necessary to locate and invoke the right object in the distributed environment.

Interface inheritance is a static (compile-time) relationship between the various inter-
faces that the BIB contains. We describe here the rationale for some of the interface def-
initions.

A key interface that the binding interface base provides is the VirtualResource. Inher-
ited interfaces from VirtualResource model all the physical resources that are present in
the multimedia networking architecture. Note that at runtime only the physical resources
that are present within the “scope” of a node’s BIB will have corresponding VirtualRe-
source objects. The VirtualResource is subclassed into MediaProcessor and Medi-
aTransporter. The relative positioning of MediaTransporters and MediaProcessors is
shown in Figure 4.

The MediaProcessor models all producers, consumers and processors of media. The
generic classes VirtualCPU and VirtualDevice are derived from MediaProcessor. The
VirtualDevice is a consumer or producer of multimedia information. It represents exactly
the same devices as considered by MSS [15]. Note, however, that MSS does not con-
sider the distinction between a MediaProcessor and MediaTransporter as essential for
their architecture.

The MediaTransporter is subclassed into VirtualSwitch and VirtualLink. A physical
switch consists of a set of multiplexers interconnected through a switch fabric with an
associated control unit. The VirtualSwitch represents the “local” control elements of a
switch fabric. In our model these control elements are distinct from the control elements
and the intelligence associated with the output multiplexers. The multiplexers located at
the output ports of the switch are modeled by the VirtualLink interface. Thus, the Virtu-
alLink models the cell and call resources consisting of output buffers and links whereas
the VirtualSwitch models the resources associated with the VP/VC routing tables. The
distinction between the VirtualSwitch and the VirtualLink is depicted in Figure 5.

Another important interface contained in the BIB is the VirtualCapacityRegion. This
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interface characterizes the capacity of multimedia networking resources with QOS guar-
antees. With every VirtualResource is associated a VirtualCapacityRegion. Its state is
typically represented by an OperatingPoint within this region. The axes of the Virtual-
CapacityRegion represent the QOS classes (which in turn may be related to QOS
parameters). Different resources may have their VirtualCapacityRegion axes labeled
differently. For example with a VirtualCPU a MultimediaCapacityRegion is associated
whereas a VirtualLink is characterized by its SchedulableRegion. It is the responsibil-
ity of the underlying resource control mechanisms to map “service” class information into
appropriate traffic class information and vice versa. The VirtualQoS interface is provided
to do this translation.

VirtualCPU

Multimedia Computing

VirtualDevice

MediaTransporters _
MediaProcessors

Figure 4. Relationship between MediaProcessor and MediaTransporter

The VirtualAddress interface provides translation of various types of addresses (ATM-
Forum addresses, Generic addresses, CORBA related addresses) into each other,
whenever possible. Different inherited interfaces may add/extend address translation
facilities of this interface.

There are two generic interfaces that can be inherited from to provide event forwarding
services as well as “monitoring/sensing” parameters of interest. VirtualEvent provides
for the definition, registration and forwarding of events to any number of client algo-
rithms. The VirtualSensor interface provides for monitoring activities of interest within
the binding architecture. Both of these interfaces are for “resource” control purposes and
hence are “different” in purpose than N-plane specific management event forwarding and
monitoring capabilities. Since they are going to be used by fast time-scale control algo-
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rithms, they must be kept lightweight and efficient and their use must be guarded by
some overall real-time constraints.
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Figure 5. VirtualSwitch and VirtualLink

Real-time requirements that the various binding algorithms may have are supported by
the VirtualTime interface that provides a local clock. This interface supports both syn-
chronous and asynchronous timeouts. Time related VirtualEvents may be associated
with the VirtualTime interface.

There are three media related interfaces: VirtualMedia, VirtualStream, and VirtualFor-
mat. VirtualMedia defines the properties of the various multimedia: video traffic, CD
Quiality traffic, etc. Associated media format and stream-properties have been abstracted
into two related interfaces, VirtualStream and VirtualFormat, respectively. These inter-
faces are defined for use by VirtualResource, especially MediaProcessor, and also for
annotating VirtualCapacityRegion axes.

SharedInterface is an interface that allows for generically manipulating other interfaces.
It is also capable of manipulating “state expressions” to answer certain resource state
specific queries. We are currently in the process of defining this interface.

CORBA integrates the normal remote procedure call (RPC) paradigm with “event” han-
dling facilities. It provides standard RPC protocol related events and one can also define
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events through using its “exception” and “raises” primitives. In [21] it is shown how inter-
face definitions incorporate standard as well as user defined events.

5. Binding Methods and Primitives

In this section binding methods and primitives are discussed. There is a distinction
between methods and primitives. The former are interface methods and are invoked by
CORBA clients. Apart from methods which are associated with individual interfaces,
there are also global “primitives” of the binding architecture. These primitives are imple-
mented as interface methods as depicted in Figure 6. Primitives are global atomic units
of execution.

There is a need to identify and classify separately important methods that must be
present in the BIB interfaces. Specifically since we are controlling certain devices by
changing their states, there is a need for imposing consistency of usage by “different”
algorithms that coexist in the multimedia networking architecture. In this section we
briefly describe the essential elements of these. Details can be found in [21].

1. getState(in Bl bObject, out State biState);

2. setState(in Bl bObject, in State newState);

3. getReservationState(in Bl bObject, out ReservedState r State);

4. setReservationState(in Bl bObject, in State newState);

5. commitReservedState(in Bl bObject);

6. eval StateExp(in TypeExp type, in StateExp stateExp, out Boolean result, out
State r State);

7. parseStateExp(in TypeExp type, in StateExp stateExp, out long result);

8. executeMethod(in Bl bObject, in FunctionPtr func, out sequence of OutPars
outparams, out RetType returnedVvalues);

9. queryBI (in Bl bObject, out sequence of BAttributes bAttrs);

Figure 6. Primitives Used for Binding

The public methods are used for porting the BIB onto physical devices, bootstrapping,
and attaching appropriate transport protocols for supporting CORBA RPC communica-
tions. They consist of atomic primitives for getting and setting states.

5.1 Binding Primitives

There is a set of important primitives that must be present either as methods in Virtual-
Resource and many other derived interfaces or as methods in SharedInterface. These
primitives essentially locate and manipulate states, reserved states, and other attributes
of an interface.

Primitives for State
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The concept of current state has been associated with all interfaces that model physical
resources. The primitives getState() and setState() extract the current state and set the
current state, respectively. For example separate state interfaces can be attached in the
same BIB for a VirtualLink. It is the responsibility of getState() and setState() primitives
to maintain the consistency between various definitions.

Primitives for Reserved State

The reserved state is an important concept in our architecture. It indicates certain
resources that have been locked by a “client”. Such locking might occur for enforcing
consistency requirements on the part of the client. There are two methods for setting and
getting reserved states: getReservationState() and setReservationState().

EvalStateExp() Primitive

This primitive takes as an input a StateExp and evaluates it to either a Boolean (true or
false) or to another State. A StateExp could be either a predicate or an expression
involving state variables and state operators. It is important to note that the StateExp
may contain an evaluation of expressions with variables outside the scope of a given
BIB. Note also that there is a limit to the expressive power of StateExp as it is not
intended that binding algorithms evaluate very complex functions.

ExecuteMethod() and QueryBI() Primitives:

These primitives provide means to implement generic “method execution” and getting
the values of certain attributes indirectly.

6. Examples of Binding Algorithms and Applications

The example given in section 6.1 describes how the binding architecture can support
connection management whereas the example in section 6.2 describes how a distributed
computing application can be supported.

6.1 Connection Management with QOS Guarantees

In this section we briefly describe an example of a simple connection management algo-
rithm that can be built on top of the binding interface base of a broadband ATM network.
The emphasis of the exercise is not on the connection management algorithm itself, but
on illustrating how network binding can be implemented within our architecture.

Figure 7 shows the interface inheritance diagram for this example. We define an inter-
face called VirtualConnection. A physical connection exists as a set of interconnected
entries in appropriate tables (e.g., routing tables). A corresponding interface in the BIB
represents these physical entities. The VirtualConnection interface is subclassed into
VirtualPath, VirtualChannel, and VirtualNetwork modeling the “virtual path”, the “vir-
tual channel” and the “virtual network”, respectively. These interfaces also provide meth-
ods to setup/release connections on ATM networks. The realizations of VirtualPath,
VirtualChannel, and VirtualNetwork as objects are called network applications. Appli-
cations with QOS guarantees are called services.

September 18, 1994



15

< VirtualPath >
( BindingInterface >—><VirtuaIConnection ( VirtualChannel >

( VirtualNetwork >

Figure 7. Interface Inheritance Diagram for Connection Management.

Connection management algorithms create the above network services (i.e., the Virtual-
Path, VirtualChannel, and VirtualNetwork objects). Based in the C-plane, these algo-
rithms operate on objects residing in the D-plane and interact with M-plane resource
control algorithms only through D-plane objects. A “connection manager” in the C-plane
can implement any connection management algorithm (in addition to the ones that
adhere, e.g., to the Q.93b or SS7 specifications).

Connections with guaranteed QOS (i.e., network services) can be established because
the states of local D-plane interfaces are bound to multimedia networking devices with
QOS guarantees as discussed in a separate paper [22]. QOS parameters are used to
define service classes [7]. As already mentioned, the mapping to traffic classes [23] or
other QOS parameter specifications is the prime responsibility of the VirtualQOS inter-
face.

Figure 8 shows the M-, D- and C- planes of the XRM and the respective connection man-
agement related objects (see also Figures 1, 2 and 3) that reside on them. As indicated
in the figure, algorithms that provide call and connection level abstractions are built on
top of the “local standardized interfaces” lying on the D-plane of the IRM.

In this example, there is a request for a new connection to be setup between switches A
and B. When the request is received by the Connection Manager (the client) on the C-
Plane, several actions are performed. At first, the Connection Manager will request from
the Route object (on the D-plane) a route from switch A to B. After the Connection Man-
ager has obtained the route, it uses the information to poll each intermediate node’s Vir-
tual Link with a link access request. Based on the information provided by the
schedulable region associated with the given link, the link admission control method
determines whether the call will go through or not. Once the Connection Manager is
assured that the call can be accepted by all links along the route, it calls the interface of
the Virtual Switches and/or Virtual Links representing the resources along the selected
route, requesting a connection to be setup. (For fast call set up this step can be com-
bined with the previous ones.) Because the Virtual Switches and Virtual Links contain
abstract representations of real physical objects such as switch controllers, virtual path
controllers, virtual circuit controllers and link controllers (not shown for lack of space),
they can setup the physical connection by simply modifying the values of some of these
objects (in this case, to set up the virtual channel, the connection manager invokes the
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Figure 8. Binding for Connection Management with QOS Guarantees

appropriate method of the Virtual Switch and Virtual Link object representing the corre-
sponding physical switches and links between points A and B).

At this stage, the call setup is complete and the Connection Manager’s role is over.
Whenever a new call is accepted into the system, the operating points of the Virtual
Switches and Virtual Links along the path of the call changes. After a call disconnect
request the connection manager executes the reverse operations.

Once again, note that the example above merely outlines the implementation of a possi-
ble connection management algorithm. Other schemes supporting, for example, the
Q.93b signalling interface can similarly be implemented using this architecture. A general
methodology for designing binding applications is given in [27].
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6.2 Parallel Virtual Machine

In this section, we further illustrate the generality of our architecture with an example of
computational binding. Again, the emphasis is not on the application itself, but on the fact
that even generalized distributed computing tools can be easily built on top of our archi-
tecture. The Parallel Virtual Machine is an example of a binding application built upon our
binding architecture.

The Parallel Virtual Machine (PVM) [13] is a public domain distributed computing soft-
ware library developed at the Oak Ridge National Laboratory for facilitating the develop-
ment of general purpose distributed computing applications. Essentially, PVM presents a
reliable connectionless data service interface to applications, thereby freeing them from
the concerns of the underlying network. PVM also provides a registration facility that
allows applications to register themselves with a specified name. This provides flexibility
for reconfiguration because applications are identified only through their registered
names and not by their locations (such as a network address). Note that the binding
between a name and its associated instance is static, i.e., registration is performed only
once at application start-up time and cannot be subsequently changed. Several other
useful service primitives are also provided for the convenience of distributed system
developers. These include facilities for synchronizing parallel applications, primitives for
configuration management, process control and group management.

Figure 9 shows the interface inheritance tree for PVM. A PVMService interface generic
to all PVM services is defined. Within this, three specific interfaces are further specified.
The SynchronizationService defines an interface of the object providing synchroniza-
tion to PVM clients. Clients that wish to be synchronized send requests to the Synchro-
nizationService object and wait for a reply. When the last client has sent the request,
the SynchronizationService signals to all the waiting clients. The ConfigurationSer-
vice object allows clients to obtain information about the system configuration (e.g., what
other clients are running). Finally, the ProcessManagementService object allows PVM
processes to manipulate other PVM processes. For example, a client may want to spawn
off child processes to perform some task and destroy them after that.

CSynchronizationService >

( Bindinglnterface PVMService <C0nfiguration8ervice )

<ProcessManagementService >

Figure 9. Interface Inheritance for PVM
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Figure 10 shows the implementation of clients, synchronization, process control and
configuration management services as objects. Note that PVMs registration service is
now not explicitly required because CORBA automatically provides a naming service to
all objects. This allows greater flexibility than the PVM name registration because the
association is not static and objects may be freely moved. As each client is now an
object, special primitives for passing data between themselves are no longer required.
Client objects can simply call each other supported by the respective standard inter-
faces. In a similar manner, one or more client objects can call on a service object for the
desired service to be performed. In Figure 10, suppose Client A wants to synchronize
with Client B. A first informs the Synchronization Service object and then goes to
sleep. When B calls the Synchronization Service object, A is notified. Similarly, when
Client A wants to spawn off a child process, Client C, it requests the ProcessManage-
mentService to execute an UNIX ‘remote shell’ command to start up the child process at
an appropriate network node.

-

a
Process Synch Config
Mgmt. ( Service Service
4 K :
e C-Plane
b byyb
Cotenta > CClenic ) (Clente
a: join group c: request for sync e: rsh

b: notification d: read configuration

Figure 10. PVM as an example of Computational Binding

PVM is an example of what we call computational binding. It can be implemented as
shown directly above our binding architecture. The various interfaces that implement
binding operations in PVM, can be derived directly from the BIB interfaces of the binding
architecture. PVM will require certain C- and M- plane specific binding algorithms. The
implementer has the flexibility to implement these above the binding interface base.
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7. Conclusion and Future Directions

The simplicity of our binding architecture is intentional. The idea was to present the con-
cept of binding in the simplest possible way and illustrate the advantages. In the future
more sophisticated BIB interfaces can be added for modeling new broadband networking
devices and concepts. The design of the binding methods and primitives is also evolu-
tionary and we have only described a bare minimum of these.

We have intentionally left out the description of many “object management” related prim-
itives like interface instantiation and deletion, interface location and interface migration,
etc. These are standard activities that many object based systems provide and we have
been emphasizing that by using CORBA, we have comfortably bypassed many of these
issues and concentrated mainly on multimedia networking requirements.

The advantages of our binding architecture are manifold. Firstly, by providing open inter-
faces such an architecture “naturally” satisfies the requirements for defining multimedia
services both within the network and the multimedia computing platforms. Secondly, our
architecture facilitates guaranteeing end-to-end QOS as it seamlessly supports coopera-
tion among distributed algorithms. Thirdly, it provides efficient ways of supporting distrib-
uted binding algorithms. For example, a connection establishment algorithm could be
carried out either sequentially or in parallel.

Our binding architecture, defined by the BIB and binding algorithms, is conceptually sim-
ilar to the MIB and CMIS/CMIP protocol of the OSI management architecture. Hence, the
integration of the control architecture with the management architecture of multimedia
networks becomes greatly simplified. By putting the BIB and the MIB into the Telebase
(D-plane), the sharing of data among the C-, M- and N-planes becomes manageable.
Using IDL and GDMO for representing information in the BIB and MIB, respectively, fur-
ther simplifies this task.

As expected, many issues still remain open or have been simply left out because of
space limitations. Currently, an implementation for validating our design is underway.
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