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Optimal  Flow Control of a Ciass of Queueing 
Networks in Equilibrium 

Abtraet -The problem  of  optimum flow control of a  class of queueing 
systems which  appears as a model of datagram  and  virtual  circuit  computer 
communication  networks is investigated. This class  “intuitively”  has  the 
property  that  by  increasing the load on the  network,  both the average 
throughput  and the  average  time  delay  also  increase.  It is shorn that  the 
control that achieves  the maximum throughput  under  a  bounded  average 
time delay  criterion  can  be  specified by a  “Hindow”  flow  control  mecha- 
nism  (bang-bang  control).  The  window size L ,  the  maximum  number of 
unacknowledged  packets  in  the  system,  can be easily derived  from  the 
preassigned  upper bound on the  time  delay T,  the  Norton  equivalent of the 
queueing  system p, and  the maximum admissible  total  load on the 
network c. 

I. INTRODUCTION 

0 NE of the  central  issues in the design of communication 
protocols  for  computer  networks is the  specification of flow 

control  algorithms.  The  prevention of throughput  degradation 
due  to  overload,  deadlock  avoidance,  and fair allocation of 
network  resources  are  among  the  main  functions of such  algo- 
rithms [3]. In this paper  only  the  problem of throughput  degrada- 
tion is addressed. In order to do so a  suitable model and  a 
relevant  optimization criterion for  protocol design is considered. 

To study  the  throughput  time  delay  tradeoff,  computer  com- 
munication  networks  are  modeled  as  queueing  networks [12]. 
Since  a key  design specification of the  protocols is the  existence 
of acknowledgments for packets  that  have  reached their destina- 
tion, closed queueing  networks serve as a  model  for  the  study of 
optimal flow control [6]. Most  protocols  are  designed  for unreli- 
able  channels  in which packets  can  be lost. To recover from  such 
losses  the  source  retransmits the packets  in  the  event  that an 
acknowledgment  has  not  been received within  a  certain  prede- 
termined time interval [14]. The optimization criterion considered 
in this paper  incorporates this design  constraint. First introduced 
in [7], the criterion adopted maximizes the average throughput 
under an average  time delay m d  admissible  load  constraint. Our 
results show that  the window  flow control  mechanism  commonly 
implemented  in  practice is optimal  with  respect to the criterion 
considered. Thus, our investigations give a justification for  the 
methods  already used in practice. In what  follows,  the  “intuitive” 
arguments  presented to motivate our work are  formalized. 

The problem of optimal flow control of simple  queueing sys- 
tems  in  equilibrium  has  recently  been  investigated [7],  [8]. It has 
been  shown  that  by  employing  a  maximum  throughput  under  a 
bounded average  time delay criterion an ./~M/rn queue  can  be 
optimally  controlled with a state-dependent  Poissonian flow. In 
this paper  the results previously  obtained  in [7] and [8] are 
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extended to a class of quasi-reversible  queueing  networks [4],  [15]. 
This class “intuitively” has the  property that by  increasing  the 
load on the  system,  both  the  average  throughput  and  the  average 
time  delay  also  increase (see Section 11). 

The class of networks  considered arises naturally in problems 
of end-to-end flow control in computer  communication  networks 
[3],  [13]. In the  queueing  model  considered  in  the  sequel,  both 
datagram  and virtual circuit networks [6] can  be  accommodated. 
Interfering traffic from  other  source-destination  pairs is,  how- 
ever, not  included. For a fixed source-destination  pair  the  end- 
to-end  behavior of such  networks is the  same  as  the  one  of an 
equivalent  queueing  system  that  can  be easily determined [l]. 
Throughout this paper  the  Norton  equivalent [ l ]  of such  net- 
works is assumed to be  a  queueing  system with a state-dependent 
service  rate  that is subject to some  regularity  conditions (see 
Section 11). It  is shown that  the  optimal  control of the class of 
networks  investigated is a so-called  “window” flow control  mech- 
anism [14]. The dependence of the window  size on the  preas- 
signed  maximum time delay,  the  maximum  admissible  load c, 
and the  Norton  equivalent p ,  are explicitly stated. 

This paper is structured  as follows. In Section I1 the class of 
queueing  systems  under  consideration is introduced  and  the 
optimization criterion is presented. As in [7], [8] the criterion of 
maximizing the  throughput  under a bounded  time  delay  criterion 
is used.  The  optimal  control  that satisfies this criterion is given in 
Theorem 1 of Section 111. This theorem is preceded  by  a series of 
lemmas,  some of which are of interest in themselves. Finally,  the 
dependence of the maximum throughput on the  time  delay  (the 
throughput  time  delay  function) is presented  for  the  simple  case 
of a  tandem  queueing  network. 

11. THE OPTIMIZATION CRITERION 

A queueing system as seen  by a  source-destination  pair  in  a 
computer  communication  network  together  with its acknowledg- 
ment  path  (feedback  channel) is schematically  depicted  in Fig. 1. 
The  upper  quasi-reversible  queueing  network  (system)  has to be 
controlled  corresponding to a  suitable  optimality criterion. The 
closed  queueing  system  in Fig. 1 is assumed to have N packets. k 
of the total of N packets  are  assumed to be  waiting  for senice  in 
the  upper  queueing  network.  The  remaining N - k  packets  are 
contained  in  the  lower or “feedback  queue.” 

The class of queueing  networks  considered  throughout this 
paper  has  a  Norton  equivalent [I]  (see also, [2] and [ l l ] )  with  a 
state-dependent service rate p = ( p k ) ,  1 < k < N ,  that satisfies the 
conditions 

pi < < ph (1) 

and 

PI - ph - 
J - i  k - i  2- (2) 

for all i, j ,  and k such  that 0 Q i < J < k c N .  
The set of inequalities  above  has  a very simple  analytical  (and 
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Fig. 1. A queueing  model for end-to-end flow control. 

geometrical)  interpretation: the mapping k + PI., 1 < k Q N ,  is 
concave  nondecreasing.  Note  that N ,  the  maximum  number of 
packets  admitted  in  the  network, is an arbitrarily large  integer 
and p o  = 0 in (2) by  convention.  Obviously,  the average  service 
rate of an . / M / m  queueing  system satisfies the set of inequali- 
ties (1) and (2). As another example. consider  a  link of M tandem 
queues with constant  exponential  server 6. The  Norton  equivalent 
of the  tandem  system  has  a  state-dependent  server given by [13]  

for all k ,  1 < k Q N .  It is  easy to see that (PI. ) ,  1 Q k Q N .  satisfies 
the  inequalities (1) and (2). 

Some comments  regarding  the class of networks  defined  by ( 1 )  
and (2) are  in  order.  First, p k  B p k  + I ,  for all k ,  1 Q k < N ,  implies 
that  the  throughput is increasing  with  the  number of packets in 
the system. Second,  since  inequality (2) implies  that k / p k  Q ( k  + 
1 ) / ~ , , , , f o r a l l k , l < k ~ N - l , t h e t i m e d e l a y o f t h e q u e u e i n g  
networks  under  consideration  increases with the  number of 
packets  that they contain (see Lemma 2 for  more details). Note 
that  the  latter  inequalities  represent the  time delay of the  upper 
queueing  system  in Fig. 1 with ''instantaneous''  feedback  and k 
and k + 1 packets, respectively. Note  also  that  the set of inequali- 
ties given in (2) can  be  written as follows: 

( k - j ) P , + ( i - k ) ~ , + ( j - i ) P k < O  
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and 

1 
Po = 

for all i . j ,  and k such  that 0 < i < j k < N .  
The feedback  queue in Fig. 1 is assumed to have an exponen- 

tial server ( A k ) ,  1 < k Q N that can be  controlled. Since there  are 
a  maximum of N packets  in  the  above  system,  the  upper  network 
can  be seen as a queueing  system with a finite buffer size. 
Without  any loss of generality, therefore,  the  feedback  queue 
models the input  stream to a  queueing  system with a finite buffer 
size. 

The average throughput and the  average  time delay  are given 
by ~51. ~ 3 1  

,v 

Ey:N = P h P k  
k = 1  

and 

respectively,  where 

denote  the  probabilities  that  the  upper  queue  contains k packets 
(1 Q k < N ) .  

Following [7] - [9]  a series of definitions will be given first. 
Definition 1: A = ( A h ) .  1 < k < N ,  will hereafter  denote  the 

Definition 2: The class of controls A = ( A k ) ,  1 < k < A', satisfy- 
control. 

ing  the  peak  constraint 

O<AI.<c 

for all k ,  16 k c  N ,  where c. C E  R,. is a  constant is called 
admissible. 

Definition 3: The  control A = ( A I . ) ,  1 Q k Q N .  is  said to be 
optimum  over  the class of admissible  controls  for  a given T ,  
T E R,, if the maximum 

ET< Q T 
max E y ,  

is achieved. 
Definition 4: The  mapping F R, + R ,  given  by 

F ( T )  = max Ey, 
E T ,  < T 

is called  the  throughput time delay  function. 
Let xI.  denote  the  expression 

for all k ,  1 < k < N .  Thus, 

and 

1 
Po = ,v . 

1 +  X I  

k = 1  

Lemma I :  A = (A I . ) ,  1 < k Q N ,  is optimum i n  the class of 
admissible  controls for a girlen T ,  T E R +. if it  achieves  the 
maximum 

where 

k - 1  

f o r a l l k , l < k < N .  
Proof Since  the condition  ET,^ Q T is equivalent to 
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and which is true  since 

k L  - <-, 
P k  P L  

for all k < L. Equality can be  only achieved in  the M / M / L  case, 
i.e.,  iff k / p k  is a  constant  for all k ,  1 < k L. 0 

Lemma 3: The maximum time delay of a passive queueing ~ s -  
tem described  by (1) and (2) increases with the number of packets, 
I .  e., 

N 

N k k x k  

E y ~ l = P O '  p k x k =  
k = l  

N 

E x k  
k = l  

x = l  

the  optimum  control X = (X,), 1 < k 6 N ,  for  a given T ,  T E R +, 
achieves 

N 

P k x k  

k = l  

0 

111. THE OPTIMAL CONTROL 

Our  main result in this section is given by  Theorem 1. Several 
results will first be  proved in  order  to simplify its proof. In 
Lemmas 2 and 3 the  maximum  time  delay  with L packets in  the 
system (see  Fig. 1 )  is derived and shown to increase  with  the 
number of packets. In Lemmas 4 and 5 some  purely  technical 
results needed  for  the proof of Theorem 1 are  presented. 

Lemma 2: The maximum time delay that can be achieved with L 
packets in the  system  is given by 

L 

k = I  

Proof: Let us first show  that 

L L 

kxk k p k  
k = 1  
L < L  

k = l  

E p k x k  E p k P k  
k = l  k = 1  

or 

L L  

1 PI ( kp i  - p k l )  < O. 
k = l  I=1 

Due  to the  symmetry  in k and l and the  fact  that 

for all k < I, the  expression on the  left-hand  side  in  the  above 
inequality is negative. 

Note  that 
L 

k p k  
k =1 L 
L 6- PL  

p k p k  
k = l  

is equivalent to 

for all L ,  L N .  
Proof: We have to show that 

L L C 1  

k p k  k p k  ~ 

k = l  
L 

k = l  
< L + l  

P k P k   P k P k  
k = l   k = l  

After  some  algebraic  manipulations this inequality can be  reduced 
to 

L 

E P k [ k P L + l - ( L + 1 ) p k ] 6 0  
k = l  

which is true  since 

k L + l  -<-, 
P k  P L - 1  

then k / p k  is a  constant  for all k ,  1 < k 6 L + 1.  Such a situation 
occurs,  for  example, in an M / M / L  + 1 queueing  system [SI. 

The method  used to prove  our  main result in Theorem 1 is 
based on a  majorization  argument. To find the throughput  time 
delay  function [see (3)] an achievable  upper  bound will first  be 
derived. In order to  do so, the  achievable  upper  bounds  for  the 
expressions C ; = l p k X k  and Zc=1xk that  appear  in (3) are  ob- 
tained in Lemma 4. In Lemma 5 an achievable  upper  bound for 
the  throughput of Norton's  equivalent is given. The  proofs of 
Lemmas 4 and 5 can  be  skipped, if desired,  without  any loss of 
continuity. 

Lemma 4: Let us assume that ErN < T and T < L / p L  with 
2 6 L <  N .  Then: 

and 

A' - L - 1  

and equalig can  be  achieved i j  

f o r a l l k , L + l < k < N , a n d  

. L - 1  
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Proof: The  linear  constraint on the time delay Er,v < T 
implies  that 

N 

Therefore,  by  simple  addition of the  same  expression on both 
sides of the above  inequality, we obtain 

N h’ 

and 

Inequalities (4) and (5) can now easily be  obtained since 

k L  ->-  
P k  PL 

and 

T<-< -  
L k - L  

The  latter  inequality  can  be  rearranged as 

N L - 1  

+ c c [ ( k - L ) P / + ( l - k ) P L + ( L - I ) P k ) l X k X /  
k = L   I = 1  
L - 1  N N 

+ c ( P l * - P / ) x / (  c k k -  c PkXk.T $ 0 .  
1 = 1  k = l  k = 1  1 

(7) 

Due to Lemma 4, the fixst expression  in  the  above  inequality is 
negative.  Similarly,  the  second  and  the  third  expressions on the 
left-hand  side of inequality (7) are also negative  since 

( k - L ) P / + ( I - k ) P l . + ( L - I ) P k d O  

f o r a l l I , k , I < L < k , a n d  

. 
PL PA -PL 

by  assumption.  It  remains as a  simple exercise to verify that 
for all k, L + 1 < k < N [a little thought shows that  the  latter  equality  in (7) can be achieved if x k  = 0, for all k, L < k < N ,  
inequality can be  obtained  without  using (l)]. 0 and 

Lemma 5: Let ErM < T and T < L/pL with 2 < L < N .  Then, - L - 1  

(6) 

and  equaliry  can  be  achieved ifx, = 0, for all k, L + 1 < k < N ,  and 

L - 1  

Proof: To prove  the  assertion  above, it is enough to show 
that 

{ k = l  ? P h X h } { l +  f { f (LPk-kPL)XI, 
k = 1  k = l  

or 

We are now in  the  position to prove our main result concerning 
the  optimal  control of queueing  networks  having  a Norton equiv- 
alent p that  belongs to the class defined  by (1) and (2). Since the 
time  delay is increasing with the  number of packets  in  the 
network (see Lemma 2) there exists an integer L, L < N ,  such 
that for  a given maximum time delay T ,  TAL-’) < T < TA:. Since 
T > TAL-’) we expect  that  the  control of the first L - 1 packets 
will be X, = c for all k, 1 < k < L - 1. The  remaining  “gap” in 
the average time  delay T - TAL.,-” will be  “filled”  by  the  delay 
caused by the Lth packet.  The  control of the Lth packet has yet 
to be  determined. In the following we will assume  that TAz < 
L/p  L. The  case TA: = L/pL has already  been  treated  in [8] (see 
also the  Remark following Theorem 1). 

Theorem I: Given  that TAL-’) < T < TAg, 2 < L < N ,  the opti- 
mal control of a  passive queueing  network  with a maximum of N 
packets in the system is given by 

i c  
10 l < k < N - L  

N - L + 2 < k < N  
A,= A x - L + ,  k = N -  L + l  

where 

, L - 1  

Finally, 

/ L - 1  

k = l  I =1  
L - 1  - 1  

and equality  can  be achieved if x A  = 0, for all k. L + 1 < k < N ,  ‘ (  L-PI.T+ [ L - k - ( p l ~ - P h ) T l p A )  ’ (9) 
and k = 1  
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Proof: To prove (9) in view  of Lemmas 1 and 5,  let us first 
show  that 

L - 1  I 

or 

k = l  I = 1  
L - 1  L - 1  

- c c [ L - k - ( P L - P k ) T I ( L P / - z P L ) X & P / d 0 .  
k = l  I = 1  

After  some  simple  algebraic  manipulations, this inequality  be- 
comes 

L - 1  c (LPk - kPL)(Xk - P k )  
k = 1  

L - 1   L - 1  

+ 1 [ ( k - L ) ~ / + ( L - ‘ ) ~ k + ( z - k ) ~ L ] x k p / d O .  
k = l  I = 1  

Both  expressions on the  left-hand  side  are  negative  since 

xh < P h  

and finally 

X k  P h  -< -  
x/ PI 

f o r a l l I , k , l < k < L - l .  
Hence,  the  maximum  throughput given by (9) is achieved if 

x h = p h , f o r a l l k , l < k < L - l , x ~ = O , f o r a l l k , L + l < k ~ N  
and 

The values  obtained  above  for ( x h ) ,  1 < k < N ,  also satisfy the 
time delay  constraint  ET,^ < T (see Lemma 5). Therefore, it 
remains  only to verify that 

0 < XI. < PI. 

which  can  be  written  as 

L - 1  

o <  c ( P , T - l ) P I <  (L-PLT)PL 
I = 1  

that is equivalent to 

Remark: As in  the M / M / m  case [7], since the  lower  queue 
will contain at all times at least N - L  packets,  the  optimum 
control can also  be achieved by  a  control  scheme using a  total of 
only N = L  packets. We require  that 

where X, is exactly  the  right-hand  side of (8). Therefore,  the 
optimal  control is a window type  mechanism.  The window  size L 
can  be easily derived  from  the  maximum time delay of the  system 
by  using  the  inequalities (10). Naturally,  the  number of packets 
will depend on the  maximum  offered  load  (or line capacity into 
the  queueing  network). 

In Theorem 1 we have  implicitly  assumed  the  existence of an 
integer  L  such  that [see the  inequalities (lo)] 

If, on the other  hand,  there is an integer Lm, such  that 

and 

for all L, L > L,,, then  the  optimum  control  remains  the  same 
as  the  one  presented  above as long as L > L,,. For L < L,, the 
optimum  control will be  similar to the  one  obtained  in [8] for  the 
M/M/oo queue.  Note  that  the results of  [SI for  the  optimal flow 
control of an M / M / m  queueing  system  can  be  directly  derived 
from  Theorem 1 by  setting pk = min( k, rn) for all k ,  1 < k < N .  

Except  for  at  most  one  packet,  the results obtained [see also 
( l l ) ]  indicate  that all packets  should  be  “injected” in the  network 
at  the  maximum  rate c. The  different rate of the Lth packet 
would  increase  the  complexity  in  implementation. This difficulty 
can  be easily avoided in practice  by  only  considering  the  discrete 
number of admissible  delays  T = TA&!, for all L, 16 L < N .  For 
such  admissible  delays, all L  packets will be served at  the  same 
rate c. The  above  analysis  motivates  the  introduction of the 
following. 

Definition 5: The  tuple (TAZ, F(TA2)) is called an operating 
point.  The set of tuples {(TA;;, F(TAk:))}, L < N ,  is called  the set 
of operating  points. 

The set of operating  points is completely  specified 

Corollary:  If T = TAz,  then 
following. 

/ L  L 

1 kpk P k P k  ‘ 
( T A ~ ,  F( T L ~ ) )  = 

k = 1  k = 1  
L 

P k P L  P k  \ k = l  & = l  / 

for all L. L < N .  
Proofi  Since T = TAE we have 

. L - 1  

by  the 

or and therefore 
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T i m e  delay 

Fig. 2. The  throughput  time  delay  function ( M  = 10. p = 10, c = 8). 

C - 9  

Fig. 3. The dependence of the throughput time delay function on the 
parameter c. 

k = l  

Lemma 6: The throughput time  delay  function  is continuous 
nondecreasing on R +. In addition,  for  all T,  TA:; ’) < T Q TAZ, 
and L Q N ,  F is convex. 

Proof: The  proof is left to the  reader as a  simple exercise. 
The throughput time delay  function of a  tandem  queueing 

system  containing M = 10 queues,  each with an exponential service 
time  distribution  having  parameter p = 10 and  a  maximum  capac- 
ity input line c = 8, is graphically shown in Fig. 2. Fig. 3 depicts 

the  throughput  time  delay  function of the  same  tandem  network 
for  various  values of the  parameter c.  The ‘‘overall concave” 
behavior of the  throughput  time  delay  function  can  also  be easily 
proven. 

IV. CONCLUSION 

The main  contribution of this work lies in  identifymg  a class of 
queueing  systems  that  represent an analytically  tractable  model 
for  optimal  end-to-end flow control  in  computer  communication 
networks. For this class of queueing  networks  the window flow 
control maximizes the  throughput  under an average  time delay 
and  admissible  load  constraint.  The window  size can easily be 
derived  from the upper  bound  on  the  average  time  delay T ,  the 
maximum  admissible  load c. and  the Norton equivalent of the 
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network p. The results obtained suggest that  the window flow 
control  mechanism  currently  employed in computer  communica- 
tion networks  has  some very desirable  properties.  Recently, it has 
been shown that  the  Jacksonian  network is a member of the class 
of networks  studied in this paper [lo]. 
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