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Abstract—This paper presents a decentralized auction-based
approach to pricing of edge-allocated bandwidth in a differenti-
ated services Internet. The players in our network economy model
are one raw-capacity seller per network, one broker per service
per network, and users, to play the roles of whole-sellers, retailers,
and end-buyers, respectively, in a two-tier wholeseller/retailer
market, which is best interpreted as a “sender-pay” model. With
the progressive second price auction mechanism as the basic
building block, we conduct a game theoretic analysis, deriving
optimal strategies for buyers and brokers, and show the existence
of networkwide market equilibria.

In addition to pricing, another key consideration in building dif-
ferentiated network services is the feasibility of maintaining stable
and consistent service level agreements across multiple networks
where demand-driven dynamic allocations are made only at the
edges. Based on the proposed game-theoretic model, we are able to
construct an explicit necessary and sufficient condition for the sta-
bility of the game, which determines the sustainability of any set
of service level agreement configurations between Internet service
providers.

These analytical results are validated with simulations of user
and broker dynamics, using the distributed progressive second
price auction as the spot market mechanism in a scenario with
three interconnected networks, and two services based on the
proposed standard expedited forwarding and assured forwarding
per-hop behaviors.

Index Terms—Capacity provisioning, differentiated service, net-
work interconnection, peering stability, second price auction.

I. INTRODUCTION

T HE RECENT development of the differentiated service
(DiffServ) Internet model is aimed at supporting service

differentiation for aggregated traffic in a scalable manner [1],
[2]. The tenet of DiffServ is to relax the traditional hard-QOS
model (e.g., end-to-end per-flow guarantee of IntServ [3], and
ATM) in two dimensions: slower time-scale network mecha-
nisms and coarser-grained traffic provisioning.

The focus of the proposed differentiated services framework
has been mainly on packet level behavior, with the purpose
of defining building blocks for scalable differentiated services.
Substantial progress has been made in the development and
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standardization of packet forwarding behaviors [4], [5]. How-
ever, two issues have been lacking systematic study in the de-
velopment of differentiated services:

1) dynamic market-pricing of edge-allocated bandwidth;
and

2) the feasibility of maintaining consistent service level
agreements (SLAs)—or DiffServ profiles—across in-
terconnected networks where demand-driven dynamic
allocations are made only on the edges.

While the role of prices as an essential resource allocation
“control signal” has been established from the outset of Diff-
Serv [6], [7], the precise development of pricing mechanisms
is still at its early stages. In the simple integrated media ac-
cess model [8], the service charge for a user is proportional to
the nominal subscribed bit rate and the price differentiation be-
tween different service classes remains fixed. Similarly, in the
user-share differentiation proposal [9], pricing is based on the
user share that is allocated over long time scales. These schemes
fall within the category of capacity-based pricing. Just as Diff-
Serv aims to provide a range of “better than best-effort” ser-
vices without the complexity and per-flow state of hard-QOS,
capacity-based pricing schemes can be thought of as “better than
flat-rates” (more rational and sustainable from the economic
point of view), without the continuous measurement and ac-
counting required by usage-based pricing. Flat-rate pricing is
the extreme of capacity pricing where the capacity equals the
access line speed, while usage pricing can be thought of as the
extreme where capacities are continuously adapted to fit the ac-
tual transmission rate of each flow at each moment in time. A
pricing scheme which explicitly covers the range between these
two, as well as the service-type dimension is discussed in [10].

One consequence of resource allocation at network edges is
a natural proclivity toward a “sender-pay” model. Indeed, a “re-
ceiver-pay” model would require explicit price signaling back
to the source in order to allocate the corresponding resources,
since prices have to relate to the resources consumed (i.e., ser-
vice quality). Such signaling, if done in real time within the net-
work, would reintroduce the same type of complexity and scal-
ability problems as those that afflict end-to-end per-flow QoS,
and that the edge-allocation model is meant to avoid.1

A sender-pay model is a departure from the Internet tradition
of receiver-paid flat rates. However, while the pricing mecha-
nisms presented in this paper can equally apply to a receiverpay

1Of course, the receiver may pay the sender through some off-line means, e.g.,
through subscription, “pay-per-view,” or indirectly in the case of advertising-
supported content.
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model; there is a strong case to be made that the Internet has
reached a stage in its evolution where the change is due. Indeed,
consider the historyofpostal service: inancient times, itwas gen-
erally run on a receiver-pay model. In a system with unreliable
delivery, it is more natural to require payment on the receiving
side. Just like the best-effort Internet, the unreliability was com-
pensated for by the fact that the system was lightly loaded, and
messages were such that retransmissions were acceptable. As the
number of users grew, the postal system went through a phase of
complex bilateral agreements between countries (this occurred
in Europe from about 1600–1900), much like inter-ISP peering
today. In the later stage, where differentiated services are offered
(e.g., air-mail, overnight express, bulk-mail), thedefault is for the
sender to pay,2 since the quality must be selected on the sending
side. Thus, by analogy, the move from best-effort to differenti-
ated services should lead to a sender-pay model.

The space of network resource pricing schemes has many di-
mensions (for a complete taxonomy of network pricing, see [11,
Chapter 1]). One is “where” the capacity abstraction takes place:
at each hop inside the network or at the edges [12] (as discussed
above). Another is how mucha priori information on demand
is required. At one extreme, the seller assumes perfecta priori
knowledge of demand and does an offline calculation of optimal
prices (e.g., time-of-day pricing based on historical traffic pat-
terns). In more sophisticated approaches, the seller assumes the
functional form of demand and adjusts prices by on-line opti-
mizations [13]–[17]. These pricing schemes are “model-based,”
in that the relationship between demand and price (and pos-
sibly time) is assumed in ana priori formula. Knowledge of
this model and its parameters is precisely thea priori informa-
tion requirement described above.

Auctioning is the pricing approach with minimal information
requirement. The more difficult it is for the seller to obtain de-
mand information (or valuations), the stronger the case is for
using auctions. In today’s Internet, because of the diverse and
rapidly evolving nature of the applications, services, and pop-
ulation, the case is particularly compelling. With suitably de-
signed rules, auctions can achieve efficient (i.e., value maxi-
mizing) allocations with minimala priori information.

An important aspect of the problem that has not been system-
atically addressed is the feasibility of maintaining consistent
SLAs across interconnected networks with dynamic, market
driven, edge capacity allocation. Inconsistent SLAs would
result in frequent reconfiguration of traffic conditioners at the
edges, and/or significant violations of the service quality in the
core of the networks.

In this paper, we investigate two closely coupled problems.
First, on the “demand side,” we study the feasibility of auc-
tioning capacity in real-time on a DiffServ internet. We then
consider the “supply side,” focusing on the feasibility of pro-
visioningstableandconsistentSLAs across multiple networks,
where allocations are dynamically driven by demand and made
only on the edges.

We begin in Section II by constructing the two-tier whole-
seller/retailer market model, giving the wide-area model for

2At least for the part that relates to service quality differentiation. In general,
all parties pay for basic connectivity to the system.

pricing, provisioning, and differentiation of the services, and
introduce the demand model.

Following this, in Section III, we show through game-theo-
retic analysis and simulation that the progressive second price
(PSP) auction of [18] can provide stable and efficient pricing
in a DiffServ bandwidth market. The results of this section ex-
tend those of the single sharable resource auction of [18] to the
case of multiple networked resources, in an edge-capacity allo-
cation framework. The PSP mechanism achieves the economic
objectives of incentive compatibility and efficiency, while being
realistic in the engineering sense (small signaling load and com-
putationally simple allocation rule). As such, it provides a useful
baseline for understanding the conditions for the economic fea-
sibility of wide-area differentiated services.

InSectionIV,wederiveanecessaryandsufficientconditionfor
the stability of dynamic SLA provisioning. Then, in Section V,
all the analytical results are validated by simulations, which il-
lustrate not only conditions for stable and unstable markets, but
also stable conditions which lead to certain classes of service not
being offered on an internetwork basis. Finally, in Section VI, we
present some concluding remarks and future work.

II. THE MODEL

A. Distributed Market Framework

Our network model assumes that each network can be ab-
stracted into a single bottleneck capacity (e.g., as a “Norton-
equivalent” [19]). The capacity may be represented by an ab-
solute amount of bandwidth, or some relative metrics like user
share in the user-share differentiation proposal [9] or resource
token in location independent resource accounting [20]. Large
networks can be modeled by subdivision into a set of intercon-
nected networks, each of which can be abstracted into a bottle-
neck capacity. The degree of subdivision that is necessary de-
pends on traffic, topology, and size constraints as well as the
desired level of accuracy. Within each network, the routing of
aggregated traffic to each peer3 is stable over the resource allo-
cation time scale (e.g., in the order of hours).

Fig. 1 presents the model of our proposed auction pricing
framework for a set of interconnected networks as described
above. A two-tier whole-seller/retailer market model is used
to accommodate a network of goods (i.e., bandwidth) with
multiple differentiated service classes. We define three kinds
of players: users, service bandwidth brokers (SBBs), and
raw bandwidth sellers (RBSs), to play the roles of end-users,
retailers, and whole-sellers, respectively. Each network has
a single RBS and a separate SBB for each class of service
being offered. The RBS can be thought of as the bearer, and
the SBBs as service providers [21]. If the RBS and multiple
SBBs on the same network are not owned by the same entity,
a noncooperative game formulation is the best way to model
the problem. Even if they are owned by the same entity, a com-
petitive framework is valuable, the idea being that competition
among SBBs results in a dynamic and efficient partition of the
physical network resources among the services being offered,

3In this paper, we use the term “peer” in the most general sense, i.e., any net-
work which interconnects with a given network, and not just those that choose
to exchange all traffic free of charge.



SEMRETet al.: PRICING, PROVISIONING, PEERING—DYNAMIC MARKETS FOR DIFFERENTIATED INTERNET SERVICES 2501

Fig. 1. The 2-tier auction pricing framework for DiffServ internet.

based on the demands from users. The users, or retail buyers,
are subscribers to a particular service offered by a particular
provider. In the DiffServ context, these will likely be large
subscribers (e.g., web sites, various content or application
server farms, intra/extranets, virtual private networks), rather
than individual end users.

B. Game Theoretic Model: Message Process and Notation

Let the set of all players, including buyers, sellers, and bro-
kers (brokers are both buyers and sellers), be denoted by

. A player’s identity as a subscript indicates
that the player is a buyer, and as a superscript indicates the seller.

Suppose playeris buying from player . Then he/she places
abid , meaning he/she would like to buy froma
quantity and is willing to pay aunit price . Without loss of
generality, we assume that all players bid in all auctions, with
the understanding that if a playerdoes not need to buy from,
we simply set .

A seller places anask , meaning he/she is
offering a quantity , with a reserve (or floor) price of per
unit. In other words, when the subscript and superscript are the
same, the bid is understood as an ask.

Unless otherwise indicated, when sub/superscripts are
omitted, the notation refers to the vector obtained by letting
it range over all values. For example, is the vector

, and is the matrix. A subscript with a
minus sign indicates a vector with that component deleted

, and denotes
the profile obtained by replacing with .

Based on the profile of bids , seller com-
putes an allocation , where is the quantity
given to player and is the total costcharged to the player
. is theallocation rule of seller . It is feasible if ,

and . One possible allocation rule is the progressive
second price auction as discussed in Section III.

C. Sellers’ Provisioning and Peering Constraints

Suppose player is an RBS. Then its strategy consists
of alwaysasking , with equal to the physical
bottleneck capacity of its network, and equal to the unit cost
of operation. Since it is a passive seller of physical bandwidth,

does not buy from anyone, i.e., .
Suppose is an SBB. It offers a capacity for sale

to its users. In order to honor its contracts, the quantity offered
must be constrained by the capacities thatcan actually obtain.
First, it must get enough bandwidth from, the RBS in its own
network, to carry the total capacity it allocates to its customers,
i.e.,

(1)

Second, since it is selling interconnection service,must get
enough capacity from the SBBs offering the same service in
each peer network. Letdenote one such peer SBB, andbe
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the “fraction of traffic” generated by’s customers that is routed
to the network where playeris the peer SBB (see Remark in
Section II-D for interpretations of ). Then, must satisfy

(2)

for all peers .4 For notational convenience, fix , when
is ’s RBS. Since , (2) includes (1) as the special case

. If is neither a peer of, nor its RBS, then we set .
Define, for any allocation

We call

(3)

theexpected bottleneckcapacity for the service offered by.
Proposition 1 (Broker’s sell-side constraints):Let

be a SBB, and fix its buy-side allocation . Then, on the
sell-side, the quantity offered must satisfy

For a broker who does not sell at a loss, the reserve price must
satisfy

Proof: Suppose such that . Then when
all the offered quantity is bought, we have

, and condition (2) is violated.
This proves the first assertion.

Since is the total cost of the capacity thatis buying,
the second assertion follows immediately from the our assump-
tion that the broker will not sell at a loss.

Remark: The obvious way for a broker to satisfy Proposition
1 is simply setting . Alternately, the seller
can leave equal to the maximum physical capacity, and place
in its own market an artificial “buy-back” bid equal to

, where and is larger than any user
is willing to bid. Note that this artificial player . This
buy-back bid effectively limits’s users to precisely the capacity
that can honor in forward to its peers. In other words, the
buy-back bid ensures that the quantity constraint of Proposition
1 is automatically satisfied. If there is demand (bids) at prices
greater than the marginal cost toof expanding capacity, then
naturally broker will want to satisfy it, so should be set at
the marginal cost of increasing the offered quantity. As we
will become apparent through Proposition 4 below,should
be set to equal , which is the price at which could obtain
more capacity at its bottleneck to a peer network.

4We assume that service providers block “loop-back” traffic, i.e., traffic going
from l throughj and back tol. If that is not the case, then the summation in (2)
would be over alli.

Fig. 2. Internetwork provisioning coefficients for Olympic Gold, Silver, and
Bronze services, and the virtual leased line service.

D. Differentiating Services

We do not explicitly consider the per-hop behaviors (PHB’s)
per se, which of course are essential in assuring the service
quality on the packet time scale. On our level of abstraction, only
the vector of provisioning coefficients differentiates broker
and the service it offers. A broker is characterized by the type
of SLA that it offers.

• Expected capacity SLA. On average, users will get the ca-
pacity they pay for, even when the traffic enters peer net-
works. This could include for example services built on
the DiffServ assured forwarding (AF) per-hop behaviors
[5]. In this case, is the expected fraction of the total
traffic entering that is routed to . the fraction of
traffic that terminates with one of’s own customers, and

, where is the RBS in ’s network.5

• Worst-case capacity SLA. Another type of SBB may offer
service agreements for worst-case bandwidth, i.e., each
user always gets the amount of bandwidth they pay for,
even if all of the traffic is routed to the same peer. This
could include for example services built on the DiffServ
expedited forwarding (EF) per-hop behavior [4]. In this
case for all peers .

• Local SLA. For an SBB which offers SLAs valid only
within its own network, and , .

Fig. 2 illustrates several service scenaria for an SBBwith
two peers and . In all the cases, the steady-state aggregate
traffic pattern is such that 2/3 of’s traffic flows to ’s network,
and 1/3 flows to ’s network (to visualize in only two dimen-
sions, we assume , i.e., provides only “transit” service,
so no traffic terminates within’s own network). Thus, if is
offering an expected capacity service,will lie along the line
with slope 1/2. Here we show how the SBB would have to provi-
sion the three classes in the “Olympic service” based on AF [5],
and the “virtual leased line” (VLL) service based on EF [4]. De-
grees of overprovisioning must be used to differentiate among
AF classes. A Bronze service class SBB would provision just
enough capacity to carry the traffic on average (circle marked

5Note that for expected capacity, a userm whose traffic is entirely within the
allocated profilea when it enters its brokeri’s network could temporarily be
out of profile in the peer networkj, if i miscalculatedr , or if there is a sudden
surge of traffic from many ofi’s customers toj.
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“B” in the figure). If the SBB is providing Silver class service,
then it must provision more generously to ensure that they are
less loaded, and thus experience better service, and even more
generously if the service is Gold class (circles marked “S” and
“G” in the figure). For the VLL service, more conservative pro-
visioning can be achieved by providing for worst-case flows,
i.e., all the traffic can flow to any one peer and still be satisfied,
as illustrated by “V” in Fig. 2.

Depending on the scheduling and buffer management algo-
rithms used to provide the PHBs, some amount of overprovi-
sioning may be required [4]. These engineering needs can be
represented in this model by simply factoring overprovisioning
into each coefficient of , e.g., if is offering a virtual leased
line with 5% overprovisioning then .

Note that for our purposes, the provisioning coefficientsare
known by broker in advance, since they represents aggregate
flow patterns. In practice, this meanswould be measured over
a time-scale slow enough to make quasi-static estimates which
average out microflows.

E. Buyers

We model buyers asbottleneck buyers, i.e., each buyer
seeks to maximize its utility

(4)

where
is as in (3),
is the buyer’svaluation function, and
denotes composition of functions [i.e.

].
As the name indicates, the valuation function describes how
much each possible allocated quantity is worth to the buyer, i.e.,
the willingness to pay, and is private information. Other players
(including the seller) only see the buyer’s bid and not the val-
uation that lead the buyer to make that bid. Here, the valuation
depends only on a scalar bottleneck which is a function of
the allocated quantities at all the resources.

If the buyer is a user buying from SBB , then and
, . Thus, , and (4) has the simpler form

. The valuation is a function of the player’s own
allocation only, and expresses the amount the user is willing to
pay for each possible quantity of resource. It can be based on
economic and/or information theoretic considerations (see [18,
appendix]).

If the buyer is a broker, the natural utility is the potential profit
so , the broker’s buy-side valuation, is the potential revenue
from the sale (on the sell-side) of the capacities obtained on the
buy-side. The potential revenue is derived from the demand on
the sell-side: let ,

the demand at unit price. Its “inverse” function is defined by

Fig. 3. Demand curve for a brokerj.

See Fig. 3. Note that we chose to be continuous from the
left. For a given demand function , , repre-
sents the highest unit price at whichcouldsell the th unit of
capacity. The actual prices charged to users depend on the spe-
cific allocation mechanism used.

Proposition 2 (Broker’s buy-side valuation):Let be a
broker with inverse demand . Its buy-side valuation is

Thus
Proof: Since the broker seeks to maximize profit, for a

given allocation , it will sell as much as possible; thus by
Proposition 1, . If decreases by, then must be
reduced by . The value to of the lost quantity is the revenue
could have gotten from it. By definition, this lost potential rev-
enue is . Thus, by abuse notation, writing as a func-
tion of ,

and the result follows as .
It is useful to conceptually decouple the game into two. On

one hand is a “demand game” wherein users and brokers com-
pete for the available bottleneck capacities. On the other hand,
we have what may be called the “supply game” among brokers
which results in the setting of the bottleneck capacities. Since
the brokers are driven by the users’ demands, and the users are
competing for the offerings of the brokers, the two games are in-
terdependent, and may be played on the same or vastly different
time scales.

The notation used in this paper is summarized in Table I.

III. D EMAND SIDE

In this section we consider the demand side, and derive the
optimal (utility-maximizing) bidding strategies for users and
brokers, and establish the existence of an efficient (value maxi-
mizing) equilibrium point among buyers, when sellers are static
(i.e., do not change the offered quantity). We assume that each
RBS imposes a nonzero asking (or “reserve”) price—which can
be arbitrarily small. Thus, prices will always have a strictly pos-
itive floor.
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TABLE I
SUMMARY OF NOTATIONS

The design of our progressive second price auction (PSP) ap-
pears in [18].6 The mechanism is defined by: ,

(5)

(6)

where means taking the minimum. Note that each seller com-
putes allocations from local information only (the bids for that
resource). Define

Note that we define to be continuous from the left. Under
PSP, is the market price function from the point of view of
user . Indeed, it can be shown that

(7)

Remark: Except at points of discontinuity, we have
. This mechanism generalizes Vickrey

(“second-price”) auctions [22] which are for nondivisible ob-
jects. PSP bears some similarity to Clarke–Groves mechanisms
[23], [24]. The fundamental difference from the latter is that
PSP is designed with a message (bid) space of two dimensions
(price and quantity) in which each message is a single point,
rather than an infinite dimensional space of valuation functions
where each message is a revelation of the whole valuation

6PSP was first presented at the DIMACS Workshop on Economics, Game
Theory, and the Internet, Rutgers, NJ, April 1997; and a generalized analysis at
the 8th International Symposium on Dynamic Games and Applications., Maas-
tricht, The Netherlands, July 1998.

curve (see [25] and [18] for an explanation of the “revelation
principle”). This reduction of the message space is crucial in
the context of communication networks, where limiting the
size and complexity of the exchanged messages (signaling) is
very important.

We defineelastic demandas follows. , is continuous,
concave, and smooth (is continuous); and for some (possibly
infinite) maximum capacity , is strictly decreasing
(i.e., if is well defined) on , and nonincreasing

on .
Under elastic demand, analyzed as a complete information

game, the PSP auction for a single arbitrarily divisible resource
(e.g., bandwidth on one link in a network) has the following
properties which are proven in [18].

• Incentive compatible: truth-telling (setting the bid price
equal to the marginal valuation) is a dominant strategy.

• Stable: it has a “truthful” -Nash equilibrium [26], for any
positive seller reserve price.

• Efficient: at equilibrium, allocations maximize total user
value (social welfare) to within .

• Enables a direct tradeoff between engineering and eco-
nomic efficiency (measured respectively by convergence
time and total user value), by the parameter, which has a
natural interpretation as a bid fee.

In the rest of this paper, we assume all the sellers in the net-
work are using PSP as the allocation mechanism.

For users, the best strategy consists simply of bidding for the
largest quantity such that the marginal valuation is higher than
the market price, and setting the bid price equal to the marginal
valuation (i.e., “truth-telling” is optimal).

Proposition 3 (User’s strategy):Let be a user such
that that is differentiable and continuous from the left. Let

be that user’s broker. For a fixed profile , an -best
reply for player is , such that

and

and

That is, , .
Proof: This is a special case of Proposition 4, with,

, , and , . This was derived separately
in [18].

Consider now a broker, participating in many auctions si-
multaneously. By the nature of its valuation (Proposition 2),
capacity allocations are valuable to the broker only insofar as
they increase its expected bottleneck capacity . Thus, a
broker must coordinate its buy-side bids (one submitted to each
of its peers and its RBS) to maximize its overall utility.

Note that for Proposition 3, we do no require thatbe
smooth. Concavity and nonincreasingness suffice, along with
the purely technical condition of continuity from the left. These
are satisfied by the broker’s valuation (Proposition 2). Thus, we
can expect that the same principle (optimality of truth-telling)
should hold.
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Indeed, as we will now show, it turns out that the optimal
strategy is very similar to that of a single user. But instead of
searching directly for the optimal capacity, the broker finds the
optimal expected bottleneck, which is the largest one such
that the marginal value is just greater than the market price. The
role of the market price is played by the average of the market
prices at the different auctions, weighted by the route provi-
sioning factors. The actual bids are obtained by transforming
the desired optimal expected bottleneckback into the corre-
sponding quantities to bid at each buy-side market. As with a
user, truth-telling is optimal for the broker, so at each buy-side
market, the broker sets the bid price to the marginal value.

Proposition 4 (Broker’s buy-side strategy):Let be
a broker, and fix all the other players’ bids , as well as the
broker’s sell-side (thus is fixed). Let

(8)
and for each

and

Then a (coordinated)-best reply for the broker is ,
i.e., , .

Proof: Since is nonincreasing and , is nonde-
creasing, (8) implies , and therefore

,

Therefore,

Now suppose such that
. Let , and ,
and . From (17) in Lemma 1,
; therefore,

By Lemma 1 (given in the Appendix),
. Therefore, , which

by Proposition 2, is equivalent to

(9)

Let . Since is nonincreasing
. That, along with the fact that is nonneg-

ative, and (9), implies

If , then for some ,
, which contradicts (8).

If , then . But, since
both and are continuous from the left, (8) implies that

, which is a contradiction.
As stated above, for stability of PSP, we assume that demand

is elastic for all players. However, the broker does not satisfy the
smoothness (continuous derivative) condition. From Proposition
2, the broker’s valuation, as a function of the (scalar) expected
bottleneck capacity , is piecewise linear and concave
(the derivative is the “staircase” function shown in Fig. 3). Thus,
we need to assume that brokers apply some smoothing in de-
riving the buy-side valuation from the sell-side demand, e.g., by
fitting a smooth concave curve to the piecewise linear one.

Unlike the proof of the the broker strategy, the proofs of the
following results are not essential to intuitive understanding of
the game and are omitted due to space constraints.

Proposition 5 (Equilibrium): In a game consisting of arbi-
trarily networked PSP auctions, where all buyers have utilities
of the form (4), and sellers are static (i.e., with fixedand re-
serve prices , for all sellers ), under elastic demand,
for any , there exists a (truthful) networkwide-Nash equi-
librium.

Proof: See [11, Chapter 3].
At such equilibria, the allocations are efficient (i.e., arbitrarily

close to the value-maximizing allocations).
Proposition 6 (Efficiency): Let be the equilibrium alloca-

tions. Under elastic demand, if in addition , if exists
and for some , ,

where , for any
.

Proof: See [11, Chapter 3].
The bound is minimized when . Thus,

the strongest statement that can be made here is that as long as
, we get an inefficiency

which is .
In a dynamic auction game, can be interpreted as a

bid feepaid by a bidder each time they submit a bid. Indeed, in
Propositions 3 and 4, the user will send a best reply bid as long
as it improves his/her current utility by, and the game can only
end at an -Nash equilibrium.

IV. SUPPLY SIDE

The interaction between brokers has a much richer dynamic
than discussed in the previous section. For example, not all con-
figurations of provisioning coefficients in the wide area net-
work lead to convergence and stable allocations. Depending on
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the topology and degree of overprovisioning, the interaction be-
tween brokers can lead to oscillating allocations. On the other
hand, stable operating points may lead to zero allocations for
some brokers resulting in certain classes of service not being of-
fered at all. These are not mere artifacts of PSP or any particular
pricing mechanism but are fundamental issues of peering and
provisioning under edge-capacity allocation. The former case is
analytically related to classical problems such as route-flapping
using decentralized routing algorithms. The latter case relates
to empirical evidence in the best-effort Internet where market
forces abandon traditional “free-for-all” peering between net-
works of unequal size.

We now consider the supply game among brokers by itself.
For that purpose, the specifics of the auction mechanism and
the resulting prices are not needed. Indeed,the analytical results
presented here on the stability and sustainability of peering are
independent of the actual pricing mechanism used. It suffices
to know that a broker’s strategy results in buying capacities

from each of its peers and offering a quantity for sale
according to (3), where ’s are chosen to maximize it’s profit;
for details see [27]. We will then use simulations using PSP
auctions to verify that our insights are valid when the two games
are coupled.

Define the vector for any profile
of allocations , where is the bottleneck capacity of selleras
given by (3), and is the subset of consisting of all
the sellers (RBS’ and SBBs). Pure buyers (users) are assumed
to be players numbered . From (2) and
(3), at the equilibrium point, the following conditions will hold
for :

(10)

(11)

Together, these equations merely state that at equilibrium, seller
will not sell more than it’s bottleneck capacity, and that it will

not buy more than necessary from any of it’s peers.
The left-hand side of (10), , is quantity that seller is of-

fering to its users given what it has obtained on the buy-side,
while the right-hand side is the quantity that is actually being
bought from on its sell-side. Thus, the right-hand side can
never be greater. If the left-hand side is greater, thenis buying
more capacity than it can sell, which means it is wasting money
(since prices are always strictly positive), and therefore will re-
duce some of its bids on the buy-side. Thus, an equilibrium can
occur only when equality holds.

The left-hand side of (11), , is the capacity is buying from
, while the right-hand side is the capacity it needs to buy from
to maintain a bottleneck of at least. By definition—see

(3)—the right-hand side can not be greater than the left-hand
side. If the left-hand side is greater, the extra capacity bought
from does not increase the bottleneck capacity thatcan actu-
ally offer on the sell-side, and thereforewill buy less from .
Thus, an equilibrium can occur only when equality holds.

These conditions can be rewritten in matrix form as

(12)

where, for , ,

The matrix , is the key to determining
the stability of the game. The spectral radius of a matrix,
denoted , is the largest of the moduli of the eigenvalues.
Let .

Consider now the brokers dynamically playing against each
other. Specifically, on the buy side, each broker uses a best-reply
strategy [27], and on the sell side, limits the offered capacity to
the bottleneck capacity that it can obtain. Mathematically, the
brokers’ game is equivalent to a distributed computation to solve
(12).

Proposition 7: The provisioning game, where brokers play
asynchronously (i.e., each broker can act at any time, with no
assumed order of turns, and variable but finite delays between
turns), will converge to an equilibrium if an only if .

Proof: This follows from the above argument and the
chaotic relaxation method [28], [29].

Remark (Dynamical system interpretation): The
users—through the demand vector—can be viewed as
external inputs driving a dynamic system, where the dynamics
are governed by (10) the brokers: the system equation is then

(13)

In this simplified view, all the brokers simultaneously adjust
their offered quantities from to , based on the
demand vector . The convergence of the game is exactly
the notion of stability of the dynamic system (13).

Remark: Brokers of different service classes do not buy from
each other. But different service brokers in the same network do
compete with each other to buy capacity from the RBS, and the
RBS does not buy from any other player (see Fig. 1). Thus, we
have the following matrix structures in, for example, a two class
network:

(14)

where is the identity matrix, which is in the rows corre-
sponding to the RBSs. Since the eigenvalues ofcomprise
all the eigenvalues of the diagonal blocks (i.e., ,
and 0), the different service classes are independent with
regard to stability. Therefore, for any class, we need only take

the matrix of the brokers’ internetwork provisioning
coefficients, derive the corresponding , and compute its
eigenvalues to test whether or not the game among brokers is
stable.
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Remark: When all the are equal, i.e., , , , ,
we have:

In this case, has a single eigenvalue equal to and
eigenvalues equal to, and

Specifically, when , , so the convergence
condition becomes .

When , the convergence condition is equiv-
alent to

or

Therefore,the equal provisioning game over more than two fully
connected networks does not converge if .

V. SIMULATIONS

The strategic game analysis in Section III establishes the op-
timal strategies and the existence of a stable and efficient oper-
ating point in the PSP games between dynamic buyers and static
sellers. But these analyzes do not give any indication as to which
particular equilibria will be reached. The provisioning matrix
formulation in Section IV further reveals the stability condition
of the provisioning game among dynamic sellers.

In what follows, we will use simulation to further study the
DiffServ PSP framework and confirm the above analytical re-
sults under a realistic service provisioning scenario.

A. Simulation Configuration

We consider two classes of services, and hence two SBBs in
each subnetwork.

• Class 2 is for reliable and high-quality service (e.g., the
virtual leased line service considered by the EF PHB).

• Class 1 is for adaptive multimedia applications with less
stringent quality requirements (like the Olympic Bronze
service in Fig. 2).

In this scenario, best-effort service does not need any explicit
capacity allocation. It is charged on flat rate and does not par-
ticipate in the bandwidth auction market.

The simulation network has a mesh topology of three net-
works as shown in Fig. 1. Two access networks, A and B, con-
nect to each other and to a backbone network M. Internetwork
links are assumed to have a capacity equal to the capacity of the
destination network.

The different degrees of provisioning for the two service
classes are reflected in the routing factors that are set
according to Table II. One can observe the structural similarity
between in Table II and in (14).

The simulation parameters are given in Table III. To simulate
the dynamics of subscribers switching among service providers,
each user is modulated by an ON–OFF Markov process. At the
beginning of an ON period, the user is connected randomly to

TABLE II
INTERNETWORKPROVISIONING COEFFICIENTS: r (EMPTY ENTRIES AREZERO)

TABLE III
SIMULATION PARAMETERS

one of the three networks (a uniform load distribution). During
the ON period, a user continuously bids for bandwidth based
on its valuation curve and presumably sends out traffic at a rate
within the allocated bandwidth. During OFF periods, the user
unsubscribes from the service. ON and OFF intervals are ex-
ponentially distributed with mean of 10 and 1 time units, e.g.,
one second or one week. In the remainder of this paper, we use
one minute in simulation time as the time unit. The users are
given randomly generated valuation curves, which model them
as having elastic demand. Thus, a class 1 userwith a maximum
capacity Mb/s will request a quantity ranging from 0 to
1.5 Mb/s of class 1 service capacity. Both the quantity and price
of a bid depend not only on the player’s valuation, but also on
the market conditions (the requested quantities and bid prices of
the other players).

B. Valuation Function

In Section III, we assumed a very general form (i.e., elastic
demand) for a user’s valuation. Further specification of users’
valuations requires a market study on actual Internet users (see,
for example, [30]).7 A realistic valuation model for wholesale
Internet bandwidth over the last several years can be gleaned
from the following observation [31]: cutting coming communi-
cation costs in half every twelve months, the market responded
by doubling the traffic every six months.

This can be written as

(15)

7Recall that the difficulty in developing realistic models is one of the reasons
why auctions are advantageous in the first place, since the (run-time) mechanism
itself (5)–(6) does not need to know the valuations.
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Fig. 4. Trace at net M—horizontal axis is time in minutes.

Thus, in the simulations, we give our users valuations of the
form

(16)

In our simulation, for each class, we generate 20 users with
drawn from a uniform distribution on [0.75, 2.25] (we

label these “T1” users which also include users of multiple or
fractional T1), and 10 “T3” users with drawn from [20, 60]
(Mb/s). The parameter is also chosen randomly such that

is uniform on [0.6, 1.8] (c/min) for the T1 users, and on
[18.0, 54.0] (c/min) for the T3 users.8

As mentioned in Section III, the broker’s buy-side valuation
must be smoothed. We select the same form as in (16). To fit the
curve to the demand, the broker dynamically sets
and chooses such that . In (15), note that as

approaches zero, the marginal valuation approaches infinity.
In some circumstances, this last feature can be useful. A finite
maximum marginal valuation would make it possible for the
broker to be completely shut out (i.e., at some peer
where enough users have very higher valuations), and when one
broker is shut out, so are all its peers, and the service is no longer
offered on an internetwork basis.

C. Stability of Market Pricing Mechanisms

In this subsection, we focus on the demand side, and illustrate
the results of Section III.

The simulations are run with the full dynamics of both the
demand and supply sides, i.e., users behave according to Propo-

8These numbers roughly correspond to capacities and prices in today’s In-
ternet access market. We randomize both to reflect the wider variety of access
speeds and willingness to pay that are likely with future (differentiated) services.

sition 3 and brokers according to Proposition 4 on the buy-side.
On the sell-side, as required by Proposition 1, the brokers do
not sell more than the expected bottleneck capacity (3), and they
do so by setting a buy-back bid as explained in the remark fol-
lowing Proposition 1. However, we intentionally omit the floor
price that ensures the broker profitability, in order to see
where profits are likely to be realized.

Simulation traces of the state of the six SBBs (two in each
of the three networks) are presented in Figs. 4–6. Each figure
contains four plots showing the total demand at that SBB (sum
of bid quantities), the offered quantity, which is the expected
bottleneck (see Proposition 1), the market price, and the SBBs
profit. Each quantity is shown for class 1 (solid line) as well as
class 2 (dotted line).

We observe the following.

• Despite the dynamics of arrivals and departures, the two
classes remain stable and the SBBs are able to maintain
consistent offered capacities in all three networks;
price changes reflect the supply and demand, and the
dynamic market successfully allocates resources, which
demonstrates that the PSP distributed market mechanism
can quickly converge to the equilibrium given by Propo-
sition 5.

• In each network, as expected, the higher quality class 2
is more expensive. This is despite the fact that the demand
from the users is statistically identical; thus, the difference
in price arises through market dynamics, and is purely due
to the provisioning coefficients (i.e., corresponds to a dif-
ference in quality).

• Relatedly, the bottleneck (or offered quantity) is smaller
for class 2 in all cases. These two effects (smaller bottle-
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Fig. 5. Trace at net A—horizontal axis is time in minutes.

Fig. 6. Trace at net B—horizontal axis is time in minutes.

neck and higher price) balance each other out, and allow
the SBBs to coexist while having differentiated quality.
For example, if the market price of class 1 in network A
drops “too low,” then that SBB cannot compete with the
SBB of class 2 in the same network in buying from their
common RBS, which causes the first SBB to reduce the

quantity of class 1 service offered in network A, which
then causes more intense competition among the buyers
of that service, and hence a price rise.

• The high-quality class 2 has a slightly higher share in the
high-capacity network M (about 1/3 of the capacity) than
it does in the smaller networks (about 1/4 of the capacity);
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Fig. 7. Spectral radius as a function of internetwork provisioning coefficients,
instability arises in the top left and bottom right quadrants.

this is because the demand is equally distributed across
the three; therefore, M has less competition for resources;
and therefore, an overprovisioned class is sustainable at a
higher share of the total.

• Indeed, the large network M is consistently less expensive
(in terms of unit market price) than the smaller ones.

• All SBBs remain profitable over the long run, despite not
having reserve (minimum) prices, which validates the
broker strategy of Proposition 4. Whenever one SBBs
profit is momentarily negative, then its RBS or a peer
SBB is making a corresponding extra profit. However,
for the same reason outlined above, competition for the
underlying resources (at the RBS level) prevents one class
from being substantially more profitable than the other.

The simulation of the stable scenario provides a sanity check
on the market mechanisms, and indeed results are completely
in line with intuition. In the next section, we consider unstable
scenarios, which as we shall see, do not always yield to intuition.

D. Stability of Internetwork Provisioning

Consider now three interconnected networks, with just one
class, i.e., three brokers . Let ,
, and for all other pairs , . Fig. 7 shows as a

function of and . The figure shows that when and
, or vice versa, the provisioning of this class becomes unstable.

It is interesting to note that simply overprovisioning and
does not give rise to instability. Thus, instability can be

due more to asymmetry in the flows rather than to the actual
degree of overprovisioning.

Neither can instability be simply attributed to the existence
of “cycles” in the graph of the network. Fig. 8 shows a scenario
where a single class network—with a simple topology of two
access networks connected to a backbone network—can be un-
stable even if the graph of the network has no cycles. In Fig. 8(b),
the right-hand side shows the allocations for traffic going from
A to M (dotted curve), and the bottleneck capacity in A itself

(a)

(b)

Fig. 8. Simulation of one unstable class, in the right-hand side of plot (b),
the solid curve represents bottleneck bandwidth and the dotted curve represents
allocated bandwidth. The horizontal axis is the number of simulation time units.
The scenario is unstable as allocations do not converge. (a) Simulation topology
(�(�) = 1:02). (b) Trace at net A.

Fig. 9. “Dis-peering” effect, the legend ofx axis is the number of simulation
time units.

(solid curve). The instability is reflected in the volatility of the
allocated capacities.

In a stable scenario, one must still worry about what kind
of equilibrium is reached. Indeed, it can happen that the only
equilibrium for a stable class is one where all the bottlenecks
are zero. Fig. 9 illustrates this possibility, which we refer to
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as “dis-peering.” Here, we simulate the network shown in
Fig. 1, with a single class that is provisioned identically in
all directions, i.e., , , , . As approaches
0.5, the bottleneck becomes smaller, until finally, none of
the brokers has any capacity to sell. Here, there is only one
class, and the physical capacity as well as the average demand
from the users remains constant (even though users do come
and go—see Table III). Thus, the reduction in bottlenecks is
purely a result of the provisioning dynamics, and not of other
traffic “squeezing out” this class. Indeed, since capacity is
edge-allocated, a broker must provision for all possible routes
(here there are two, one to each peer network), with a degree
of assurance . When this required assurance reaches a
critical level (which depends on the topology), it becomes
impossible for the broker to satisfy any demand. This is one of
the “penalties” to be incurred in exchange for the simplicity and
scalability of edge-capacity allocation with stateless service
differentiation. Indeed, if the broker could offer allocations
tied to specific routes (e.g., with techniques such as MPLS
[36]), “dis-peering” would not occur.

This effect may also be the converse of what has been ob-
served in the current (best-effort only) Internet. In recent years,
some large ISPs have decided it is not in their interest to peer
free of charge with some smaller ones because they would do
better by selling the bandwidth directly to their own customers
[32]. Here, with differentiated services, a broker in a large net-
work may decide to set in the direction of the smaller
networks (i.e., not to buy any differentiated service from the
smaller network), when it is not worthwhile to get the allo-
cations required for a high level of assurance in a congested
network. Other related phenomena have been studied in the lit-
erature [33]–[35].

VI. CONCLUSION

We have presented a decentralized auction-based pricing ap-
proach for differentiated internet services. Our game-theoretic
analysis identifies the best strategies for end users and band-
width brokers. The analysis proves the existence of efficient
stable operating points, and the simulations indicate that even
an aggregate 50% difference in the degree of provisioning be-
tween two services does not lead to extreme differences in the
market price of services, and partitioning of bandwidth between
services, because of the competition among service brokers for
the underlying resources (e.g., bandwidth).

In investigating the stability of provisioning differentiated in-
ternet services using a distributed game theoretic model, our
results indicate that, in an internet with multiple differentiated
classes competing for the same resources, even though the de-
mand for one service affects the amount of capacity available for
another, thestabilityof each class is independent of the others’.
Thus, the good news is that dynamic market-driven partitioning
of network capacity among services appears sustainable. The
bad news is that very conservatively provisioned services can
be unstable on this macro-level, even in the simplest network
topologies. Even in stable cases, the only sustainable outcome
may be not to peer for differentiated service traffic. These results

are not merely artifacts of PSP or of any particular pricing mech-
anism. They appear to be fundamental issues of market-driven
peering under edge capacity allocation.

The dynamic system formulation of (13) suggests an inter-
esting direction for future work. It may be possible to achieve
certain wide-area network objectives (e.g., stability or avoiding
“dis-peering”) by exercising feedback control. If such controls
can be derived and are not too large in magnitude, they could be
applied by injecting some service requests at multiple strategic
edge points to drive the brokers of that specific class to a benefi-
cial equilibrium. Another direction for further work is the study
of the interaction between edge-allocation such (as in DiffServ)
and route-pinning approaches (such as MPLS [36]), which may
provide the most immediate means of addressing potentially un-
stable peering configurations.

APPENDIX I
BROKER’S BUY-SIDE COORDINATION

Lemma 1 (Broker coordination):Let be a broker. For
any profile , , let be the allocations that
would result, and . Then, a better reply for
the broker is , where

That is, . Moreover,

(17)

Proof: To avoid cluttered notation, since is fixed, we
will omit it, writing, e.g., . Also, the
argument of the function will be omitted when it is simply,
so that . Note that, since we are
holding all the other players fixed, and varying only the buy-side
of player , only the quantities with subscriptwill change. In
particular, remains the same throughout.

We will show that

(18)

Now, ,

(19)

where the last line follows from (5). Now, using (5) again, we
get
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where the second equality follows from (19), and the last is by
definition. This proves (17). Thus, we have

, and this holdsdl . There-
fore, by Proposition 2, , i.e., changing
the bids from to does not change’s bottle-
neck value. Therefore,

Now ,
, where the last inequality follows from (5). That

along with the fact that implies .
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