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Abstract

This paper presents a decentralized auction-based approach
to pricing of edge-allocated bandwidth in the di�erentiated
services model of the Internet. The players in this architec-
ture are users, one raw-capacity seller per network and one
broker per service per network. With the Progressive Second
Price auction mechanism as the basic building block, we con-
duct a game theoretic analysis, deriving optimal strategies
for buyers and brokers, and the existence of network-wide
equilibria. We investigate the system dynamics by simu-
lating a scenario with three inter-connected networks, and
two types of services built on the proposed standard expe-
dited forwarding (EF) and assured forwarding (AF) per-hop-
behaviors.

1 Introduction

The recent development of the di�erentiated service (di�-
serv) Internet model is aimed at supporting service di�eren-
tiation for aggregated tra�c in a scalable manner [5, 3]. The
tenet of di�-serv is to relax the traditional hard-QOS model
(e.g. end-to-end per-ow guarantee of Int-serv, and ATM) in
two dimensions: slower time-scale network mechanisms and
coarser-grained tra�c provisioning.
While the role of prices as essential resource allocation

control signals has been established from the outset of di�-
serv [2, 17], the precise development of pricing mechanisms is
still at its very early stages. In the Simple Integrated Media
Access [13], the service charge for a user is proportional to the
nominal bit rate subscribed by the user, and the price di�er-
entiation between di�erent service classes is �xed. Similarly,
in the User-Share Di�erentiation proposal [26], the pricing
is based on the user share that is allocated over a long time
scale. These schemes fall within the category of capacity-
based pricing. Just as di�-serv aims to provide a range of
\better than best-e�ort" services without the complexity and
per-ow state of hard-QOS, capacity-based pricing schemes
can be thought of as \better than at-rates" (more rational
and sustainable from the economic point of view), without
the per-ow measurement and accounting required by usage-
based pricing. Flat-rate pricing is the extreme of capacity
pricing where the capacity equals the access line speed, while
usage pricing can be thought of as the extreme where capac-
ities are continuously adapted to �t the actual transmission
rate of each ow at each moment in time. A pricing scheme
which explicitly covers the range between these two, as well
as the service-type dimension, is that of [12].

The space of network resource pricing schemes has many
dimensions (for a complete taxonomy of network pricing
see [21], Chapter 1). One is \where" the capacity abstrac-
tion takes place: at each hop inside the network or at the
edges [23]. Another is how much a priori information on de-
mand is required. At one extreme, the seller assumes perfect
a priori knowledge of demand and does an o�ine calculation
of optimal prices (e.g. time-of-day pricing based on histor-
ical tra�c patterns). In more sophisticated versions, the
seller assumes the functional form of demand, and adjusts
prices by on-line optimizations [8, 1, 14, 19]. These pricing
schemes are \model-based", in that the relationship between
demand and price (and possibly time) is assumed in an a-
priori formula. Knowledge of this model and its parameters
is precisely the \information requirement" described above.
Auctioning is the pricing approach with minimal informa-

tion requirement. The more di�cult it is for the seller to
obtain demand information (or valuations), the stronger the
case is for using auctions. In the Internet, because of the
diverse and rapidly evolving nature of the applications, ser-
vices, and population, the case is compelling. With suitably
designed rules, auctions can achieve e�cient (value maximiz-
ing) allocations with minimal a priori information.
In this paper, we investigate the feasibility of auctioning

capacity in the di�-serv model. We show through game the-
oretic analysis and simulation that the Progressive Second
Price (PSP) auction of [15] can provide stable pricing in the
di�-serv bandwidth market. The PSP mechanism achieves
economic objectives (incentive compatibility, and e�ciency),
while being realistic in the engineering sense (small signalling
load and computationally simple allocation rule). As such, it
provides a useful baseline for understanding the conditions
for the economic feasibility of wide-area di�erentiated ser-
vices.
The structure of this paper is as follows. In Section 2 we

describe the framework of our pricing scheme. In Section
3 we present a game theoretic analysis of the scheme. The
results of this section extend analysis of the single shareable
resource auction of [15] to the case of multiple networked re-
sources, in an edge-capacity allocation framework. Following
this, in Section 4, we use simulations to study the capacity
market dynamics.

2 Market Pricing Framework

Our network model assumes that each network can be ab-
stracted into a single bottleneck capacity (e.g. as a \Norton-
equivalent" [10]). The capacity may be represented by an
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Figure 1: 2-tier Auction Pricing Framework for Di�-serv In-
ternet

absolute amount of bandwidth, or some relative metrics like
user shares [26] or resource tokens [24]. Large networks can
be modeled by subdivision into a set of interconnected net-
works, each of which can be abstracted into a bottleneck
capacity. The degree of subdivision that is necessary de-
pends on tra�c, topology and size constraints as well as the
desired level of accuracy. Within each network, the routing
of aggregated tra�c to each peer1 is stable over the resource
allocation time scale (e.g. in the order of hours).

Figure 1 presents the architecture of our proposed auction
pricing framework for a set of interconnected networks as de-
scribed above. A two-tier whole-seller/retailer market model
is used to accommodate a network of goods (i.e. bandwidth)
with multiple di�erentiated service classes. We de�ne three
kinds of players: users, service bandwidth brokers (SBBs)
and raw bandwidth sellers (RBSs), to play the roles of end-
users, retailers and whole-sellers respectively. Each network
has a single RBS and a separate SBB for each class of service
being o�ered. The RBS can be thought of as the bearer, and
the SBBs as service providers [18]. The RBS and SBBs on
the same network may or may not be owned by the same
entity. The idea is that the competition among SBBs re-
sults in a dynamic and e�cient partition of the physical
network resources among the services being o�ered, based
on the demands from users. The users in our model are
large/aggregated subscribers (web site, intra/extranet, vir-
tual private networks) to a particular service o�ered by a
particular provider, and buying capacity from an SBB.

1In this paper, we use the term \peer" in the most general sense, i.e.
any network which inter-connects with a given network, and not just
those that choose to exchange all tra�c free of charge.

3 Game Theoretic Modeling and

Analysis

3.1 Message Process and Notation

Let the set of all players, including buyers, sellers and brokers
(brokers are both buyers and sellers), be denoted by I =
f1; : : : ; Ig. Following the notation in [15], a player's identity
i 2 I as a subscript indicates that the player is a buyer, and
as a superscript indicates the seller.
Suppose player i is buying from player j. Then he places

a bid sji = (qji ; p
j
i ), meaning he would like to buy from j a

quantity qji and is willing to pay a unit price p
j
i . Without loss

of generality, we assume that all players bid in all auctions,
with the understanding that if a player i does not need to
buy from j, we simply set sji = (0; 0).

A seller j places an ask sjj = (qjj ; p
j
j), meaning he is o�ering

a quantity qjj , with a reserve unit price of pjj. In other words,
when the subscript and superscript are the same, the bid is
understood as an ask.
Unless otherwise indicated, when sub/superscripts are

omitted, the notation refers to the vector obtained by letting
it range over all values. For example, qi is the 1 � I vector
(q1i ; : : : ; q

I
i ), and q is the I � I matrix. A subscript with a

minus sign indicates a vector with that component deleted
s�i � (s1; : : : ; si�1; si+1; : : : ; sI), and (xi; s�i) denotes the
pro�le obtained by replacing si with xi.

Based on the pro�le of bids sj = (sj1; : : : ; s
j
I), seller j com-

putes an allocation (aj ; cj) = Aj(sj), where aji is the quan-

tity given to player i and cji is the total cost charged to the
player i. Aj is the allocation rule of seller j. It is feasible
if aji � qji , and cji � pjiq

j
i . One possible allocation rule is the

progressive second price (PSP) auction { see Section 3.4.

3.2 Sellers

Suppose player k 2 I is an RBS. Then its strategy consists
of always asking skk = (qkk; p

k
k), with qkk equal to the physi-

cal bottleneck capacity of its network, and pkk equal to the
unit cost of operation. Since it is a passive seller of physical
bandwidth, k does not buy from anyone, i.e sjk = 0; 8j 6= k.

Suppose j 2 I is an SBB. It o�ers a capacity qjj for sale to
its users. In order to honor its contracts, the quantity o�ered
must be constrained by the capacities that j can actually
obtain. First, it must get enough bandwidth from k, the RBS
in its own network, to carry the total capacity it allocates to
its customers, i.e. X

i

aji � akj : (1)

Second, since it is selling wide-area service, j must get
enough capacity from the SBBs o�ering the same service in
each peer network. Let l denote one such peer SBB, and rlj
be the \fraction of tra�c" generated by j's customers that
is routed to the network where player l is the peer SBB (see
Remark below for interpretations of rj). Then, j must satisfy

rlj
X
i6=l

aji � alj; (2)



for all peers l.2 For notational convenience, �x rkj = 1, when

k is j's RBS. Since ajk = 0, (2) includes (1) as the special
case l = k. If l is neither a peer of j, nor its RBS, then we
set rlj = 0.
De�ne, for any allocation a,

elj(a)
4
=

alj

rlj
+ ajl :

We call

ej
4
= min

l 6=j
elj(a) (3)

the expected bottleneck capacity for the service o�ered by j.

Proposition 1 (Broker's sell-side constraints) Let j 2 I be
a SBB, and �x its buy-side allocation (aj; cj). Then, on the
sell-side, the quantity o�ered must satisfy

qjj � min
l 6=j

elj(a)

For a broker who does not sell at a loss, the reserve price
must satisfy

pjj �
1

qjj

X
l

clj:

Proof: Suppose 9l 6= j such that qjj > elj. Then when all the

o�ered quantity is bought, we have
P

i
aji = qjj > elj =

al
j

rl
j

+ajl ,P
i6=l

aji >
al
j

rl
j

, and condition (2) is violated. This proves the �rst

assertion.

Since
P

l
clj is the total cost of the capacity that j is buying,

the second assertion follows immediately from the our assumption

that the broker will not sell at a loss. 2

Remark: The obvious way for a broker to satisfy Proposi-
tion 1 is simply setting qjj = mini 6=j eij(a). Alternately, the

seller can leave qjj equal to the maximum physical capac-
ity, and place in its own market an arti�cial \buy-back" bid
equal to

qj0 = (qjj � e)+ , pj0 = �0j(e);

where e = mini6=j e
i
j(a). Note that this arti�cial player 0 62 I.

This buy-back bid e�ectively limits j's users to precisely the
capacity that j can honor in forward to its peers. In other
words, the buy-back bid ensures that the quantity constraint
of Proposition 1 is automatically satis�ed. However, unlike
reducing qjj , it leaves open the possibility of increasing it back
again, if there is demand at prices greater than �0j(e). As we
will become apparent through Proposition 4 below, �0j(e) is
precisely the price at which j could obtain more capacity at
its bottleneck to a peer network.
Remark: rj is a vector of route-provisioning coe�cients
and can accommodate di�erent types of brokers. We do not
explicitly consider the per-hop behaviors per se, which of
course are essential in assuring the service quality on the

2We assume that service providersblock \loop-back" tra�c, i.e. traf-
�c going from l through j and back to l. If that is not the case, then
the summation in (2) would be over all i.

packet time-scale. On our level of abstraction, only the vec-
tor of provisioning coe�cients rj di�erentiates broker j and
the service it o�ers. A broker is characterized by the type of
service level agreement (SLA) that it o�ers, e.g.:

� Expected capacity service agreement: one type of SBB
may o�er service level agreements (SLAs) for expected
capacity, i.e. on average, users will get the capacity they
pay for, even when the tra�c enters peer networks. This
could include for example services built on the assured
forwarding (AF) per-hop behaviors [9]. In this case, rlj is

the expected3 fraction of the total tra�c entering j that
is routed to l. rjj is the fraction of tra�c that terminates

with one of j's own customers, and
P

l6=k r
l
j = 1, where

k is the RBS of j.4

� Worst-case capacity service agreement: another type of
SBB may o�er service agreements for worst-case band-
width, i.e. each user always gets the amount of band-
width they pay for, even if all of the tra�c is routed
to the same peer. This could include for example ser-
vices built on the expedited forwarding (EF) per-hop
behavior [11]. In this case rlj = 1 for all peers l.

� For an SBB which o�ers SLAs valid only within its own
network, rjj = 1 and rlj = 0; 8l 6= j.

Depending on the scheduling and bu�er management
algorithms used to provide the PHBs, some amount of
over-provisioning may be required [11]. Degrees of over-
provisioning must also be used to di�erentiate among AF
classes for example [9]. These engineering needs can be
represented in this model by simply factoring the over-
provisioning into r (see Section 4 for a speci�c scenario).

3.3 Buyers

We model buyers as bottleneck buyers, i.e. each buyer
i 2 I seeks to maximize its utility

ui = �i � ei(a)�
X
j

cji ; (4)

where ei is as in 3, and �i is the buyer's valuation func-
tion, which is private information. As the name indicates,
the value of an allocation to a buyer depends only on a scalar
bottleneck ei(a) which is a function of the allocated quanti-
ties at all the resources. Other players (including the seller)
only see the buyer's bid, and not the valuation that lead
buyer to make that bid.

3Thus r represents aggregate ow patterns. r is measured over a
time-scale slow enough to make quasi-static estimates which average
out instantaneous micro-ows.

4Note that for expected capacity, a user i whose tra�c is entirely
within the allocated pro�le aji when it enters its broker j's network could
temporarily be out of pro�le in the peer network l, if j miscalculated
rlj, or if there is a sudden surge of tra�c from many of j's customers

to l.
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Figure 2: Demand curve for a broker j.

If the buyer is a user, then ei = aji , and (4) has the simpler

form ui = �i(a
j
i )� cji ; where j is that user's SBB. The valua-

tion is a function of the player's own allocation only, and ex-
presses the amount the user is willing to pay for each possible
quantity of resource. It can be based on economic and/or in-
formation theoretic considerations (see the appendix in [15]).
If the buyer is a broker, the natural utility is the potential

pro�t so �j , the broker's buy-side valuation, is the poten-
tial revenue from the sale (on the sell-side) of the capacities
obtained on the buy-side. The potential revenue is derived
from the demand on the sell-side: let 8y � 0,

dj(y)
4
=
X
p
j

k
�y

qjk;

the demand at unit price y. Its \inverse" function is de�ned
by,

fj(z)
4
= sup

�
y � 0 : dj(y) � z

	
:

See Figure 2. Note that we chose fj to be continuous from
the left. For a given demand function dj(:), 8z � 0, fj(z)
represents the highest unit price at which j could sell the z-th
unit of capacity (the actual prices charged to users depend
on the speci�c allocation mechanism Aj used).

Proposition 2 (Broker's buy-side valuation) Let j 2 I be a
broker with inverse demand fj(z). Its buy-side valuation is

�j(x) =

Z x

0

fj(z) dz:

Thus �j � ej(a) =
R ej (a)
0

fj (z) dz:

Proof: Since the broker seeks to maximize pro�t, for a given
allocation a, it will sell as much as possible; thus by Proposition 1,
qjj = ej. If ej decreases by �, then qjj must be reduced by �. The
value to j of the lost quantity is the revenue j could have gotten
from it. By de�nition, this lost potential revenue is f j(emj )�.
Thus, by abuse notation, writing �j as a function of elj,

�j(ej)� �j(ej � �) = f j(ej)�

and the result follows. 2

3.4 Analysis

The design of our progressive second price auction (PSP)
appears in [15]5. The mechanism is de�ned by: 8i; j 2 I,

aji (s) � aji (s
j) = qji ^

2
64qjj �

X
p
j

k
�pj

i
;k 6=i

qjk

3
75
+

; (5)

cji (s) � cji (s
j) =

X
k 6=i

pjk

h
ajk(0; s

j
�i)� ajk(s

j
i ; s

j
�i)
i
; (6)

where ^ means taking the minimum. Note that each seller
computes allocations from local information only (the bids
for that resource). De�ne,

P j
i (z)

4
= inf

8><
>:y � 0 : qjj �

X
p
j

k
>y;k 6=i

qjk � z

9>=
>; :

Note that we de�ne P j
i to be continuous from the left. Under

PSP, P j
i is the market price function from the point of view

of user i. Indeed, it can be shown that,

cji =

Z a
j

i

0

P j
i (z) dz: (7)

Remark: Except at points of discontinuity, we have
P j
i (z) = fj(qjj � z). This mechanism generalizes Vickrey

(\second-price") auctions [25] which are for non-divisible ob-
jects. PSP bears some similarity to Clarke-Groves mech-
anisms [4, 7]. The fundamental di�erence with the latter
is that PSP is designed with a message (bid) space of two
dimensions (price and quantity) in which each message is
a single point, rather than an in�nite dimensional space of
valuation functions where each message is a revelation of the
whole valuation curve (see [16, 15] for an explanation of the
\revelation principle"). This reduction of the message space
is crucial in the context of communication networks, where
limiting the size and complexity of the exchanged messages
(signaling) is very important.
De�ne elastic demand as follows: 8i, �i is continuous, con-

cave, and smooth (�0i is continuous); and for some (possibly
in�nite) maximum capacity �qi � 1, �0i is strictly decreasing
(i.e., theta00i < 0 if �00i is well-defned) on [0; �qi], and non-
increasing (�00i � 0) on [�qi;1).
Under elastic demand analyzed as a complete information

game, the PSP auction for a single arbitrarily divisible re-
source (e.g. bandwidth on one link in a network) has the
following properties which are proven in [15]:

� incentive compatible: truth-telling (setting the bid price
equal to the marginal valuation) is a dominant strategy;

� stable: it has a \truthful" �-Nash equilibrium [6], for
any positive seller reserve price;

5PSP was �rst presented at the DIMACS Workshop on Economics,

Game Theory, and the Internet, Rutgers, NJ, April 1997, and a gener-
alized analysis at the 8th International Symposium on Dynamic Games

and Applications., Maastricht, The Netherlands, July 1998



� e�cient: at equilibrium, allocations maximize total user
value (social welfare) to within O(

p
�); and

� enables a direct trade-o� between engineering and eco-
nomic e�ciency (measured respectively by convergence
time and total user value), by the parameter �, which
has a natural interpretation as a bid fee.

In the rest of this paper, we assume all the sellers in the
network are using PSP as the allocation mechanism.

For users, the best strategy consists simply of bidding
for the largest quantity such that the marginal valuation is
higher than the market price, and setting the bid price equal
to the marginal valuation (i.e. \truth-telling" is optimal).

Proposition 3 (User's strategy) Let i 2 I be a user such
that �i that is di�erentiable and �0i continuous from the left.
Let l 2 I be that user's broker. For a �xed pro�le sl�i, an
�-best reply for player i is tli = (vli; w

l
i), such that

vli = sup

�
z � 0 : �0i(z) > P l

i (z) and

Z z

0

P l
i (�) d� � bi

�
��=�0i(0);

and

wl
i = �0i(v

l
i):

That is, 8sli, ui(tli; sl�i) � ui(sli; s
l
�i) � �.

Proof: This is a special case of Proposition 4, with 8l; ail = 0,

rii = 1, and 8l 6= i, rli = 0. This was derived separately in [15]. 2

Consider now a broker, participating in many auctions si-
multaneously. By the nature of its valuation (Proposition 2),
capacity allocations are valuable to the broker only insofar
as they increase its expected bottleneck capacity minl6=i eli.
Thus, a broker must coordinate its buy-side bids (one sub-
mitted to each of its peers and its RBS) to maximize its
overall utility.

Note that for Proposition 3, we do no require that �i
be smooth. Concavity and non-increasingness su�ce, along
with the purely technical condition of continuity from the
left. These are satis�ed by the broker's valuation (Proposi-
tion 2). Thus, we can expect that the same principle (opti-
mality of truth-telling) should hold.

Indeed, as we will now show, it turns out that the optimal
strategy is very similar to that of a single user. But instead of
searching directly for the optimal capacity, the broker �nds
the optimal expected bottleneck e, which is the largest one
such that the marginal value is just greater than the market
price. The role of the market price is played by the average
of the market prices at the di�erent auctions, weighted by
the route provisioning factors. The actual bids are obtained
by transforming the desired optimal expected bottleneck e
back into the corresponding quantities vli to bid at each buy-
side market. As with a user, truth-telling is optimal for the
broker, so at each buy-side market, the broker sets the bid
price to the marginal value.

Proposition 4 (Broker's buy-side strategy) Let i 2 I be a
broker, and �x all the other players' bids s�i, as well as the
broker's sell-side sii (thus a

i is �xed). Let

e = sup

8<
:h � 0 : f i(h) >

X
l6=i

P l
i

�
(h� ail)r

l
i

�
rli

9=
; � �=f i(0);

(8)
and for each l 6= i,

vli = (e � ail)r
l
i;

and

wl
i =

1

rli
f i(e):

Then a (coordinated) �-best reply for the broker is ti =
(vi; wi), i.e., 8si, ui(ti; s�i) � ui(si; s�i) � �.

Proof: Since f i is non-increasing and 8l; P l
i is non-decreasing,

(8) implies f i(e) >
P

l6=i
P l
i (v

l
i)r

l
i, and therefore 8l 6= i,

wl
i > P l

i (v
l
i) = f l(qll � vli)

) vli � qll � dl(wl
i);

) ali(ti; s�i) = vli;

) eli � a(ti; s�i) = e:

Therefore

ui(ti; s�i) =

Z e

0

f i(�) d� �
X
l6=i

Z vl
i

0

P l
i (z)dz

=

Z e

0

f i(�) d� �
X
l6=i

Z e

ai
l

rliP
l
i

�
(� � ail)r

l
i

�
d�:

Now suppose 9si = (qi; pi) such that ui(si; s�i) > ui(ti; s�i) +
�: Let � = mink 6=i e

k
i � a(s), and 8l 6= i, �li =

�
� � ail

�
rli and

�i = (�i; pi). From (10) in Lemma 1, aji (�i; s�i) = �ji , therefore

ui(�i; s�i) =

Z �

0

f i(�)d� �
X
l6=i

Z �

ai
l

rliP
l
i

�
(� � ail)r

l
i

�
d�:

By Lemma 1 (given in the Appendix), ui(�i; s�i) � ui(si; s�i):
Therefore, ui(�i; s�i) > ui(ti; s�i) + �, which by Proposition 2, is
equivalent to

Z �

e

f i(�)d� �
X
j 6=i

Z �

e

rliP
j
i

�
(� � ail)r

l
i

�
d� > �: (9)

Let e = e + �=f i(0). Since f i is non-increasing
R e

e
f i(�) �

f i(0)(e�e) = �. That, along with the fact that P j
i is non-negative,

and (9), implies

Z �

e

f i(�)d� �
X
j 6=i

Z �

e

rliP
j
i

�
(� � ail)r

l
i

�
d� > 0:

If � > e, then for some � > 0, f i(e + �) >P
j 6=i

rliP
j
i

�
(e+ � � ail)r

l
i

�
; which contradicts (8).

If � � e, then f i(e) <
P

j 6=i
rliP

j
i

�
(e� ail)r

l
i

�
d�: But, since

both f i and P j
i are continuous from the left,(8) implies that

f i(e) �
P

j 6=i
rliP

j
i

�
(e� ail)r

l
i

�
d�, which is a contradiction. 2



As stated above, for stability of PSP, we assume that de-
mand is elastic for all players. However, the broker does
not satisfy the smoothness (continuous derivative) condition.
From Proposition 2, the broker's valuation, as a function of
the (scalar) expected bottleneck capacity minl6=i eli, is piece-
wise linear and concave (the derivative is the \staircase"
function shown in Figure 2). Thus, we need to assume that
brokers apply some smoothing in deriving the buy-side val-
uation from the sell-side demand, e.g. by �tting a smooth
concave curve to the piecewise linear one.
Unlike the proof of the the broker strategy, the proofs of

the following results are not essential to intuitive understand-
ing of the game, and are omitted due to space constraints.

Proposition 5 (Equilibrium) In a game consisting of arbi-
trarily networked PSP auctions, where all buyers have utili-
ties of the form (4), and sellers are static, under elastic de-
mand, for any � > 0, there exists a (truthful) network-wide
�-Nash equilibrium.

Proof: See [21], Chapter 3. 2

At such equilibria, the allocations are e�cient (i.e. arbi-
trarily close to the value-maximizing allocations).

Proposition 6 (E�ciency) Let a� be the equilibrium allo-
cations. Under elastic demand, if in addition 8i 2 I, if �00i
exists and for some � > 0, �00i � ��,

max
A

X
i

�i � ei(a)�
X
i

�i � ei(a�) = O(�=� + ��);

where A = fa 2 Q
j[0; q

j
j ]
I :

P
i a

j
i � qjjg, for any � �

minifei(a�) : ei(a�) > 0g:

Proof: See [21], Chapter 3. 2

The bound �=� + �� is minimized when � =
p
�=�. Thus,

the strongest statement that can be made here is that as long
as minifei(a�) : ei(a�) > 0g >

p
�=� we get an ine�ciency

which is O(
p
�=�).

In a dynamic auction game, � > 0 can be interpreted as a
bid fee paid by a bidder each time they submit a bid. Indeed,
in Propositions 3 and 4, the user will send a best reply bid
as long as it improves her current utility by �, and the game
can only end at an �-Nash equilibrium.

4 Dynamics

The strategic game analysis of the previous section estab-
lishes the optimal strategies and the existence of a stable and
e�cient operating point, but does not give any indication as
to which particular equilibria will be reached.
In what follows, we will use simulation to further study

the di�-serv PSP framework. under a realistic service pro-
visioning scenario. We consider two classes of services, and
hence, two SBBs in each sub-network:

� class 2 is for reliable and high quality service (e.g. the
virtual leased line service considered by the EF PHB),
and;

� class 1 is for adaptive multimedia applications with less
stringent quality requirements (e.g. the class two con-
sidered by the AF PHB Groups);

At all times, best-e�ort tra�c can use any unallocated or
allocated but unused capacity. It is charged on at rate and
does not participate in the bandwidth auction market.
The simulation network has a mesh topology of three net-

works as shown in Figure 1, two are access networks: argo
and bongo and one is backbone network: maraca. The
amount of bandwidth of sale in each network are: argo: 40
Mbps, bongo: 40 Mbps, and maraca: 150 Mbps. Each ser-
vice class has 30 end users: 20 with maximum bandwidth
requirement of T1 rate (qi = 1:5 Mbps) and the other 10
with T3 rate (qi = 40 Mbps). To simulate the dynamics of
subscribers switching among service providers, each user is
modulated by an ON-OFF Markov process. At the begin-
ning of an ON period, the user is connected randomly to one
of the three three networks based on a uniform load distribu-
tion among argo, bongo and maraca networks. During OFF
period, the user terminates subscription to the current net-
work and remains idle. In simulation, ON and OFF intervals
are exponentially distributed with mean of 120 and 12 time
units.
The di�erent degree of over-provisioning for the two ser-

vice classes is reected in the routing factors rlj that are set
according to Table 1.

service classes

buyer seller class 1 (AF) class 2 (EF)
argo RBS 1.0 1.0

argo argo SBB 0.3 0.5
SBB bongo SBB 0.2 0.5

maraca SBB 0.5 0.5
bongo RBS 1.0 1.0

bongo argo SBB 0.2 0.5
SBB bongo SBB 0.3 0.5

maraca SBB 0.5 0.5
maraca RBS 1.0 1.0

maraca argo SBB 0.1 0.5
SBB bongo SBB 0.1 0.5

maraca SBB 0.8 0.5

Table 1: Inter-network Routing Factor: rji

In Section 3.4, we assumed a very general form (i.e. elastic
demand) for a user's valuation. Further speci�cation of users'
valuations requires a market study on actual Internet users
(see for example [20]).6 In the simulations, we give our users
a parabolic valuation

�i(a) = � �i

ai
2 (a ^ ai)

2 +
2�i
ai

(a ^ ai);

6Recall that the di�culty in developing realistic models is one of the
reasons why auctions are advantageous in the �rst place, since the (run-
time) mechanism itself (5)-(6) does not need to know the valuations.
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Figure 3: Valuation and Marginal Valuation Functions, ai =
3 and �i = 6

where ai is the line rate, �i is the maximum valuation. The
marginal valuation �0i(a) has the linear form with maximum
at �0i(0):

�0i(a) =
2�i
ai

2 (ai � (a ^ ai)):

In our simulation, for class 1, �i is generated randomly
from a uniform distribution on [0, 10]*ai so that �

0
i(0) is uni-

formly distributed in [0, 20]. For class 2, the range is [20; 40].
Note that, from Proposition 3, �0i(0) is the highest unit price
user i would ever be willing to pay, and, since the valuation
is concave (elastic demand), that occurs when the user has
been \squeezed" to almost zero allocation. We give class 2
users higher valuations because, as the simulations will show,
due to the more conservative provisioning required, market
forces naturally make class 2 more expensive.
As mentioned at the end of Section 3.4, the broker's buy-

side valuation must be smoothed. We select a logarithmic
form:

�i(a) =
�i
ai
(a ^ ai)(1 + ln

ai
a ^ ai

)

To �t the curve to the demand, the broker dynamically sets
ai =

P
j q

i
j and �i =

P
j q

i
jp

i
j. The marginal price function

�0(a) has the form:

�0(a) =
�i
ai

ln
ai

a ^ ai

where as a approaches zero, the marginal valuation ap-
proaches in�nity (see Figure 3.) In some circumstances, this
last feature can be useful. A �nite maximummarginal valu-
ation would make it possible for the broker to be completely
shut-out (i.e. alj = 0 at some peer l where enough users have
very higher valuations), and when one broker is shut-out, so
are all its peers, and the service is no longer o�ered.
The simulation traces of the state of the six SBBs (two in

each of the three networks) are presented in Figures 4 to 9.
Each �gure contains four plots showing the market price, the
demand, the broker's buy-side purchased bandwidth (from
peers), and pro�t. For each broker, in the demand plot,
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Figure 4: Class 1 trace at maraca
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Figure 5: Class 2 trace at maraca

the solid line shows the total requested quantity of band-
width (solid line) and the number of users and peers (dotted
line). In the plot showing buy-side purchased bandwidth, the
top line illustrates the trace of allocation at the RBS while
the bottom two are the traces of allocations at the two peer
SBBs. Not that since rki = 1 when k is the RBS, the alloca-
tion from the RBS exactly equals the bottleneck capacity that
the broker is o�ering for sale. In the price and pro�t plots,
the dashed line shows the average during the whole run.
We observe that:

� as shown in the buy-side allocation plot in Figure 4 and
5, at the backbone maraca network, the two class SBBs
are able to purchase exactly the same buy-side alloca-
tions from the two peers (i.e. the two curves are super-
imposed). This is to be expected since the route provi-
sioning coe�cients are the same for the two peers, and
the maraca SBBs will not buy any capacitythat does not
improve the bottleneck;
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Figure 6: Class 1 trace at argo
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Figure 7: Class 2 trace at argo
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Figure 8: Class 1 trace at bongo
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Figure 9: Class 2 trace at bongo

� in all networks, despite the higher valuations, class 2
gets no more than 1 Mbps, even in the backbone net-
work. Thus, a small di�erence in provisioning can lead
to very large di�erences in the allocated capacity among
the classes. To collectively get an equal allocation, users
of the more resource intensive EF-based services would
have to have a much higher willingness to pay. In this
scenario, the market price for the class 2 is 20 times
higher than for class 1.

� the occasional price spikes in all the �gures are caused by
arrivals or departures of T3 users that greatly change the
demand. This is part of the brokers' strategic behaviour,
which is in essence a distributed control mechanism.

� a broker may occasionally be unpro�table because the
markets on its sell- and buy-side are not synchronized.
If one SBB's pro�t is negative, then its RBS or a peer
SBB is making the pro�ts. However, in the long run, set-
ting the sell-side according to Proposition 1 ensures that
brokers will not operate at a loss. In general, competi-
tion among SBBs in the same network for the resources
o�ered by the RBS ensures that their pro�t margins are
very thin. Thus, the RBS' (bearers) reap most of the
pro�ts, indicating that the providers of di�erentiated
services will tend to be vertically integrated (i.e. the
bearers will likely also be the service providers).

5 Conclusion

We presented a decentralized auction-based pricing approach
for di�erentiated Internet services. Our game theoretic anal-
ysis identi�es the best strategies for end users and bandwidth
brokers. The analysis proves the existence of e�cient stable
operating points, and the simulations indicate that even an
aggregate 50% di�erence in the degree of provisioning be-
tween two services can lead to one order of magnitude dif-



ference in the market price of the services, and partitioning
of bandwidth between services.
The inter-action among brokers has much rucher dynam-

ics than shown in this paper. For example, not all con�gura-
tions of provisioning coe�cients in the wide area network can
lead to convergence to stable allocations. Depending on the
topology and degree of over-provisioning, the inter-actions
among brokers can lead to oscillating allocations. On the
other hand, stable operating points may have zero alloca-
tions for brokers, resulting in certain classes of service not
being o�ered at all. These are not mere artifacts of PSP
or any particular pricing mechanism, but are fundamental
issues of peering and provisioning under edge-capacity al-
location. The former case is analytically related to classi-
cal problems such as route-apping in decentralized rout-
ing algorithms. The latter relates to empirical evidence in
the best-e�ort Internet where market forces are causing the
abandonement of traditional \free-for-all" peering between
networks of unequal size. These issues are analyzed in our
subsequenet work [22], where in particular we give necessary
and su�cient conditions for wide-area feasibility of service
classes in terms of the provisioning coe�cients.
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A Broker's buy-side coordination

Lemma 1 (Broker coordination) Let j 2 I be a broker. For
any pro�le s, sj = (qj; pj), let a � a(s) be the allocations
that would result, and m = argmink e

k
j (a). Then, a better

reply for the broker is xj = (zj ; pj), where 8l 6= j

zlj =
h
emj (a)� ajl

i
rlj:

That is, uj(xj ; s�j) � uj(s). Moreover,

alj(zj ; pj) = zlj : (10)

Proof: To avoid cluttered notation, since s�j is �xed, we will
omit it, writing, e.g., uj(:; :) � uj((:; :);s�j). Also, the argument
of the function will be omitted when it is simply s, so that uj �
uj(sj) � uj(sj; s�j). Note that, since we are holding all the other
players �xed, and varying only the buy-side of player j, only the
quantities with subscript j will change. In particular, ajl remains
the same throughout.

We will show that

uj � uj(qj; pj) � uj(zj; pj) (11)

Now, 8l 2 I,

zlj =
�
emj (a)� ajl

�
rlj

�
�
elj(a)� ajl

�
rlj = alj

�

2
64qll � X

pl
k
�pl

j
;k 6=j

qlk

3
75
+

; (12)

where the last line follows from (5). Now using (5) again, we get

alj(zj; pj) =

2
64qll � X

pl
k
�pl

j
;k 6=j

qlk

3
75
+

^ zlj = zlj =
�
emj (a)� ajl

�
rlj;

where the second equality follows from (12), and the last is by
de�nition. This proves (10). Thus, we have elj(a(zj; pj)) =

alj(zj; pj)=r
l
j + ajl = emj (a), and this holds 8l 6= j. Therefore, by

Proposition 2, �j(a(zj ; pj)) = �j(a), i.e., changing the bids from
(qj; pj) to (zj; pj) does not change j's bottleneck value. Therefore,

uj(zj; pj) � uj =
X
l6=j

clj � clj(zj; pj)

=
X
l6=j

Z al
j

al
j
(zj ;pj )

f l(qll � z)dz:

Now 8l, emj (a) � elj(a) ) zlj=r
l
j + ajl � alj=r

l
j + ajl ) alj � zlj �

alj(zj; pj); where the last inequality follows from (5). That along

with the fact that f l � 0 implies uj(zj; pj)� uj � 0. 2


