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1 Introduction

In the emerging multiservice communication networks (ATM, Next-Generation
Internet), traditional approaches to pricing are not viable. In telephony, the
resources allocated to a call are �xed, and usage prices are based on the pre-
dictability of the number of active calls at any given moment. But the wide
and rapidly evolving range of applications (including some which adapt to
resource availability) in the new networks makes demand much more di�-
cult to predict. On the other hand , the current Internet practice of pricing
by the physical capacity decouples actual use of resources from the mone-
tary charges, making the network vulnerable to the well-known \tragedy of
the commons". Thus there is a need to develop new approaches to pricing
of network resources, which has led to much research in recent years (see
[11, 8, 7, 3, 12, 9, 2] for a representative sample).

�8th International Symposium on Dynamic Games and Applications, Maastricht, The

Netherlands, July 1998.
yCorresponding author.

1



In [10], we present the Progressive Second Price (PSP) auction, an ef-
�cient mechanism for allocation of variable-size shares of a resource among
multiple users. The PSP rule generalizes Vickrey (\second-price") auc-
tions [13] which are for non-divisible objects, and bears some similarity
to Clarke-Groves mechanisms [1, 5]. The di�erence with the latter being
that for practical reasons, we reduce the message (bid) space to two di-
mensions (price and quantity), rather than the in�nite dimensional space of
valuation functions (or demand schedules) which is required in the direct-
revelations mechanisms. Player i's bid is si = (qi; pi) 2 Si = [0; Q]� [0;1),
meaning he would like a quantity qi at a unit price pi. A bid pro�le is
s = (s1; : : : ; sI). The auctioneer follows an auction rule A to respond with
an allocation A(s) = (a(s); c(s)), where ai(s) and ci(s) are respectively the
quantity allocated to and the total charge paid by player i.

The PSP allocation rule is:

ai(s) = qi ^ Q
i
(pi; s�i) (1)

ci(s) =
X
j 6=i

pj [aj(0; s�i)� aj(si; s�i)] (2)

where ^ means taking the minimum,

Q
i
(y; s�i) =

2
4Q� X

pk�y;k 6=i

qk

3
5
+

; (3)

and Q is the total available quantity of resource. Q
i
(y; s�i) is the quantity

available for player i at a bid price of y. The rule is computationally simple
{ O(I2) where I is the number of players { and can thus be used in real-time
dynamic auctioning. In [10], we show that under elastic demand (concave
valuations), analyzed as a complete information game, the PSP auction is
incentive compatible and stable, in that it has a \truthful" �-Nash equilib-
rium where all players bid at prices equal to their marginal valuation of the
resource, for any seller reserve price p0 > 0. PSP is e�cient in that the
equilibrium allocation maximizes total user value to within O(

p
�). The pa-

rameter � has a natural interpretation as a bid fee, and allows a manager to
directly trade-o� engineering and economic e�ciency (measured respectively
by convergence time and total user value).

In this paper, we show that the equilibrium holds when PSP is applied
by independent resource sellers on each link of a network with arbitrary
topology, with users having arbitrary but �xed routes. In this network
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case, the distributed mechanism has a further incentive compatibility in that
submitting the same bid at all links along the route is an optimal strategy
for each user, regardless of other players' actions. Thus, PSP consitutes
a stable decentralized mechanism for allocating and pricing capacity for
virtual paths (VPs) and virtual private networks (VPN), and is applicable
to programmable ATM networks [4].

2 Decentralized PSP Auctioning of Networked

Resources

2.1 Formulation

In this section, we extend the formulation of [10] to the network case,
where there is a set of resources L = f1; : : : ; Lg, of which the quantities
are Q1; : : : ; QL, and as before, a set of players I = f1; : : : ; Ig.

A basic goal is that the mechanism be decentralized in that the alloca-
tions at any link depend only on local information: the resources available
at that link and the bids for that link only. This makes the mechanism ap-
plicable to cases where the various resources being auctioned may be owned
by di�erent entities. Each player is responsible for coordinating (or not) her
bids at the di�erent links on her route in such a way that maximizes her
utility.

LetQl = [0; Ql], andQ =
Q

l2LQl. Player i's bid is now si = (s1i ; : : : ; s
L
i ) 2

Si =
Q

l2L Sl
i , where s

l
i = (qli; p

l
i) 2 Sl

i = Ql � [0;1) is the bid for resource
l 2 L. At each link l 2 L, we have an allocation rule Al, which maps a
pro�le sl 2 Sl =

Q
i2I Sl

i to an allocation Al(sl) = (al(sl); cl(sl)).
Player i's type includes a route1, ri � L. We will assume that players

only care about the end-to-end \thickness" of their allocated \pipe" (which
is given by the thinnest link allocation) and the total charge. Thus player
i has a valuation of the resource �i(:). Thus, for a bid pro�le of s, under
allocation rule A, player i getting an allocation Ai(s) = (ai(s); ci(s)) has the
quasilinear utility

ui(s) = �i(min
l2ri

ali(s))� ci(s); (4)

where
ci(s) =

X
l2L

cli(s):

1Our analysis will not require that ri form a continuous path, or any speci�c type of

subgraph { \route" means any arbitray subset of links.
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In addition, the player can be constrained by a budget bi 2 [0;1], so the bid
si must satsify

Si(s�i) = fsi 2 Si : ci(si; s�i) � big: (5)

Remark: In reality, routing itself is a competitive game, and the decen-
tralized nature of the auction makes it possible for players to make the route
part of their strategy and thus vary it in response to other users' actions.
In our analysis however, we assume players have obtained a (�xed) route
before entering the auction game. In the broader context, the auction game
may be nested within a larger game which includes routing.

2.2 Equilibrium of Networked PSP Auctions

Assume that the allocation at each link l 2 L is performed by a PSP rule,
i.e. Al sati�es (1) and (2). Assume further that the demand is elastic:

Assumption 1 For any i 2 I,
� �i(0) = 0;

� �i is di�erentiable,

� �0i � 0, non-increasing and continuous

� 9
i > 0, 8z � 0, �0i(z) > 0) 8� < z; �0i(z) � �0i(�)� 
i(z � �).

The key property in the analysis of the network case is that, given a
�xed opponent pro�le, a player cannot do better than place consistent bids,
i.e, the same bid at all the links on her path and bid zero on all links not in
her path.

For each i 2 I, we de�ne

xi : S �! Si
s 7�! xi(s) = (zi; yi);

where for 1 � l � L,

zli = 1ri(l)minm2ri a
m
i (s);

yli = 1ri(l)maxm2ri p
m
i :

De�ne also
Ql

i(y; s
l
�i) = lim

�&y
Ql

i
(�; sl�i);
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and
P l
i (z; s�i) = inf

n
y � 0 : Ql

i(y; s�i) � z
o
: (6)

where for each l 2 L, Ql

i
is de�ned by 3.

Proposition 1 8s 2 S, and i 2 I,

ui(xi(s); s�i) � ui(s):

Moreover ,
si 2 S(s�i)) xi(s) 2 S(s�i):

Proof: First, we prove that, leaving bid prices unchanged, there is no loss of utility
for a player who reduces the bid quantities to zi, i.e.

ui((zi; pi); s�i) � ui(s):

For any l 2 ri, zli � ali(s) � Ql
i(p

l
i; s

l), therefore ali((zi; pi); s�i) = zli ^
Ql

i(p
l
i; s

l
�i) = zli = minm2ria

m
i (s). Thus,

ui((zi; pi); s�i) � ui(s)

= �i(minm2ria
m
i ((zi; pi); s�i)) � �i(minm2ri a

m
i (s)) � ci((zi; pi); s�i) + ci(s)

= 0� ci((zi; pi); s�i) + ci(s)

=
X
l2L

Z al

i
(s)

al

i
((zi;pi);s�i)

P l
i (z; s�i) dz

� 0;

since P l
i � 0 and ali((zi; pi); s�i) � ali(s).

Second, for any l 2 ri, yli � pli, hence Ql
i(y

l
i; s

l) � Ql
i(p

l
i; s

l) � zli. Thus,
ali((z

l
i; y

l
i); s

l
�i) = zli = ali((zi; pi); s�i). Now since zli = 0 for l 62 ri, we have

ci((zi; yi); s�i) =
X
l2L

Z al

i
((zi;yi);s�i)

0

P l
i (z; s�i) dz

=
X
l2ri

Z al

i
((zi;yi);s�i)

0

P l
i (z; s�i) dz

=
X
l2ri

Z al

i
((zi;pi);s�i)

0

P l
i (z; s�i) dz

= ci((zi; pi); s�i);

hence
ui((zi; yi); s�i) = ui((zi; pi); s�i);
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which completes the proof of the �rst statement.

Now si 2 S(s�i) ) bi � ci(s) � ci((zi; yi); s�i) = ci((zi; pi); s�i) ) (zi; pi) 2

S(s�i). 2

Thanks to Proposition 1, we can restrict our attention to consistent
strategies only, and still have feasible best replies2 . This forms a \consistent"
embedded game with feasible sets replaced by the consistent strategy set
obtained by applying xi to the feasible strategy set

~Si(s�i) = xi(S(s�i)� fs�ig):

De�ne for 8y; z � 0, 8s 2 S, 8i 2 I,

P l
i (z; s

l
�i) = inf

n
� � 0 : Ql

i(�; s�i) � z
o
: (7)

Let

~Pi(z; s�i) =
X
l2ri

P l
i (z; s

l
�i);

~Qi(y; s�i) = supfz 2
\
l2ri

Ql : ~Pi(z; s�i) < yg;

~Q
i
(y; s�i) = min

l2ri
Ql

i
(y; sl�i);

~ai(s) = q1i ^ ~Q
i
(p1i ; s�i);

~ci(s) =

Z ~ai(s)

0

~Pi(z; s�i) dz:

Lemma 1 8s�i 2 S�i; 8si 2 ~S(s�i); 8l 2 ri,

~Qi(y; s�i) = lim
�&y

~Q
i
(�; s�i);

~ai(s) = min
l2ri

ali(s);

~ci(s) = ci(s);

and
ui(s) = �i(~ai(s))� ~ci(s):

2If �0i > 0, an even stronger statement holds: a bid can be a best reply only if it results

in the same quantity allocation at all the links in the route.
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Proof: Follows trivially from the de�nitions and the fact that si 2 ~Si(s�i) ) qli =

ali(s) = q1i ; 8l 2 ri. 2

Now within the feasible sets, the embedded game is identical to the single
node game, with all elements being replaced with the ~ version. Thus the
following result from [10] holds: for a given opponent pro�le s�i, an �-best
reply for player i is to bid at a price equal to the marginal valuation, i.e. set
pi = �0i(qi). Formally, let Ti = fsi 2 Si : pi = �0i(qi)g, the (unconstrained)
set of player i's truthful bids, and T =

Q
i Ti, then:

Proposition 2 (Incentive compatibility and continuity of best-reply) Un-
der Assumption 1, 8i 2 I, 8s�i 2 S�i, such that ~Qi(0; s�i) = 0, for any
� > 0, there exists a truthful �-best reply ti(s�i) 2 Ti.

In particular, let

Gi(s�i) =

8<
:z 2

\
l2ri

Ql : z � ~Qi(�
0
i(z); s�i) and

Z z

0

~Pi(�; s�i) d� � bi

9=
; :

Then with vi = [supGi(s�i)� �=�0i(0)]
+ and wi = �0i(vi), ti = (vi; wi) 2

Ti \ S�
i (s�i).

Further, ti is continuous in s�i on any subset Vi(P; P ) = fs�i 2 Si :
8z > 0; P � ~Pi(z; s�i) � Pg, with 1 > P � P > 0.

In addition, ~ai(ti; s�i) = vi.

Proof: See [10]. 2

Figure 1 illustrates the consistent and truthful best reply for a player
with a two-hop route.

Proposition 3 (Network Nash equilibrium) In the network auction game
with the PSP rule applied independently at each link, reserve prices pl0 >
0; 8l 2 L, and players described by (4) and (5), if Assumption 1 holds,
then for any � > 0, there exists a consistent and truthful �-Nash equilibrium
s� 2 T .

Proof: 8s 2 T ; i 2 I; l 2 L; z > 0, we have z > 0 = Ql
i(p

l
0=2; s

l
�i), which by (7)

implies Pi(z; s�i) � p0=2 = P . Let P = maxk2I �
0
k(0) _ maxl2L pl0. Then, by

Proposition 2, t = (v; w) is continuous in s on T . From the last statement of

Proposition 2), we have ~ai(ti; s�i) = vi. Therefore (zi(s); yi(s))
def
= xi(ti(s); s�i) =
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Figure 1: Consistent truthful bid for two hop route
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(1ri (l)minm2ri v
m
i (s); 1ri(l)maxm2ri �

0
i(v

m
i )), is continuous. Let (q; p)

def
= s. Since

s 2 T , we have s = (q; �0(q)). By Assumption 1, 8i 2 I, �0i is continuous therefore

z can be viewed as a continuous mapping of QI onto itself. By Brouwer's �xed-

point theorem (see for example [6]), any continuous mapping of a convex compact

set into itself has at least one �xed point, i.e. 9q� = z(q�) 2 [0; Q]I. Now with

s� = (q�; �0(q�)), we have s� = t(s�) 2 T . 2
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