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Abstract—The capacity allocation problem in a network that
is to be shared by noncooperative users is considered. Each user
decides independently upon its routing strategy so as to optimize
its individual performance objective. The operating points of the
network are the Nash equilibria of the underlying routing game.
The network designer aims to allocate link capacities, so that
the resulting Nash equilibria are efficient, according to some
systemwide performance criterion. In general, the solution of
such design problems is complex and at times counterintuitive,
since adding link capacity might lead to degradation of user
performance. For systems of parallel links, we show that such
paradoxes do not occur and that the capacity allocation problem
has a simple and intuitive optimal solution that coincides with
the solution in the single-user case.

Index Terms—Capacity allocation, Nash games, noncooperative
networks, routing.

I. INTRODUCTION

T HE COMPLEXITY of high-speed, large-scale networks
calls for decentralized control algorithms, where control

decisions are made by each user independently, according to
its own individual performance objectives.1 Such networks are
henceforth callednoncooperative, and game theory [1], [2]
provides the systematic framework to study and understand
their behavior. The operating points of a noncooperative
network are theNash equilibriaof the underlying game, that
is, the points where unilateral deviation does not help any
user to improve its performance.

In modern networking, game theoretic models have been
employed in the context of flow control [3]–[6], routing
[7]–[9], and virtual path bandwidth allocation [10]. These
studies mainly investigate the structure of the Nash equilibria
and provide valuable insight into the nature of networking
under decentralized and noncooperative control.
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1The term “user” may refer to a network user itself or, in case that the

user’s traffic consists of multiple connections, to individual connections that
are controlled independently.

The present work approaches noncooperative networking
from a different viewpoint: given that the network is shared
by noncooperative users, is it possible to devise a set of
design rules which guarantee that the resulting Nash equilibria
exhibit certain desirable properties? Network design issues are
scarcely addressed under a noncooperative setting, mainly due
to the complex structure—or lack thereof—of the underlying
game. One exception is [11], which addresses the problem of
designing the service discipline of a switch shared by users
performing noncooperative flow control.

We consider the problem of optimal capacity allocation
under noncooperative routing. The network is shared by a set
of noncooperative users, each bifurcating its flow over the
paths available in the network, in a way that optimizes its
individual performance objective.2 The noncooperative routing
scenario applies to various modern networking environments.
The Internet Protocol (both IPv4 and the current IPv6 Spec-
ification), for example, provides the option of source routing
[16], [17] that enables the user to determine the path(s) its
flow follows from source to destination. Another example
is the flexible routing service as specified in the Q.1211
CCITT Recommendation for the standardized capability set of
Intelligent Networks (IN CS-1) [18]. One of the goals of this
service is to route calls over particular facilities based on the
subscriber’s routing preference list or distribution algorithm.

The network designer allocates link capacities while sat-
isfying lower bounds specified per link and an upper bound
on the total capacity of the network. A capacity allocation is
sought, such that the resulting routing equilibrium exhibits the
“best” performance according to some networkwide efficiency
criterion. We consider several efficiency criteria, such as the
“price” (marginal cost) as seen by each user, the cost of each
user, or some combination of the above, for example, the
average network delay. The combined capacity and routing
optimization is a hard problem, even when routing is centrally
controlled (single-user case) and heuristics are usually in place
[12], [20]. The complexity of the problem is even more
pronounced in the case of noncooperative routing. Indeed, for
the design problem described above it is not even clear that
the designer should deploy all the available capacity. The well-
known Braess paradox indicates that, in general, addition of

2Bifurcation of flows is a well-established routing mechanism that has
been studied extensively in the networking literature (e.g., [12] and references
therein) and has already been implemented in practical networks [12]–[14].
Bifurcated routing is often preferred to simple shortest-path methods, since the
latter may result in oscillatory behavior [12], [15]. Even in cases where indi-
vidual connections might not be split over different paths, optimal bifurcation
can be achieved (or approximated); a “user” might represent an organization
that decides on the routing of its total flow, thus it can approximate optimal
bifurcated routing by assigning the various connections it controls over
appropriate paths in the network.
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capacity to a network may degrade the performance of each
and every user [21], [22]; an example that adopts the paradox
to the communication network framework considered in this
paper is presented in [28].

The optimal capacity allocation problem is analyzed in
detail for a simple network consisting of a common source
and a common destination node interconnected by a number
of parallel links, for which it is known that there exists a unique
Nash equilibrium for any capacity configuration [9]. Systems
of parallel links, albeit simple, represent an appropriate model
for seemingly unrelated networking problems. Consider, for
example, a network in which resources are preallocated to
various routing paths that do not interfere. Such scenarios are
common in modern networking. In broadband networks, for
instance, bandwidth is separated among different virtual paths,
resulting effectively in a system of parallel and noninterfering
“links” between source/destination pairs. Moreover, to reduce
the complexity of routing mechanisms, the network might
present the users with a limited set of paths between source and
destination, hiding the underlying physical topology. Another
example is that of a corporation or organization that receives
service from a number of different network providers. The
corporation can split its total flow over the various network
facilities (according to performance and cost considerations),
each of which can be represented as a “link” in the parallel
link model. Finally, it should be noted that routing, as a
control paradigm, applies not only to the allocation of paths to
messages and connections in communication networks, but in
fact to any problem of splitting load among several resources,
e.g., distribution of tasks among multiple processors. Consider,
for example, a multimedia network with several servers that
are shared by the network customers; each customer distributes
its applications among the servers while competing with the
other customers on the common available resources, result-
ing in effect with a routing game. Modeling each resource
(e.g., multimedia server) as a “link,” the parallel links model
considered in our study fits well such scenarios.

In the single-user (parallel links) case, the optimal capacity
allocation problem has a simple and intuitive solution: the
best design strategy is to allot the entire additional capacity
to the link with the initially highest capacity [12]. One of the
main contributions of this work is to generalize this result
(for the various efficiency criteria considered by the designer)
to the case of noncooperative routing, independently of the
number and the throughput demands of the users. While in
the single-user case the proof is quite simple, in a multi-user
setting it requires systematic and rather cautious analysis to
establish some “order” in the complex structure of the routing
game. More specifically, we decompose the problem into two
subproblems: 1) the problem of adding capacity to any link
and 2) the problem of transferring capacity from one link to
another. These subproblems correspond to practical situations
encountered in various networking environments, where the
capacity of a single physical link is dynamically allocated to
several logical links (e.g., virtual paths) and, therefore, provide
design rules that are interesting in their own right. For the
capacity addition problem, we establish that adding capacity
to any link in the network improves performance. For the

capacity transfer problem we show that transferring capacity
toward the link with the originally highest capacity improves
the performance of the network. Combining these results, we
obtain the solution to the optimal capacity allocation problem.

An important practical implication of these results is that,
although users make noncooperative decisions, design method-
ologies can be devised to improve the overall network per-
formance. Improvements can be achieved both during the
provisioning phase, i.e., when the network parameters are
sized, and during therun time phase, i.e., during the actual
operation of the network. The capacity allocation problem
considered here aims at improvements during the provisioning
phase. Strategies that improve the network performance during
the run time phase are investigated in [23].

The outline of the paper is the following. In Section II we
present the parallel links model and formulate the optimal
capacity allocation problem. Section III explores the structure
of the underlying Nash equilibria and establishes several
properties that form the foundation of the subsequent analysis.
In Section IV we prove that addition of capacity to a system
of parallel links does not degrade performance. In Section V
we show that transferring capacity toward the link with the
originally highest capacity improves performance. With these
results at hand, we investigate, in Section VI, the optimal
strategy for adding capacity to a system of parallel links.
Finally, Section VII summarizes the main results, delineates
their practical implications, and discusses possible extensions.

II. M ODEL AND PROBLEM FORMULATION

A. Model and Preliminaries

We consider a set of users that share a
set of communication links interconnecting a
common source to a common destination node. Letbe the
capacity of link and be the total capacity
of the system. Each user has a throughput demand that
is some process with average rate We assume that

Let denote the total
demand of the users. We only consider capacity configurations

that can accommodate the total user demand,
that is, configurations with

User ships its flow by splitting its demand over the set
of parallel links, according to some individual performance
objective. Let denote the expected flow that usersends
on link The user flow configuration is
called a routingstrategyof user , and the set

of strategies that
satisfy the user’s demand is called the strategy space of user

The system flow configuration is called a
routingstrategy profileand takes values in the product strategy
space

The performance objective of useris quantified by means
of a cost function The user aims to find a strategy

that minimizes its cost. This optimization problem
depends on the routing decisions of the other users, described
by the strategy profile
since is a function of the system flow configuration A
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Nash equilibriumof the routing game is a strategy profile from
which no user finds it beneficial to unilaterally deviate. Hence,

is a Nash equilibrium if

(1)

The problem of existence and uniqueness of equilibria has
been investigated in [9] for certain general classes of cost
functions. Here, we consider cost functions that are the sum
of link cost functions

(2)

where and is the average delay per
unit of flow on link that depends only on the total flow

on that link. The average delay should be
interpreted as a generalcongestion costper unit of flow that
encapsulates the dependence of the quality of a finite capacity
resource on the total load offered to it (see [24] for a related
discussion). In the present paper, we concentrate on congestion
costs of the form

(3)

that are typical in various practical routing algorithms [25],
[12].

Note that (3) describes the M/M/1 delay function. Therefore,
if we assume that the delay characteristics of each link can be
approximated by an M/M/1 queue, is the average
time-delay that the flow of user experiences under strategy
profile Also, note that the stability constraint of link
is manifested through the definition of In particular, since
the total user demand does not exceed the total capacity

of the network, (1) and (3) guarantee that at any Nash
equilibrium, we have for all and the costs of
all users are finite.

Given a strategy profile of the other users, the cost
of user as defined by (2) and (3), is a convex function
of its strategy Hence, the minimization problem in (1)
has a unique solution. Since the Slater condition [26]
is satisfied, therefore the Kuhn–Tucker optimality conditions
are applicable. These conditions imply that is the optimal
response of user to if and only if there exist (Lagrange
multipliers) and such that

(4)

(5)

(6)

(7)

where Therefore, a strategy profile is a
Nash equilibrium if and only if there exist and such that
the optimality conditions (4)–(7) are satisfied for all

It is easy to verify that the necessary and sufficient condi-
tions (4)–(7) are equivalent to the following:

if (8)

if (9)

(10)

which imply that is, in fact, the marginal cost of user
at the optimality point. In accordance with the economics

terminology [27], will be referred to as theprice of user
For the cost function given by (2) and (3), we have

(11)

where is the derivative of with respect to and
is the total flow that all users except the

th send on link Note that
In [9] it has been shown that the routing game described

above has auniqueNash equilibrium.
At times we will concentrate on special types of users,

defined in the following.
Definition 1: Users are said to beidentical if their demands

are all equal, i.e.,
The Nash equilibrium of identical users is symmetrical, i.e.,

for all [9].
Definition 2: A user is said to besimple if all of its flows

are routed through links (or paths) of minimal delay.
Users often route their flows according to the “simple”

scheme due to practical considerations. Many typical rout-
ing algorithms send flows through shortest paths, without
accounting for derivatives , and thus bifurcating flows.
The Nash equilibrium of simple users in a system of parallel
links is unique with respect to thetotal link flows [9], and the
corresponding necessary and sufficient conditions require the
existence of some such that

if (12)

if (13)

(14)

We shall refer to the value of as the price of the simple users.
From (12)–(14), it is easy to see that users that route according
to the optimality conditions (8)–(10) become simple as their
population grows to infinity and their individual demands
become infinitesimally small, while their total demand remains

This is the typical scenario in a transportation network.
Definition 3: Users are said to beconsistent(for a given

capacity configuration) if, at the Nash equilibrium, they all
use the same set of links.

Due to the structure of their Nash equilibrium, identical
users are consistent. It is easy to verify that simple users
are also consistent [9]. Finally, consistent users are typical
of systems with heavy traffic, i.e., when approaches in
which case each user sends flow on all links in the network.

B. Capacity Allocation Problem

Consider a network of parallel links with initial capacity
configuration and total capacity We assume that

Suppose that there exists some additional
capacity allowance of at most which the network designer
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can distribute among the network links. The aim of the
designer is to come up with a capacity configurationwith

for all links that results in a network with
a total capacity of at most that is “efficient” at the
corresponding Nash equilibrium. Without loss of generality,
we can concentrate on capacity configurationsthat preserve
the initial link order, that is, configurations with

3 Therefore, the set of all capacity configurations that can
be implemented by the designer is

Each capacity
configuration in induces a different routing game that has a
unique Nash equilibrium. Therefore, we can define a function

that assigns to each the Nash equilibrium
of its respective routing game. will be referred to as

the Nash mapping.
The designer may have different measures for characterizing

the efficiency of a capacity configuration. We shall concentrate
on measures that are expressed by means of either the user
prices or costs. Although the user’s cost is a direct measure
of its level of satisfaction, prices may be a more important
measure from the system’s point of view since they account
for the level of congestion as seen by users and are the direct
indication of how each user could accommodate fluctuations
in the system’s state. The designer can consider various ways
of combining either the prices or the costs of the users. We
shall concentrate onuseroptimization, i.e., trying to reduce the
price or cost of each and every user, andoverall optimization,
i.e., trying to reduce the sum of all prices or costs. The various
performance measures of the designer are formally stated in
the following definitions.

Definition 4: Consider two capacity configurationsand ,
and let and (correspondingly, and ) be the price
(correspondingly, cost) of userat the respective equilibrium.
Then we have the following.

1) Configuration is said to be theuser price (cost) efficient
relative to configuration if for all

2) Configuration is said to be theoverall price (cost)
efficient relative to configuration if

Definition 5: A capacity configuration is called:

1) user price (cost) optimalin if it is user price (cost)
efficient relative to any

2) overall price (cost) optimalin if it is overall price
(cost) efficient relative to any

Obviously, user efficiency (optimality) implies overall effi-
ciency (optimality). Price and cost efficiency (optimality),
however, do not imply each other in either direction. Note
also that, in general, the existence of user optima cannot be
guaranteed even if overall optima do exist.

The optimal capacity allocation problem, corresponding to
the various designer’s performance measures, is described as
follows.

3The properties of the Nash equilibrium in a system of parallel links with
capacity configurationccc depends on the actual link capacities and not on
the link “labels” that are determined by the initial configurationccc

0
: Hence,

renaming the links, so thatc1 � � � � � cL; does not affect the characteristics
of the resulting equilibrium.

Given a system of parallel links with users an ini-
tial capacity configuration , and an additional capacity al-
lowance find a capacity configuration that is user/overall
price/cost optimal in

Although the problem is formulated as allocating additional
capacity to an existing network, this formulation is equivalent
to the typical capacity allocation problem, where the capacity
of each link has to be higher than a lower bound, e.g., due
to reliability considerations. By definition, the initial capacity

of every link is positive, in other words, the designer can
only add capacity to existing links. Nonetheless, as shown in
[28], the results of the following subsections can be easily
extended to the case where for some links that
is, when the designer is also allowed to add a (finite) number
of links to the network.

Solving the optimal capacity allocation problem in a net-
work shared by noncooperative users amounts to comparing
the Nash equilibria of the routing games induced by different
capacity configurations in Comparing the outcomes of
different games is, in general, a highly complex task and
requires explicit characterization of the respective equilibria.
The structure of the unique Nash equilibrium of the routing
game is investigated in the following section. Before we
proceed, let us first summarize the main results of this study.

C. Outline of Results

1) Addition of capacity to a link results in a configuration
that is:

a) user (thus, overall) price efficient;
b) user (thus, overall) cost efficient for consistent

users;
c) overall cost efficient when capacity is added to the

link with the initially highest capacity.

2) Transferring capacity from any link to the link with the
initially highest capacity results in a configuration that
is:

a) user (thus, overall) price efficient;
b) user (thus, overall) cost efficient for consistent

users and for two users.

3) The capacity configuration that results from allocating
the entire additional capacity allowance to the link
with the initially highest capacity is:

a) user (thus, overall) price optimal in
b) user (thus, overall) cost optimal in for each of

the following cases:

• identical lower bounds on the link capacities;
• consistent users;
• two users.

III. STRUCTURE OF THENASH MAPPING

In this section we study the structure of the Nash mapping
that assigns to each capacity configuration the Nash

equilibrium of its respective routing game. We start by
investigating the structure of the Nash equilibrium for a given
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capacity configuration These results will be used to establish
continuity properties of the Nash mapping.

A. Structure of the Nash Equilibrium

Consider the Nash equilibrium of the routing game in a
system of parallel links with capacity configuration A
number of intuitive monotonicity properties of this equilibrium
have been established in [9] and are summarized in the
following.

Lemma 1: Let be the unique Nash equilibrium of the
routing game in a network of parallel links with capacity
configuration Then:

1) the expected flow of any user decreases in the
link number, i.e., In particular, for

we have if and only if
2) for any link the flows decrease in the user number,

i.e., In particular, for we
have if and only if

3) the residual capacity is decreasing in the link number,
i.e., or equivalently,

In particular, if and
only if

4) for every user the residual capacity
seen by the user on link, is decreasing in the link
number, i.e., In particular,
if and only if

Let denote the set of links that receive some flow from
user , and denotes the set of users that send flow over link

The first statement in Lemma 1 implies that for every user
there exists some link such that for all

and for , that is, Similarly,
the second statement in the Lemma implies that for every link

there exists some user such that for all
and for , that is, Moreover,

and
Consider the best reply of user to a fixed strategy

profile of the other users. This is the unique solution to
the (single-user) optimal routing problem for a network of
parallel links with capacity configuration
and is determined by the Kuhn–Tucker optimality conditions
(8)–(10). Note that for any link conditions (8) and (9)
can be written as

if (15)

if (16)

In the sequel, we will derive an explicit characterization of
the structure of the user’s equilibrium strategyas a function
of , which depends on the capacity configurationand the
strategy profile of the other users. To this end, let us define

(17)

and where
is the total demand of all users except theth. Note

that is the total residual capacity of the network as
seen by user Since it is easy to verify that

(18)

with equality holding if and only if We are now
ready to show the following.

Proposition 1: The Nash equilibrium of the routing game
in a system of parallel links with capacity configuration
satisfies the following relationship:

(19)

where, for every user the threshold is determined by

(20)

The equilibrium price and the equilibrium cost for userare,
respectively

for any set (21)

(22)

(23)

Proof: See Appendix A.
Remarks:

1) The proposition implies that the information user
needs to determine its best reply to any strategy
profile of the other users in the residual capacity

seen by the user on every link [see (19) and
(17)], and not a detailed description of In practice,
information about the residual capacities can be acquired
by measuring the link delays through an appropriate
estimation technique.

2) In the special case (17) and (22) imply
that and (16) holds tight for
Therefore, in this case, we can define the set of links on
which the user sends flow as
where link is “marginally” used with

The structure of the Nash equilibrium of the routing game
is exploited in the following section to show that the Nash
mapping is continuous. This fundamental property will
substantially simplify the analysis of the optimal capacity
allocation problem in the subsequent sections.

B. Continuity of the Nash Mapping

From Proposition 1, and especially the expressions for the
equilibrium prices and costs, it is clear that the set of links
over which each user sends its flow has a prominent role
in the properties of the Nash equilibrium. To investigate
the capacity allocation problem, we need to compare the
equilibria of games that are induced by different capacity
configurations in If the resulting equilibria are such that
the sets of links over which each user sends its flow do not
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coincide at both equilibria, such comparisons are extremely
complex, if possible at all. In this section, we first show
that the Nash mapping is continuous and then explain
that this result allows us to investigate the general capacity
allocation problem, based solely on comparisons between
capacity configurations that are such that each user sends its
flow over the same links under both configurations.

Consider a fixed capacity configuration , and let be
its corresponding Nash equilibrium. The price of user at
this equilibrium is unique. Similarly, is uniquely determined
by (4). Therefore, there exists a unique collection of Lagrange
multipliers that, together
with the Nash equilibrium , solve the system of necessary
and sufficient conditions (8)–(10) for all Let us now
augment the definition of the Nash mapping so that to each
capacity configuration we assign the Nash equilibrium of
the routing game and the corresponding Lagrange multipliers

that is with
Theorem 1: The Nash mapping is

continuous.
Proof: See Appendix A.

The following corollary shows that the equilibrium costs of
the users and the equilibrium link delays are also continuous
functions of the capacity configuration

Corollary 1: Let and be such
that for every where is the
equilibrium cost of user under capacity configuration and

where is the equilibrium delay of
link under Then, and are continuous.

Proof: From (2) and (3), one can see that the link delays
and the user cost functions are continuous at every as
long as the stability condition for all links is
satisfied. Suppose now that is the Nash equilibrium under
capacity configuration Then, as explained in Section II-A,
the stability condition is satisfied, and sinceis a continuous
function of (Theorem 1) the result follows.

As explained in Section I, we will investigate the opti-
mal capacity allocation problem by decomposing it into two
subproblems, namely the problem of adding capacity to any
link and the problem of transferring capacity from one link
to another. In the rest of this section we explain that the
continuity properties of the Nash mapping allow us to analyze
these problems under the assumption that each user sends its
flow over the same set of links before and after the capacity
addition/transfer. We will concentrate on the case of capacity
transfer; the analysis can be readily adopted to the problem
of capacity addition.

Consider two capacity configurations such that
results from by shifting an amount of capacity from
some link to a link , i.e., 4 For
every let be the capacity
configuration that results from by a transfer of capacity

from link to link All quantities of interest, e.g., the
equilibrium prices and costs, can be treated as functions of
Let be such a quantity, and suppose that we aim at showing
that , i.e., that is higher under configuration

4eeel is the vector in L with the lth component equal to one and all other
components equal to zero.

than under To achieve this goal, it suffices
to show that is a nondecreasing function of

The set of links that receive flow from useris determined
by (20). From (17), one can see that is a continuous
function of the capacity configuration and the equilibrium
strategies of the other users The continuity of the Nash
mapping, then, implies that is a continuous function of

Let
denote the set of for which user sends flow
on links under configuration 5 Continuity of

implies that is a closed set [29]. Define
which is also a closed set. If

for some then each user sends its flow
over the same set of links under configurations and
Note that

Theorem 5 in Appendix A implies that, to prove thatis
nondecreasing in it suffices to establish this property
in every set , i.e., to show that for every

implies that In other
words, all comparisons betweenand
can be carried based on the assumption that each user sends
its flow over the same set of links under both configurations.

IV. CAPACITY ADDITION

As previously mentioned, in [28] we present an example
that adopts the Braess paradox to the communication network
framework considered in this paper. That example demon-
strates that addition of capacity to a network may increase
user prices and/or costs. In this section we investigate the
problem of adding capacity to systems of parallel links and
show that, under various conditions, this paradoxical behavior
cannot occur in this setting.

A capacity configuration is called anaugmentationof
configuration if for all and Through-
out this section we shall compare the Nash equilibrium of a
capacity configuration to that of some augmentation“Hat”
values will refer to configuration while “nonhat” values refer
to For example, and are the prices of userunder
and respectively.

A. Price Efficiency

The following proposition shows that an addition of capacity
is always price efficient.

Proposition 2: If a capacity configuration is an augmen-
tation of configuration then is user price efficient relative
to , i.e., for all Moreover, the equilibrium
delay of each link is lower (not higher) under configuration
, i.e., for all

Proof: Assume by contradiction that the set
is nonempty. Since the flow in each is

higher under configuration there must be a userand links
and such that and Since

the optimality conditions (8)–(10) imply that
Similarly, since

we have Combining these
5If Gi

l
(�) = ri; useri marginally uses linkl underccc(�); see the second

remark following Proposition 1.
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inequalities with and we get
Since and this is a contradiction.

Hence, the set is empty, i.e., for all links
Since the demand of each useris in both capacity

configurations, the user cannot increase its flow on each and
every link, and there must be a linkfor which and

Therefore, thus
concluding the proof.

B. Cost Efficiency

The following proposition shows that if capacity is added
exclusively to link 1, the resulting configuration is overall cost
efficient.

Proposition 3: Let and be two capacity configurations
such that for all and Then is overall
cost efficient relative to

Proof: From Proposition 2 we have that for
all links This means that for all we have
Therefore, when “moving” from to , we observe flow being
“transferred” from all links to link 1. Since for all
links the flow that remains (under configuration) in a link

experiences a delay which is not higher than the previous
one. Moreover, since we also conclude that
the flow that moved to link 1 experiences a delay which is not
higher than the previous one, and the result follows.

The following two propositions, whose proofs appear in
Appendix B, establish user cost efficiency of capacity addition
in some special cases of interest.

Proposition 4: Let and be two capacity configurations
such that is an augmentation of Assume that users are
consistent under both and Then is user cost efficient
relative to , that is, for all

The above result applies, in particular, both to identical users
and to simple users, since they belong to the class of consistent
users under all capacity configurations.

Proposition 5: Let and be two capacity configurations
such that for all and Then, for
is user cost efficient relative to

Remark: We have a proof that an augmented capacity
configuration is user cost efficient also for the (dual) case of
two links and any number of users.

V. CAPACITY TRANSFER

In this section we investigate the problem of transferring
capacity from one link to another. Specifically, we establish
that transferring capacity from any link (while observing the
lower bound) to link 1 improves performance according the
various efficiency criteria defined in Section II-B. Except for
being a stage toward the solution of the optimal allocation
problem, this result provides an interesting design rule per
se. In broadband networks, for example, capacity is routinely
released upon the completion of a session. The network man-
agement may redistribute the excess capacity among virtual
paths or circuits, thus facing the problem considered in this
section.

Consider two capacity configurationsand in such
that is derived from by a transfer of
capacity from some link with

to link 1. Note that the total capacity of the system remains the
same after the capacity transfer, i.e.,
As before, “hat” values will refer to configuration while
“nonhat” values refer to the initial configuration

A. Price Efficiency

We begin by showing that capacity configurationis user
price efficient relative to The comparison of configurations
and is carried out in a series of lemmas. Lemma 2 examines
the effect of the transfer of capacity from link to link 1
on the equilibrium delays of these two links. Lemmas 3 and
4 show that the transfer of capacity affects the prices of the
users and the equilibrium delays of the links in in
an “ordered” way, in a sense that will be explained in the
lemmas. Finally, user price efficiency ofrelative to will
be established in Theorem 2.

Let (respectively, ) denote the set of links in
whose equilibrium delay is higher (respectively,

not higher) under , that is,
and Consider now any link

Since we have that if and only
if while if and only if

The following lemma shows that the transfer of capacity
from link to link 1 decreases the equilibrium delay on link
1, while it increases the delay on link

Lemma 2: Consider two capacity configurations
with Then, and

Proof: See Appendix C.
In the sequel, we present two lemmas that will play a key

role in the proof of price efficiency of relative to Both
refer to the case where the transfer of capacityfrom link

to link 1 is such that each user sends its flow over the same
set of links under and , i.e., for all and

for all The first lemma asserts that the transfer
affects the prices of all users that send flow to linkin the
same way, that is, either for all or
for all Similarly, either all links with capacity lower
than link increase their equilibrium delays with or else all
of them decrease their equilibrium delays. The proofs of both
lemmas are presented in Appendix C.

Lemma 3: Consider two capacity configurations
with where is such that for
all and assume that Then, either:

1) for all and for all links with

2) for all and for all links with

In the following lemma we show that if the delay of some
link in is higher under configuration then
the same is true for all links in

Lemma 4: Consider two capacity configurations
with where is such that for
all For any link if then for
all links

An immediate consequence of the lemma is that there exists
a link such that for all
and for all
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We are now ready to prove that is user price efficient
compared to The proof is given in the following theorem,
which asserts also that the equilibrium delays on all links
except link are lower under configuration, i.e., that the
set is empty.

Theorem 2: Consider two capacity configurations
with Then:

1) configuration is user (thus, overall) price efficient
relative to , i.e., for all

2) for all and

Proof: and have been established in
Lemma 2, thus we only have to prove the remaining statements
in the theorem. Let us first establish these claims under the
assumption that each user sends its flow over the same set of
links under and , i.e., that for all and then
generalize them to the case where for some user

Assume that for all If no user sends flow
to link that is, if transferring capacity from link

to link 1 is equivalent to adding capacity to the system
of parallel links and the result is immediate from
Proposition 2. Thus, we only need to consider the case
that is, Without loss of generality, we assume that user
1 sends flow on all links in the network, i.e., that

Let us first show that Assume by contradiction that
Then, from Lemma 3, we have for all links

As already explained, Lemma 4 implies
that there exists some link such that
for all and for all
Define and note that

since

Recalling that we have

(24)

Using the expression for given by (39) in Appendix C and
(24), we have

since But this contradicts the assumption
Therefore, Lemma 3, then, implies that for
all and for all Thus

As explained in the remark following the proof of Lemma
4 in Appendix C, this implies that Applying
Lemma 4 inductively for it follows
that for every link in Therefore,
all links in belong to and This
concludes the proof of the second statement in the lemma in
the case

We now proceed to show that for all users
Assume by contradiction that there exists some user

such that Then, since
for all Therefore, for all Since

this implies that
for all Thus

which is a contradiction. Therefore, for all we have
and this completes the proof of the theorem in the

case
Let us now consider the case where the transfer of capacity

from link to link 1 forces some users to change the set of
links over which they send their flow. As in Section III-B, let

denote the set of capacity transfers from
link to link 1, that are such that the set of links over which
user sends its flow is Note that the previous
analysis establishes that for any capacity transfers if

—for some —and then:
1) for all ; and 2)
for all As explained in Section III-B, this
implies that: 1) ; and
2) by virtue of
Theorem 5.

B. Cost Efficiency

Let us now proceed to show that is user cost efficient
in some special cases of interest. We start by showing the
following corollary of Theorem 2.

Corollary 2: Consider two capacity configurations
with where is such that for
all Then, the equilibrium costs of all users are
lower under , i.e., for all

Proof: From Theorem 2, we have for
all links In view of
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this implies that

(25)

Using the expression for given in (23), we get

where the first inequality follows from (Theorem 2)
and the second from (25), since for all

In the following proposition we establish thatis user cost
efficient in the case of users that are consistent under both
and which includes the cases of identical and simple users.

Proposition 6: Consider a system of parallel links shared
by users, consistent at the capacity configurationsand
where Then is user (thus, overall) cost
efficient compared to

Proof: For consistent users we have for all
As in the proof of Theorem 2, it suffices to establish

cost efficiency in the case where If
transferring capacity from link to link 1 is equivalent to
adding capacity to the system, and the result is immediate
from Proposition 4. If, on the other hand, the result
follows from Corollary 2.

The following proposition asserts thatis user cost efficient
in the special case of two users.

Proposition 7: Consider a system of parallel links shared
by two users. The capacity configuration
is user (thus, overall) cost efficient compared to

Proof: It suffices to establish cost efficiency under the
assumption that The result is immediate
from Proposition 5, if no user sends flow on link If
both users send flow on link the result is also immediate
from Corollary 2. Hence, we only have to consider the case

Then, from Corollary 2, we have
Following the same proof as in Lemma 7 in Appendix B, one
can show that there must be a usersuch that for all
links If then the residual capacity seen by
user 2 at all links in is higher under ; therefore,
Suppose now that For any link inequality

implies that since Therefore, user
2 decreases its flow on all links in Since
for all links and the delay at link 1 is always minimal
among all links, we conclude that

VI. OPTIMAL CAPACITY ALLOCATION

We now proceed to investigate the optimal capacity alloca-
tion problem for a system of parallel links, according to the
various performance measures defined in Section II-B. The
main results of this section, namely Theorems 3 and 4, assert
that the capacity configuration that results
from allocating the entire additional capacity to the link with
the initially highest capacity is 1) user price optimal inand 2)

user cost optimal in if the lower bounds on the link capacities
are equal for all links. Furthermore, will be shown to be
cost optimal for a number of special cases of interest, even if
the lower bounds on the link capacities are not identical.

A. Price Optimality

The following theorem establishes price optimality of ca-
pacity configuration

Theorem 3: Consider a system of parallel links with initial
capacity configuration shared by noncooperative users,
and an additional capacity allowance The capacity con-
figuration , that results from allocating the
entire additional capacity to the link with the initially highest
capacity, is user (thus, overall) price optimal in

Proof: Let denote the set of capacity configurations
that can be implemented by the designer by allocating an
additional capacity of exactly to a system
of parallel links with initial configuration For every
define Theorem 2 implies that is user
price optimal in To see this, consider any From
Theorem 2, the capacity configuration
that is obtained by reducing the capacity of linkto its lower
bound and adding the excess capacity to link 1, is
user price efficient compared to Proceeding inductively, for
every the configuration is
user price efficient compared to
Hence, is user price
efficient with respect to , that is, is user price optimal
in From Proposition 2, is user price efficient
with respect to any with Therefore, is
user price optimal in

B. Cost Optimality

The following theorem shows that configuration is user
cost optimal if the lower bounds on the link capacities are
equal for all links.

Theorem 4: Consider a system of parallel links with initial
capacity configuration shared by users, and an additional
capacity allowance If for all then
the capacity configuration that results from
allocating the entire additional capacity to link 1, is user (thus,
overall) cost optimal in

Proof: As in the proof of Theorem 3, let be the set
of capacity configurations that can be implemented by the
designer by allocating an additional capacity of exactlyto
a system of parallel links with initial configuration Let us
first show that is user cost efficient relative
to any

Starting from we construct a process of capacity transfers
from links to link 1 such that at each step the
resulting capacity configuration is user cost efficient relative
to the previous one, and the configuration at the final step
coincides with More specifically, at the first step we
reduce the capacity of link 2 to and transfer the excess
capacity to link 1. At the second step, the capacity
of both links 2 and 3 is reduced to and the excess
capacity is added to link 1. Proceeding this way,
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at step the capacity of all links in is equal
to At the final step, the capacity of all these links is
reduced from to and the excess capacity is transferred
to link 1. The final capacity configuration coincides with

In order to prove that at each step of this process the
resulting capacity configuration is user cost efficient relative
to the previous one, it suffices to show that for any capacity
configuration with for some

the configuration that
results fromsimultaneouslyreducing the capacity of each link
in by and transferring the excess
capacity to link 1, is user cost efficient relative
to As explained in Section III-B, we only need to establish
this result under the assumption that is such that
for all by virtue of Theorem 5, the result extends for
any

Consider two configurations and in as described
above, such that for all Then, one can
show that while for all
following precisely the proof of Lemma 2 with
playing the role of in that proof. Furthermore, note that the
proof of Lemma 3 is based on the structure ofand —as
defined in that lemma—only to the extent that there exists
some link such that and for all

Therefore, the results in that lemma—withreplaced
by —readily apply to configurations and of the form
considered here. Based on these results, one can adopt the
proof of Theorem 2 to show that: 1) is user price efficient
relative to ; and 2) for all links
Then, following precisely the proof of Corollary 2, one can
show that for all users Since
we have , i.e., the users that do not send flow
on link send their entire flow on link 1. For any such user

we have Therefore, is user cost
efficient with respect to

As already explained, user cost efficiency ofrelative to
implies that is user cost optimal in Thus, in order

to show user cost optimality of in it suffices
to show that for any if then
is user cost efficient relative to By virtue of Theorem 5,
we only need to establish this result under the assumption
that each user sends its flow over the same links under both
configurations. Note that in both configurations the capacity
of all links in is equal to their common lower bound,
while the capacity of link 1 is higher in Since, by
Proposition 2, the delay of each link is lower under the
cost of each user that sends flow only to link 1 is lower under
this configuration, i.e., for all
Since it remains to be shown that the same
inequality holds for all

Note that the users that send flow only to link 1 simply
occupy a fixed capacity of that link at both and
Therefore, in order to compare the performance of the rest
of the users, we can consider two configurations,
and , derived from and , respectively, by
reducing the capacity of link 1 by and neglect
the users in All users in are consistent under

both and since they send flow on all links.
Proposition 4, then, implies that for all

and this concludes the proof.
Remark: The results in Theorems 3 and 4 rely on the

assumption that the network designer adds capacity to an
existing system of parallel links, i.e., that the initial capacity
of every link is nonzero, as has been noted in Section II-B.
In [28] we show that all the optimality results of this section
apply also to the case where for some links , that
is, when the designer is allowed to add a finite number of links.

The following proposition indicates that the user price
optimal capacity configuration is also user cost optimal in
some special cases of interest, even if the lower bounds on the
link capacities are not identical.

Proposition 8: Consider a system of parallel links with
initial capacity configuration shared by users, and an
additional capacity allowance The capacity configuration

that results from allocating the entire additional
capacity to the link with the initially highest capacity, is user
(thus, overall) cost optimal in if 1) users are consistent at all
capacity configurations in; or 2) there are two users

Proof: Part 1) follows from Propositions 4 and 6. Part 2)
follows from Propositions 5 and 7.

VII. CONCLUSIONS

We investigated the optimal capacity allocation problem
in a network where users noncooperatively implement their
optimal routing strategies. The problem was formulated as
allocating an additional capacity allowance to an existing
network. This formulation is equivalent to a standard capacity
allocation problem, for which a lower bound is specified on
the capacity of each link, e.g., due to reliability considerations.

For a system of parallel links we established the efficiency
of two elementary capacity provisioning operations: capacity
addition to any network link, and capacitytransfer to the link
with the originally largest capacity. Given these results, we
showed that the capacity allocation problem has a simple and
intuitive solution: the optimal allocation assigns the additional
capacity exclusively to the link with the initially highest
capacity. This solution coincides with the optimal capacity
allocation when routing is centrally controlled.

In this study we concentrated on cost functions that are
based on M/M/1 delays. As previously mentioned, these link
delay functions, should be interpreted as a general con-
gestion cost per unit of flow, that encapsulates the dependence
of the quality of service provide by a finite capacity resource
on the total load offered to it. Functions of such form
have been used to express this dependence in various practical
routing schemes [25], [12]. Their suitability as “generic”
cost functions can be observed also in the noncooperative
framework, where the routing equilibrium, corresponding to
the M/M/1 cost function, exhibits properties that one would
expect in practice. We also note that our results readily apply
to other classes of cost functions, such as queuing delays
of M/D/1 systems. Furthermore, some of our results, e.g.,
efficiency of capacity addition to a system of parallel links,
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apply to a broader class of cost functions and do not depend
on the specific structure of M/M/1 delays.

An extension of this study for general network topologies
appears in [28].

APPENDIX A
PROOFS OFRESULTS IN SECTION III

Proof of Proposition 1: Let us concentrate on the equi-
librium strategy of user As explained earlier, Lemma 1
implies that there exists some such that

if if (26)

i.e., Equation (21) is immediate by sum-
ming [see (15)] over all links
Taking and recalling that (22) follows.

Equation (22), together with (16) for implies that

(27)

Similarly, taking in (21) and in
(15), we have

which implies Hence, (20) is a neces-
sary condition for (26). Using (18), it is easy to see that it is
also sufficient. From (15) and (22), we get ,
and (19) follows, using the expression for given in (27).

From (15), we note that

(28)

Therefore, by summing over all links we obtain

and (23) follows using (27).
We proceed to present the proof of Theorem 1, which asserts

that the Nash mapping as defined
in Section III-B, is continuous. The proof is based on the
following lemma from [6].

Lemma 5: Let and be subsets of two (finite di-
mensional) Euclidean spaces, whereis a compact set. A
function is continuous if and only if its graph

is a closed subset of ,
i.e., if for any convergent sequence in

we have
The following lemma shows that the Nash mapping takes

values in a compact subset of
Lemma 6: There exists a compact subset

such that for all

Proof: Let and Then,
for all and Turning our attention to note

that (15) and (16) imply that for all we have

Summing over all we get

for all For every we have

and since

we get

(29)

Let us now consider By (7), for all
and If then by (6). Hence, we need
only consider the case Then and (4) gives

If then
If, on the other hand, there exists some user

with and (15) together with gives
Therefore, defining

we have Hence, taking

we have and the result follows.
Proof of Theorem 1:From Lemma 5, it suffices to show

that has a closed graph. To this end, let us consider con-
vergent sequences in and

in such that
We, then, have to show that
By virtue of the optimality conditions (4)–(7), for all

and all we have

(30)

(31)

(32)

(33)

Taking the limit as in (30)–(33), for all
we get precisely the necessary and sufficient conditions for

Hence, is a closed set, and continuity
of follows from Lemma 5.

In taking the limit in (30), we have assumed that
for all Let us

now justify this assumption. Suppose by contradiction that
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there exists some link such that Then, there
exists some user such that and some
such that for all Then

for all and taking the limit as
But this is a contradiction to

for all Thus,
In the rest of this Appendix, we prove a monotonicity result

for real functions, which is used in Section III-B to establish
that the capacity allocation problem can be investigated based
on comparisons of capacity configurations that are such that
each user sends its flow over the same set of links under both
configurations. More specifically, we will show the following.

Theorem 5: Let where is a closed
interval. Consider a family of closed
subsets of such that 1) ; and 2) for every

we have: and Then
is nondecreasing in

Proof: Assume, by contradiction, that there exist
such that and Then, there exist

in such that and Let

(34)

By definition, and thus If
this contradicts the assumption Therefore
and (34) implies that is the minimum point in

the boundary of that is greater than Since
there exists such that

Note that since would imply
, and thus

Now define for which we have
and Similarly to is the

minimum point in the boundary of that is greater than
and there exists such that As
in the case of it must be If then
since would contradict the definition of in (34).
If, on the other hand, then can be chosen, such
that Indeed, if the claim is not true, then for every

we have and there is an such
that Furthermore, by the definition of

there are no points of or in Thus,
which implies that is the left endpoint

of interval But this is a contradiction, since, as already
explained,

Proceeding this way, we can construct a sequence
such that for all

(35)

Since and we have
Therefore, for all

Furthermore, for all it must be
since would give From (35)
we have and since

this implies that which is

a contradiction. Therefore, it must be and the
result follows.

APPENDIX B
PROOFS OFRESULTS IN SECTION IV

Let us start by proving a technical result that will be used
in the proofs presented in this Appendix. The result applies
to capacity configurations and such that each user sends
its flow over the same links under both configurations, i.e.,

for all and for all
Lemma 7: Consider two capacity configurations and

such that is an augmentation of and
Let be a user such that for all Then,
the residual capacity for all and

Proof: Assume that for some link
Using (15), we have

(36)

Note that

and since (by assumption) and (by Proposition 2)
we have

that is, (36) is a contradiction. Therefore, for all
By virtue of Proposition 2, the same is true for all

since for all such links. Hence, the
residual capacity seen by userat every link is higher under
configuration and, therefore,

Proof of Proposition 4: First we prove the proposition
under the assumption thatand are such that for all
users and then generalize the result for any augmentation

of Let user be as in Lemma 7 (note that such a user
always exists). Since the users are consistent atand using
(23), gives

Since (Lemma 7), this implies that Hence
the proposition holds in the case where for all

Let us now generalize the result for any augmentation
of It suffices to establish this result for augmentations of
the form for any link As in Section III-B, let

denote the set of capacity additions to link
such that the set of links over which user sends its flow

is Note that the previous analysis shows that for
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any if —for some —and
then for all As explained

in Section III-B, this implies that
by virtue of Theorem 5.

Proof of Proposition 5: As in the proof of Proposition
4, it suffices to establish the result under the assumption
that each user sends its flow over the same links under both
configurations, i.e., for all

Let user be as in Lemma 7. Suppose first that Then
Summing (28) over all it is easy to see that

gives

and since we have

(37)

Consider now a link Since (Proposition 2)
and we have Thus, for
all and using (37) we conclude that

Suppose now that According to Lemma 7,
and Since for any link the
latter inequality implies that This means that when
moving from configuration to user 2 moves flow only into
link 1. Since for all links and the delay at link 1 is
always minimal among all links, we conclude that

APPENDIX C
PROOFS OFRESULTS IN SECTION V

Let us start by proving the following technical result.
Lemma 8: Consider two capacity configurations

For any user

1) if then for all links such that
2) if then for all links such that
3) there cannot be two links such that

and

Proof: Assume that and that there is a link
such that and Then, using the optimality
conditions (8), (9), we have

which contradicts The proof of part 2) is symmetric.
For part 3), assume that there are such links Since

using (8), (9), we get

Then part 2) implies that , i.e., a contradiction.
Proof of Lemma 2:Assume by contradiction that

We have to consider two cases.

Case 1— : For any link we have
Thus

and

since and for all
This implies that there must be a userwhose total flow
in is higher under that is

and thus

Therefore, there must be links and
such that and Since and
this is a contradiction to part 3) of Lemma 8.

Case 2— : In this case in view of
Since for all this implies that

Thus there must be a usersuch that

and

This implies that there must be links and
such that and Since

and this is a contradiction to part 3) of Lemma 8.
Therefore, the delay on link 1 cannot be higher under capacity
configuration that is, Let us now proceed to show
the second part of the lemma, i.e., that

Suppose that Let us first show that this implies
Assume by contradiction that is nonempty. Since

the total flow sent over links in is higher under there
must be a user such that

and thus

Therefore, there exist links and
such that and Since and
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this contradicts part 3) of Lemma 8. Therefore, and
for all Recalling that

the last inequality must hold as an equality for all or
equivalently for all Note that this implies that
no user can change its flow on any link in the network. To see
this, assume that there exists a usersuch that
and for some links Then

i.e., a contradiction. Thus, no user modifies its flow configura-
tion, and for all But this contradicts
since and and the result follows.

Proof of Lemma 3:We start by deriving an alternative
expression for the user prices. Writing (15) as

and summing over any set of links that
receive some flow from user we get

(38)

since

and can be replaced by because no user sends
flow over links in Taking in (38), we have

(39)

since, for all we have ; therefore,
From (8) and (11), the sum of the user prices over link

is given by

Therefore, for any link the following statements
are equivalent:

(40)

(41)

We now proceed with the proof of the lemma. Let us first
assume that and prove that for all and

for all By assumption If user 1
is the only user sending flow on links and the result is
immediate from and (40). Therefore, we concentrate
on the case Since (39) for gives

Since

for all and this implies

(42)

Let us first prove that If the result is
immediate from (39) and (42). Therefore, we have to consider
only the case Note that user 1 is the only user
that sends flow on any link in Moreover,
since Therefore, and (40) imply that

(43)

From (38) with and we have

and thus

Therefore, (39) and (43) give

which completes the proof for
Proceeding inductively, let us assume that for all

and show that the same holds for If
the proof of is immediate from

(39) and (42). Thus, we only have to consider the case
Let denote the set of users that send flow

on some link in , that is, Note
that user does not send flow on any link in
By Lemma 1, the same is true for all users Thus,

, and by the inductive hypothesis we have
for all Since for all

this implies

and since (40) gives

(44)

For any user we have and thus
Therefore, any user that sends flow on some link in
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also sends flow on all links in Hence, taking
in (38), we get

(45)

From (39), we have

(46)

where we have used Equations
(45) and (46) give

(47)

Let us assume (by contradiction) that Since
we have

Using (46), we get

and since, from (44)

we have

(48)

Using (47) and we have, for all

since for all In view of (48), this implies,
for all

and thus

By the definition of summing the last inequality over all
we get

which stands in contradiction with (44). Hence
Thus, by induction, we have for all Finally,
for any link inequality for all together
with (40) implies This completes the proof for case

It remains to be shown that if then
for all and for all The proof is
symmetric.

Proof of Lemma 4:It suffices to show that for any link
if then Assume by contradiction

that there exists a link such that and
Then (40) and (41) give

and (49)

and (50)

If (49) and (50) lead to a contradiction. Thus, we
need to consider only the case Note that this is
the set of users that send flow on linkand do not send flow
on link For any such user Summing (8) for
link over all and using (11), we get

and since this implies

(51)

Recalling that (51) gives
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and since for any we have

this implies

(52)

Subtracting (49) from (50), we obtain

Summing (8) over all for any link it
is easy to see that

(53)

Consider any link such that Since
(53) gives

Hence, from (52), we have

(54)

Using a similar argument as in the proof of (51), one can see
that (49) implies

Summing this inequality over all and and
adding it to (54), we have

(55)

For any link Therefore, the total flow
sent through the set of links is larger under
configuration and (55) implies

Therefore, there exists some user such that

(56)

since i.e., user does not send any flow to links
Note that (56) implies that there exists some link

such that and thus Moreover,

from Lemma 8, we have for all Since
the last inequality together with (56) imply

which together with (Lemma 2) implies that
But this is a contradiction to Hence, it must be

Remark: In the proof of the lemma above, we assumed that
there exists a link such that and
and arrived at a contradiction. The only implication of the
assumption that was used was

Thus, the same proof can be used to show that if
then
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