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Capacity Allocation Under Noncooperative Routing
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Abstract—The capacity allocation problem in a network that The present work approaches noncooperative networking
is to be shared by noncooperative users is considered. Each useffrom a different viewpoint: given that the network is shared
decides independently upon its routing strategy so as to optimize by noncooperative users, is it possible to devise a set of

its individual performance objective. The operating points of the . . . S
network are the Nash equilibria of the underlying routing game. design rules which guarantee that the resulting Nash equilibria

The network designer aims to allocate link capacities, so that €Xhibit certain desirable properties? Network design issues are
the resulting Nash equilibria are efficient, according to some scarcely addressed under a noncooperative setting, mainly due
systemwide performance criterion. In general, the solution of to the complex structure—or lack thereof—of the underlying

such design problems is complex and at times counterintuitive, game. One exception is [11], which addresses the problem of

since adding link capacity might lead to degradation of user L . T .
performance. For systems of parallel links, we show that such designing the service discipline of a switch shared by users

paradoxes do not occur and that the capacity allocation problem Performing .noncooperative flow con.trol. _ .
has a simple and intuitive optimal solution that coincides with We consider the problem of optimal capacity allocation

the solution in the single-user case. under noncooperative routing. The network is shared by a set
Index Terms—Capacity allocation, Nash games, noncooperative Of noncooperative users, each bifurcating its flow over the
networks, routing. paths available in the network, in a way that optimizes its

individual performance objectiviEThe noncooperative routing
scenario applies to various modern networking environments.
The Internet Protocol (both IPv4 and the current IPv6 Spec-
HE COMPLEXITY of high-speed, large-scale networksfication), for example, provides the option of source routing
calls for decentralized control algorithms, where contrghg], [17] that enables the user to determine the path(s) its
decisions are made by each user independently, according|é9v follows from source to destination. Another example
its own individual performance objectivéSuch networks are is the flexible routing service as specified in the Q.1211
henceforth callechoncooperativeand game theory [1], [2] CCITT Recommendation for the standardized capability set of
provides the systematic framework to study and understaggelligent Networks (IN CS-1) [18]. One of the goals of this
their behavior. The operating points of a noncooperatirvice is to route calls over particular facilities based on the
network are theNash equilibriaof the underlying game, that subscriber’s routing preference list or distribution algorithm.
is, the points where unilateral deviation does not help anyThe network designer allocates link capacities while sat-
user to improve its performance. isfying lower bounds specified per link and an upper bound
In modern networking, game theoretic models have begp the total capacity of the network. A capacity allocation is
employed in the context of flow control [3]-[6], routingsought, such that the resulting routing equilibrium exhibits the
[7]-{9], and virtual path bandwidth allocation [10]. Thesepest” performance according to some networkwide efficiency
studies mainly investigate the structure of the Nash equilibidgiterion. We consider several efficiency criteria, such as the
and provide valuable InSIght into the nature of netWOI’king)rice" (margina| COSt) as seen by each user, the cost of each
under decentralized and noncooperative control. user, or some combination of the above, for example, the
average network delay. The combined capacity and routing
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capacity to a network may degrade the performance of eamdpacity transfer problem we show that transferring capacity
and every user [21], [22]; an example that adopts the paradoxvard the link with the originally highest capacity improves
to the communication network framework considered in thibe performance of the network. Combining these results, we
paper is presented in [28]. obtain the solution to the optimal capacity allocation problem.
The optimal capacity allocation problem is analyzed in An important practical implication of these results is that,
detail for a simple network consisting of a common sourcthough users make noncooperative decisions, design method-
and a common destination node interconnected by a numbérgies can be devised to improve the overall network per-
of parallel links, for which it is known that there exists a uniqué@rmance. Improvements can be achieved both during the
Nash equilibrium for any capacity configuration [9]. Systemgrovisioning phasei.e., when the network parameters are
of parallel links, albeit simple, represent an appropriate modgked, and during theun time phasei.e., during the actual
for seemingly unrelated networking problems. Consider, foperation of the network. The capacity allocation problem
example, a network in which resources are preallocated donsidered here aims at improvements during the provisioning
various routing paths that do not interfere. Such scenarios giease. Strategies that improve the network performance during
common in modern networking. In broadband networks, féhe run time phase are investigated in [23].
instance, bandwidth is separated among different virtual pathsThe outline of the paper is the following. In Section Il we
resulting effectively in a system of parallel and noninterferingresent the parallel links model and formulate the optimal
“links” between source/destination pairs. Moreover, to reduc@pacity allocation problem. Section Il explores the structure
the complexity of routing mechanisms, the network mighaf the underlying Nash equilibria and establishes several
present the users with a limited set of paths between source gnaperties that form the foundation of the subsequent analysis.
destination, hiding the underlying physical topology. Anothdn Section IV we prove that addition of capacity to a system
example is that of a corporation or organization that receive§ parallel links does not degrade performance. In Section V
service from a number of different network providers. Thee show that transferring capacity toward the link with the
corporation can split its total flow over the various networRriginally highest capacity improves performance. With these
facilities (according to performance and cost considerationggsults at hand, we investigate, in Section VI, the optimal
each of which can be represented as a “link” in the parallglrategy for adding capacity to a system of parallel links.
link model. Finally, it should be noted that routing, as &inally, Section VIl summarizes the main results, delineates
control paradigm, applies not only to the allocation of paths tbeir practical implications, and discusses possible extensions.
messages and connections in communication networks, but in
fact to any problem of splitting load among several resources,
e.g., distribution of tasks among multiple processors. Consider,
for example, a multimedia network with several servers that o
are shared by the network customers; each customer distribftedi0del and Preliminaries
its applications among the servers while competing with theWe consider a se¥ = {1,--.,1} of users that share a
other customers on the common available resources, ressétL = {1,---, L} of communication links interconnecting a
ing in effect with a routing game. Modeling each resourceommon source to a common destination node.d. die the
(e.g., multimedia server) as a “link,” the parallel links modatapacity of link/ and C = X, ¢ be the total capacity
considered in our study fits well such scenarios. of the system. Each user has a throughput demand that
In the single-user (parallel links) case, the optimal capacity some process with average rate>0. We assume that
allocation problem has a simple and intuitive solution: thet > +2 > ... > ¢!/, Let R = Y;c7 ' denote the total
best design strategy is to allot the entire additional capaciigmand of the users. We only consider capacity configurations
to the link with the initially highest capacity [12]. One of thec = (¢;,- - -, ¢r) that can accommodate the total user demand,
main contributions of this work is to generalize this resuthat is, configurations witlC’ > R.
(for the various efficiency criteria considered by the designer)User ships its flow by splitting its demand over the set
to the case of noncooperative routing, independently of toé parallel links, according to some individual performance
number and the throughput demands of the users. Whiledhjective. Letf; denote the expected flow that usesends
the single-user case the proof is quite simple, in a multi-usen link {. The user flow configuratioff® = (fi,---, fi) is
setting it requires systematic and rather cautious analysiscled a routingstrategyof useri, and the setF* = { fie
establish some “order” in the complex structure of the routir@™: 0 < f/ < ¢,l € L; S fi = o'} of strategies that
game. More specifically, we decompose the problem into tvgatisfy the user's demand is called the strategy space of user
subproblems: 1) the problem of adding capacity to any link The system flow configuratiofi = (fl, “e ,fI) is called a
and 2) the problem of transferring capacity from one link tooutingstrategy profileand takes values in the product strategy
another. These subproblems correspond to practical situatispaceF = ©@;c7F".
encountered in various networking environments, where theThe performance objective of usérs quantified by means
capacity of a single physical link is dynamically allocated tof a cost functionJ?(f). The user aims to find a strategy
several logical links (e.g., virtual paths) and, therefore, provigé € F* that minimizes its cost. This optimization problem
design rules that are interesting in their own right. For thdepends on the routing decisions of the other users, described
capacity addition problem, we establish that adding capacty the strategy profilef ™ = (f*,..-, f=L fitL ... 1),
to any link in the network improves performance. For thseince /¢ is a function of the system flow configuratigh A

Il. MODEL AND PROBLEM FORMULATION
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Nash equilibriunof the routing game is a strategy profile from A< dJ! it =0 ler 9
which no user finds it beneficial to unilaterally deviate. Hence, = af} (), it fi =0, < ©)
ferlisa ‘Nash equmbrlgm‘ﬁ | Zﬁ i fi>o0, lerl (10)
ffearg gmi;l_ Jg Y, 1€Z. (1) leL
ey

) ) _which imply that \* is, in fact, the marginal cost of user
The problem of existence and uniqueness of equilibria hagt the optimality point. In accordance with the economics
been investigated in [9] for certain general classes of cqgtminology [27],\" will be referred to as therice of useri.

functions. Here, we consider cost functions that are the sumpor the cost function/(f) given by (2) and (3), we have

f link function ) .
o) cost functions o o f

TN = "), H)=HT), leL (2 o =T+ T =~ @D

el

. whereTl’ is the derivative of7; with respect tof;, and
wheref, = (ff,---, f{), andT3(f) is the average delay pers~i — 53, f/ is the total flow that all users except the
unit of flow on link / that depends only on the total flow;th send on linki. Note that7} = 77.

fi = ez f; on that link. The average delay should be |n [9] it has been shown that the routing game described
interpreted as a generabngestion cosper unit of flow that above has ainique Nash equilibrium.

encapsulates the dependence of the quality of a finite capacityt times we will concentrate on special types of users,
resource on the total loaf] offered to it (see [24] for a related defined in the following.

discussion). In the present paper, we concentrate on congestiopefinition 1: Users are said to hidenticalif their demands

costs of the form are all equal, i.eri = r4,4,j € T.
T(f) = (a—f)Y fi<a 3) ‘The Nash equilibrium of identical users is symmetrical, i.e.,
MU o, fi>a fi=fl=fylforalijeI[9]
cal ; ; ; : Definition 2: A user is said to baimpleif all of its flows
that are typical in various practical routing algorithms [25], X -
[12] yp P g a9 ! ]are routed through links (or paths) of minimal delay.

Note that (3) describes the M/M/1 delay function. Therefore, Users often route their flows according to the “simple”

if we assume that the delay characteristics of each link can %@eme QUe to practical considerations. Many typicaI. rout-
approximated by an M/M/1 queusli(f)/r is the average ing algorithms send flows through shortest paths, without

. I , . .
time-delay that the flow of userexperiences under strateg);accountmg for derivativesT;), and thus bifurcating flows.

profile f. Also, note that the stability constraifit< ¢; of link [ ;!—hlf I.\Iash.equiliprri]um of simplehuseirl_s iknﬂa systgm ogparallel
is manifested through the definition @f. In particular, since inks is unique with respect to thetal link flows [9], and the

the total user demand does not exceed the total C‘,jlpacinfo.rresponding necessary and sufficient conditions require the
C of the network, (1) and (3) guarantee that at any NagHistence of some\ such that

equilibrium, we havef; < ¢ for all [ € £, and the costs of A=T;, if fi>0, lel (12)

all users are finite. ‘ ATy, if fi=0, lerl (13)
Given a strategy profilef~* of the other users, the cost B

of useri, as defined by (2) and (3), is a convex function ;ﬁ =R f120, ekl (14)

of its strategy f. Hence, the minimization problem in (1 . .
9yJ P ( )We shall refer to the value of as the price of the simple users.

has a unique solution. Sineg > R, the Slater condition [26] o .
is satisfied, therefore the Kuhn—Tucker optimality condition'grom (12){14), it is easy to see that users that route according

are applicable. These conditions imply theitis the optimal to the optimality conditions (8)—(10) become simple as their

response of userto f‘i if and only if there exist (Lagrange Eopulatlo.nf. g_:ow;s tcl)l mﬁm:ly ar?.? :Lwe_lrtlr;d:\gdual ((“Jjeman(_js
multipliers) A and g’ = (zi,- -+, i3 ), such that ecome infinitesimally small, while their total demand remains

R. This is the typical scenario in a transportation network.

aJ* (f) = N — i =0 ler (4) Definition 3: Users are said to beonsistent(for a given
afi B =" capacity configuration) if, at the Nash equilibrium, they all
Zfli — i (5) use the same set of links. _ o _ _
= Due to the sFructure qf their Nash e'qumbnum', identical
Jifi =0, ler (6) users are consistent. It is easy to verify that simple users

; ; are also consistent [9]. Finally, consistent users are typical

m 20, fi20, lel (7)  of systems with heavy traffic, i.e., whef approache<’, in
wheref = (f', f~'). Therefore, a strategy profilg € F is a Which case each user sends flow on all links in the network.
Nash equilibrium if and only if there exist' and’, such that

the optimality conditions (4)—(7) are satisfied for akk 7. B. Capacity Allocation Problem
It is easy to verify that the necessary and sufficient condi-

tions (4)—(7) are equivalent to the following: ; T 0
5 configuration¢” and total capacityC” > R. We assume that
= ‘]i (f), if fi>o0, lerl (8) ¢ > --- > c]. Suppose that there exists some additional
af; capacity allowance of at most, which the network designer

Consider a network of parallel links with initial capacity

)\i
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can distribute among the network links. The aim of the Given a system of parallel linkg with usersZ, an ini-
designer is to come up with a capacity configuratigiwith tial capacity configuratiore®, and an additional capacity al-

a > ¢ for all links I € £, that results in a network with lowanceA, find a capacity configuratiogr that is user/overall

a total capacity of at most® + A that is “efficient” at the price/cost optimal inC.

corresponding Nash equilibrium. Without loss of generality, Although the problem is formulated as allocating additional
we can concentrate on capacity configuratierieat preserve capacity to an existing network, this formulation is equivalent
the initial link order, that is, configurations witly > --- > to the typical capacity allocation problem, where the capacity
cr,.2 Therefore, the set of all capacity configurations that canf each link has to be higher than a lower bound, e.g., due
be implemented by the designer @5 = {¢ € Ri: c1 > to reliability considerations. By definition, the initial capacity
e >epia > &l e LY (a — ) < A}, Each capacity ¢ of every link! is positive, in other words, the designer can
configuration inC induces a different routing game that has anly add capacity to existing links. Nonetheless, as shown in
unique Nash equilibrium. Therefore, we can define a functig@8], the results of the following subsections can be easily
N: C — F that assigns to each € C the Nash equilibrium extended to the case whetg = 0 for some linksl € £, that
N{c) of its respective routing gamg/” will be referred to as is, when the designer is also allowed to add a (finite) number
the Nash mapping of links to the network.

The designer may have different measures for characterizingsolving the optimal capacity allocation problem in a net-
the efficiency of a capacity configuration. We shall concentraterk shared by noncooperative users amounts to comparing
on measures that are expressed by means of either the tiserNash equilibria of the routing games induced by different
prices or costs. Although the user’s cost is a direct measwa&pacity configurations irC. Comparing the outcomes of
of its level of satisfaction, prices may be a more importamifferent games is, in general, a highly complex task and
measure from the system’s point of view since they accoumquires explicit characterization of the respective equilibria.
for the level of congestion as seen by users and are the dir€he structure of the unique Nash equilibrium of the routing
indication of how each user could accommodate fluctuatiogame is investigated in the following section. Before we
in the system’s state. The designer can consider various waysceed, let us first summarize the main results of this study.
of combining either the prices or the costs of the users. We
shall concentrate omseroptimization, i.e., trying to reduce theC. Qutline of Results
price or cost of each and every user, averall optimization,

; . ! . 1) Addition of capacity to a link results in a configuration
i.e., trying to reduce the sum of all prices or costs. The various ) pactty 9

performance measures of the designer are formally stated in that is:
the following definitions. a) user (thus, overall) price efficient;

Definition 4: Consider two capacity configuratiopsande, b) user (thus, overall) cost efficient for consistent
and let A and \? (correspondingly,J? and .J?) be the price users;
(correspondingly, cost) of userat the respective equilibrium. c) overall cost efficient when capacity is added to the
Then we have the following. link with the initially highest capacity.

1) Configuratiort is said to be theiser price (cost) efficient
relative to configuratior, if A < \¢(J* < J%), for all
1 € 1.

2) Transferring capacity from any link to the link with the
initially highest capacity results in a configuration that

2) Configuratione is said to be theoverall price (cost) 1S
efficient relative to configuratione, if X;cr No< a) user (thus, overall) price efficient;
Yier N(Zier J' < Lier J). b) user (thus, overall) cost efficient for consistent
Definition 5: A capacity configuratior* € C is called: users and for two users.
1) user price (cost) optimain C, if it is user price (cost)  3) The capacity configuration that results from allocating
efficient relative to any: € C; the entire additional capacity allowange to the link
2) overall price (cost) optimain C, if it is overall price with the initially highest capacity is:

(cost) efficient relative to ang € C.
Obviously, user efficiency (optimality) implies overall effi-
ciency (optimality). Price and cost efficiency (optimality),
however, do not imply each other in either direction. Note

a) user (thus, overall) price optimal @iy
b) user (thus, overall) cost optimal & for each of
the following cases:

also that, in general, the existence of user optima cannot be * identical lower bounds on the link capacities;
guaranteed even if overall optima do exist. * consistent users;
The optimal capacity allocation problem, corresponding to * two users.
the various designer’s performance measures, is described as
follows. lll. STRUCTURE OF THENASH MAPPING

3The properties of the Nash equilibrium in a system of parallel links with In this section we study the structure of the Nash mapping
capacity configuratiore depends on the actual link capacities and not on/ that assigns to each capacity configuratioa C the Nash
the link “labels” that are determined by the initial configuratiéh Hence, e . . .
renaming the links, so that > --- > ¢;,, does not affect the characteristicsequ'l'b”um ./\/(c) of its respective routing game. \We start by
of the resulting equilibrium. investigating the structure of the Nash equilibrium for a given
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capacity configuration. These results will be used to establishhat C — R~ is the total residual capacity of the network as
continuity properties of the Nash mapping. seen by usef. Sincec} > c§+1, it is easy to verify that

- Gi< Gy, el (18)
A. Structure of the Nash Equilibrium . . L .
) o i . with equality holding if and only ifc; = ¢;41. We are now
Consider the Nash equilibrium of the routing game in feady to show the following.

system of parallel links with capacity configuratian A Proposition 1: The Nash equilibriuny of the routing game

number of intuitive monotonicity properties of this equilibrium, 5 system of parallel links with capacity configuratien
have been established in [9] and are summarized in thgisfies the following relationship:

following.

Lemma 1: Let f be the unique Nash equilibrium of the ‘ G i i i c 1< L
routing game in a network of parallel links with capacity f; = ¢ ™ = ELi_l a T (19)
configuratione. Then: 0 B ey > Li

1) the expected flow of any usérc 7 decreases in the
link number, i.e..fi > fi > ... > fi. In particular, for ‘ ‘ ‘
fi>0, we havef; = fi if and only if ¢; = cn; G <r' <Gy (20)

2) foranylinkl € £, the flows decrease in the user numbefihe equilibrium price and the equilibrium cost for useare,
ie, fi > f2 >--- > f{. In particular, for f{ >0, we yegpectively
have f; = f{ if and only if r* = 77;

3) the residual capacity is decreasing in the link number, P

where, for every user € Z, the threshold.! is determined by

- 2
S ar/ct ‘
M] , foranysetACL* (21)

i.e.,ci—fiL>ca—fo > >cp — fr, Or equivalently, Sicalci = )

T <Tr < ... < Tp. In particular, 7; = T,, if and L 42

only if ¢; = ¢; _ E;zlﬁ (22)
4) for every usei € 7, the residual capacity; = ¢; — fl_i EIL;IC;‘ — gt

seen by the user on link, is decreasing in the link _ ; 42
; i i i ; i i L »L \/E
number, i.e.c] > ¢, > --- > ¢}. In particular,c; = ¢}, i i =1V 9
if and only if ¢; = cm. JI=NY (a=fi) L= ST g
. . . = = -
Let £* denote the set of links that receive some flow from . =t . t
. . Proof: See Appendix A. [
user:, andZ; denotes the set of users that send flow over link .
. . ST Remarks:
[. The first statement in Lemma 1 implies that for every user

i, there exists some link?, such thatf{ >0 for all | < L, 1) The proposition implies that the information usér

and fi = 0 for I > L, that is, £ = {1,2,--, Li}. Similarly, needs to determine its best repfy to any strategy

the second statement in the Lemma implies that for every link pirofile J~" of the other users in the residual capacity
I, there exists some usdy such thatf; >0 for all i < I, ¢; seen by the user on every linke £ Esee (19) and
and fi = 0 for i > I;, that is, Z; = {1,2,---,1;}. Moreover, (17)], and not a detailed description 7. In practice,
Lo C L1 <i<I)andZi; C T(1 < I<L). information about the residual capacities can be acquired

Consider the best reply’ of user: to a fixed strategy by measuring the link delays through an appropriate

profile £~ of the other users. This is the unique solution to __ €Stimation technique. _
) In the special case’ = G7.,,, (17) and (22) imply

the (single-user) optimal routing problem for a network of 2

L. (23)

parallel links with capacity configuratios’ = (ci,---,c%) that A" = 1/c7, . ,, and (16) holds tight fof = L + 1.
and is determined by the Kuhn—Tucker optimality conditions ~ 1herefore, in this case, we can define theiseti of links on
(8)-(10). Note that for any link € £, conditions (8) and (9) which the user sends flow a& = {1,---,L*, L' + 1},

where link L’ +1 is “marginally” used withf}, ., = 0.
The structure of the Nash equilibrium of the routing game

can be written as

0 0

No= = ! 5, fI<L (15) is exploited in the following section to show that the Nash
(G _‘fl) (= 1fo) mapping A is continuous. This fundamental property will
i q _ 1 ; i substantially simplify the analysis of the optimal capacity
A< — — = =—, if I>L" (16) X . .
(c—f1)? a—-fi ¢ allocation problem in the subsequent sections.

In the sequel, we will derive an explicit characterization
the structure of the user’s equilibrium strateffyas a function
of ¢!, which depends on the capacity configuratioand the From Proposition 1, and especially the expressions for the
strategy profilef — of the other users. To this end, let us definequilibrium prices and costs, it is clear that the set of links

- - _oveiL which ezil_ch us]:e:hserll\lds ri]ts floyl\{bh_as anro_mine?_t r:)le

P i ; - _ in the properties of the Nash equilibrium. To investigate
Gi = z_: “m = \/le_: Ve, N L U capacity allocation problem, we need to compare the
m=t m=t equilibria of games that are induced by different capacity

andG{ = 0,G7,, =%}, ¢, =C— R, whereR~* = configurations inC. If the resulting equilibria are such that
Y,z 77 is the total demand of all users except thie. Note the sets of links over which each user sends its flow do not

Olg. Continuity of the Nash Mapping
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coincide at both equilibria, such comparisons are extremely= ¢(A,) than undee = ¢(0). To achieve this goal, it suffices
complex, if possible at all. In this section, we first showo show thath is a nondecreasing function éfe [0, A].
that the Nash mappingV is continuous and then explain The set of links that receive flow from uséis determined
that this result allows us to investigate the general capacty (20). From (17), one can see th&t is a continuous
allocation problem, based solely on comparisons betwefmction of the capacity configuratiom and the equilibrium
capacity configurations that are such that each user sendssitategies of the other usefs*. The continuity of the Nash
flow over the same links under both configurations. mapping, then, implies thaf; is a continuous function of
Consider a fixed capacity configuratiere C, and letf be ¢ € [0, A,]. Let Al ={6 € [0,A.): Gi(6) < 7' < G (6)}
its corresponding Nash equilibrium. The prideof useri at denote the set o6 € [0,A,] for which useri sends flow
this equilibrium is unique. Similarlyy® is uniquely determined on links {1,---,} under configuratiore(§).> Continuity of
by (4). Therefore, there exists a unique collection of Lagrang&,! € £ implies that A} is a closed set [29]. Define
multipliers (A, p), A = (A)icz,u = (#')icz that, together A;, ..;, = Nicz A, which is also a closed set. #,8, €
with the Nash equilibriumf, solve the system of necessary4, ...;,, for some(l,---,l;), then each user sends its flow
and sufficient conditions (8)—(10) for all€ Z. Let us now over the same set of links under configuratiefs ) ande(é2).
augment the definition of the Nash mapping so that to eablote thatU;cz U, ec Ay .., = [0, 4]
capacity configuratior we assign the Nash equilibriugh of Theorem 5 in Appendix A implies that, to prove thatis
the routing game and the corresponding Lagrange multiplievendecreasing if0, A/], it suffices to establish this property
(A p), that isN: C — F @ RIEHD with M(e) = (f, A\, ). in every setd,, ..;, C [0,A,], i.e., to show that for every
Theorem 1: The Nash mappingV: C — F @ RIUHD is 6,8, € Ay, .1, 61 < 62 implies thath(6;) < h(62). In other
continuous. words, all comparisons betweenand¢ = ¢+ A (e; — ¢;)
Proof: See Appendix A. B can be carried based on the assumption that each user sends
The following corollary shows that the equilibrium costs oits flow over the same set of links under both configurations.
the users and the equilibrium link delays are also continuous
functions of the capacity configuratian I\V. CAPACITY ADDITION
Corollary 1: Let ®;: ¢ — R% and ®,: C — R be such
that for everye € C,®,(¢) = (J*,---,J1), where J* is the
equilibrium cost of usef under capacity configuration and

As previously mentioned, in [28] we present an example
that adopts the Braess paradox to the communication network
o . S framework considered in this paper. That example demon-
2(c) = (11,17 ), where Ty is the equilibrium delay of o\ o' thar addition of capacity to a network may increase

link ¢ undere. Then, @, and &, are continuous. user prices and/or costs. In this section we investigate the
Proof: From (2) and (3), one can see that the link delays P 9

) . problem of adding capacity to systems of parallel links and

and the user cost functions are continuous at eyery), as
. o . -~ show that, under various conditions, this paradoxical behavior

long as the stability conditiorf; < ¢; for all links I € L is

satisfied. Suppose now thdtis the Nash equilibrium under cannot occur-in th.'s 56‘.“”9'. .
) : . : . . A capacity configuratiore is called anaugmentationof
capacity configuratiore. Then, as explained in Section II-A,

the stability condition is satisfied, and singds a continuous configuratione, if ¢ ¢ for all  and; & > X ¢;. Through
. out this section we shall compare the Nash equilibrium of a
function of ¢ (Theorem 1) the result follows.

As explained in Section |, we will investigate the opti capacity configuratior to that of some augmentati@n“Hat

values will refer to configuratiod, while “nonhat” values refer
mal capacity allocation problem by decomposing it into twgo c. For example \i i
: . ple\i and \' are the prices of userunderé
subproblems, namely the problem of adding capacity to an ¥4 e respectivel
link and the problem of transferring capacity from one ling"% & P y.
to another. In the rest of this section we explain that th
continuity properties of the Nash mapping allow us to analy
these problems under the assumption that each user sends ifd1e following proposition shows that an addition of capacity
flow over the same set of links before and after the capacigy always price efficient.
addition/transfer. We will concentrate on the case of capacityProposition 2: If a capacity configuratioi is an augmen-
transfer; the analysis can be readily adopted to the probléation of configuratior, thene is user price efficient relative
of capacity addition. to ¢, i.e., AP < X, for all i € Z. Moreover, the equilibrium
Consider two capacity configuratiomsé € C, such thate delay of each linkl is lower (not higher) under configuration
results frome by shifting an amount of capaumq from & ie.,1; < T, forallle L.
some linkg to a link I, i.e., & = ¢+ Ay (e — e,).* For Proof: Assume by contradiction that the st = {I €
every s € [0,Ay], let ¢(6) = e+ 6(@1 - eq) be the capacity £: 11> 1} is nonempty. Since the flow in eadhe 7+ is
configuration that results frone by a transfer of capacity higher under configuratiod, there must be a usérand links
6 from link ¢ to link . All quantities of interest, e.g., thel € 7% andn ¢ 7+ such thatfl > f{ and fZ < fi. Since
equilibrium prices and costs, can be treated as functiorés offl >fl > 0, the optlmahty conditions (8)—(10) |mply that
Let A be such a quantity, and suppose that we aim at show%grn +71, > N = fl T’ + 1. Similarly, since f¢ > fZ > 0,
that 2(0) < h(A,), i.e., thath is higher under configuration we have .77 + T,, = X' < f{T] + T;. Combining these

. Price Efficiency

4e; is the vector inRY with the Ith component equal to one and all other °If G! (é) = »?, useri marginally uses link undere(é); see the second
components equal to zero. remark foIIowmg Proposmon 1.
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inequalities withZ,, < 7;, and fi < fi we getfj1} +1; < tolink 1. Note that the total capacity of the system remains the
fIT! +T). Since fi > fi andT; > T}, this is a contradiction. same after the capacity transfer, iEic; & = Sicz ¢ = C.
Hence, the sef + is empty, i.e.Z; < 7; for all links I. As before, “hat” values will refer to configuratioty while
Since the demand of each usgilis #* in both capacity “nonhat” values refer to the initial configuratian
configurations, the user cannot increase its flow on each and o
every link, and there must be a lirkfor which £i >0 and A Price Efficiency
fi < fi. Therefore \' < fiT! +1; < fiT) +Ti = \', thus  We begin by showing that capacity configuratieiis user
concluding the proof. m price efficient relative t@. The comparison of configuratiogs
andc is carried out in a series of lemmas. Lemma 2 examines
the effect of the transfer of capacity from linkto link 1
The following proposition shows that if capacity is addedn the equilibrium delays of these two links. Lemmas 3 and
exclusively to link 1, the resulting configuration is overall cost show that the transfer of capacity affects the prices of the
efficient. users and the equilibrium delays of the links4n\ {1, ¢} in
Proposition 3: Let ¢ and & be two capacity configurationsan “ordered” way, in a sense that will be explained in the
such that; = ¢; for all [>1, andé; > ¢;. Thené is overall lemmas. Finally, user price efficiency éfrelative toc will
cost efficient relative ta. . be established in Theorem 2.

Proof: From Proposition 2 we have thd < 7; for  Let 7+ (respectively,7~) denote the set of links in
all links I. This means that for all > 1, we havef; < fi. £\ {1,q} whose equilibrium delay is higher (respectively,
Therefore, when “moving” frone to ¢, we observe flow being not higher) undeg, that is, 7+ = {l € £\ {1,q¢}: 1;> T3}
“transferred” from all links > 1 to link 1. Sincel; < Ty forall  and7— = {l € £\ {1,¢}: T; < T;}. Consider now any link
links I, the flow that remains (under configuratiéhin a link | ¢ £\ {1,q.} Sincec; = &, we have that ¢ 7+ if and only
> 1, experiences a delay which is not higher than the previoysf, ~ , while I € 7— if and only if f; < f;.
one. Moreover, sincd; < 71 < T;, we also conclude that  The following lemma shows that the transfer of capacity
the flow that moved to link 1 experiences a delay which is nflom link ¢ to link 1 decreases the equilibrium delay on link
higher than the previous one, and the result follows. ® 1 \while it increases the delay on link

The O:‘ollowing tb"l"ohpmposmonsfé whose FFOOfs appzzr i Lemma 2: Consider two capacity configurationsé € C
Appendix B, establish user cost efficiency of capacity additiqpith ~ — _ i i
in some special cases of interest. Wi ;rOO?:JFSﬁé(lepee,%i'ngén'Tl = 1o anddy >y m
Propositiqn 4: Letcande _be two capacity configurations | the sequel, we present two lemmas that will play a key
such thaté is an augmentation of. Assume that users arergje in the proof of price efficiency of relative toc. Both
consistent under bota and ¢. Then¢ is user cost efficient refer to the case where the transfer of capagityfrom link
relative toc, that is, J* < J*, for all i € 7. S ¢ to link 1 is such that each user sends its flow over the same
The above result applies, in particular, both to identical USEI§; of |inks undere and ¢ ie, i =LiforallieZ, and
and to simple users, since they belong to the class of consistenL. 7, tor ail ; ¢ £. The first lemma asserts that the transfer
users under aII.capaC|ty configurations. _ _ affects the prices of all users that send flow to lipn the
Proposltlon 5: Let ¢ and ¢ be t\ivo capacity conﬂguratugnssame way, that is, eithexi > \é for all 5 € 7, or \é < N
such thait; = ¢; for all > 1, andé; > ¢;. Then, forl =2,& o0 ) ; ¢ 7,. Similarly, either all links with capacity lower
is user cost efficient relative te than link ¢ increase their equilibrium delays with or else all

Re_zmark_: W? have a proqf _that an augmented capacilyf them decrease their equilibrium delays. The proofs of both
configuration is user cost efficient also for the (dual) case f?ef

links (L — 2 d b ¢ mmas are presented in Appendix C.
two links (L = 2) and any number of users. Lemma 3: Consider two capacity configuratiorse € C

V. CAPACITY TRANSFER with & = c+ Aq (Cl - Cq), WhereAq is such tha]ﬁZ = [,Z for

. . . . callieZ and th . Then, either:
In this section we investigate the problem of transferrm% ‘ em ’ a'f‘ assume &, 7 Q)A en, el er' )
1) X'> X forall i € Z,, and Z; > 1; for all links I with

capacity from one link to another. Specifically, we establish L
that transferring capacity from any link (while observing the g<i < L% ) . . i
lower bound) to link 1 improves performance according the 2) A° < A* forall i € Z,, andT; < T, for all links I with
various efficiency criteria defined in Section II-B. Except for g<l < L'
being a stage toward the solution of the optimal allocation In the following lemma we show that if the delay of some
problem, this result provides an interesting design rule p#k 7 in {2,-.-,¢ — 1} is higher under configuratio, then
se. In broadband networks, for example, capacity is routinglye same is true for all links gl +1,---,¢ — 1}.
released upon the completion of a session. The network mankLemma 4: Consider two capacity configuratiorse € C
agement may redistribute the excess capacity among virtwdth ¢ = ¢+ Ay (e; — e,), where A, is such thatC? = £ for
paths or circuits, thus facing the problem considered in thédl : € Z. For any linkl<q—1,if I € 7T, thenn € 7 for
section. all linksn € {{+1,---,g—1}.

Consider two capacity configuratiorsand ¢ in C, such An immediate consequence of the lemma is that there exists
thate = ¢+ Ay(er — ¢4) is derived frome by a transfer of a link ly,1 <o < g such thatl; < T; forall I € {1,---,lo},
capacityA,(0 < Ay < cq—cg) from some linkg, with ¢, < ¢4, and7;>7; forall [ € {lo+1,---,q}.

B. Cost Efficiency
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We are now ready to prove thatis user price efficient Using the expression fox! given by (39) in Appendix C and
compared tae. The proof is given in the following theorem, (24), we have
which asserts also that the equilibrium delays on all links

except linkg are lower under configuratio8, i.e., that the P Yieror — RA_I Tiecra - R7 — L
set7 T is empty. Yiec (G — )2 Ziea(a— fi)?

Theorem 2: Consider two capacity configuratiorse € C R
With & = ¢+ Ag(er — €,),0< A, < ¢, — 2. Then: since £! = £. But this contradicts the assumptiord > L.

1 1 H H x
1) configurationé is_user (thus, overall) price efficient Therefore,\ <Z)‘ %emma3 then, implies thaf; < 7; for
relative toc, i.e., X < X for all i € 7 all I>gq, andX* < X* for all i € Z,. Thus

2) Ty < T foralll € £\ {g}, and T}, > T,

Proof: 73 < T1 and 7, > T, have been established in Z; A Z; A

Lemma 2, thus we only have to prove the remaining statements ! !
in the theorem. Let us first establish these claims under the explained in the remark following the proof of Lemma
assumption that each user sends its flow over the same se4 ofi Appendix C, this implies thaTq 1 < Tq 1. Applying
links underc andg, i.e., that? = £ for all i € Z, and then Lemma 4 inductively forl = g—2,9—3,---,2, it follows
generalize them to the case whele# £ for some useti.  that 7} < T;, for every link ! in {2 ceeL g — 1}. Therefore,

Assume that’i = £¢ for all + € Z. If no user sends flow all links in £! \ {1,¢} belong to7~ and 7+ = (. This
to link ¢, that is, if L < ¢, transferring capacity from link concludes the proof of the second statement in the lemma in
g to link 1 is equivalent to adding capacity to the systemhe casel’ = £%,i € T.
of parallel linkg{1,---,L'},and the result is inmediate from We now proceed to show that’ < )i for all users
Proposition 2. Thus, we only need to consider the @gsg #, ; ¢ Z. Assume by contradiction that there exists some user
thatis,L' > ¢. Without loss of generality, we assume that user, such that A > ). Then, Jj € I\ 1, since Noo< N
1 sends flow on all links in the network, i.e., that = for all i € Z,. Therefore Ny < Tp forall Il e £7. Since

Let us first show thak! < Al. Assume by contradlct|on that fJT/ +T = )\J <M = IJT/ + 13, this implies thatfl > fzj
Al> AL Then, from Lemma 3, we havE > T;, for all links  for al| 1 € 9. Thus

le{q+1,---,L}. As already explained, Lemma 4 implies ; . ; ;
that{there exists}some link,1 < Iy < g, such thatl; < T; = Z fi> Z fi=r
foralll e {1,---,lp}, andT;>T; forall L € {lo+1,---,q}. tes tes
Definey; = (¢ — fl) — (¢ = f)|,1 € £, and note that which is a contradiction. Therefore, for alle 7, we have
I I A" < X', and this completes the proof of the theorem in the
Z v = Z " caseL’ = L'i € T.
= =1 Let us now consider the case where the transfer of capacity
since A, from link ¢ to link 1 forces some users to change the set of
R links over which they send their flow. As in Section III-B, let
a-f)=> (a-f=C-R A, .1, denote the set of capacity transférg [0, A,] from
US US link ¢ to link 1, that are such that the set of links over which
Recalling thate; — f; > ¢i41 — fi+1, We have useri € 7 sends its flow i1, ---,l;}. Note that the previous
. . analysis establishes that for any capacity transfers, if
R 5o 5 61,60 € Ay,....;,—for some(ly,---,l;)—and é; < 6, then:
> (a- > 1) X(61) > Xi(&) for all i € Z; and 2)T3(61) > Ty(62)
=t ; z=1l for all I € £\ {q}. As explained in Section III-B, this
Z +2z°: (e - fiy implies that: 1)\ = A\(0) > M\(4A,) = Xi,i € Z; and
— — 2) T; = T;(0) > Ti(A,) = 13,1 € L\ {qg}, by virtue of
Theorem 5. [ |

-2 Z (e = fow

B. Cost Efficiency

I=lp+1
L Let us now proceed to show thatis user cost efficient
> Z 2(et, — f1,) Zyl in some special cases of interest. We start by showing the
=1 following corollary of Theorem 2.
Corollary 2: Consider two capacity configurationse € C
= 2(Clo+1 = fio+1) Z (] with & = ¢+ A, (e1 — e,), where A is such thatl? = £/ for
I=l+1 all ¢ € Z. Then, the equilibrium costs of all useisz Z, are
L - lower under, i.e., J' < J' for all i € Z,.
= Zyz 2[(ciy = f1) Proof: From Theorem 2, we havg — fl > ¢ — fi, for
=1 z all links I > q. In view of
o
— (clo-l-l —f10+1)]2y1>0. (24) Z(él_fl) :Z(Cl_fl) =C-R
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this implies that user cost optimal i@ if the lower bounds on the link capacities
m m are equal for all links. Furthermore? will be shown to be
Z(@l - fz) < Z(cl - ), m=gq,---, L. (25) cost optimal for a number of special cases of interest, even if
=1 =1 the lower bounds on the link capacities are not identical.

Using the express.lon fay® given in (23), we get A. Price Optimality
i 7 i = R4 - R 2 The following theorem establishes price optimality of ca-
Jr=Jt=A Z(cl —f=A lz_:(cl - pacity configurationc*.

=t Theorem 3: Consider a system of parallel links with initial
capacity configuratior”, shared byl noncooperative users,
and an additional capacity allowane®. The capacity con-
figuration ¢t = ¢ + Ae,, that results from allocating the
where the first inequality follows fromi < X (Theorem 2) entire additional capacity to the link with the initially highest
and the second from (25), sindé > ¢ for all i € Z,. m capacity, is user (thus, overall) price optimaldn

In the following proposition we establish thais user cost Proof: Let D denote the set of capacity configurations
efficient in the case of users that are consistent under dotlthat can be implemented by the designer by allocating an
ande, which includes the cases of identical and simple userdditional capacity of exactly,0 < § < A, to a system

Proposition 6: Consider a system of parallel links sharedf parallel links with initial configurationc®. For everyé,
by I users, consistent at the capacity configuratiemde, definec*(6) = ¢ + §e;. Theorem 2 implies that*(§) is user
where¢ = ¢+ A, (e1 — ¢4). Thené is user (thus, overall) cost price optimal inD. To see this, consider any € D. From
efficient compared ta:. Theorem 2, the capacity configuratior (cz, — % )(e1 —er),

Proof: For consistent users we hay¥ = £/, for all that is obtained by reducing the capacity of lihko its lower

i,j € Z. As in the proof of Theorem 2, it suffices to establistbound and adding the excess capacity — c?) to link 1, is
cost efficiency in the case whe® = £ i € Z. If ¢ ¢ £, user price efficient compared to Proceeding inductively, for
transferring capacity from link; to link 1 is equivalent to everym > 1, the configuratiore+ X5 (¢; — &f)(e1 —¢;) is
adding capacity to the system, and the result is immediateer price efficient compared to+ X/, ., (ci—))(e1 —er).
from Proposition 4. If, on the other hang,e £¢, the result Hence,c® + ée1 = ¢+ XL, (¢ — &)(e1 — e) is user price

=1

1

=
>N Na-f)—(a-f))z0, iel,
=1

follows from Corollary 2. m efficient with respect te, that is,c*(8) is user price optimal
The following proposition asserts thats user cost efficient in D. From Proposition 2¢* = ¢*(A) is user price efficient

in the special case of two users. with respect to any*(é) with 0 < 6 <A. Therefore,c* is
Proposition 7: Consider a system of parallel links sharediser price optimal irC. [ |

by two users. The capacity configuratior= ¢+ A (e —e;)

is user (thus, overall) cost efficient comparedcto B. Cost Optimality

Proof: It suffices to establish cost efficiency under the
assumption that’’ = £ i = 1,2. The result is immediate
from Proposition 5, if no user sends flow on link If .
both users send flow on link, the result is also immediateequal for all links. . . .
from Corollary 2. Hence, we only have to consider the CaseTheprem 45 Cons_ldei)r a system of parallel links W'th. |_n|t|a|
L?<q < L. Then, from Corollary 2, we have! < Jt. capac!ty configuratioe ,sr:)ared tgyl users, and an additional
Following the same proof as in Lemma 7 in Appendix B, on apacity allowanced. If ¢ = ¢, for all [,m € £, then

can show that there must be a ugesuch thatz; > ¢/ for all

the capacity configuratioe* = ¢” + Ae;, that results from
links I € £\ {q}. If j = 2, then the residual capacity seen b);lllocatlng the entire additional capacity to link 1, is user (thus,
user 2 at all links in? is higher undeg; therefore,/? < J2.

overall) cost optimal inC.
Suppose now that = 1. For any link/ € £2\ {1}, inequality

Proof: As in the proof of Theorem 3, I€D be the set
& > ¢t implies thatff < f2, sinceé; = ¢ Therefore, user of capacity configurations that can be implemented by the
2 decreases its flow on all links i6% \ {1}. Since?; < T;

designer by allocating an additional capacity of exaétlio
for all links { € £2 and the delay at link 1 is always minimal® system of parallel links with initial configuratia®. Let us
among all links, we conclude that> < JZ,

The following theorem shows that configuratiehis user
cost optimal if the lower bounds on the link capacities are

first show thatc* (§) = ¢ + de; is user cost efficient relative
to anyc € D.

Starting frome, we construct a process of capacity transfers

VI. OPTIMAL CAPACITY ALLOCATION from links I € £\ {1} to link 1 such that at each step the

We now proceed to investigate the optimal capacity alloceesulting capacity configuration is user cost efficient relative
tion problem for a system of parallel links, according to theo the previous one, and the configuration at the final step
various performance measures defined in Section II-B. Theincides with¢*(6). More specifically, at the first step we
main results of this section, namely Theorems 3 and 4, asseduce the capacity of link 2 te; and transfer the excess
that the capacity configuratioa® = ¢” + Ae;, that results capacityc, — ¢3 to link 1. At the second step, the capacity
from allocating the entire additional capacity to the link witlof both links 2 and 3 is reduced to, and the excess
the initially highest capacity is 1) user price optimalimnd 2) capacity2(c; — ¢4) is added to link 1. Proceeding this way,
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at stepL — 1, the capacity of all links inC \ {1} is equal both &*(é;) and &*(é2), since they send flow on all links.
to cz. At the final step, the capacity of all these links ifroposition 4, then, implies thaf?(6) < Ji(é1), for all

reduced fromey, to ¢ and the excess capacity is transferrede Z,, and this concludes the proof. [ |
to link 1. The final capacity configuration coincides with Remark: The results in Theorems 3 and 4 rely on the
c*(6). assumption that the network designer adds capacity to an

In order to prove that at each step of this process tlesisting system of parallel links, i.e., that the initial capacity
resulting capacity configuration is user cost efficient relativaf every link <) is nonzero, as has been noted in Section 1I-B.
to the previous one, it suffices to show that for any capacilty [28] we show that all the optimality results of this section
configuratione € D, with ¢ = ¢3 = --- = ¢, for some apply also to the case wheif = 0, for some linkg € £, that
n € L, the configuratione = ¢ + A,X}, (e1 — ¢;) that is, when the designer is allowed to add a finite number of links.
results fromsimultaneouslyeducing the capacity of each link The following proposition indicates that the user price
in{2,---,n} by A,, <c¢, —¢,41 and transferring the excessoptimal capacity configuratioa* is also user cost optimal in
capacity (n — 1)A,, to link 1, is user cost efficient relative some special cases of interest, even if the lower bounds on the
to ¢. As explained in Section IlI-B, we only need to establistink capacities are not identical.

this result under the assumption tha}, is such thatli = £ Proposition 8: Consider a system of parallel links with
for all i € Z; by virtue of Theorem 5, the result extends foinitial capacity configurations, shared byl users, and an
any A,, € [0,¢, — cpy1]- additional capacity allowancé. The capacity configuration

Consider two configurations and & in D, as described ¢* = °+Aey, that results from allocating the entire additional
above, such that’i = £¢ for all i« € Z. Then, one can capacity to the link with the initially highest capacity, is user
show that7; < 11, while T,>1T, for all [ € {2,---,n}, (thus, overall) cost optimal id if 1) users are consistent at all
following precisely the proof of Lemma 2 with2,..-,n} capacity configurations ii; or 2) there are two usefd = 2).
playing the role ofg in that proof. Furthermore, note that the Proof: Part 1) follows from Propositions 4 and 6. Part 2)
proof of Lemma 3 is based on the structurecofind &—as follows from Propositions 5 and 7. [
defined in that lemma—only to the extent that there exists
some linkg such that¥! | ¢ = X7 | ¢ and& = ¢ for all
[ > q. Therefore, the results in that lemma—withreplaced
by n—readily apply to configurationg and ¢ of the form VIl CONCLUSIONS
considered here. Based on these results, one can adopt th&fe investigated the optimal capacity allocation problem
proof of Theorem 2 to show that: E)is user price efficient in a network where users noncooperatively implement their
relative toc; and 2)17; < 1; for all links I € £\ {2,---,n}. optimal routing strategies. The problem was formulated as
Then, following precisely the proof of Corollary 2, one camllocating an additional capacity allowance to an existing
show that/* < J*, for all usersi € Z,,. Sincec, = --- =¢,, network. This formulation is equivalent to a standard capacity
we havel, = .- =1,, i.e., the users that do not send flovallocation problem, for which a lower bound is specified on
on link n send their entire flow on link 1. For any such usethe capacity of each link, e.g., due to reliability considerations.
i we haveJ' = 777 < 7Ty = J'. Therefore,¢ is user cost  For a system of parallel links we established the efficiency
efficient with respect ta. of two elementary capacity provisioning operations: capacity

As already explained, user cost efficiency cofelative to additionto any network link, and capacityansferto the link
¢ implies thatc*(6) is user cost optimal irD. Thus, in order with the originally largest capacity. Given these results, we
to show user cost optimality af* = ¢*(A) in C, it suffices showed that the capacity allocation problem has a simple and
to show that for any;, 62 € [0,A], if & <2, thene*(62) intuitive solution: the optimal allocation assigns the additional
is user cost efficient relative ¢0(6, ). By virtue of Theorem5, capacity exclusively to the link with the initially highest
we only need to establish this result under the assumptioapacity. This solution coincides with the optimal capacity
that each user sends its flow over the same links under batlocation when routing is centrally controlled.
configurations. Note that in both configurations the capacity In this study we concentrated on cost functions that are
of all links in £\ {1} is equal to their common lower bound,based on M/M/1 delays. As previously mentioned, these link
while the capacity of link 1 is higher im*(62). Since, by delay functionsZ;(f;), should be interpreted as a general con-
Proposition 2, the delay of each link is lower undéfé,), the gestion cost per unit of flow, that encapsulates the dependence
cost of each user that sends flow only to link 1 is lower undef the quality of service provide by a finite capacity resource
this configuration, i.e.J(8;) < J%(é1), for all i € Z; \ Z,. on the total loadf; offered to it. Functions of such form
SinceZ = 7; U Iy, it remains to be shown that the samdave been used to express this dependence in various practical
inequality holds for alli € Z,. routing schemes [25], [12]. Their suitability as “generic”

Note that the users that send flow only to link 1 simplgost functions can be observed also in the noncooperative
occupy a fixed capacity of that link at both(é,) andc*(62). framework, where the routing equilibrium, corresponding to
Therefore, in order to compare the performance of the reee M/M/1 cost function, exhibits properties that one would
of the users, we can consider two configuratiofis(é;) expect in practice. We also note that our results readily apply
and ¢*(62), derived frome*(61) and ¢*(62), respectively, by to other classes of cost functions, such as queuing delays
reducing the capacity of link 1 b{;c7 \z, 7', and neglect of M/D/1 systems. Furthermore, some of our results, e.g.,
the users in € 7, \ Z,. All users inZ, are consistent under efficiency of capacity addition to a system of parallel links,
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apply to a broader class of cost functions and do not depend Proof: Letc € C andN(c) = (f,A, ). Then,0 < f} <

on the specific structure of M/M/1 delays. r*, for all [ € £ and¢ € Z. Turning our attention to\‘, note
An extension of this study for general network topologiethat (15) and (16) imply that for all € £, we have
appears in [28]. ‘
V(e = fi) < \a— 7 < Va
APPENDIX A Summing over all € £, we get
PROOFS OFRESULTS IN SECTION Il 9

Proof of Proposition 1:Let us concentrate on the equi- 0< N < M

librium strategy f* of useri. As explained earlier, Lemma 1 (Ele,c - R)

implies that there exists som& < L, such that for all i € Z. For everye € C, we have

fi>o0 if1<L fi=0 if I>L (26) R<C"<Y a<c+A

. . lel
ie, £ = {1,---,L*}. Equation (21) is immediate by sum- ©

ming VXi(c] — fi) = \/cl [see (15)] over all links € A, and since

Taking A = £ and recalling thak,c .: fi=r (22) follows. Z Ja < LYo+ A
Equation (22), together with (16) fér= L*+1, implies that et
SENVE e 1 we get
ELI—J =V < = <G, (27)
L cr =7t a ) /OO .
=1 Lt 0< A < L +a =A<o0, 4€Z. (29)
CO—-R
Similarly, takingA = {1,---,L* — 1} in (21) and! = L? in o ‘
(15), we have Let us now considey;. By (7), u; > 0, for all [ € £
andi € Z. If fi>0, thenyui = 0, by (6). Hence, we need
SLi-1 /7 c | 1 only consider the ‘casﬁ;‘ =0.Thenf; = f;", and (4) gives
Lz_=11—z =VAi=— —>— pp = (a=f) ' =N < (a=f)t I fi =0,theny; < 1/¢ <
D Gl i) ‘g~ FL et 1/¢} < oo. If, on the other handf; > 0, there exists some user

j € T with £/ >0, and (15) together withf;” = f,+ f{ gives
which implies G, < SE -1 fi <17, Hence, (20) is a neces-(a—f) ™ = )\];fzj(cz—fz)_Q < M < A Therefore, defining
sary condition for (26). Using (18), it is easy to see that it i = max{}, 1/¢; } < oo, we haved < x; < fi. Hence, taking

also sufficient. From (15) and (22), we gt= ¢} — \/ci/\’, B L ~ T
and (19) follows, using the expression f&r given in (27). ©= ®[O’7 " @ (0, A e 0,7™)

From (15), we note that et
‘ we haveN(¢) € ©, and the result follows. |
fi =N = fi) =1, I=1,.-, L. (28) Proof of Theorem 1:From Lemma 5, it suffices to show
a—f that V' has a closed graph. To this end, let us consider con-
) _ ‘ ) vergent sequencagn) — ¢ in C and (f(n), AX(n),pu(n)) —
Therefore, by summing over all linkse £*, we obtain (f, A, ) in ©, such that\'(e(n)) = (F(n), A(n), p(n)), n >
L ‘ L 0. We, then, have to show tha(c) = (f, A, p).
; Il i i By virtue of the optimality conditions (4)—(7), for alle 7
Jz — _ R )\z _ _ Lz y
; g-rI ;(cl f and alln > 0, we have

and (23) follows using (27). ] M — Xi(n) = pi(n) =0, lel (30)
We proceed to present the proof of Theorem 1, which asserts (c(n) = filn))
that the Nash mapping/: ¢ — F @ RIE+D | as defined

in Section IlI-B, is continuous. The proof is based on the > FHin) =1’ (31)
following lemma from [6]. lec

Lemma5:Let X and Y be subsets of two (finite di- p(n)fi(n) =0, lel (32)
mensional) Euclidean spaces, whéfeis a compact set. A lﬁ(ﬂ) >0, ff(n) >0, lerl. (33)

function ~: X — Y is continuous if and only if its graph
Gh ={(z,y) e X®Y:y = h(z)}is aclosed subset 6f®Y, Taking the limit asn — oo in (30)—(33), for alli € Z,
i.e., if for any convergent sequengéz(n),y(n)),n > 0} in  we get precisely the necessary and sufficient conditions for

Gh, we havelim,,_...(z(n),y(n)) = (z,y) € Gh. N(e) = (f,A p). Hence,GN is a closed set, and continuity
The following lemma shows that the Nash mapping takes A follows from Lemma 5.
values in a compact subset &f @ RI(Z+1), In taking the limit in (30), we have assumed that

Lemma 6: There exists a compact sub§etC FOR!CT lim,(¢(n) — fi(n)) = ¢ — fi>0 for all I € L. Let us
such that\(c) € ©, for all ¢ € C. now justify this assumption. Suppose by contradiction that
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there exists some linkc £ such thatf; = ¢; > 0. Then, there
exists some usefj € 7, such thatf; >0 and someng € N,
such thatf} (n) >0, for all n > ng. Then

N () = (a(n) = fi(n) + £} (n))
(ci(n) = fi(n))?
for all n > no, and taking the limit asn — oo, X =
lim,, M (n) = oco. But this is a contradiction ta‘ < A < oo,
for all i € Z. Thus,lim, (¢ (n) — fi(n)) = ¢ — fi > 0. ]
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a contradiction. Therefore, it must Bgx) < h(y), and the
result follows. |

APPENDIX B
PROOFS OFRESULTS IN SECTION IV

Let us start by proving a technical result that will be used
in the proofs presented in this Appendix. The result applies
to capacity configurations and ¢, such that each user sends
its flow over the same links under both configurations, i.e.,

In the rest of this Appendix, we prove a monotonicity resulf’ = £é for all i € Z andZ; = Z; for all [ € L.
for real functions, which is used in Section 1lI-B to establish Lemma 7: Consider two capacity configurationsand ¢
that the capacity allocation problem can be investigated bagetth thaté is an augmentation of, and £i = £i,i € 7.
on comparisons of capacity configurations that are such that j be a user such thaé/ /)7 > Xi/\* for all i € Z. Then,
each user sends its flow over the same set of links under btitb residual capacity] > ¢ for all { € £, and J/ < J7.

configurations. More specifically, we will show the following.

Theorem 5:Let h: X — R, where X C R is a closed
interval. Consider a familyd = {A;,---,A,} of closed
subsets ofX, such that 1)U}, A; = X; and 2) for every
A; € A, we haver,y € A; andx <y = h(z) < h(y). Then
h is nondecreasing iX.

Proof: Assume, by contradiction, that there existy €
X, such thatr < y andh(z) > h(y). Then, there exisfl; # A;
in A, such thatr € A4; andy € A;. Let

7 =min{t € A;: t > z}. (34)

By definition, z;,y € Aj, andz; < y, thush(z1) < h(y). If
z1 = x, this contradicts the assumptidfiz) > h(y). Therefore
z1 >z, and (34) implies thatz; is the minimum point in
the boundary4; N A5 of A; that is greater tham. Since
z1 € A5 N X, there existsj; € {1,---,n} \ {j}, such that
z1 € A; . Note thatj; # 4, sincej; = ¢ would imply
x,7z1 € A;, and thush(z) < h(z) < h(y).

Now definez, = min{t € A; : ¢ > =}, for which we have
z2 < z1 andh(ze) < h(z1) < h(y). Similarly to z1, 2 is the
minimum point in the boundary afi;, that is greater tham,
and there existg, € {1,---,n}\{j1}, suchthat, € A;,. As
in the case ofy, it must bejs # 4. If 20 < 21, thenjs # 7,

Proof: Assume thaté/, < ¢/, for some linkm € £7.
Using (15), we have

éi _ S‘i(ém - fAm)2 < 5‘j(ém - fm)2

m

cin B )‘i(cm - fm)2 - )\j(cm - fm)2
&
=<1, 1€ Ipy. 36
o, (36)
Note that

Z (é:n - cin)

1€y,
Z [(érn - frn + frzn) - (crn - frn + frzn)]

€T,
= (Im — 1)[(ém — fm) - (Cm - fm)]
+ (érn - cnl)

and since (by assumptior), > ¢,, and (by Proposition 2)
é"l - an Z Cm — frn, we have

crnZ Cm

1€Tm 1€Tm

that is, (36) is a contradiction. Therefor&, > ¢ for all

[ € £J. By virtue of Proposition 2, the same is true for all

since j> = j would contradict the definition of, in (34). ;¢ £\ 17, since f/ = f/ = 0 for all such links. Hence, the

If, on the other handz; = 2, thenj, can be chosen, suchyesiqual capacity seen by usgat every link is higher under
that jo # j. Indeed, if the claim is not true, then for eVelYconfigurationé and, therefore, 7 < J4. n

k # j,71, we havez, ¢ A, and there is are >0, such

Proof of Proposition 4: First we prove the proposition

that [2; — ¢, 22] N Ay = (. Furthermore, by the definition of ynger the assumption thatindé are such that? = £¢ for all

z2, there are no points ofi; or A; in [z — €, 2). Thus,

usersi € 7 and then generalize the result for any augmentation

[22 = €,22) ¢ X, which implies thatz, is the left endpoint ¢ of ¢ Let userj be as in Lemma 7 (note that such a user
of interval X. But this is a contradiction, since, as alreadmways exists). Since the users are consistentaatd &, using
. 7

explained,zs > .
Proceeding this way,

21,22, +, 2n_1, SUch that for allk

zp =min{t € A;, 1t >z} e A,
Jk 6{17"'7n}\{jvjlv"'vjk—l}'

Since zy, zx—1 € Aj,_, and z, < z—1, we haveh(z,) <
h(zx—1). Therefore,h(z,) < h(y), forall k € {1,---,n—1}.
Furthermore, for allk € {1,---,n — 1}, it must bej; # i,
since j, = ¢ would give h(z) < h(z) < h(y). From (35)
we havejn—l € {L"'v”} \ {jvjlv"'vjn—Q}v and since
t & {4,591, Jn—2}, this implies thatj,,_; = ¢, which is

(35)

(23), M /N > Xi/Xi gives
JiyLt _ Jiy L
JI+ LT J LY

Since.J < JJ (Lemma 7), this implies thaf < J¢. Hence
the proposition holds in the case whete= £¢, for all i € Z.

Let us now generalize the result for any augmentation
of ¢. It suffices to establish this result for augmentations of
the forme = ¢+ Ayey, for any link [. As in Section 111-B, let
A, ....;; denote the set of capacity additiohg [0, A;] to link
[ such that the set of links over which uget Z sends its flow
is {1,---,l;}. Note that the previous analysis shows that for

we can construct a sequence

1e€l.
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any 61,6, if 61,60 € Ay ...;,—for some(ly,---,l;)—and Case 1—Tq >T,: Forany linkl € 7+ U {1,4}, we have
81 < b, then Ji(6y) > Ji(6y) for all 4 € Z. As explained 7} > T;. Thus
in Section IlI-B, this implies that/* = J*(0) > J'(&; .
Ji i € T, by virtue of Theorem 5. o ) Yo @-f< Y, (a-

Proof of Proposition 5: As in the proof of Proposition leT+U{l,q} leT+U{l,q}
4, it suffices to establish the result under the assumpti
that each user sends its flow over the same links under both
configurations, i.e.£i = £ for all i € Z.

Let userj be as in Lemma 7. Suppose first that 2. Then

J? < J%. Summing (28) over all € £2, it is easy to see that

)

fi> fi

2.

1eT+U{1,q}

2.

1eT+U{1,q}

A2/A2 > AL/AL gives

Yiere jll +L?

< Elegzj? +L?
EIE[,ZJll + 12

- EIEL‘ZJIQ + 12

and since? < J2, we have

R

leL? leL?

(37)

Consider now alinke £!\ £2.Sinced; < T; (Proposition 2)
andé = ¢, we havef; = f} < f} = f. Thus, J} < J}, for
all 1 € £\ £2, and using (37) we conclude that < J?.
Suppose now that = 1. According to Lemma 7,/ < J*
andét > ¢f,l € L. Since; = ¢ for any linkl € £2\ {1}, the

latter inequality implies thaf? < f2. This means that when

moving from configuratior to ¢, user 2 moves flow only into
link 1. Sincel; < 1; for all links [ and the delay at link 1 is
always minimal among all links, we conclude th&t < J2.

APPENDIX C
PROOFS OFRESULTS IN SECTION V

Let us start by proving the following technical result.
Lemma 8: Consider two capacity configurationse € C.
For any user € 1:
1) if > X, then fi > fi for all links [ such thatl}; < Tj;
2) if A < X, thenfj < f; for all links I such thatl; > Tj;
3) there cannot be two linksn,n € L, such that
B> Ty T < Ty o> £ and fi, < £
Proof: Assume thatj\j > A% and that there is a link
such thatl; < T; and0 < fi < fj. Then, using the optimality
conditions (8), (9), we have

N< T+ T < FT +Ti= N

which contradicts\‘ > \‘. The proof of part 2) is symmetric.

For part 3), assume that there are such links: € £. Since
i,> fi, > 0, using (8), (9), we get

)\i — 7 T/ +T7n Z

mom fanTr/n + T'nl Z )\Z

Then part 2) implies thafZ < fi,i.e., a contradiction. =
Proof of Lemma 2:Assume by contradiction that; >

Ti. We have to consider two cases.

sinceé; +¢é, = ¢1 +¢g and é, = ¢y, foral n € 7T,
This implies that there must be a usgrwhose total flow
in 7T U {1, 4} is higher undet, that is

oo >

leT+u{l,q} leT+u{l,q}

fl
and thus

> fi<

le7T -

S

le7T -

Therefore, there must be linkse 7t U {1,¢} andm € 7,
such thatfs > fJ andfJ, < f4,. SinceT,, > T, andZ},, < Tp.,
this is a contradiction to part 3) of Lemma 8.

Case 2-4;, < T,: In this casef, < f,, in view of &, < c,.
Since f; < f; for all I € 7—, this implies that

S i< Y &

leT-u{q} leT-U{q}

Thus there must be a usgrsuch that

ooodi< > A

leT-U{q} leT-U{q}

and

i

2.

leT+tu{l} leTtu{l}

This implies that there must be links ¢ 7— U {¢} and
n € T+U{1}, such thatfy, < f, andf > fi,. SinceT,, > T,
and1,, < T.,, this is a contradiction to part 3) of Lemma 8.
Therefore, the delay on link 1 cannot be higher under capacity
configuratione, that is, 77 < T}. Let us now proceed to show
the second part of the lemma, i.e., thgt> 7.

Suppose tha‘_lfq < 7. Let us first show that this implies
T+ = (. Assume by contradiction thgt* is nonempty. Since
the total flow sent over links ir¥ T is higher undet, there
must be a usey, such that

SO

> fi>
leT+ leT+

and thus

fi.

> g

leT-U{l,q}

2.

leT-U{l,q}

Therefore, there exist links € 7+ andm € 7- U {1, ¢},
such thatff > fi andf,fn <fi. Sinced), > T, andT, < T,
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this contradicts part 3) of Lemma 8. Therefofetr = ¢, and Since

& —fi > a-— fi, foralll € £. Recalling that m m
R " él = Cy
da-fy=> (a-f)=C-R =1 =1
lec lec 1 oemi
the last inequality must hold as an equality for & £, or for allm 2 g, andg € £7, this implies

equivalently; = T3, for all € £. Note that this implies that Z (& — fl)Q < Z (i — ). (42)

no user can change its flow on any link in the network. To see

this, assume that there exists a ugesuch thatf’ > f# > 0 X

and0 < fJ, < fi, for some linksm,n € £. Then Let us first prove that2 > A2, If £2 = £!, the result is

e N i immediate from (39) and (42). Therefore, we have to consider

N <D + T < 10 + 1T only the caseC! \ £2 # (). Note that user 1 is the only user
=N < fIT 4T, <fiT, +T, =N that sends flow on any link id!\ £2. Moreover,q ¢ £\ £2,

i 2 31 1 i
i.e., a contradiction. Thus, no user modifies its flow configurglnceq € L. Therefore, \>> A" and (40) imply that
tion, and f; = fi, for all € £. But this contradictsl; < 75, fi=ft>ft=n le s\ 2 (43)
sinceé, <c¢, and f, = f,, and the result follows. _ ) .
Proof of Lemma 3:We start by deriving an alternative From (38) withA = £* and: = 1, we have
expression for the user prices. Writing (15) ¥$c; — f;)? = _R-! _ -t
¢ — f;* and summing over any set of linkd C £’ that ch ch

leLt lelt

receive some flow from user we get e eakeE
» i i > (- f)? > (e — f)?
)\i _ EIEA(CI - fl ) _ EIEACI - R+ Eleﬁl\Afl lere les?
Yicala = fo)? Yicala = fi)? and thus
(38) X
: Z(@l—fl)2< Z(Cl - fi)*.
since | | | 2 =,
Z frt=R" = Z i Therefore, (39) and (43) give
lea le\A R
_ p-2
and £\ A can be replaced by! \ A because no user sends ZZCI L 21: zfl
flow over links in£ \ £*. Taking A = £% in (38), we have A2 = lkes lecive
—i PCES D
Siecca—R7+ Y fi leze
A= fectver (39) Sa-R2+ Y 4
> (e = fi)? | e leene
lec =
- 4 4 > (e — f)?
since, for alll € £\ £?, we havef; = 0; therefore f,* = f;. lei?

From (8)_ and (11), the sum of the user prices over I|nvl§/hiCh completes the proof far = 2.
[ € L is given by

Proceeding inductively, let us assume that> A’ for all
Z N = fiT] + LTy i < k<I, and show that the same holds for= £ + 1. If
i€ L1 = £l the proof of M+1> M+l is immediate from
(39) and (42). Thus, we only have to consider the case
LY\ L1 £ (. Let Z, denote the set of users that send flow
on some link in£! \ £, that is,Zo = Uz g1 Z;. Note

Therefore, for any link € £\ {1, ¢}, the following statements
are equivalent:

leTtsfi>fo Z N> Z b (40) that userk + 1 does not send flow on any link it \ £F+1,
iE€L, iE€L, By Lemma 1, the same is true for all usérs & + 1. Thus,
leT- s fi<fio Z N o< Z g @1 Zo C {1,---,k}, and by the inductive hypothesis we have
i i AP > X for all 4 € Zo. SinceZ; C I for all [ € £\ £+,
We now proceed with the proof of the lemma. Let us firstpIS implies
assume thak! > AL, and prove thak‘ > )’ for all ; € Z, and Z N> Z N, leLh\ Lkt
1y >T; for all { > ¢. By assumptioriZ, # 0. If I, =1, user 1 i€l iE€T,

is the only user sending flow on links> g and the result is . L k1 )
immediate fromi! >\ and (40). Therefore, we concentraté@nd sinceg ¢ L1\ L¥, (40) gives
on the casd, > 2. Since \! >\, (39) fori = 1 gives B> [ e Lh\ LhH, (44)

A p—1 -1 .
El“lcf R Yiecra = It 5. For any uset € 7y, we havek+1 > i and thusCk+! C 27,
Siecr (@ — )2 Tiec(a = 1) Therefore, any user that sends flow on some lingin ¥+
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also sends flow on all links if*t1, Hence, takingd = £¥+1
in (38), we get

ZCIR+Z

i l€£k+1 le[,l £k+1
A= ;

> (a—f)?

leLktt

1 € L.

(45)
From (39), we have

Z o — R+ 4

leLk+t
> (a-

legk+t

Zcz—R‘i-i- Z

_leLkit leLI\LEHL

> (a-f)?
l€£k+l
> i

i k41
leLt\ch+t

> (a—fi)? 7

l€£k+1

ook

leLI\ LA+

fo?

)\k-l—l —

(fi= 1D

i€, (46)

where we have useB~(+1) = R—i 4 i —
(45) and (46) give

-k+1 Equations

PUREIE L ic€To. (47)

Let us assume (by contradiction) thett! < A+l Since
q € LM we have
S a

> a=
leLk+t leLktt

Using (46), we get
Z o — R~+D

leLk+t
> (a-

leLkt+t

Z cp — R—(k+1) +

> f

leLt\crtL

f?

ook

lecktt le L\ Lot
- 3 (- )2
leck+1
and since, from (44)
S A Y s
lect\chtt le L\ LRt
we have
Y@= fr> > (a- ) (48)

leLk+t leLk+t
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Using (47) and\*+1 < X¥+1 we have, for alli € Z,

Z f‘lz — phtl Z fli — phtl

leLktt A _ lecktt > 3\1 —_ )N >0
> (a-f)? > (a—-f)?
leLk+t leLk+t

since A > %, for all i € Zy. In view of (48), this implies,

forall ¢ € Zo
Yoo fix > H

leLk+1 leck+1
and thus

> fi< X

leL\chtt leL\ chtt

By the definition ofZy, summing the last inequality over all

i € Iy, we get
> >

leLi\Lk+1 leL\ Lo+t

fi< fi
which stands in contradiction with (44). Heng&+! > \k+1,
Thus, by induction, we hava’ > X, for all i € Z,. Finally,
for any link [ > ¢, inequality A’ > \’ for all ¢ € Z;, together
with (40) implies1; > T;. This completes the proof for case
A > AL It remains to be shown that ¥ < \!, then\i < ¢
for all i € Z, and7; < T, for all I>g. The proof is
symmetric. ]
Proof of Lemma 4:It suffices to show that for any link
l<q—1,if I € Tt thenl+1 € 7T+, Assume by contradiction
that there exists a link <q — 1 such that! € 7% and
[+ 1 e 7~. Then (40) and (41) give

fiy1 < fipr and Z A< Z A (49)
€141 €41
fi>fioand YA DTN (50)
€Iy €Iy

If ;11 = 7o, (49) and (50) lead to a contradiction. Thus, we
need to consider only the cagg\ Z;+1 # 0. Note that this is
the set of users that send flow on lihland do not send flow
on link I 4 1. For any such usei, L' = [. Summing (8) for
link [ over all¢ € Z;;; C Z; and using (11), we get

Z i+ LTy = Z A< Z N

i€L141 1€L141 [ISYAREY

= Y T +hinT
€14

and sincel € 7+, this implies

> fi<

i€y

>

i€y

(51)

Recalling thatf; > f;, (51) gives

Y. i=h= Y fixn-

1€\ €T+

oF

1€ \T141

oA

€Ly 41
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and since for any € 7; \ Z;;; we have

l l
=> fu=> Ju
m=1 m=1
this implies

POEDDEN D DD D i

m <€ \Ti41 m < i€\Tj 41

(52)

Subtracting (49) from (50), we obtain

> >N

1€ \T141 €T \T141

N>

Summing (8) over alk € Z; \ Z;41, for any link m < [, it
is easy to see that

> BT+

1€ \Ti41
Z f;l m (

>
1€ \T141

— )T

= Ly 1) T (53)

Consider any linkm <1 such thatm € 7~ U {1}. Since
T < T, (53) gives

1C€TN\Ti1 11

€T \Ti41

S > Jn-

Hence, from (52), we have

YooY Jac<

meTt i€Ti\Ti41
m <1

e (54)

2. 2.

meTt i€ \Ti41
m <1

Using a similar argument as in the proof of (51), one can see

that (49) implies

> fm<

i€y

Z i, THra{m<l}.

i€yt

Summing this inequality over alln € 7+ andm <!, and
adding it to (54), we have

> 2 u< XX fu (55)
meTt i€} meTt i€y
m <l m <1

For any linkm € T+7fm > fm. Therefore, the total flow
sent through the set of link6*N{1,..-,7/—1} is larger under
configuratione, and (55) implies

202 > 2 X

meTt i€IN\T; mcT 1 i€IN\T;

m <1 m <1
Therefore, there exists some ugee 7 \ Z;, such that
Do fax X fh=m X B> XD fa 69)
meTt meTt meT+ meT+
m <1 m <1

sincej € Z\ Z;, i.e., userj does not send any flow to links [15]
m > [. Note that (56) implies that there exists some I|nlf16]

m’ € T+, such thatf?, > f , and thus\/ > \/. Moreover,
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from Lemma 8, we havei, > fi, for all m € 7~. Since

f(; = f; = 0, the last inequality together with (56) imply

. - D

meT TuT — meT tuT —

{ = fr <0

-

which together witil; < 77 (Lemma 2) implies thah’ < A7

But this is a contradiction to\’ > ). Hence, it must be

I+1eT™. [ |
Remark: In the proof of the lemma above, we assumed that

there exists a link< ¢—1, suchthalt € 7+ andl+1 €7,

and arrived at a contradiction. The only implication of the

assumption + 1 € 7~ that was used was

YN YN
(ASESY i€T141

Thus, the same proof can be used to show thatifl € 77,

then
> N> >N

= =

ACKNOWLEDGMENT

The authors would like to thank R. Rom and N. Shimkin
for helpful discussions.

REFERENCES
1]
[2]
E]

R. B. Myerson,Game Theory: Analysis of Conflict Cambridge, MA:
Harvard Univ. Press, 1991.

D. Fudenberg and J. TiroleGame Theory Cambridge, MA: MIT
Press, 1992.

M.-T. T. Hsiao and A. A. Lazar, “Optimal decentralized flow control of
Markovian queueing networks with multiple controllersP&rformance
Evaluation vol. 13, no. 3, pp. 181-204, 1991.

Z. Zhang and C. Douligeris, “Convergence of synchronous and asyn-
chronous greedy algorithms in a multiclass telecommunications envi-
ronment, "IEEE Trans. Communvol. 40, pp. 1277-1281, Aug. 1992.
E. Altman, “Flow control using the theory of zero-sum Markov games,”
IEEE Trans. Automat. Conirvol. 39, pp. 814-818, Apr. 1994.

Y. A. Korilis and A. A. Lazar, “On the existence of equilibria in
noncooperative optimal flow control, J. ACM vol. 42, pp. 584-613,
May 1995.

A. A. Economides and J. A. Silvester, “Multi-objective routing in
integrated services networks: A game theory approach, 'Piac.
INFOCOM'91, pp. 1220-1225.

E. Altman and N. Shimkin, “Worst-case and Nash routing policies in
parallel queues with uncertain service allocations,” IMA Preprint Series
1120, Institute for Mathematics and Applications, Univ. Minnesota,
Minneapolis, 1993.

A. Orda, R. Rom, and N. Shimkin, “Competitive routing in multiuser
communication networks, [EEE/ACM Trans. Networkingvol. 1, pp.
510-521, Oct. 1993.

A. A. Lazar, A. Orda, and D. E. Pendarakis, “Virtual path bandwidth al-
location in multi-user networks,” iProc. IEEE INFOCOM'95 Boston,
MA, pp. 312-320.

S. J. Shenker, “Making greed work in networks: A game-theoretic
analysis of switch service disciplines|EEE/ACM Trans. Networking
vol. 3, pp. 819-831, Dec. 1995.

D. Bertsekas and R. Gallagebata Networks 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

P. A. Humblet and S. R. Soloway, “Algorithms for data communication
networks—Part 1,” Codex Corp., Tech. Rep., 1986.

P. A. Humblet, S. R. Soloway, and B. Steinka, “Algorithms for data
communication networks—Part 2,” Codex Corp., Tech. Rep., 1986.
A. Kershenbaum,Telecommunications Network Design Algorithms
New York: McGraw-Hill, 1993.

Information Sciences Institute, “Internet Protocol,” Univ. Southern Cal-
ifornia, Marina del Rey, CA, Tech. Rep. RFC 791, Sept. 1981.

(4]

(5]
(6]

(7]

(8]

El

(20]

[11]

(12]
(13]

[14]



KORILIS et al: CAPACITY ALLOCATION UNDER NONCOOPERATIVE ROUTING 325

[17] S. Deering and R. Hinden, “Internet protocol version 6 specificationpg
Internet Draft, IETF, Mar. 1995.

[18] J.J. Garrahan, P. A. Russo, K. Kitami, and R. Kung, “Intelligent netwo
overview, " IEEE Commun. Mag.vol. 31, pp. 30-36, Mar. 1993.

[19] P. A. Russo, K. Bechard, E. Brooks, R. L. Corn, R. Gove, W. L. Honi
and J. Young, “IN rollout in the United StatedEEE Commun. Mag.
vol. 31, pp. 56-63, Mar. 1993.

[20] M. Gerla and L. Kleinrock, “On the topological design of compute
communication networks,JEEE Trans. Communvol. COM-25, no. 1,
pp. 48-60, 1977.

[21] W. I. Zangwill and C. B. GarciaPathways to Solutions, Fixed Points

Aurel A. Lazar (S'77-M'80-SM'90-F'93) is a
Professor of Electrical Engineering at Columbia
University. His research interests span both theoret-
ical and experimental studies of telecommunication
networks and multimedia systems. The theoretical
research he conducted during the 1980's pertains
to the modeling, analysis, and control of broad-
band networks. He formulated optimal flow and
admission control problems and, by building upon
j the theory of point processes, derived control laws
for Markovian queueing network models in single

and Equilibria Englewood Cliffs, NJ: Prentice-Hall, 1981. _control as well as game theoretic settings. He was the chief architect of two
[22] J. E. Covhen and F. P. Kelly, “A paradox of congestion in a queuingyperimental networks, generically called MAGNET. This work introduced
network,” J. Appl. Probability vol. 27, pp. 730-734, 1990. traffic classes with explicit quality of service constraints to broadband switch-

[23] Y. A. Korilis, A. A. Lazar, and A. Orda, “Achieving
network optima using Stackelberg routing strategies,”
IEEE/ACM Trans. Networking Feb. 1997. Available at URL
http://lwww.ctr.columbia.eda/john/stackel.html.

[24] J. K. MacKie-Mason and H. R. Varian, “Pricing cognestible networ
resources, "lEEE J. Select. Areas Commurwol. 13, pp. 1141-1149
Sept. 1995.

[25] M. Schwartz, Telecommunication Networks: Protocols, Modeling an
Analysis Reading, MA: Addison-Wesley, 1987.

[26] A. Ben-Israel, A. Ben-Tal, and S. Zlobe®ptimality in Nonlinear
Programming: A Feasible Directions ApproachNew York: Wiley,

.ing and led to the concepts of schedulable, admissible load and contract
Iri’egions in real-time control of broadband networks. In the early 1990’s
his research efforts shifted to the foundations of the control, management
and telemedia architecture of future multimedia networks. His involvement
|§vith gigabit networking research lead to the first fully operational service

' management system on ATM-based broadband networks. The system was
&mplemented on top of AT&T’'s XUNET Il gigabit platform spanning the
continental United States. His management and control research pioneered
the application of virtual reality to the management of ATM-based broadband
networks. His current research in broadband networking with quality of

1981 service guarantees focusses on modeling of video streams and analyzing their
[27] W. Nicholson, Intermediate Microeconomics and its Applicatioth ~ Multiplexing behavior, with emphasis on multiple time scales and subex-
ed. New York: Dryden, 1994. ponentiality. He is also leading investigations into multimedia networking

[28] Y. A. Korilis, A. A. Lazar, and A. Orda, “Capacity allocation underarchitectures supporting interoperable exchange mechanisms for interactive
noncooperative routing,” Center Telecommun. Res., Columbia Univand on demand multimedia applications with quality of service requirements.
New York, NY, Tech. Rep. 372-94-19, 1994. Available at URLThe main focus of th_is Work_ is on building an open signalling infrastrugture_
http://www.ctr.columbia.ededjohn/capacity. html. that enables the rapid creation, deployment, and management of multimedia

[29] H. L. Royden,Real Analysis3rd ed. New York: Macmillan, 1988.  Services. Also, he was instrumental in establishing the OPENSIG international

working group with the goal of exploring network programability and next-
generation signalling technology.

Ariel Orda (S'84-M’92) was born in Argentina in
1961. He received the B.Sc. (summa cum laude),
M.Sc., and D.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology,
Haifa, Israel, in 1983, 1985, and 1991, respectively.

From 1983 to 1985, he was a Teaching Assistant
at the Technion. From 1985 to 1990, he served in the
IDF as a Research Engineer. From 1990 to 1991, he

’ was a Teaching Instructor at the Technion. In 1991

J i

Yannis A. Korilis (S'89—-M'95) was born in Thes-
saloniki, Greece, in 1966. He received the Diplome
from the National Technical University of Athens,
Greece, in 1989, and the M.S., M.Phil.,, and Ph.D
degrees from Columbia University, New York, in
1990, 1992, and 1995, respectively, all in electrica
engineering.
During the summer of 1993, he worked as Se
nior Staff Technologist at Bellcore, Morristown, NJ. he joined the Faculty of Electrical Engineering at
., Since 1995, he has been a Member of the Technick the Technion, as a Lecturer. During the academic
e Staff at Bell Laboratories, Lucent Technologies,year 1993-1994, he was a Visiting Scientist with the Center for Telecom-
Holmdel, NJ. During the spring of 1996, he held an adjunct Assistant Professounications Research, Columbia University, New York, NY. Since 1994,
position at Columbia University, New York, NY. His research interests includee has been a Senior Lecturer at the Technion. During 1991-1996, he held
control and management of multimedia networks, pricing of multimedieonsulting positions in AT&T Bell Laboratories and in the Israeli industry.
services, economic and game theoretic models for networking, and distribuiaring the summers of 1995 and 1996, he was an Academic Visitor at IBM
algorithms. T. J. Watson Research Center. His current research interests include the control
Dr. Korilis has received various academic excellence awards from thed management of broadband networks, the application of game theory to
National Scholarship Foundation and the Technical Chamber of Greece. ¢tenputer networking, QoS routing, and on-line network algorithms.
has been a winner in the Interschool Fellowship Competition at Columbialn 1991, Dr. Orda received the award of the Chief Scientist in the Ministry
University for four consecutive years. He has also received the E. |. JusyCommunication and a Gutwirth Award for Outstanding Distinction. In 1993,
Award for excellence in the area of Systems, Communications and Sigh&l received the research award of the Association of Computer and Electronic
Processing. He is a member of the ACM and INFORMS. Industries in Israel.




