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Abstract— In noncooperative networks users make control
decisions that optimize their individual performance measure.
Focusing on routing, two methodologies for architecting nonco-
operative networks are devised, that improve the overall network
performance. These methodologies are motivated by problem
settings arising in the provisioning and the run time phases of
the network. For either phase, Nash equilibria characterize the
operating point of the network. The goal in the provisioning phase
is to allocate link capacities that lead to systemwide efficient
Nash equilibria. The solution of such design problems is, in
general, counterintuitive, since adding link capacity might lead
to degradation of user performance. For systems of parallel
links, it is shown that such paradoxes cannot occur and that
the optimal solution coincides with the solution in the single-
user case. Extensions to general network topologies are derived.
During the run time phase, a manager controls the routing of part
of the network flow. The manager is aware of the noncooperative
behavior of the users and makes its routing decisions based on
this information while aiming at improving the overall system
performance. We obtain necessary and sufficient conditions for
enforcing an equilibrium that coincides with the global network
optimum, and indicate that these conditions are met in many
cases of interest.

1. INTRODUCTION

ONTROL decisions in large-scale networks are often
made by each user independently, according to its own
individual performance objectives.! Such networks are hence-
forth called noncooperative, and game theory [1], [2] pro-
vides the systematic framework to study and understand their
behavior. Game theoretic models have been employed in
the context of flow control [3]-{7], routing [8]-[10], virtual
path bandwidth allocation [11], and pricing [12] in modern
networking. These studies mainly investigate the structure of
the network operating points, i.e., the Nash equilibria of the
respective games. Such equilibria are inherently inefficient
[13] and, in general, exhibit suboptimal network performance.
The goal of this paper is to demonstrate that, while users
make noncooperative decisions, there is still room for im-
proving network performance. Improvements can be achieved
both during the provisioning phase, i.c., when the network
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"The term “user” is purposely left ambiguous. It may refer to a network
user itself or, in case that the user’s traffic consists of multiple connections,
to individual connections that are controlled independently.

parameters are sized, and during the run time phase, i.e., during
the operation of the network. Focusing on routing, we give a
uniform methodology for achieving such improvements. This
methodology is based on architecting the network equilibria.
The related analysis involves comparisons of equilibria of
different games. Such comparisons are scarcely attempted in
the game theoretic literature, mainly due to the complex struc-
ture—or lack thereof—of the underlying game. One exception
is [14], which addresses the problem of designing the service
discipline of a switch shared by users performing flow control.
In the provisioning phase, the designer allocates link capac-
ities, i.e., architects the capacity configuration of the network,
so that the resulting equilibrium is systemwide ‘“efficient”
or “optimal.” We consider several efficiency criteria for the
designer, such as the “price” (marginal cost) as seen by each
user, the total cost of each user, or some combination of
the above. The designer has to decide how much capacity
should be allocated to each link, while satisfying lower bounds
specified per link and an upper bound on the total capacity. The
designer seeks an allocation of capacities that achieves the best
performance, according to the chosen efficiency criterion. The
immediate question that arises is whether the designer should
attempt to employ all the available resources. Surprisingly, in
general, the answer is no! To illustrate this counterintuitive
behavior of noncooperative networks, we adapt the Braess
paradox [15], [16] to our setting and show that addition of
resources may result in degradation of user performance.
Example: Consider the network depicted in Fig. 1. There
are I users, each with an average throughput demand r,
sending flow from node 1 to node 4. Links (1,2) and (3,4)
have each capacity c;. Link (1,3) represents a path of n
tandem links, each with capacity co.? Similarly, links (2,4)
and (2, 3) are paths of n links, each with capacities ¢y and cs,
respectively. Each user routes its demand » over the available
paths, so as to minimize its total cost defined as the sum of
its delays over all links. The delay per unit of flow on each
link is given by the M/M/1 delay formula. Prices (marginal
costs) represent derivatives of the cost with respect to user
flows. For this system there exists a unique and symmetrical
Nash equilibrium [10], i.e., the equilibrium flows (and thus,
the costs and prices) of the users are equal. Figs. 2 and 3
show, correspondingly, the user price and cost as functions of
cs, forcy = 2.7, ¢ =27, n =54, I =10 and » = 0.2. The
figures indicate that, for any ¢ > 0, both the price and the
cost of each user are higher than for c3 = 0, i.e., eliminating
the path (2,3) leads to an improvement of performance for

2For c3 > Ir, each of the paths (1,3) and (2,4) approximates a link
with nonnegligible delay that has low sensitivity to flow changes; such
constructions are required in order to reproduce the classical Braess paradox
in a queueing setting [16).
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Fig. 1. Network paradox.
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Fig. 2. User price as a function of the link capacity cs3.

all users. More surprisingly, this paradoxical behavior persists
even if c3 = 00, i.e., when nodes 2 and 3 are merged into
a single node.

For a system of parallel links we show that the Braess
paradox cannot occur, that is, addition of capacity improves
the network performance. We then consider the problem of
allocating such additional capacity to links in an optimal way.
We show that the best design strategy is to allot the additional
capacity exclusively to the link with the originally highest
capacity. This solution coincides with the optimal capacity
allocation in a network where routing is centrally controlled.
We extend some of these results to general network topologies.

In the run time phase, we assume that, apart from the
noncooperative users, there is also a manager, that attempts
to optimize the system performance, by deciding upon the
routing of an additional, network-controlled flow. The manager
is aware of the noncooperative behavior of the users, and thus
it can predict their reaction to any routing strategy that it
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Fig. 3. User cost as a function of the link capacity c3.

chooses. This information enables the manager to implement
a routing strategy that drives the users to the “best” Nash
equilibrium in terms of system performance, architecting, this
way, the flow configuration of the network. This is the typical
scenario of a Stackelberg game [1], in which the manager acts
as a leader and imposes its strategy on the users which behave
as-followers. Stackelberg strategies have been investigated in
the context of flow control in [17]. In that reference, however,
the leader is a selfish user concerned about its own, rather
than the system’s, performance.

For the parallel links model, we derive necessary and suf-
ficient conditions that guarantee that the manager can enforce
an equilibrium that coincides with the network optimum (the
optimal solution of the routing problem when all the flow in
the network is centrally controlled), and indicate that these
conditions are met in many cases of practical interest. In
other words, the manager is often able to obtain, through
limited control, the same system performance as in the case
of centralized control. Moreover, when these conditions are
satisfied, we show that there exists a unique strategy of the
manager that drives the system to the network optimum, and
specify its structure explicitly.

We note that systems of parallel links, albeit simple, repre-
sent an appropriate model for seemingly unrelated networking
problems. Consider, for example, a network in which resources
are pre-allocated to various routing paths that do not inter-
fere. Such scenaria are common in modern networking. In
broadband networks bandwidth is separated among different
virtual paths, resulting effectively in a system of parallel
and noninterfering “links” between source/destination pairs.
Another example is that of internetworking, in which each
“link” models a different sub-network.

The outline of the paper is the following. In Section II, we
present the noncooperative parallel links model. The design
issues arising in the provisioning phase are investigated in
Section III. Specifically, after formulating the problem in
Section IMI-A, we outline the main results in Section III-B.
In Section III-C, we explore the structure of the underlying
Nash equilibria. In Section III-D, we establish that addition
of capacity to a network of parallel links cannot degrade

" performance. With this result at hand, we investigate, in
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Fig. 4. The system of parallel links.

Section III-E, the optimal strategy for adding capacity to
networks of parallel links. In Section III-F, we extend some
of these results to general topologies. The management issues
arising in the run time phase are considered in Section IV.
Finally, Section V summarizes the main results and delineates
their practical implications. Due to size constraints, most of
the formal proofs are omitted; for these proofs the reader is
referred to [18], [19].

II. THE MODEL
We consider a set 7 = {1,---,I} of users, that share a
set L= {1,---, L} of communication links interconnecting a

common source to a common destination node (Fig. 4). Let
¢ be the capacity of link [, and C = )7, ¢; be the total
capacity of the system. Each user ¢ has a throughput demand
that is some process with average rate r* > 0. We assume
that 7! > r2 > ... > ¢/ Let R = Y ez denote the total
demand of the users. We only consider capacity configurations
¢ = (¢1,- -+, cr) that can accommodate the total user demand,
i.e., configurations with C > R.

User ¢ ships its flow by splitting its demand ¢ over the set
of paraliel links, according to some individual performance
objective. Let f; denote the expected flow that user 7 sends on
link {. The user flow configuration f* = (fi,---, f}) is called
a routing strategy of user i and the set F¥ = {f* ¢ R :
0< fi <a, l€L; Y. fi =r'} of strategies that satisfy
the user’s demand is called the strategy space of user i. The
system flow configuration f = (f1,... f7) is called a routing
strategy profile and takes values in the product strategy space
F = RierF &

The performance objective of user ¢ is quantified by means
of a cost function J'(f). The user aims to find a strategy
f* € F' that minimizes its cost. This optimization problem
depends on the routing decisions of the other users, described
by the strategy profile =% = (f!,... fi=1 fi+1 ... fI)
since J* is a function of the system flow configuration f. A
Nash equilibrium of the routing game is a strategy profile from
which no user finds it beneficial to unilaterally deviate. Hence,
f € F is a Nash equilibrium if

f! € arg min Jigt £7Y), 1eZ. ¢))
gieF:

The problem of existence and uniqueness of equilibria has
been investigated in [10] for certain classes of cost functions.
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Here, we consider cost functions that are the sum of link cost
functions

O =Y, HE). @) =fT), e <
where f; = (f{,--, f{), and Tj(f;) is the average delay per
unit of flow on link [ that depends only on the total flow
fi = Y;c7 fi on that link. In particular, we concentrate on
the M/M/1 delay function

1
T(f) = { o }? Sa 3)
Equations (2) and (3) imply that J(f)/r® is the average
time-delay that the flow of user ¢ experiences under strategy
profile f. Note that the stability constraint f; < ¢; of link [ is
manifested through the definition of 7;. In particular, since the
total user demand R does not exceed the total capacity C of the
network, (1) and (3) guarantee that at any Nash equilibrium
fi<cgforall e L.

Given a strategy profile £~ of the other users, the cost
of user i, as defined by (2) and (3), is a convex function of
its strategy f*. Hence, the minimization problem in (1) has a
unique solution. The Kuhn-Tucker optimality conditions [20],
then, imply that f* € F* is the optimal response of user 4 to f
if and only if there exists a (Lagrange multiplier) A, such that

AT )

A= =—(f), if ff >0, lel “
U

9T .

MN<Z(f), iffi=0, lecL. (5)
o ® it

Thus, a strategy profile f € F is a Nash equilibrium, if and
only if there exist A, i € Z, such that the optimality conditions
(4)—~(5) are satisfied for all ¢ € Z. The above conditions
imply that the Lagrange multiplier A’ is, in fact, the marginal
cost of user ¢ at the optimality point. In accordance with the
economics terminology, A* will be referred to as the price of
user 7 [21].
For the cost function J*(f) given by (2) and (3), we have
A _a-f
a7 () = iTi(f) + Tu(f) = eI (©)
where T} is the derivative of T; with respect to f;, and
=3 i i s the total flow that all users except the
ith send on link [. Note that 7} = T2.

In [10] it has been shown that the routing game described
above has a unique Nash equilibrium.

At times we will concentrate on special types of users,
defined in the sequel.

Definition 1: Users are called identical if their demands are
equal, i.e., 7' = 77 for all 3,5 € 7.

The Nash equilibrium of identical users is symmetrical, i.e.,
fi=f = f/IforalijeI[0]

Definition 2: A user is is said to be simple if all of its flows
are routed through links (or paths) of minimal delay.

Users often route their flows according to the ‘“‘simple”
scheme due to practical considerations. Many typical routing
algorithms send flows through shortest paths, without account-
ing for derivatives (7}) and thus bifurcating flows. The Nash
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equilibrium of simple users in a system of parallel links is
unique with respect to the total link flows [10], and the
corresponding necessary and sufficient conditions require the
existence of some A, such that

A=1T, iffl>0,
AT, if fi=0,

lel )]
lel. ®)

We shall refer to the value of X as the price of the simple users.
From (7)—(8), it is easy to see that users that route according
to the optimality conditions (4)—(5) become simple as their
population grows to infinity and their individual demands
become infinitesimally small, while their total demand remains
R. This is the typical scenario in a transportation network.

Definition 3: Users are said to be consistent (for a given
capacity configuration) if, at the Nash equilibrium, they all
use the same set of links.

Due to the structure of their Nash equilibrium, identical
users are consistent. It is easy to verify that simple users are
also consistent. Finally, consistent users are typical of systems
with heavy traffic, i.e., when R approaches C, in which case
each user sends flow on all links in the network.

[II. ARCHITECTING THE CAPACITY
CONFIGURATION IN THE PROVISIONING PHASE

A. Problem Formulation

Consider a network of parallel links with initial capacity
configuration c® and total capacity C° > R. Assume that
¢ > .- >¢c% > 0. Suppose that there exists some additional
capacity allowance of at most A, which the network designer
can distribute among the network links. The aim of the
designer is to implement a capacity configuration c, with
c > cf for all links [ € £, that results in a network with
a total capacity of at most C® + A, that is “efficient” at the
corresponding Nash equilibrium. Without loss of generality,
we concentrate on capacity configurations c that preserve the
initial link order, i.e., configurations with ¢; > --- > c1. The
set of all capacity configurations that can be implemented by
the designeris Ca = {c € RX :¢c; > - >cr; a2 ¢, L€
L; Yiecla — ¢f) < A}. Each capacity configuration in Ca
induces a routing game that has a unique Nash equilibrium.
Therefore, we can define a function N : Ca — F, that assigns
to each ¢ € Ca the Nash equilibrium A(c) of its respective
routing game. A will be referred to as the Nash mapping. The
set Ca will be called the space of routing games.

The designer may have different measures to characterize
the efficiency of a capacity configuration. We shall concentrate
on measures that are expressed by means of either the user
prices or costs. Although the user’s cost is a direct measure
of its level of satisfaction, prices may be a more important
measure from the system’s point of view, since they account
for the level of congestion as seen by users and are the direct
indication of how each user could accommodate fluctuations

3The properties of the Nash equilibrium in a system of parallel links with
capacity configuration ¢ depends on the actual link capacities and not on
the link “labels,” that are determined by the initial configuration c°. Hence,
renaming the links, so that ¢; > --- > cr, does not affect the characteristics
of the resulting equilibrium.
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in the system’s state. The designer can consider various ways
of combining either the prices or the costs of the users. We
shall concentrate on user optimization, i.e., trying to reduce the
price or cost of each and every user, and overall optimization,
i.e., trying to reduce the sum of all prices or costs. The various
performance measures of the designer are formally stated in
the following definitions:
Definition 4: Consider two capacity configurations ¢ and ¢
and let A and A? (J¢ and J) be the price (cost) of user i at
the respective equilibrium. Then:
1) Configuration ¢ is said to be user price (cost) efficient
relative to configuration c, if A* < A? (Ji < J, for all
i el

2) Configuration & is said to be overall price (cos?) efficient
relative to configuration c, if 3 ;7 A < Yr A
ez ' < Lier T

Definition 5: Given a set of capacity configurations C, a
capacity configuration c¢* € C is called:

1) user price (cost) optimal in C, if it is user price (cost)

efficient relative to any ¢ € C,
2) overall price (cost) optimal in C, if it is overall price
(cost) efficient relative to any ¢ € C.

Obviously, user efficiency (optimality) implies overall ef-
ficiency (optimality). Price and cost efficiency (optimality),
however, do not imply each other in either direction. Note also
that, in general, existence of user optima cannot be guaranteed
even if overall optima do exist.

The optimal capacity allocation problem corresponding to
the various performance measures is described as follows:

Given a system of parallel links £ with users Z, an
(initial) capacity configuration c® and an additional
capacity allowance A, find a capacity configuration c*
that is user/overall price/cost optimal in Ca.

Although the problem is formulated as allocating additional
capacity to an existing network, this formulation is equivalent
to the typical capacity allocation problem, where the capacity
of each link has to be higher than a lower bound, e.g., due to
reliability considerations.

Solving the optimal capacity allocation problem in a net-
work shared by noncooperative users amounts to comparing
the Nash equilibria of the routing games induced by different
capacity configurations in C. Comparing the outcomes of
different games is, in general, a highly complex task and is
feasible only if an explicit characterization of the respective
equilibria is available. The structure of the unique Nash
equilibrium of the routing game is investigated in Section III-
C. Before we proceed, let us first summarize the main results
of this section.

B. Outline of Results

Following is an informal summary of the main results on
the design problem.
1) Addition of capacity to any link results in a configuration
that is user price efficient.
2) Addition of capacity to the link with the initially highest
capacity results in an overall cost efficient configuration.
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3) For consistent users (thus, in particular, for identical or
simple users), addition of capacity to any link results
with a user cost efficient configuration.

4) The capacity configuration that results from allocating
the entire additional capacity allowance to the link with
the initially highest capacity is user price optimal in Ca.

S) The user price optimal capacity configuration is also user
cost optimal, if the lower bounds on the link capacities
are the same for all links.

6) User cost optimality of the above configuration is also
established when users are consistent (thus, in particular,
when they are identical or simple), and also in the case
of two users.

7) Considering general topologies (i.e., not necessarily sys-
tems of parallel links), we obtain methods for adding
capacity to links so the Braess paradox does not occur.

C. Structure of the Nash Equilibrium

In this subsection we study the structure of the Nash
equilibrium of the routing game in a network of parallel links
with capacity configuration c. A set of intuitive monotonicity
properties of the Nash equilibrium have been established in
[10} and are summarized in the following:

Lemma 1: Let f be the unique Nash equilibrium of the
routing game in a network of parallel links with capacity
configuration c. Then:

1) The expected flow of any user ¢ € Z decreases in the

link number, ie., fi > fi> - > fi.

2) For any link [ € L, the flows decrease in the user
number, ie., f} > f2>--- > fL.

3) The residual capacity is decreasing in the link number,
e, —fi>co—fo>--2c— fr.

4) For every user i € Z, the residual capacity ¢} = ¢; — f;*
seen by the user on link [ is decreasing in the link
number, i.e., cﬁ > c§ > 2 ci.

Let £* denote the set of links that receive some flow from
user ¢, and Z; denote the set of users that send flow over link
{. The first statement in Lemma 1 implies that for every user
i, there exists some link L?, such that fl’ > 0 for all | < LY,
and fj = 0 for [ > L%, that is, £* = {1,2,---, L*}. Similarly,
the second statement in the Lemma implies that for every link
1, there exists some user I;, such that ff > 0 forall s < I,
and f} =0 fori > I, thatis, Z; = {1,2,---,;}.

Consider now the best reply f* of user i to a fixed strategy
profile f~* of the other users. This is the unique solution to
the optimal routing problem in a network of parallel links
with capacities ¢, [ € £. In the sequel, we give an explicit
characterization of the structure of the user’s equilibrium
strategy f*, as a function of ¢’ = (ci,---,c% ), which depends
on the capacity configuration ¢ and the strategy profile f ¢ of
the other users. To this end, let us define

-1

. , Y B
G-y A V=2 L ©
. . L .
Gi=0, Gop=) _ &.=C-R"
forall i € Z, where R~ = 3,77 is the total demand of all
users except the ith. Then, ¢} > ¢}, (see Lemma 1) implies
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that Gi < Gj,,, for all [ € £. We are now ready to state
the following:

Proposition 1: The Nash equilibrium f of the routing game
in a system of parallel links with capacity configuration c is
described by

i (L iy Ve 1<1< L
= (Xm=1 Cm =T )Zfr;l o 1SS
0, L'<I<L

| (10)
for every user ¢ € Z, where the threshold L* is determined by
G"L, <rt <Gy, +1- The equilibrium price and the equilibrium
cost for user ¢ are, respectively,

; 2
i _{ ZtL=1 Ve }2 Ji= {E’L:l \/;;} i
Sig-r) Sl -
(11

Remark: The proposition implies that the information user ¢
needs to determine its best reply f* to any strategy profile
f~% of the other users is the residual capacity c} seen by
the user on every link [ € £ (see (10) and (9)), and not a
detailed description of £¢. In practice, information about the
residual capacities ci, [ € £, can be acquired by means of an
appropriate estimation technique.

From Proposition 1, and especially the expressions for the
equilibrium prices and costs, it is clear that the set of links
over which each user sends its flow has a prominent role
in the properties of the Nash equilibrium. To investigate the
capacity allocation problem, we need to compare the equilibria
of games that are induced by different capacity configurations
in Ca. If the resulting equilibria are such that the sets of
links over which each user sends its flow do not coincide
at both equilibria, such comparisons are extremely complex,
if possible at all. In [18], we exploit the structure of the Nash
equilibrium, to show that the Nash mapping N is continuous.

- In the same reference, we show that this fundamental property

allows us to investigate the general capacity allocation problem
based solely on comparisons between capacity configurations,
that are such that each user sends its flow over the same links
under both configurations.

D. Efficiency of Capacity Addition

- In this subsection we investigate the addition of capacity
to systems of parallel links, and show that, under various
conditions, the Braess paradox does not occur in this setting.
- A capacity configuration ¢ is called an augmentation of con-
figuration c, if & > ¢; forall land 5, & > ), ¢;. Throughout
this subsection we shall compare the Nash equilibrium of a
capacity configuration c to that of some augmentation ¢. “Hat”
values will refer to configuration ¢, while “nonhat” values to c.

The first lemma shows that addition of capacity is always
efficient as with respect to prices.

Lemma 2: 1f a capacity configuration ¢ is an augmentation
of configuration c, then ¢ is user price efficient relative to c,
ie., X < A, for all ¢ € Z. Moreover, the equilibrium delay
of each link [ is lower (not higher) under configuration ¢, i.e.,
Ty < T, forall l € L.
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The following lemma shows that if capacity is added solely
to the link with the initially highest capacity (i.., to link 1),
the resulting configuration is overall cost efficient.

Lemma 3: Let c and & be two capacity configurations such
that & = ¢; for all | > 1 and é; > ¢;. Then ¢ is overall cost
efficient relative to c.

The following two lemmata establish user cost efficiency of
capacity addition in some special cases of interest.

Lemma 4: Let c and ¢ be two capacity configurations such
that ¢ is an augmentation of c. Assume that users are consistent
under both ¢& and c. Then ¢ is user cost efficient relative to c,
that is, J* < J%, for all i € T.

The above result applies, in particular, both to identical users
and to simple users, since they belong to the class of consistent
users, under all capacity configurations.

Lemma 5: Let c and ¢& be two capacity configurations such
that & = ¢; for all [ > 1 and é; > c¢;. Then, for I = 2, € is
user cost efficient relative to c.

E. Optimal Capacity Allocation

We now proceed to investigate the optimal capacity alloca-
tion problem, according to the various performance measures
defined in Section ITI-A. The main resuits of this section,
namely Theorems 1, 2, and 3, assert that the capacity con-
figuration ¢* = c® + Aey,* that results from allocating
the entire additional capacity to the link with the initially
highest capacity is (i) user price optimal in Ca and (ii)
user cost optimal in Ca if the lower bounds on the link
capacities are equal for all links. Furthermore, c* will be
shown to be user cost optimal for a number of special cases
of interest. While this is a simple and intuitive result, its proof
requires systematic analysis that establishes some “order” in
the complex structure of the underlying game. Although most
of the formal proofs are excluded from the main text, the
lemmata presented in this section delineate the methodology
through which that task has been achieved.

We start by considering two capacity configurations ¢ and
¢ in Ca, such that ¢ = ¢ + Ay(e; — e,) is derived from
cbya transfer of capacity A, from some link ¢ > 1, with
c1 > cq > cq, to link 1, and show that ¢ is user price efficient
with respect to c. Hence, if an additional capacity of exactly A
is to be allocated to the system, then c* is the optimal capacity
configuration. By virtue of the price efficiency of capacity
addition (Lemma 2), c* is also user price optimal in the entire
space of games Ca, that allows for addition of capacity not
necessarily equal, but also less than A. As before, “hat” values
will refer to configuration ¢, while “nonhat” values to the
initial configuration c.

The comparison of capacity configurations ¢ and c is carried
out in a series of lemmata. The first lemma shows that
the transfer of capacity from link g to link 1 decreases the
equilibrium delay on link 1, while it increases the delay on
link gq.

Lemma 6: Consider two capacity configurations c,¢ € Ca
with € = ¢ + Ay(e1 — eg). Then, Ty < Ty and Tq > T,.

4e, is the vector in JRL with the Ith component equal to 1 and all other
components equal to 0.
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In the sequel, we present two lemmata that will play a key
role in the proof of price efficiency of ¢ relative to c. Both
refer to the case where the transfer of capacity A, from link
¢ to link 1 is such that each user sends its flow over the same
set. of links under ¢ and &, ie., £ = L for all ¢ € Z, and
7, = 7, for all | € L. The first lemma asserts that the capacity
transfer affects the prices of all users that send flow to link
q in the same way, that is, either N> Xforallie I, or
X < X for all i € Z,. Similarly, either all links with capacity
lower than link ¢ increase their equilibrium delays with €, or
else all of them decrease their equilibrium delays.

Lemma 7: Consider two capacity configurations c, ¢ € Ca
with &€ = c+ Ay(e; — eg), where A, is such that Lt = L for
all 3 € Z. Suppose that Z, # 0. Then either:

1) X > Xi for all i € Z,, and T} > T; for all links [ with
g <1< LY or

2) X < i for all i € Z,, and T} < Ty, for all links { with
g <1< L.

The following lemma shows that if the delay of some link
lin {2,---,¢q — 1} is higher under conﬁguration ¢, then the
same is true for all links in {{+1,---,¢ — 1}.

Lemma 8: Consider two capacity conﬁguratrons c,C €Ca
with & = c+ A (e; —e,), where A, > 0 is such that L= L,
foralli e . Foranyhnkl<q71 if T >TlthenT >T,
for all links n € {I+1,---,¢— 1}.

We are now ready to prove that & is user price efficient
compared to c. The proof is given in the following theorem,
which asserts also that the equilibrium delays on all links
except link g are lower under configuration &.

Theorem 1: Consider two capacity conﬁgurations c,& €
Ca with & = c + Ag(e; —e;), 0 < Ay < ¢g — €. Then:

1) Configuration ¢ is user price efficient compared to c,

ie., N < A for all users i € T.
2) Ty <T,foral]le£\{q} and T, > T,.

Proof: Note that Ty < Ty and Tq > T, have been
established in Lemma 6, thus we only have to prove the
remaining statements in the theorem. We will establish these
claims under the assumption that each user sends its flow over
the same set of links under c and &, i.e., that £¢ = £ for all
i € Z. As explained in [18], the results readily generalize to
the case where £ # L' for some user i.

If no user sends flow to link g, i.e., if L! < g, transferring
capacity from link ¢ to link 1 is, in fact, equivalent to addmg
capacity to the system of parallel links £' = {1,---,L'},
and the result is immediate from Lemma 2. Thus, we have to
consider only the case Z, # 0, i.e., L' > g. Without loss of
generality, we will assume that user 1 sends flow on all links
in the network, i.e., that L' = L.

Let us first show that A1 < A!. Assume by contradiction
that A\! > Al. Then, by Lemma 7, Ty > Ty, for all links
le{g+1,---,L}. An immediate consequence of Lemma 8
is that there exists some link Iy, 1 < Iy < g, such that Tl <Ti
foralll € {1,---,lo}, andTl>Tlforalll€{l0+1 N
Let us now define: y; = |(& — f,) (c1— fi)l, L € L. Note that

lo L

Zz:r = Zl=lo+l 4

(12)



KORILIS ef al.: ARCHITECTING NONCOOPERATIVE NETWORKS

since Yc (6~ fi) = Yiecle — fi) = C — R. Recalling
that ¢; — fi > ¢i41 — fiy1 (1 <1 < L) we have

L

Z(ez - =Y (a-f)?

=1

lo
yz +2{Z(Ct - fy -
i+ {(Clo fzo)zyz

lo
Y +2{(cto — fio) ~ (ctot1 = fro+1)} D_w >0 (13)

=1
where the last equality is obtained using (12). From (4), (6),
and (13), we have’

,_.

L
Y (a- fz)yt}

I=lo+1

L
Clu+1 _flo+1) z yt}

I=lg+1

Mn I M“

v
T

I
Mb

..
I
-

1 o e o= 77 < DL bk R U
Yo (&= fi)? 2aeci(e = fi)?

since £! = L. But this contradicts the assumption A! > Al
p

Therefore, Al < Al. Lemma 7, then, implies that T <T

for all [ > g, and X < )¢ for all 7 € Z,. Thus, ZzGI ' <

Yier, A", As explained in [18], this implies that Tq 1< Ty
Applymg Lemma 8 inductively for [ = ¢g—2,---, 2, it follows
that 7; < T;, for every link [ in {2,---,q—1}. This concludes
the proof of the second statement in the theorem.

It remains to be shown that A* < A%, for all users i € 7.
Assume by contradiction that there exists some user j, such
that AY > M. Then, j € T\Z,, since X < A‘ for all i € I,.
Therefore Ty < Ty, foralll € £7. Since ,’T’ +Ti =M<

f,’Tl +T,, this implies that f’ > f{ foralll € £7. Thus,
= Y ecs fi> Yiecs f = 77, which is a contradiction.
Therefore for all i € Z, we have A < X%, and this completes
the proof. |

We are now ready to prove the main result of this section,
namely that the capacity configuration that is obtained by
allocating the entire additional capacity A to link 1 is user
price optimal in Cx.

Theorem 2: Consider a system of parallel links with initial
capacity configuration c®, shared by I noncooperative users,
and an additional capacity allowance A. The capacity con-
figuration c* = ¢ + Ae,, that results from allocating the
entire additional capacity to the link with the initially highest
capacity, is user price optimal in Ca.

Proof: Let Ds denote the subspace of routing games that
is generated by allocating an additional capacity of exactly 6,
0 <6 < A, to a system of parallel links with initial capacity
configuration c°. Then Ca = Up<s<aDs. For every 6, define
c*(8) = c®+bey. Theorem 1, then, implies that c*(6) is user
price optimal in Ds. To see this consider any ¢ € Ds. From
Theorem 1, the capacity configuration c+(cp —c})(e; —er) is
user price efficient compared to c. Proceeding inductively, for
every m > 1, the configuration ¢+ Y2 (c; — c¥)(e1 —e;) is
user price efficient compared to c+37,_ ., (c1—¢f)(er —ey).

SEquations (4) and (6) give A (c; — f;)?
over I € £, the equalities in (14) follow.

= ¢ — fi + f}, and summing
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Hence, c® + fe; = ¢ + E,LZZ(CI — ¢?)(e1 — e;) is user price
efficient with respect to c, that is, ¢*(8) is user price optimal
in Ds. From Lemma 2, ¢* = ¢*(A) is user price efficient with
respect to any c¢*(6) with 0 < § < A. Therefore, c* is user
price optimal in Ca. n

The following theorem shows that c* is user cost optimal, if
the lower bounds on the link capacities are equal for all links.

Theorem 3: Consider a system of parallel links with initial
capacity configuration c?, shared by I users, and an additional
capacity allowance A. If ¢ = 0, for all I,m € L, then
the capacity configuration ¢* = c® + Ae;, that results from
allocating the entire additional capacity to link 1, is user cost
optimal in Ca.

The following two propositions establish that the user price
optimal capacity configuration c* is also user cost optimal in
some special cases of interest.

Proposition 2: Consider a system of parallel links shared by
I users, consistent at all capacity configurations in Ca . The ca-
pacity configuration c* = c®+ Ae; is user cost optimal in Ca.

Note that the above result applies to the special cases of
simple and of identical users.

Proposition 3: Consider a system of parallel shared by two
users. The capacity configuration c* = c® + Ae, is user cost
optimal in Ca.

F. General Topologies

The example presented in the Introduction shows that
adding capacity to a network, even in infinite amounts, may
result in an increase of both the price and the cost of each and
every user. This indicates that an upgrade of a general network,
in terms of capacity and link addition, should be carried out
in a cautious way. In this subsection we devise methods for
upgrading a general network, so that the Braess paradox does
not occur. The terminology introduced in previous subsections
for the parallel links model, readily extends to the general
case. Due to space limits the details are omitted; the reader
is referred to [18].

We consider now a network (V, L), where V is a finite
set of nodes and £ C V x V is a set of directed links.
A set 7 of users share the network and ship flow from a
common source s to a common destination d. User ¢ has a
throughput demand that is some process with average rate r°,
and ships its flow by splitting this demand through the various
paths connecting the source to the destination, according to
its performance objective. The terms of user flow f}, user
routing strategy f*, user strategy space F* and system flow
configuration f, originally defined in the context of parallel
links, readily extend to general topologies, except that now the
strategy space F* of user i should account for the conservation
of flow at the nodes [18]. The cost function J¢ of user i is
the sum of link cost functions J;, taken over all network links
l € L. The concepts of Nash equilibria, Nash mapping and
optimality conditions are derived similarly as for parallel links.
The various versions of the design problem apply also for the
case of general topologies.

The class of problems investigated in this paper is well
defined if the Nash equilibrium, under any capacity config-
uration, is unique. Whether this property holds in general
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topologies is an open question. Thus, we shall concentrate
on cases for which uniqueness has been established, such as
those of identical users and simple users [10].

The following proposition shows that the potential danger
of degradation in performance can be avoided by upgrading
the network “uniformly,” i.e., by multiplying the capacity of
each link by some constant factor a > 1.

Proposition 4: Tn a general topology, consider two capacity
configurations ¢ and c, such that ¢, = ac, for all lelf,a>1.
Then:

1) If the users are simple, then & is user price and cost

efficient relative to c.

2) If the users are identical, then & is user price efficient
relative to c; moreover, for & > I, € is also user cost
efficient.

Consider now an upgrade achieved by adding capacity
to a direct link between the source s and the destination
d (and, as a special case, adding a new (s, d) link). Denote
by ¢ and &, respectively, the capacity configurations
before and after this addition. We say that ¢ is a direct
augmentation of c. We then have:

Proposition 5: In a general topology, consider two capacity
configurations & and c, such that ¢ is a direct augmentation
of c. Then:

1) If the users are simple, then € is user price and cost

efficient relative to c.

2) If the users are identical, then ¢ is user price efficient
relative to c.

This result suggests that yet another way to avoid the

paradox is to upgrade the network through direct connections
between source and destination.

IV. ARCHITECTING THE FLOW
CONFIGURATION IN THE RUN-TIME PHASE

Improvements of the overall performance of a noncooper-
ative network can be achieved not only in the provisioning
phase, but also during the actual operation of the network.
In this section we demonstrate this approach based on the
noncooperative routing model described in Section II. We
assume that, apart from the flow generated by the self-
optimizing users, there is also some flow whose routing is
controlled by a central network entity, that will be referred
to as the “manager.” Typical examples of such flows are the
traffic generated by signaling and/or control mechanisms, as
well as traffic of users that belong to virtual networks. The
manager has the following goals and capabilities: (1) it aims
at optimizing the system performance, i.e., the average delay
of all flow in the network, and (2) it is cognizant of the
noncooperative structure of user routing. The first property
makes the manager just another user, whose cost function
corresponds to the system’s (rather than its own) performance.
The second property, however, enables the manager to predict
the response of the users to any strategy that it chooses, and
hence to determine a strategy of its own flow that would pilot
them to a Nash equilibrium that minimizes the system’s cost.
Therefore, instead of reacting to the routing strategies of the
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users, the manager fixes this strategy and lets them converge
to their respective equilibrium.

This is the typical scenario of a Stackelberg game [1], in
which the manager plays the role of the “leader,” and the
noncooperative users play the role of the “followers.”® The
presence of sophisticated users that can acquire information
about the demands and the cost functions of the other users
and become Stackelberg leaders in order to optimize their own
performance is in general undesirable [14]. In the problem
considered here, however, the cost function of the manager is
that of the system, and therefore it plays a social rather than
a selfish role.

In this section we investigate the optimal strategy of the
leader. In particular, we address the following question: is
it possible for the leader to impose a strategy that drives
the system into the network optimum, i.e., to the point that
corresponds to the solution of a routing problem, in which
the: leader has full control over the entire flow? Intuitively,
one would expect that the leader cannot enforce the network
optimum, since it controls only part of the flow, while the rest
is controlled by noncooperative users. Rather surprisingly, the
results reported in the sequel show that in most cases the leader
does have such capability. Due to space limits, we confine
ourselves to a general and brief overview of the results; details
can be found in [19]. We begin with an informal statement of
the results:

1) In the special case of a single follower, the manager can

always enforce the network optimum.

2) In the general case of any (finite) number of followers,
the manager can enforce the network optimum if and
only if its demand exceeds some threshold 0.

3) The threshold r% is feasible, in the sense that the total
demand of the users plus r® is lower than the total
capacity of the network.

4) In heavily loaded networks it is “easy” for the manager
to enforce the network optimum (i.e., the threshold r9
is small).

5) As the number of users increases, it becomes harder for
the manager to enforce the network optimum (i.e., the
threshold 7° increases).

6) The higher the difference in the throughput demand of
any two users, the easier it becomes for the manager to
enforce the network optimum.

We proceed with a more detailed description of these results.
Consider a system of paralle] links £ = {1,--, L} shared by
asetZ={1,---,1 } of noncooperative users (the followers),
and the manager (the leader) that is labeled as user 0. Denote
To = Z U {0}, and extend the notation of Section II in
order to indicate the presence of the additional user 0. In
particular, let f; = 3,7, fi be the total flow on link [ € L,
and £ = (f°,f',-.. f7) the system flow configuration. Let
T = 3,77 denote the total demand of the followers, and
R = 9 + r the total demand offered to the network. We
assume that R < C. Each user ¢ € 7 tries to minimize its
individual cost function given by (2), while the manager aims

6The terms “manager” and “leader,” as well as “users” and “followers,”
will be used interchangeably.
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at minimizing the total cost of the system

=3 r®=3,, o {lf:

that is proportional to the average time-delay experienced by
the total flow offered to the network.

Each strategy £ of the manager induces a unique Nash
equilibrium, denoted by A°(f°), of the noncooperative users,
that can be determined from Proposition 1 by replacing ¢ with
¢ — 2. The manager has knowledge of the noncooperative
behavior of the users, and makes its routing decisions based
on this information. In particular, the manager seeks a strategy
0 € FO that minimizes J(f°, N°(£%)). It is worth mentioning
that this optimization problem is similar to the optimal capacity
allocation problem studied in the previous sections. Indeed,
the two problems are similar, in the sense that the manager
modifies the link capacities that are available to the users.
They are different, in the sense that its routing decisions incur
a cost for the manager’s flow that has to be accounted for in
these decisions.

Let (fy,---,f}) denote the unique solution [19] to the
problem of optimally routing the total demand R over the set
of parallel links, i.e., the link flow configuration that minimizes
the total cost of the system. (f7,- -, f;) will be referred to as
the network optimum, and it is determined from Proposition 1,
by replacing f{ with f;, and ¢} with ¢;, [ € £. In the sequel,
we consider the problem of finding a strategy of the manager
that drives the system to the network optimum, i.e., a strategy
0 € FO such that if 70 = N(f%), then ¥,.7 fi = f;
for all I € L. Any such strategy of the manager achieves the
minimal cost of the system and, therefore, leads to the most
efficient utilization of network resources. Accordingly, let us
introduce the following:

Definition 6: Let f° € FO be a strategy of the manager and

0 = NO(£9). Strategy O is called maximally efficient if it
achieves the network optimum, i.e., if ziel'o fi = f7 for all
l €L

Note that, although an optimal strategy of the manager
always exists [19], existence of a maximally efficient strategy
cannot be guaranteed, in general. Evidently, if a maximally
efficient strategy exists, then it is an optimal strategy of the
manager.

In the sequel, we present necessary and sufficient conditions
that guarantee existence of a maximally efficient strategy of
the manager. Moreover, provided that these conditions are met,
we show that the maximally efficient strategy of the manager
is unique and we specify its structure explicitly. To that end,
define

-1 .
H = Zn=1 n

Hy =0,

(15)

l=2,---,L (16)

I -1
JL E Cns
& n=1
L *
Hypy = anl fr=R.

Then, as shown in [19], we have H; < H;,1, foralll € L.
Consider first the case of a single follower. Except for being
the simplest case of the general Stackelberg routing game, this
case is of interest since it represents practical situations, in
which different types of traffic (say, “system” and “data™) are
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routed by different entities, one of which is cognizant of the
operation of the other, hence the leader-follower setting.

Theorem 4: In the single-follower Stackelberg routing
game, there exists a unique maximally efficient strategy O of
the leader that is given by

Lt * 1
f;v

where L! is determined by Hy: < r! < Hpiyg.

The theorem indicates that, the leader can enforce the
network optimum, independently of the relative sizes, in terms
of demands, of the leader and the follower. In other words, it
is'enough to have control on just a nonzero portion of flow in
order to “tame” a single selfish user.

- We now proceed to the general case of any (finite) number of
users. The following lemma describes the maximally efficient
strategy of the leader, provided that such a strategy exists.

Lemma 9: In a multifollower Stackelberg routing game,
if there exists a maximally efficient strategy f° of the leader,
then it is unique and is given by

(amn
l=L'+1,---,L

*
7 —clz Z"—lf - (L -1)f}, lel (18)
i€, E:n—l Cn
where, for every i € I, L' is determined by
Hp: < r < Hpiyy, and for every | € L,
Iy ={i €T :1< L%} and I; = |Z;). In that case, the
equilibrium strategy f* of user ¢ € T is described by
DO :
: g =1 l=1,~--,L'
fi= TR |
0, I=L"+1,---,L.
19)

Conversely, if fO described by (18) is an admissible strategy
of the leader, i.e., if f© € F?, then it is its maximally
efficient strategy.

Note that if the leader employs strategy £, then (19) implies
that the set of links used by follower i is precisely {1, - - -, L},
thus Z; is the set of followers that send flow on link [. In
general, fO might fail to be an admissible strategy of the
leader. In [19], we show that f° is admissible, if and only
if the demand of the leader is higher than a threshold 7°.
Therefore, we have the following:

Theorem 5: There exists some r°, with 0 < r° < C — 7,
such that the leader in a multifollower Stackelberg routing
game can enforce the network optimum, if and only if its
throughput demand 70 satisfies r® < 7® < C — r. Then, the
maximally efficient strategy of the leader is given by (18).

From the theorem, it follows that, for any set of followers
for which r < C, there is a (feasible) leader, with 70 < 70 <
Cc- r, that can enforce the network optimum. Moreover, when
r — C, we have 70 — 0, meaning that in heavily loaded
networks it suffices to control just a small portion of the flow in
order to drive the system into the network optimum. This result
is quite encouraging, because it is in heavily loaded networks
where the presence of a manager is particularly important.

7The expression for determining r° can be found in [19].
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If the leader can enforce the network optimum, it can
determine its maximally efficient strategy given the throughput
demand r* of every follower i € 7 and the network opti-
mum (f7, -+, f1), as indicated by Lemma 9. The network
optimum can be readily computed from Proposition 1 given
the total load R offered to the network. Hence, the leader
needs information only about the throughput demand of every
follower. Since user flows are accepted by means of some
admission control mechanism, this information is available
to the manager. Each time a user arrives to or departs from
the network, the manager can readily adjust its strategy to
the maximally efficient one, using the information about the
throughput demand of that user. In that sense, the proposed
mechanism of enforcing the network optimum by means of
the manager’s routing strategy is scalable.

The minimum throughput demand rC that guarantees that
the leader can enforce the network optimum depends on the
number and the throughput demands of the followers. This
dependence is summarized in the following two propositions.
The first gives the dependence of r° on the number of
followers when their total throughput demand r is fixed. To
simplify the formulation of the problem, we concentrate on
the case of identical users. The proposition shows that as the
number of users increases, the harder it becomes for the leader
to enforce the network optimum.

Proposition 6: Suppose that the followers are identical
and their total throughput demand r is fixed. Then, the
minimum throughput demand r° that enables the leader
to enforce the network optimum is nondecreasing with
the number of followers.

Let us now concentrate on the dependence of r° on dif-
ferences of the demands of the followers, when their total
throughput demand r is fixed. The following proposition
shows that the higher the difference in the throughput demand
of any two followers, the easier it becomes for the leader to
enforce the network optimum.

Proposition 7: Suppose that the total throughput demand
r of the followers is fixed. Then, for any two followers
j and k, the minimum throughput demand r° that enables
the leader to enforce the network optimum is nonincreasing
with |ri — r*|. Therefore, r° attains its maximum value
when all followers are identical.

Let us now demonstrate the properties of 7° by means of
a numerical example. We consider a system of parallel links
with capacity configuration ¢ = (12,7,5,3,2,1), shared by 1
identical followers with total demand 7. The threshold r° of
the leader is depicted in Fig. 5 as a function of r, for various
values of I. We concentrate on total follower demands that
exceed half the total capacity of the network. In the same
figure, we also show the saturation line “r® 4+ r = C”. From
the figure, one can see that 7 always lies below the saturation
line, in accordance with Theorem 5. Furthermore, r0 increases
with the number of followers. An important observation from
the figure is that 70 decreases as the total demand of the
followers increases, not only in the heavy load region, but
also for moderate loads.

Finally, in [19], we also consider the case of an infinite
number of followers, i.e., the case of simple followers. In par-
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Fig. 5. Leader threshold as a function of total follower demand.

ticular, we explain that the leader cannot enforce, in general,
the network optimum. For that case, we specify the structure
of an optimal strategy of the leader and we provide a simple
algorithm to compute it.

V. CONCLUSIONS

Design and management strategies for improving the per-
formance of noncooperative networks were considered. A
practical implication of this work is that design rules for
noncooperative networks may follow the same simple pat-
terns that apply to centrally controlled networks, and limited
controllability can be as powerful as full controllability.

" The first strategy called for devising proper design rules
during the provisioning phase of the network. The problem
was formulated as one of allocating additional capacity to
an existing noncooperative network. Not only is this problem
prohibitively complex and hard to analyze, but also it exhibits
paradoxical behavior, according to which added resources
might degrade user performance. For a system of parallel links
we established that addition of capacity guarantees improved
performance for all users. Given this result, we showed that
the capacity allocation problem has a simple and intuitive
solution: the optimal allocation assigns the additional capacity
exclusively to the link with the initially highest capacity. It is
worth noting that, although the noncooperative setting makes
the analysis tedious, this solution coincides with the optimal
capacity allocation when routing is centrally controlled.

The second strategy called for improving the performance of
the network during its actual operation. This can be achieved
by a management entity, that has control on only part of the
network flow, and is cognizant of the presence of noncoopera-
tive users. Specifically, we considered a network manager that
acts as a Stackelberg leader. Considering a system of parallel
links, we showed that, in a wide range of cases, by controlling
just a small portion of the total flow, the network operating
point can be driven into the network optimum. This result
suggests that, even with limited controllability, proper run time
actions can diminish considerably, or even avoid altogether,
the inefficiency implicated by the noncooperative behavior of
the users.

Methodologies for upgrading general networks while avoid-
ing the Braess paradox were also investigated. The related re-
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sults indicate that capacity should be added across the network,
rather than on a local (e.g., single link) scale. This fits well
with engineering practice, where common folklore suggests
that local improvement may result in transferring the problem
somewhere else in the system. Another indication is that
upgrades should be aimed at direct connections between the
source and the destination. This is yet a further indication of
the potential benefit of decoupling complex structures in a net-
work, so that the controllers are presented with simple choices.
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