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Perfect Recovery and Sensitivity Analysis of Time
Encoded Bandlimited Signals

Aurel A. Lazar, Fellow, IEEE, and László T. Tóth

Abstract—A time encoding machine is a real-time asynchronous
mechanism for encoding amplitude information into a time se-
quence. We investigate the operating characteristics of a machine
consisting of a feedback loop containing an adder, a linear filter,
and a noninverting Schmitt trigger. We show that the amplitude
information of a bandlimited signal can be perfectly recovered
if the difference between any two consecutive values of the time
sequence is bounded by the inverse of the Nyquist rate. We also
show how to build a nonlinear inverse time decoding machine
(TDM) that perfectly recovers the amplitude information from
the time sequence. We demonstrate the close relationship between
the recovery algorithms for time encoding and irregular sampling.
We also show the close relationship between time encoding and
a number of nonlinear modulation schemes including FM and
asynchronous sigma–delta modulation. We analyze the sensitivity
of the time encoding recovery algorithm and demonstrate how to
construct a TDM that perfectly recovers the amplitude informa-
tion from the time sequence and is trigger parameter insensitive.
We derive bounds on the error in signal recovery introduced by
the quantization of the time sequence. We compare these with the
recovery error introduced by the quantization of the amplitude
of the bandlimited signal when irregular sampling is employed.
Under Nyquist-type rate conditions, quantization of a bandlimited
signal in the time and amplitude domains are shown to be largely
equivalent methods of information representation.

Index Terms—Bandlimited signals, quantization, sampling
methods, sensitivity, signal representation.

I. INTRODUCTION

AFUNDAMENTAL question arising in information pro-
cessing is how to represent a signal as a discrete sequence.

The classical sampling theorem ([9], [18]) calls for representing
a bandlimited signal based on its samples taken at or above the
Nyquist rate.

A time encoding of a bandlimited function , is a
representation of as a sequence of strictly increasing times

, where and denote the set of real numbers and
integers, respectively (see Fig. 1). Alternatively, the output of the
encoder is a digital signal that switches between two values

at times . Time encoding is an alternative to classical
sampling and applications abound. In the field of neuroscience,
the representation of sensory information as a sequence of action
potentials can be modeled as temporal encoding. The existence
of a such a code was already postulated in [1]. Time encoding is
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Fig. 1. Time encoding and decoding.

also of great interest for the design and implementation of future
analog to digital converters. Due to the ever-decreasing size of
integrated circuits and the attendant low-voltage, high-precision
quantizers are more and more difficult to implement. These cir-
cuits provide increasing timing resolution, however, that a tem-
poral code can take advantage of [16].

There are two natural requirements that a time-encoding
mechanism has to satisfy [10]. The first is that the encoding
should be implemented as a real-time asynchronous circuit.
Second, the encoding mechanism should be invertible, that
is, the amplitude information can be recovered from the time
sequence with arbitrary accuracy.

The encoding mechanism investigated here satisfies both of
these conditions. We show that a time encoding machine (TEM)
consisting of a feedback loop that contains an adder, a linear filter
and a noninverting Schmitt trigger has the required properties.
We show that the amplitude information of a bandlimited signal
can be perfectly recovered if the difference between any two con-
secutive values of the time sequence is bounded by the inverse
of the Nyquist rate. We also show how to build a nonlinear in-
verse time decoding machine (TDM) (see Fig. 1) that perfectly
recovers the amplitude information from the time sequence. The
relationship between the recovery algorithms for time encoding
and irregular sampling is described in the language of adjoint
operators. We also show the close relationship between time
encoding and a number of nonlinear modulation schemes in-
cluding FM and Asynchronous Sigma-Delta Modulation.

The TEM considered in this paper is implemented as a non-
linear circuit. The classical Fourier analysis applied to such a
circuit, has unfortunately, limited utility. An investigation of an
example TEM solely based on Fourier analysis is described in
[16]. Clearly, this analysis does not provide the insights and un-
derstanding needed for inverting nonlinear circuits.

The mathematical methodology used here is based on non-
harmonic analysis [4], [20]. For readers who are unfamiliar with
this methodology, we introduce all the concepts needed in the
presentation. The time investment in this methodology turns out
to be worthwhile. We demonstrate that time encoding provides
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a representation modality that is on par with the classical sam-
pling representation. However, time encoding brings an addi-
tional benefit because it is clock free. In addition, it is amenable
to nano-scale implementation. This paper develops the theory of
time encoding and decoding and shows the relationship to other
nonlinear modulation schemes.

In practice, the question of sensitivity of the recovery algo-
rithm with respect to parameter variation of the TEM is of ut-
most importance. In this paper, we investigate the sensitivity of
signal recovery with respect to the Schmitt trigger parameter
as well as with respect to the number of bits used to quantize
the values of the trigger times.

Through behavioral simulations, we demonstrate that the
TDM that implements the perfect recovery algorithm is highly
sensitive to a broad range of values of . Based on the simple
compensation principle of [10] we provide a perfect recovery
algorithm that is -insensitive.

We evaluate the error introduced by the quantization of the
time sequence and derive bounds on the recovery error. We com-
pare these with the recovery error introduced by the quantization
of the amplitude of an arbitrary bandlimited signal when irreg-
ular sampling is employed [5]. Under Nyquist-type rate condi-
tions, quantization of a bandlimited signal in the time and am-
plitude domains are shown to be largely equivalent methods of
information representation. An empirical result describing the
mean-square error (MSE) as a function of oversampling ratio
and the number of bits used in the representation of the time
sequence is also given.

This paper is organized as follows. In Section II, a method
of mapping amplitude information into a time sequence is pre-
sented. An example of a TEM is given and its stability analyzed.
In order to simplify the analysis, an equivalent circuit that de-
scribes the key elements of the TEM is introduced. This cir-
cuit is used throughout the rest of the paper. Section III derives
the perfect recovery algorithm. Section IV presents the relation-
ship between irregular sampling and time encoding. The rela-
tionship to a number of nonlinear modulation schemes is also
demonstrated. Section V investigates the sensitivity of the re-
covery algorithm with respect to the Schmitt trigger parameter
. The compensation principle is used to build a -insensitive re-

covery algorithm. The effect of quantization of the trigger times
on signal recovery is discussed in Section VI. In Section VII,
the effects of quantization in the time and amplitude domains
on the recovery of bandlimited signals are compared. Concu-
sions are drawn and future research directions are mentioned in
Section VIII.

II. TIME ENCODING

The TEM investigated in this paper is depicted in Fig. 2. The
filter is assumed to be an integrator. Clearly the amplitude infor-
mation at the input of the TEM is represented as a time sequence
at its output.

The basic principle of operation of the TEM is very simple.
The bounded input signal , is biased by a
constant amount before being applied to the integrator.
This bias guarantees that the integrator’s output is a positive
(negative) increasing (decreasing) function of time. In steady

Fig. 2. Example of TEM.

state, there are two possible operating modes. In the first mode,
the output of the TEM is in state and the input to
the Schmitt trigger grows from to . When the output of
the integrator reaches the maximum value , a transition of the
output from to is triggered and the feedback be-
comes negative. In the second mode of operation, the TEM is in
state and the integrator output steadily decreases from

to . When the maximum negative value is reached
will reverse to . Thus, while the transition times of the output

are nonuniformly spaced, the amplitude of the output signal
remains constant. Therefore, a transition of the output from
to or vice-versa takes place every time the integrator output
reaches the triggering mark or (called quanta). The time
when this quanta is achieved depends on the signal as well as
on the design parameters , and . Hence, the TEM maps am-
plitude information into timing information. It achieves this by
a signal-dependent sampling mechanism.

In Sections III and IV, we discuss the conditions for stability
of the TEM and introduce an equivalent circuit that describes its
key elements.

A. Stability

In Fig. 2, , , and are strictly positive real numbers and
is a Lebesgues measurable function modeling the

input signal to the TEM for all . The output of the
integrator in a small neighborhood of is given by

Note that is a continous increasing (decreasing) func-
tion whenever the value of the feedback is positive (negative).
Here, for all , is the function cor-
responding to the output of the TEM in Fig. 2. switches be-
tween two values and at a set of trigger times , for
all , and by convention.

Remark 1: Informally, the information of the input is
carried by the signal amplitude whereas the information of the
output signal is carried by the trigger times. A fundamental
question, therefore, is whether the TEM encodes information
loss-free. Loss-free encoding means that the input can be per-
fectly recovered from the output .

In what follows, , denotes a pulse of length
and unit amplitude.

Lemma 1 (Stability): For all input signals ,
with the TEM is stable, i.e., ,
for all . The output is given by
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Fig. 3. Equivalent circuit representation of the TEM.

, where the set of trigger
times , is generated by the recursive equation

(1)

for all .
Proof: Due to the operating characteristic of the Schmitt

trigger, increases monotonically until it reaches the value if
the feedback is or decreases monotonically to if the feed-
back is for any arbitrary initial value of the integrator. After
reaches the value from below or from above, the output of
the Schmitt trigger flips from to and from to , respec-
tively. Therefore, without loss of generality we can assume that
for some initial condition at we have
and the TEM is described in a small neighborhood of ,
by

(2)

Since the left-hand side is a continuously increasing function,
there exists a time , such that the equation
above holds. Similarly starting with at time
the equation

(3)

is satisfied for some . Thus, the strictly in-
creasing sequence , defined by (1) uniquely de-
scribes the (output) function , for all , and

by construction.

B. An Equivalent Circuit

By dividing with on both sides of (1), we obtain

for all . Therefore, the increasing time sequence
, can be generated by an equivalent circuit with in-

tegration constant and a Schmitt trigger with parameters
and 1 (see Fig. 3).

In what follows, without any loss of generality, a simple ver-
sion of the TEM will be used. The input to the TEM is a bounded
Lebesgues measurable function with for
all . The output of the TEM is a function taking two

Fig. 4. Time-domain illustration of the operation of the TEM with dc input.

values for all , with transition times
, generated by the recursive equations

(4)

for all , with measured in seconds. These equations
map the amplitude information of the signal , into the
time sequence . In what follows, the TEM consists of
an integrator with integrator constant and Schmitt trigger
with parameters ( ).

Example: Assume that (not necessarily positive),
where denotes a given DC level. For or ,
the output of the integrator becomes unbounded, and thus, the
overall TEM becomes unstable. This might lead to information
loss because the output can not track the input . If

, the TEM is stable and (4) reduces to the simple recursion

and, therefore, . Both and are peri-
odic signals with period and

(5)

for all . The integrator output and the overall
output are as shown in Fig. 4.

The mean value (the 0th-order Fourier-series coefficient) of
amounts to

(6)

that is, the input and the output of the TEM have the same av-
erage value.

Note that the harmonics of can be easily separated from
the value corresponding to the dc input. Its fundamental fre-
quency is inversely proportional to (the width of the hys-
teresis of the Schmitt trigger). Thus, if the maximum dc input
signal is given, the minimum value for can be set by .

Corollary 1 (Upper and Lower Bounds for Trigger
Times): For all input signals , with
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, the distance between consecutive trigger
times and is bounded by

(7)

for all .
Proof: Since , it is easy to see that

(8)

By replacing the integral in the inequality above with its value
given by (4) and solving for we obtain the desired
result. The lower and upperbounds are achieved for a constant
input , for all , for even and odd, respectively.
A similar relation applies when , for all .

Remark 2: If is a continuous function, by the mean
value theorem there exists a , such that

(9)

i.e., the sample can be explicitly recovered from infor-
mation contained in the process , .
Intuitively, therefore, any class of input signals that can be re-
covered from its samples can also be recovered from .

III. PERFECT RECOVERY

A TDM has the task of recovering the signal ,
from , or a noisy version of the same. Here, we
will focus on the recovery of the original signal based on
only. We shall show that a perfect recovery is possible, that is,
the input signal can be recovered from without any loss of
information.

A. Recovery Algorithms

Informally, a function of the length of the interval between
two consecutive trigger times of provides an estimate of
the integral of on the same interval. This estimate used
in conjunction with the bandlimited assumption on enables
a perfect reconstruction of the signal even though the trigger
times are irregular. In order to achieve perfect reconstruction,
the distance between two consecutive trigger times has to be,
in average [7] smaller than the distance between the uniformly
spaced samples in the classical sampling theorem [9], [18].

The mathematical methodology used here for deriving re-
covery algorithms is based on the theory of frames [4]. We shall
construct an operator on , the space of square integrable
functions defined on , and by starting from a good initial guess
followed by successive interations, obtain sucessive approxi-
mations that converge in the appropriate norm to the original
signal .

Let us assume that , with ,
is a finite energy signal on bandlimited to and let the
operator be given by

where and . The values
of , are obtained from the sequence

, available at the TDM, through (4).
The realization of the operator above is highly intu-

itive. Dirac-delta pulses generated at times with weight
are passed through an

ideal low-pass filter with unity gain for and zero
otherwise.

Let , be a sequence of bandlimited functions
defined by the recursion

(10)

for all , with the initial condition .
The operator defined by

(11)

where represents the output of a
low-pass filter with impulse response (that is, the denotes the
convolution operation) whose input is the pulse of finite width

. We note the following [5].
Lemma 2: and are adjoint operators.

Proof: See Appendix, Section B.
Note that since the distance between two consecutive trigger

times is bounded from above by [see (7)].
Lemma 3:

where is the identity operator and .
Proof: See Appendix B. The original proof appeared in

[5].
Theorem 1 (Operator Formulation): Let

be a bounded signal bandlimited to .
Let , be the ouput of a TEM with integrator
constant and Schmitt trigger parameters ( ). If

, the signal can be perfectly recovered from its
associated trigger times , as

and

Proof: By induction, we can show that

Since

where denotes the set of nonnegative integers. Also

and, therefore, .
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Remark 3: The most general recovery result only requires
that the average number of trigger times is bounded by the in-
verse of the Nyquist rate [7]. However, this result lacks opera-
tional significance in our setting.

Let us define the vectors ,
and the matrix ;

denotes the identity matrix and the (matrix) transpose. We
have the following.

Corollary 2 (Matrix Formulation): Under the assumptions of
Theorem 1, the bandlimited signal can be perfectly recovered
from its associated trigger times , as

(12)

where denotes the pseudoinverse of . Furthermore

(13)

where is given by

(14)

Proof: By induction

(15)

Assume that with . We
have

Finally, the equality

is guaranteed by Theorem 1 where is the pseudoinverse of
(see [19] for more details).
Remark 4: If is the vector defined by

then the recovery formula (12) becomes

Therefore, the recovery algorithm given by (12) has a very
simple interpretation. Dirac-delta pulses generated at times
with weight are passed through a low-pass filter with unity
gain on and zero otherwise. For a precise definition
and motivation of the pseudoinverse the reader is referred to
[19].

Remark 5: While deceptively simple, the signal recovery for-
mula exposed in (12) hides the nonlinear relationship between
the bandlimited signal , and the trigger times

. Note however, that the signal , is a
function of the time sequence , through the pseudoin-
verse of . Clearly, linear operations on the TEM input signal
do not translate, in general, into linear operations on the (output)
trigger times.

Fig. 5. Input signal x(t) (a), integrator and TEM output y(t) and z(t) (b).

Fig. 6. Approximating signals using iteration (a), overall error signals using
closed formulas (b).

B. Example

The mathematical formulation of the previous section as-
sumes that the dimensionality of the matrices and vectors used is
infinite. In simulations, however, only a finite time window can
be used. We briefly investigate two different implementations
of the TDM in the finite dimensional case that are, respectively,
based on the recursive (13) and the closed form formula (12).

In all our simulations, the input signal is given by
where the samples

through , are respectively, , 0.186 965,
0.207 271, 0.098 773 6, , 0.020 166 5, 0.290 247,
0.138 374, , , , ,

, for and ; ,
and . The evaluation of the trigger times
was carried out in the interval . Fig. 5(a)
shows together with the time window used for simulations.
Fig. 5(b) shows the simulation results for and with

. The 26 trigger times of (only 18 are shown)
were determined with high accuracy using (4).

1) The error signals shown by Fig. 6(a) are defined as
, where was calculated based

on (13). Instead of applying (14) directly we used the re-
cursion and calculated it-
eratively. As shown, decreases in agreement with
Theorem 1, since with the parameters introduced

.
2) Although the matrix in (12) is ill-conditioned, perfect

recovery can be achieved using , the pseudoinverse of
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(if is nonsingular then ). The corre-
sponding error signal defined as
is shown Fig. 6(b) for ( for the solid
line) and ( for the dashed line). The
improvement of the RMS is about 10 dB. The remaining
small error is due to i) the finite precision used, and 2) the
finite time window employed.

IV. RELATIONSHIP TO IRREGULAR SAMPLING AND OTHER

MODULATION SCHEMES

A. Relationship to Irregular Sampling

In this section, we highlight the relationship between time
encoding and irregular sampling, i.e., between two informa-
tion representations of a bandlimited signal as a discrete time
and a discrete amplitude sequence. As in the previous sections

, shall denote a bounded signal
bandlimited to . The time sequence will be denoted by

, and the irregular samples , are avail-
able at times .

In Theorem 2 below, . will denote a se-
quence of bandlimited functions defined by the recursion

(16)

for all , with the initial condition . The rele-
vance of in our context is provided by the following theorem
[5].

Theorem 2 (Reconstruction From Irregular Samples): If
the bandlimited signal can be perfectly

recovered from its samples , as

and

Proof: The proof is based on the proof of Lemma 3 in the
Appendix . The original proof appeared in [5], Theorem 5.

Let us define , and
(see also (14)). We have the following.

Corollary 3 (Matrix Recovery From Irregular Sam-
ples): Under the assumptions of Theorem 2 the bandlim-
ited signal can be perfectly recovered from its samples

, as

(17)

where denotes the pseudoinverse of . Furthermore

(18)

where is given by

(19)

Proof: The proof closely follows Corollary 2.

Remark 6: While we have highlighted the similarities
between time encoding and irregular sampling from the al-
gorithmic recovery point of view, there are also substantial
differences between the two. One key difference mentioned
here derives from the functional relationship between the
trigger times , and the associated time sequence

on the one hand and the bandlimited signal on
the other. In the case of time encoding, the ’s are signal
dependent. This is clearly underscored by (4). For irregular
sampling, however, the ’s are signal independent.

B. Relationship to Other Modulation Schemes

The TDM and the demodulator for frequency modulation
(FM) [2] operate on a signal that has the same information struc-
ture. Recall that FM demodulation is achieved by finding the
times such that

where is the modulation frequency and is the modulation
index. Therefore,

We call the mapping of amplitude information into timing in-
formation as exemplified by the (1), (4) and (34) the transyl-
vania transform or -transform for short. Note that the (1), (4)
and (35) have the same basic structure. Hence, an FM modu-
lated signal can be perfectly recovered from the sequence of
times using the TDM. These observations estab-
lish a bridge to nonuniform sampling methods previously ap-
plied to improve the performance of FM and other nonlinear
modulators[14].

The TEM also models an asynchronous sigma–delta modu-
lator [8] and, therefore, the latter is invertible. Past attempts at
building sigma–delta demodulators have led to low accuracy in
signal recovery [16]. This is because of the linear structure of
these demodulators.

Finally, we note that bandlimited stimuli (signals) encoded
with an integrate-and-fire neuron with an absolute refractory pe-
riod can be recovered loss-free from its neural spike train at its
output. The algorithm for perfect recovery and conditions for its
convergence are given in [12].

V. RECOVERY SENSITIVITY WITH RESPECT TO

In this section, we will first demonstrate the high sensitivity of
the perfect recovery algorithm with respect to implementation
errors of the parameter in the TDM. We will then demonstrate
how this can be overcome and advance an -insensitive recovery
algorithm.

We would like to note here that sensitivity issues also arise
in the TEM. For example, the Schmitt trigger’s implementa-
tion might assign the value to the upper threshold and
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Fig. 7. Dependence of E in decibels on � parameterized by " = 10 � (stars)
and " = 10 � (squares).

to the lower threshold. Therefore, the recursive equation
describing the TEM becomes

for all . As a result, is recovered instead of
. A small dc bias is often times acceptable in practice.

A. With a Fixed Error at the TDM

The model considered in this section is based on the premise
that the TEM is employing and the TDM implements
and has exact knowledge of the trigger times. The reconstruction
algorithm consistently generates an error signal given by

where is the output of a TDM that uses for recovery.
In what follows, we define an MSE measure as

where denotes a pulse of finite width and mag-
nitude one (i.e., an indicator function)

and with .
Example: A sample of the dependance of the mean-square

recovery error on parameterized by is shown in Fig. 7. In all
figures, the notation dB stands for 10 . Note also
that in all our simulations, the input signal was identical to the
one described in Section III.B.

B. -Insensitive Recovery Algorithm

As shown in Fig. 7, the implementation of the TDM recovery
algorithm given in Theorem 1, is highly sensitive to the exact
knowledge of the parameter . The remedy is provided by the
following

Lemma 4 (The Compensation Principle):

for all .
Proof: The desired result is obtained by adding (4) for

and .
Remark 7: Note that the compensation principle provides for

an estimate of the amplitude of the input signal that does
not explicitly depend on . Note also that the compensation prin-
ciple can be easily extended to subsets of the real line or to
the entire real line. Thus, the dc component of the input can
be recovered from even for nonbandlimited input signals

.
The compensation principle suggests the construction of an

operator of the form

The exact form of the functions will be described below. The
operators and are identical provided that

, for all and , or in matrix form

where and the elements of the matrix are
given by for or and zero otherwise.
Note that, the inverse of is given by for

and zero otherwise. Note also that

does not explicitly depend on .
Let , be a sequence of bandlimited functions

defined by the recursion

(20)

for all , with the initial condition .
Theorem 3 ( -Insensitive Recovery Algorithm–Operator

Form): If , the bandlimited signal
can be perfectly recovered from its associated trigger times

, without explicit knowledge of the parameter as

(21)

Furthermore

Proof: Since this above result is the same as the
one of Theorem 1.
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Corollary 4 ( -Insensitive Recovery Algorithm—Matrix
Form): If , the bandlimited signal

can be perfectly recovered from its associated trigger times
, without explicit knowledge of the parameter as

(22)

Furthermore,

where is given by

Proof: Using the notation of Theorem 2, can be
rewritten as

Since

we have

Remark 8: Note that (22) can be rewritten as

where . Therefore, the represen-
tation of in (22) lends itself to a simple interpretation akin
the one in Remark 3. Alternatively, a representation of the form

can be employed that is directly based
on the basis functions .

Example: The -insensitive recovery algorithm achieves
perfect recovery provided that . Simulation results for
the -sensitive and -insensitive recovery algorithms are shown
in Fig. 8 and are denoted by stars and squares, respectively.
The dotted vertical line corresponds to the value of for which

. The difference between the MSEs plotted in Fig. 8 is
due to the removal of the first row of the matrix and the last
column of its inverse. Through this simple truncation procedure
the compensation priniciple remains valid.

VI. RECOVERY SENSITIVITY WITH RESPECT TO

TIME QUANTIZATION

Here, we shall assume that the sequence of trigger times
, is measured with finite precision and the actual

values available for recovery are . We shall denote by
and for all .

Fig. 8. MSE in decibels for the �-sensitive (stars) and �-insensitive algorithms
(squares).

A. Upper Bound on a Measure of Error Recovery

The key point of our analysis is the observation that, if the
condition is satisfied, then

where is defined by

(23)

and . Note that this results holds for any time
sequence whose consecutive intervals are lower bounded and
whose average is upperbounded by the Nyquist rate [7]. Since
the reconstructed signal is given by

the error signal amounts to

(24)

where [see also, (4)]

(25)

Proposition 1: Assuming that the quantization error
, is a sequence of i.i.d. random variables on

, the expected MSE is bounded by

(26)

where denotes the expectation (mean value).
Remark 9: Conditions for modeling the quantization error as

an independent identically distributed (i.i.d.) sequence appear in
the classic papers [3] and [17]. For an alternative analysis to the
one presented here, see [16].
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Proof: We note that with

(27)

Since the norm above is increasing in

(28)
The expectation on the right-hand side can be bounded as fol-
lows:

(29)

since

(30)

and

as shown in the Result 4 and 3, respectively, in the Appendix .
Finally, substituting the upperbound derived in (29) into (28)
gives the desired result.

B. Uniform Sampling Approximation

The expected MSE can be explicilty evaluated when the quan-
tized trigger times are uniformly spaced. The result below is a
gauge for evaluating the recovery error of time encoded ban-
dlimited signals.

Proposition 2: Assuming that the quantization error
, is a sequence of i.i.d. random variables on

, and the ’s are uniformly spaced, the expected
MSE is given by

(31)

where for all .

Fig. 9. Dependence ofE in decibels on � for time encoding (stars) and irregular
sampling (squares) for N = 10.

Fig. 10. Dependence of E in decibels on the number of quantization bits N
for time encoding (stars) and irregular sampling (squares) for � = 6 �s.

Proof: The expression above can be obtained from Result
5 in the Appendix by taking the inverse Fourier transform on
both sides of equality (46) and setting .

C. Example

Figs. 9 and 10 show the mean-square recovery error in deci-
bels as a function of and the number of quantization bits, , re-
spectively. The same figures also depict the upperbound arising
in inequality (26) as well the uniform sampling approximation
(31). All other parameters in the simulation are as described in
the Example of Section III-B. More details about these figures
are given in Section VII.

VII. COMPARISON OF TIME AND AMPLITUDE QUANTIZATION

Here, we shall compare the effects of quantization in the time
and amplitude domains. Since time encoding and irregular sam-
pling are different discrete representations of information con-
tained in a bandlimited function, signal recovery from a quan-
tized version of the trigger times and irregular samples, respec-
tively, is of great interest in practice.

A. Signal Recovery From Irregular Samples

In [11], we have established the relationship between time en-
coding and irregular sampling. Here, we shall employ an alter-
native signal recovery method from its irregular samples origi-
nally developed in [5].
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In what follows we shall use the operator defined by

where , for all . Also,
will denote a sequence of bandlimited functions defined by the
recursion

(32)

for all , with the initial condition . The rele-
vance of in our context is provided by the following theorem
[5].

Theorem 4 (Reconstruction From Irregular Samples): If
, the bandlimited signal can be perfectly

recovered from its samples , as

and

Proof: See [5, , Th. 6].
Let us define , and

. We have the following.
Corollary 5 (Matrix Recovery From Irregular Samples):

Under the assumptions of Theorem 3 the bandlimited signal
can be perfectly recovered from its samples , as

(33)

where denotes the pseudoinverse of . Furthermore

(34)

where is given by

(35)

Proof: The proof closely follows Corollary 2.

B. Upperbound for the Amplitude Quantization Error

Assume that the instances are exactly known and the am-
plitudes are corrupted to .

Proposition 3: If the random variables , are inde-
pendent uniformly distributed within then

(36)

Proof: The error signal due to amplitude quantization is

Following the same derivation as in Proposition 2, we obtain

(37)

with , since and

(38)

and, finally

C. Example

A natural comparison between the effects of amplitude and
time quantization can be established if we assume that the quan-
tized amplitudes and quantized trigger times are transmitted
at the same bitrate. Since and are associated with
the trigger times and , the same transmission bitrate is
achieved if and are represented by the same number
of bits . With , the amplitude quantization step
amounts to .

For time encoding
, or equivalently

. Therefore, if is exactly known, then only
measuring , in the range ( ) is
needed. Hence

Substituting the values of and above into (26) and (36) re-
sults exactly in the same upperbound for both the expected MSE
for time encoding and irregular sampling, respectively.

Result 1: For the same number of bits , the upperbound
for time quantization is equal to the upperbound for amplitude
quantization and amounts to

Figs. 9 and 10 show the MSE in decibels as a function of
oversampling ratio (see below)) and the number of quanti-
zation bits, , respectively. The details of the simulation are
as before. Squares and stars depict the MSE for time encoding
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Fig. 11. Dependence of E in decibels on the number of bits N and the
logarithmic oversampling ratio � and its comparison with the uniform
sampling approximation in the time encoding case.

and irregular sampling, respectively. Figs. 9 and 10 also depict
the (same) upperbound arising in the inequalities (26) and (36).
The dashed traces depict the uniform sampling approximation
for .

Result 2: The MSE of the uniform sampling approximation
in decibels depends logarithmically on the oversampling ration

and linearly on the number of quantization bits and is given
by

Proof: Let denote the over-
sampling ratio. By taking the on both sides of (31) and
noting that the integral is approximately equal to , the desired
result is obtained.

Finally, Fig. 11 depicts the dependance of the MSE in deci-
bels on the oversampling ratio and the number of quantization
bits . This representation may be used as a practical guide for
achieving a target average MSE by means of adjusting the over-
sampling ratio or the number of quantization bits or both.

VIII. CONCLUSION

Here, we have established time encoding as an alternative in-
formation representation modality for bandlimited signals. We
have shown that a simple TEM can be used to generate a se-
quence of trigger times and demonstrated an algorithm that uses
this sequence for perfect signal recovery.

We have established a relationship between time encoding
and irregular sampling and shown the common structure be-
tween time encoding and a number of nonlinear modulation
schemes including, FM and Asynchronous sigma-delta Mod-
ulation. We have demonstrated how to construct a TDM that
only employs the time sequence generated by the TEM. No ad-
ditional knowledge about the parameters of the TEM is required.

We derived an upperbound on the expected MSE of signal
recovery when a quantized version of the trigger times is avail-
able. We have also shown that quantization in the time and am-
plitude domains leads to largely equivalent information repre-

sentations for bandlimited signals. The availability of high pre-
cision clocks, however, makes the quantization of the time se-
quence an alternative to amplitude quantization.

Time encoding is an asynchronous information representa-
tion modality. As such, it represents an alternative to the clas-
sical clock-based sampling representations. Information of a
time encoded bandlimited signal is only contained in its time
transitions. In contrast, the information of the output stream of
a synchronous sigma–delta modulator resides solely in its am-
plitude. As such time encoding and synchronous sigma–delta
are dual modulation schemes.

The results presented here raise a number of important re-
search questions that, due to space limitations, could not be ad-
dressed in this paper. These pertain to the intrinsic performance
of the TEM and TDM pair under various conditions arising in
practice as well as in comparison with other modulation/de-
modulation schemes. Boundary effects that are due to the finite
signal support, real-time recovery, the effects of noise and pa-
rameter variation as well as errors introduced by the evaluation
of the pseudoinverse belong to the former. A comparison with
synchronous sigma–delta modulation belongs to the latter. We
plan to address these and other [13] questions elsewhere.

APPENDIX A
Geometry of Hilbert Spaces

Definition 1: A nonnegative real-valued function defined
on a vector space is called a norm if for all

(39)

(40)

(41)

Definition 2: A normed linear space is called complete if
every Cauchy sequence in the space converges, that is, for each
Cauchy sequence ( ) there is an element in the space such
that .

Definition 3: An inner product on a vector space over
(or ), is a complex-valued function defined on to

such that

(42)

(43)

(44)

if (45)

Definition 4: A complete vector space whose norm is in-
duced by an inner product is called a Hilbert Space.

Example: Let be the set of functions of finite energy, i.e.,

with norm . endowed with the inner
product is a Hilbert Space.

There are two important class of operators in a Hilbert space:
the projection operators and the adjoint operators.
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Definition 5: Operators and defined on Hilbert space
are said to be adjoint if

for all .
Definition 6: Let ) be the Hilbert space of bounded en-

ergy functions and let be the subset of bandlimited functions.
The projection operator maps an arbitrary function in
into a bandlimited function in through

where denotes the convolution and .

APPENDIX B
Three Inequalities

Lemma 5 (Bernstein’s Inequality): If is a function
defined on bandlimited to then is also bandlim-
ited and

Proof: By applying Parseval’s formula [15], we have

where denotes the Fourier transform.
Remark 10: Usually, Bernstein’s inequality is stated for

the class of bounded bandlimited signals [20], [15] that
form a complete vector space with the norm defined as

. The inequality is formally the same.
Lemma 6 (Wirtinger’s Inequality): If

and either or , then

Proof: An elementary and highly intuitive proof is based
on the observation that

and since

if and , we get

and the result follows via a change of variables. Motivation for
the above proof and generalizations can be found in [6, Sect.
7.7, p. 184].

Proof of Lemma 2 : and are adjoint if

for any bandlimited functions and . Using the linearity prop-
erties of the inner product and the fact that we have

Proof of Lemma 3: It is easy to see that the adjoint operator
defined in (11) can be written as

Note that

By applying Wirtinger’s inequality, we obtain

and, therefore
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Finally, by applying Bernstein’s inequality we have

Since

and the lemma follows.

APPENDIX C
Results

Result 3:

and

and in the limit equality is achieved.
Proof: Increasing the density of packing in the interval

implies

since the function is positive for all . The
infinite sum represents a periodic
function and

represents its zeroth-order Fourier coefficient. By applying Par-
seval’s relationship [15], this coefficient amounts to

The second inequality is similarly derived by noting that de-
creasing the packing in the interval implies

The rest of the proof is as above.
Result 4:

Proof: With

Using the mean-value theorem, we obtain

where and . For small enough,
and

Since

we have

and thus

Result 5: Assuming that the quantization error
, is a sequence of i.i.d. random variables on

, and the ’s are uniformly spaced

(46)

where for all , and is the Fourier
transform of .

Proof: Let , denote the set of coefficients when
the quantized trigger times , are usedfor recovery. We
have

since, by the Poisson formula [15]

and
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implies
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