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Abstract— Time encoding is a mechanism for representing the in-
formation contained in a continuous time, bandlimited, analog signal
as the zero-crossings of a binary signal. Time decoding algorithms
have been developed that make a perfect recovery of time encoded
bandlimited signals possible. We consider a simple one-opamp active
RC implementation of the time encoder and investigate the robustness
in performance of the time decoder when the former is subject to
non-idealities of the analog VLSI realization. We show that up to a
constant scaling factor, delay and offset the input signal can be accurately
reconstructed even if the opamp has a finite DC gain and finite bandwidth
and the circuit exhibits parameter offsets. We develop an experimental
upper bound for the reconstruction error that can be used in the
design of the encoder. The analytical results are verified with numerical
simulations.

I. INTRODUCTION

The classical sampling theorem calls for reconstructing an analog
signal x(t) bandlimited to [−Ω,Ω] using its amplitude samples taken
uniformly at or above the Nyquist rate Ω/π. If amplitude samples
x(tk) are available at irregularly spaced times tk, the same bandlimited
signal x(t) can be reconstructed if the average of the durations

Tk = tk+1− tk (1)

are at or below π/Ω [1]. For signal reconstruction in the irregular
sampling case, both the amplitude and time samples are required. In
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Fig. 1. The ideal time encoder.

the case of time encoding a signal-dependent sampling is carried
out by a Time Encoding Machine (TEM) such that x(t) can be
reconstructed based on the tk’s only. The TEM investigated in [2]
is shown in Figure 1. It consists of an adder, an integrator with
unity-gain frequency ωu and a noninverting Schmitt trigger with a
symmetrically centered hysteresis of width 2δ and height 2b. In what
follows we assume that for some given c

|x(t)| ≤ c < b (2)

holds. To simplify the notation we will also use

α =
c
b

and T0 =
4δ

ωub
(3)

as the bound for the normalized input x(t)/b and the self-oscillation
period of z(t) for x(t) = 0, respectively.

Since the integrator’s input is x(t)±b where |x(t)|< b (see (2)), its
output y(t) is a strictly monotonic increasing or decreasing function
for t ∈ (tk, tk+1) where z(t) changes sign and y(t) reaches δ or −δ at
t = tk. A straightforward analysis [2] gives:

qk =
Z tk+1

tk
x(t)dt = (−1)kb

(
T0

2
−Tk

)
(4)

It can also be shown [2] that Tk introduced in (1) is bounded as:

T0

2
1

1+α
≤ Tk ≤

T0

2
1

1−α
(5)

Original Reconstruction [2]: With g(t) = sin(Ωt)/(πt) as the
impulse response of an ideal low pass filter of bandwidth Ω, the
reconstructed signal, xr(t), is given by

xr(t) =
∞

∑
`=−∞

c`g
(

t− t`−
T`

2

)
, (6)

where the coefficients c` are to be found. Integrating both sides of
(6) from t = tk to t = tk+1 gives Gc = q, where the vectors c and q
contain the coefficients ck, and the integrals qk in (4), respectively,
and the matrix G is given by

[G]k,` =
Z tk+1

tk
g
(

t− t`−
T`

2

)
dt. (7)

One way of solving the typically ill-conditioned linear equations
Gc = q is given by

c = G+q, (8)

where G+ denotes the pseudo (Moore-Penrose) inverse of G. As in
the case of irregular sampling, perfect reconstruction is possible if the
average density of the tk’s is below or at the Nyquist rate [2]. Based
on (5) this condition is certainly satisfied if (T0/2)/(1−α) < π/Ω.

Compensation Principle [2]: The reconstruction based on (4)
relies on the accurate value of T0. An alternative technique is based
on the simple observation that due to the additive property of integrals
qk + qk+1 = (−1)kb(Tk+1−Tk) does not dependent on T0. Forming
a vector with elements qk +qk+1 is possible as

[Bq]k =
Z tk+2

tk
x(t)dt = (−1)kb(Tk+1−Tk), (9)

where matrix B is defined as [B]k,` = 1 for k = ` and k = `+1 and
[B]k,` = 0 otherwise. Using B and Gc = q gives BGc = Bq, therefore:

c = (BG)+Bq. (10)

Remark 1: Perfect reconstruction can be achieved only if the
dimensionality of the matrices and vectors used (G, B, q, and c)
is infinite. Since in reality only a finite number of tk’s is available
within some observation window tk ∈ (Tmin,Tmax), xr(t) of (6) merely
approximates x(t). Due to boundary effects [2] the error in signal



recovery is generally larger for times closer to either boundary of the
observation window, Tmin and Tmax.

II. ACTIVE-RC TEM

Figure 2 shows an active RC implementation1 of the encoder,
where x(t), v(t), y(t), and z(t) denote node voltages. The parameters
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Fig. 2. An active RC implementation of the encoder in Figure 1.

∆δ and ∆b model the implementation errors in the hysteresis levels
±δ and ±b, respectively. The opamp shown has infinite input and
zero output impedance and an input referred offset voltage Vos. For
∆δ = ∆b = Vos = 0 the circuit in Fig. 2 implements the ideal TEM of
Fig. 1 with ωu = 1/(RC).

For the input voltage vd(t) = Vos− v(t) the linear imperfections2

of the opamp are modeled by the transfer function

A(s) =
−Y (s)
Vd(s)

=
ADC

1+ s ADC
ωt

, (11)

where ADC and ωt are the finite DC gain and unity-gain frequency
(gain-bandwidth product) [3].

A. Effects of parameter errors and opamp offset

Assuming ADC → ∞ and ωt → ∞, we have (see Appendix)

γ

Z tk+2

tk
(x(t)−Xos)dt = b(−1)k(Tk+1−Tk), (12)

where γ = b/(b+∆b/2) and Xos = 2Vos +∆b/2.
Comparing (12) with (9) we conclude that the reconstructed signal

using the Compensation Principle is x(t) except for a constant scaling
factor γ and DC offset Xos due to opamp offset, Vos, and the hysteresis
output level variation ∆b. The variation in δ, ∆δ, does not affect
the encoding as long as the Compensation Principle is used for
reconstruction.

B. Effects of the opamp’s finite DC gain and gain-bandwidth product

To simplify the notations we assume that ∆δ = ∆b = 0, and Vos = 0.
The opamp’s finite DC gain results in a maximum DC gain for the
integrator and the creation of a (parasitic) low frequency pole ω1; the
finite gain-bandwidth product results in a (parasitic) high frequency
pole, ω2, and using (11) the transfer function for the integrator
becomes [4]

H(s) =
Y (s)
X(s)

=
Y (s)
−Z(s)

=
ωuω2

(s+ω1)(s+ω2)
(13)

1To simplify the diagrams and notation we show a single ended implemen-
tation whereas in an actual VLSI realization a differential implementation
would be used. The realization of the −1 multipliers then corresponds to a
simple crossing of wires. The presented analysis is valid for differential im-
plementations and can also be easily adapted for alternative TEM realizations
using, e.g., transconductor-C integrators.

2Referring to the waveforms in Fig. 3 (a) it is clear that opamp can be
designed with a sufficient slew rate and output range so that no significant
non-linear errors occur.

For large enough ADC and ωt , the approximations 3

ωu '
1

RC
, ω1 '

2ωu

ADC
and ω2 ' ωt ,

can be used. For ADC → ∞ and ωt → ∞, H(s) indeed becomes the
ideal integrator transfer function ωu/s.

C. Simulation example using the model in (13)

A simulation model for the active RC TEM was developed with
the opamp replaced by an equivalent circuit4 to model its finite DC
gain and gain-bandwidth product and the following TEM parameters:
1/(RC) = 12 Mrad/sec, b = 1 V, δ = 0.5 V. A two-tone sinusoid,
x(t) = A1 sin(2π f1t)+ A2 sin(2π f2t), where A1 = A2 = 0.25 V, f1 =
1 MHz, and f1 = 1.5 MHz was used as the input signal (see
Figure 4(a)) so that Ω = 2π× 1.5 Mrad/sec and α = 1/2. These
parameters are kept fixed for all examples in this paper.

Ideal opamp: Simulations were carried out to determine y(t) and
z(t) and 50 zero-crossings of z(t) were calculated with high accuracy.
The reconstructed signal, xr(t), was calculated using the original and
the Compensation Principle based reconstruction. The root-mean-
square (RMS) value of the reconstruction error e(t) = xr(t)− x(t) is
denoted by E . To avoid boundary effects (see Remark 1) E is calcu-
lated over the reduced range t ∈ (t3, t45). The reconstruction error e(t)
for a TEM with an almost ideal opamp, ADC = 107,ωt/ωu = 3×107,
was calculated first. The original reconstruction and Compensation
Principle give almost identical errors with E ≤−124 dB. This error
is mostly due to the fact that only 50 tk’s were used [2].
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Fig. 3. Simulation results for y(t) and z(t) obtained by settings ADC =
107,ωt/ωu = 3×107 (a) and ADC = 10,ωt/ωu = 3 (b).

Non-ideal opamp: Figure 3 shows y(t) and z(t) with nearly
ideal and very non-ideal settings for the opamp. In the nearly ideal
case z(t) has transitions (zero-crossings) at t = tk, when y(t) reaches
δ or −δ. For the non-ideal case y(t) goes noticeably above δ and
below −δ at t = tk and the overall operation of the encoder is
slower compared to using an (almost) ideal integrator. For the TEM
with a non-ideal opamp, the signal was again reconstructed using
the original and Compensation Principle. The RMS reconstruction
errors, E , are shown in Figure 4(b) for different opamp parameters:
ADC = 10,102, . . . ,105 and ωt/ωu = 3,30,300,3000. Using the Com-
pensation Principle E significantly improves compared to the original
reconstruction.

III. ANALYSIS OF THE ERRORS DUE TO THE MODEL IN (13)

The effects of finite opamp gain and gain-bandwidth product can be
analyzed using Figure 5 which is obtained by simple rearrangement

3In the simulation examples below the exact values for ω1 and ω2 were
used. In the remainder of the text we also use the notation ωt/ωu to compare
the opamp’s ωt to the integrator’s ωu. In the simulations, ωt RC was set to the
values mentioned but the error in this approximation is very small.

4We used a voltage controlled current source loaded with a resistor and
capacitor in parallel and followed by an inverting unity-gain buffer.
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Fig. 4. (a) Input signal used in the simulations. (b) Recovery RMS error E
in terms of lg(ADC) for the original reconstruction (–) and the Compensation
Principle (- -) for ωt/ωu = 3 (�), 30 (N), 300 (?), 3000 (�).

of Figure 1 after replacing the integrator by H(s) in (13). Using
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Fig. 5. The encoder in Figure 1 using the lossy integrator model in (13).

standard first-order linear circuit analysis yields (see Appendix)

1
b

Z t`+1

t`
x̃(τ)e−ω1(t`+1−τ)dτ =

(−1)`T0

4

(
e−ω1T` +1

)
+

(
a` +(−1)`

) e−ω1T` − e−ω2T`

ω2−ω1
− (−1)`

1− e−ω1T`

ω1
,

(14)

where a` is given by the recursion

a`+1 = e−ω2T`

(
a` +(−1)`

)
− (−1)`. (15)

In order to obtain approximate but simplified results we make the
realistic assumptions:

Ω << ω2, ω1T` << 0, and ω2T` >> 0. (16)

Slower operation of the encoder: As derived in the Appendix,
the Tk’s have the (approximate) bounds:(

T0

2
+

2
ω2

)
1

1+α
≤ T` ≤

(
T0

2
+

2
ω2

)
1

1−α
. (17)

A comparison of (17) with (5) shows that, in agreement with Figure 3,
the operation of the encoder slowed down. Although the Schmitt
trigger fires at t = tk, its output z(t) suffers a delay through the
ω2/(s + ω2) block in the feedback path. This intuitively explains
why y(t) in Figure 3(b) goes above δ and below −δ.

Errors in the original reconstruction: For small enough ω1 the
left-hand-side (LHS) of (14) is close to q`/b in (4). For sufficiently
large ω2 (15) implies a` ' (−1)` and therefore approximating the
right-hand-side (RHS) of (14) for small ω1 gives

q` ' (−1)`b
(

T0

2
+

2
ω2
−T`

)
. (18)

By comparing this result with (4) it can be seen that the constant term
T0/2 is modified by 2/ω2. This affects the accuracy of the original
reconstruction. In agreement with the solid traces of Figure 4(b),
increasing ω2 (hence ωt ) by a factor of 10 results in about 20 dB drop
in E provided that ADC is large enough (hence ω1 is small enough).
Using the Compensation Principle based reconstruction cancels 2/ω2
together with T0/2 and improves E by approximately 10 dB. As
shown next the error can be further reduced by investigating the
effect of ω2 on the input signal x(t).

Input delay due to ω2: Since x̃(t), introduced in Fig. 5 is merely
a slightly pre-filtered version of x(t), a reconstruction for x̃(t) might
be acceptable in many applications. Moreover, for reasonably large
ω2 (see the Appendix)

x̃(t)' x
(

t− 1
ω2

)
(19)

and thus x̃(t) is just a delayed version of the input.
Simulation results: Here we use the same parameters and input

as in Section II-C. The reconstructed signal, xr(t) is calculated using
the Compensation Principle; Ẽ denotes the RMS value of the error
signal ẽ(t) = x̃(t)− xr(t); Ed is the RMS value of the error with
respect to the delayed input, ed(t) = x(t−1/ω2)− xr(t).

Figure 6(a) shows the simulation results for Ed . A very substantial
improvement of 20 dB or better can be seen compared to the dashed
traces (Compensation Principle) of Figure 4(b). As expected from the
presented analysis, an important effect of the presence of ω2 is the
creation of a delay between the input signal x(t) and the encoded
signal in z(t). In most applications this delay is acceptable and thus
the results in Figure 6(a) depict the precision that can be attained
with different opamp realizations of the TEM.

Comparing Ed and Ẽ in Figure 6(a) we conclude that for ωt/ωu =
3 or 30 the approximation of the effect of ω2 as a simple delay in
(19) is not accurate. However, z(t) now encodes x̃(t) very accurately
even for a low ωt/ωu of 30.

Output delays in the hysteresis: The finite output bandwidth of
the hysteresis circuit results in a low pass filter in the feedback path
for z(t) and its model corresponds to Figure 5 but without the input
ω2/(s+ω2) block. Its effects can be quantified as the effects of ω2 on
the reconstruction error for x̃(t). Provided that the output bandwidth
of the hysteresis circuit is larger than the unity gain bandwidth of the
opamp, the former will not significantly affect the TEM accuracy.

Error bound for the integrals and estimate for the RMS recon-
struction error: The recovery error is intuitively expected to decrease
if the reconstructed signal is compared to x̃(t) of Figure 5, since
the undesired prefiltering of the ω2/(s + ω2) block is ignored. In
particular, as shown in Appendix we have the approximationZ tk+2

tk
x̃(t)dt ' b(−1)k(Tk+1−Tk)+ ek, (20)

where the integral error sequence ek is bounded as:

|ek| ≤ eB = cω1
(4+ω2T0)(6−2α+ω2T0)

2(α−1)2(α+1)ω2
2

. (21)

Based on the integral error ek in (20) it is not straightforward
to handle the overall reconstruction error or its RMS value Eo
analytically because of the irregular nature of the tk’s. Nevertheless,
a proportionality between E and Eo certainly holds due to (10)
and (6). In [2] an experimental estimate for the RMS value of
the reconstruction error due to time quantization was found by
approximating (modeling) i) the error as sequence of i.i.d. random
variables and ii) the Tk’s by their average value Ts. Following a similar
line of reasoning here, Eo can be estimated by E

√
Ω/(πTs) where,

based on (17), a reasonable estimate for Ts is:

Ts =
1
2

{(
T0

2
+

2
ω2

)
1

1−α
+

(
T0

2
+

2
ω2

)
1

1+α

}
(22)

Therefore, using (21) a rough estimate for the RMS value of the
reconstruction error bound is given by:

EB = εB

√
Ω

πTs
. (23)



Figure 6(b) compares the bound estimates EB and the results for
Ẽ . For ωt/ωu = 3, EB reaches Ẽ which is to be expected since third
condition in (16) is not sufficiently satisfied (ω2 min`(T`) = 7.19 for
ADC = 105). For larger ωt/ωu, ωt/ωu > 3, EB tracks Ẽ but EB is not
a tight bound. This could be due to finite precision in the simulations
or the approximations made in the derivation of EB. Most probably
the main reason is the fact that after canceling a dominant common
error term with the Compensation Principle, the estimation of the
remaining error is hard.
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Ẽ ,Ed (dB)

lg(ADC)(a)
1 2 3 4 5

-120

-100

-80

-60

-40

-20
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Fig. 6. Simulation results in terms of lg(ADC) for for ωt/ωu = 3 (�), 30
(N), 300 (?), 3000 (�); (a): Ẽ (–) and Ed (– –). (b): Ẽ (–) and EB (– –).

IV. DISCUSSION

The analysis and simulation results presented in this paper show
that the TEM operation is robust with respect to VLSI implementation
non-idealities. Offsets and some variations in the building block
parameters only lead to offsets and scaling factor in the encoded
signal. Other parameter variations are completely canceled. The
requirements on the integrator circuit can be derived from Figure 6(a).
For example, with an opamp DC gain of 60 dB and gain-bandwidth
product ωt of 30 times the integrator unity gain frequency ωu, the
RMS errors remains below -80 dB. For a DC gain of 80 dB and
ωu = 300ωt the errors are below -110 dB. Such opamp requirements
are similar to, e.g., the requirements for opamps for continuous time
filters [4] or analog to digital converters [3]. Due to space limitations,
we could not address here the robustness properties of the time
decoder with respect to thermal noise disturbances arising in the time
encoder. These and related questions will be addressed elsewhere.

APPENDIX

Proof of (12): For an ideal opamp v(t) = Vos, and thus
the encoder in Figure 2 is described by the circuit equation
(x−Vos)/R +(−z−Vos)/R +Cd(−y−Vos)/dt = (x−Vos)/R− (z +
Vos)/R−Cdy/dt = 0. By integrating both sides above from t` to t`+1
we obtain:

y(t`+1)− y(t`) =
Z t`+1

t`

x(t)−Vos

RC
dt−

Z t`+1

t`

z(t)+Vos

RC
dt

Adding this relationship for ` = k and ` = k + 1 and noting that
(without loss of generality) y(t`) =−(−1)`δ+(1− (−1)`)∆δ/2 and
z(t) =−(−1)`b+(1− (−1)`)∆b/2 for t ∈ (t`, t`+1) gives (12).

Proof of (14) and (15) : In terms of the ωu/(s+ω1) block and
the ω2/(s+ω2) block in the feedback path of Figure 5 we have

y(t) = e−ω1(t−t`)y(t`)+ωu

Z t

t`
(x̃(τ)− z̃(τ))e−ω1(t−τ)dτ (24)

and
z̃(t) = e−ω2(t−t`)z̃(t`)+ω2

Z t

t`
z(τ)e−ω2(t−τ)dτ, (25)

respectively, for some t ∈ (t`, t`+1]. Due to the presence of the
Schmitt trigger, y(t`) = −(−1)`δ and z(t) = −(−1)`b. Using these

relationships with a` = z̃(t`)/b and T0 defined in (3) in evaluating
(24) and (25) at t = t`+1 gives (14) and (15).

Proof of (17): Expressing x̃(t) as a convolution and using (2)
gives:

x̃(t) =
Z

∞

0
x(t− τ)ω2e−ω2τdτ≤ c

Z
∞

0
ω2e−ω2τdτ = c. (26)

Using the third condition of (16) in (15) gives a`+1 ' −(−1)`.
Therefore the RHS of (14) can be approximated by (−1)`(T0/2 +
2/ω2−T`). By applying the mean value theorem the integral on the
LHS of (14) can be expressed as T`x̃(ξ`)e−ω1(t`+1−ξ`) ' T`x̃(ξ`)≤ T`c
with appropriate ξ` ∈ [t`, t`+1]. Combining these relationships gives
the inequality (−1)`T`c/b≥ T0/2−2/ω2−T` that can be solved for
T` (depending on ` being even or odd) and (17) follows.

Proof of (19): Let X(ω) be the Fourier transform of
x(t). Then, using the transfer function ω2/( jω + ω2) =
ω2e− j arctanω/ω2/

√
ω2 +ω2

2 corresponding to the ω2/(s + ω2)
block in Fig. 5 and the inverse Fourier transform representation
gives:

x̃(t) =
1

2π

Z
Ω

−Ω

X(ω)
ω2√

ω2 +ω2
2

e
jωt− j arctan

(
ω

ω2

)
dω.

With the first assumption in (16) and noting that the integration
range is carried out over ω ∈ (−Ω,Ω) we obtain ω2/

√
ω2 +ω2

2 ' 1
and arctan(ω/ω2)' ω/ω2. Therefore

x̃(t)' 1
2π

Z
Ω

−Ω

X(ω)e
jω

(
t− 1

ω2

)
dω = x

(
t− 1

ω2

)
in agreement with (19).

Proof of (20) and (21): Rearranging (14) and approximating by
using (16) and (26) gives:

Z t`+1

t`
x̃(τ) '

≤c
R t`+1

t` (1−e−ω1(t`+1−τ))' c
2 ω1T 2

k︷ ︸︸ ︷Z t`+1

t`
x̃(τ)

(
1− e−ω1(t`+1−τ)

)
+ 2b(−1)`

1−ω1T`

ω2
+b

(−1)`T0

4
(−ω1T` +2) .

Adding this relationship for ` = k and ` = k +1 gives (20) with

ek ≤
c
2

ω1(T 2
k +T 2

k+1)+(−1)k
ω1(Tk+1−Tk)

(
2

ω2
+

T0

4

)
.

¿From (17) we obtain T 2
k + T 2

k+1 ≤ 2(T0/2 + 2/ω2)2/(1−α2) and
|Tk+1−Tk| ≤ (T0/2 + 2/ω2)(1/(1−α)− 1/(1 + α)) and the bound
in (21) follows.
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