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ABSTRACT

Time encoding is a real-time asynchronous mechanism of
mapping amplitude information into a time sequence. We
investigate fast algorithms for the recovery of time encoded
bandlimited signals and construct an algorithm that has prov-
ably low computational complexity. We also devise a fast
algorithm that is parameter-insensitive.

1. INTRODUCTION

Time encoding is a real-time asynchronous mechanism of
mapping amplitude information into a time sequence. In
[4] time encoding and irregular sampling were shown to be
largely equivalent modalities of information representation
and recovery. For communications applications, however,
irregular sampling requires the transmission of both am-
plitude and sampling time information. Time encoding re-
quires only the transmission of the time sequence. Thus, ca-
pacity requirements for time encoded versus irregular sam-
pled bandlimited signals are lower by a factor of two [5].

For the case of irregular sampling, fast algorithms for
signal recovery have been extensively studied in the liter-
ature (e.g., [2], [3], [6]). While these algorithms are an
excellent starting point to search for fast algorithms for re-
covery of time encoded bandlimited signals, they can not
be directly applied to the time encoding case. The reasons
are purely technical: the method developed for the irregu-
lar sampling case calls for reducing the solution of a linear
systems of equations to a Toeplitz matrix inversion. Our
method for obtaining a fast algorithm for the time encoding
case is based on the observation that the indefinite integral
of the same signal can be directly recovered from its am-
plitude values sampled at instances provided by the time
sequence. In the process we find that the complexity of
recovering the indefinite integral of an arbitrary bandlim-
ited signal from irregular samples is essentially the same as
the complexity of recovering the same signal from its time

encoded sequence. In addition, we find that the condition
numbers of the pseudo-inverse matrices that arise in both
formulations can be chosen to fall in the same range.

This paper is organized as follows. A brief overview of
the classical recovery algorithm for irregular sampling fol-
lowed by a review of an efficient recovery for irregular sam-
pling is presented in section 2. In section 3 we derive a fast
recovery algorithm for time encoded bandlimited signals. In
section 4, a parameter-insensitive reconstruction algorithm
is devised. Simulation results are presented in section 5.

2. FAST RECOVERY ALGORITHM FOR
IRREGULAR SAMPLING

2.1. The Classical Recovery Algorithm for Irregular Sam-
pling

Given a set of irregular sampling times(tk), k ∈ Z, we shall
represent theΩ-bandlimited signalx = x(t), t ∈ R, as

x(t) = gT c =
∑

k∈Z

ckg(t − tk), (1)

wherec = [ck] is a vector of weights,T denotes the trans-
pose andg = [g(t − tk)] with

g(t) =
sinΩt

πt
(2)

is the vector oftk-shifted impulse response of an ideal low-
pass filter with bandwidthΩ. Also, R andZ above denote
the set of real numbers and integers, respectively. Denoting
by:

[q]l = x(tl) and[G]l,k = g(tl − tk), (3)

for all k, k ∈ Z, andl, l ∈ Z, it is easy to see that

q = Gc. (4)
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If the average density of thesk’s is at or above the Nyquist
rate then,c can be evaluated as

c = G+q, (5)

whereG+ is the pseudo-inverse (Moore-Penrose) ofG.
The practical solution, however, is challenging becauseG

is typically ill-conditioned, and,q, c andG are infinite di-
mensional.

2.2. A Fast Recovery Algorithm for Irregular Sampling

For irregular sampling, let us consider withT = π/Ω and
α−1 = (2M + 1)T

g(t) = α

M∑

n=−M

ejn Ω
M

t = α
sin

(
2M+1
2M

Ωt
)

sin
(

Ωt
2M

) (6)

instead of the impulse response defined in (2). WhenM
tends to infinity this function converges to the original im-
pulse response. At the same time, the latter choice ofg(t)
is bothΩ-bandlimited and periodic with a period2MT .

In analogy to (1), we define the functionf = f(t), t ∈
R, by

f(t) = α
∑

k∈Z

ck

M∑

n=−M

ejn Ω
M

(t−tk). (7)

Assuming an appropriate norm,f is an approximation ofx
asM → ∞ provided thatf(tl) = x(tl) for all l, l ∈ Z [3].
Evaluating the above equality att = tl we obtain

f(tl) = α
∑

k∈Z

ck

M∑

n=−M

ejn Ω
M

(tl−tk), (8)

for all l, l ∈ Z. By denoting[q]l = x(tl) and [S]m,l =

e−jm Ω
M

tl , equation (8) above after multiplication withS be-
comes

Sq = αSSHSc, (9)

or
d = αT+Sq, (10)

where
d = αSc and T = αSSH . (11)

For the record

[d]n = α
∑

k∈Z

cke−jn Ω
M

tk and [T]m,n = α
∑

l∈Z

ej(n−m) Ω
M

tl .

(12)
Note thatT is both Toeplitz and Hermitian since[T]m,n =
[T]m−n andTH = T (the superscriptH indicates conju-
gate transposition). Finally with[d]n = dn,

f(t) =

M∑

n=−M

dnejn Ω
M

t, (13)

In summary, the bandlimited signalx can be approxi-
mately represented by equation (13) with the weighting co-
efficients evaluated following (10). The low complexity of
the algorithm (10) is due to the fact thatT is a Hermitian
Toeplitz matrix.

3. FAST RECOVERY ALGORITHM FOR TIME
ENCODING

3.1. Classical Recovery Algorithm for Time Encoding

In the time encoding case anΩ-bandlimited signalx =
x(t), t ∈ R, is represented as a discrete strictly increasing
time sequence(tk), k ∈ Z. The time sequence(tk), k ∈ Z,
is generated using a Time Encoding Machine (TEM) [4].
An example of a TEM is depicted in Figure 1 [4]. It consists
of an ideal integrator and a noninverting Schmitt trigger in
a feedback arrangement. The outputz(t) takes the values
b or −b at transition times denoted bytk. It can be shown
[4] that this circuit is described by for alll, l ∈ Z, by the
recursive equation

∫ tl+1

tl

x(u)du = (−1)k [2κδ − b(tk+1 − tk] . (14)

1

κ

Z

dt

−

+

y(t)
δ−δ y

b

−b

z

Integrator

x(t) z(t)

Noninverting Schmitt trigger

Fig. 1. An Example of a Time Encoding Machine

The recovery of the signalx is achieved via the representa-
tion

x(t) = gT c =
∑

k∈Z

ckg(t − sk) (15)

with an appropriate set of weightsck, k ∈ Z. Denoting by:

[q]l =

∫ tl+1

tl

x(u)du and[G]l,k =

∫ tl+1

tl

g(u − sk)du,

(16)
wheresk = (tk+1 + tk)/2, it is easy to see that

q = Gc andc = G+q. (17)

3.2. Reformulation of the Classical Recovery Algorithm

If x is a bandlimited function, then so is
∫ t

−∞
x(u)du, t ∈

R, and therefore:
∫ t

−∞

x(u)du = gT c =
∑

k∈Z

ckg(t − tk), (18)
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whereg = [g(t − tk)], g(t) is given by (2) andc = [ck] is
an appropriate set of coefficients. Since

∫ tl+1

tl

x(u)du =
∑

k∈Z

ck[g(tl+1 − tk) − g(tl − tk)], (19)

we have
q = PGc, (20)

where[P]l,k = δl+1,k − δl,k (using Kronecker’s notation)
and[G]l,k = [g(tl − tk)] (same as in (3)) and thus

c = G+P−1q (21)

with

[P−1]i,k =

{
−1 if i ≤ k

0 if i > k.
(22)

Remark 1 Note that by multiplying both sides of equation
(20) with tl+1 − tl, we obtain:

(tl+1 − tl)[P
−1q]l =

∑

k∈Z

(tl+1 − tl)
sin Ω(tl − tk)

π(tl − tk)
︸ ︷︷ ︸

[ · ]l,k

ck.

(23)
In the time encoding case,

[q]l =
∑

k∈Z

∫ tl+1

tl

g(u − sk)du ck

=
∑

k∈Z

(tl+1 − tl)
sin Ω(ξl − sk)

π(ξl − sk)
ck

(24)

for someξl ∈ [ttl
, tl+1]. Therefore, the elements of the

matrix identified by the lower brace in equation (23) are ap-
proximately equal to the elements of theG matrix for time
encoding. This points to the close relationship between the
recovery algorithm of a time encoded bandlimited signalx
and the recovery of an irregularly sampled integrated sig-
nal

∫ t

−∞
x(u)du. For both recovery methods the same time

sequence is used.

3.3. Fast Recovery Algorithm

Now, (23) can be transformed into a Toeplitz system in the
same way as carried out in Sec. 2.2. Replacing the sinc term
by the approximation introduced in (6) gives:

(tl+1−tl)[P
−1q]l = α(tl+1−tl)

∑

k∈Z

ck

M∑

n=−M

ejn Ω
M

(tl−tk)

Denoting byD = diag(tl+1 − tl), l ∈ Z, we have in matrix
form

DP−1q = αDSHSc.

Multiplying both sides byS from the left gives:

SDP−1q = αSDSHSc

Equivalently with

T = αSDSH , d = αSc, (25)

we have
d = αT+SDP−1q. (26)

The matrixT is both Toeplitz and Hermitian since

[T]n,m = α
∑

k∈Z

(tk+1 − tk)ej(m−n) Ω
M

tk .

Finally, the original signalx is approximated the functionf
given by

f(t) =
jΩ

M

M∑

n=−M

ndnejn Ω
M

t, (27)

with the vectord given by (26).

4. PARAMETER-INSENSITIVE
RECONSTRUCTION

The original reconstruction of a time encoded bandlimited
function depends on the TEM parametersκ andδ. In [4]
the Compensation Principle was used to address the insen-
sitivity of the recovery algorithm with respect to the param-
eters of the TEM. A simple argument shows, however, that
the method employed in [4] does not directly apply here.
Therefore, a different technique is needed.

Parameter insensitivity can be achieved if the termP−1q

in equation (25) does not depend onκ andδ. Carrying out
P−1q by using (22) gives:

[P−1q]l = −κδ
[
1 + (−1)i

]
+ b

L∑

k=i

(−1)k (tk+1 − tk)

whereL denotes the size ofG (ideallyL → ∞). Therefore,
as seen,P−1q will be independent ofκδ for odd values of
i. If -1 in the last column of every second line ofP−1 is
changed to zero then each integral is carried out over even
number of subintervals. This can be achieved by adding the
vector










0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 1











q =











0
1
0
1
0
1











︸ ︷︷ ︸

a

[
0 0 0 0 0 1

]

︸ ︷︷ ︸

bT

q
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to P−1q and defining

p = P−1q + abTq, (28)

where for illustration purposes and in finite dimensions

p =











−1 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 0
0 0 −1 −1 −1 −1
0 0 0 −1 −1 0
0 0 0 0 −1 −1
0 0 0 0 0 0





















q1

q2

q3

q4

q5

q6











.

Note thatp can be calculated without using parametersδ
andκ.
Since

p = P−1q + abT PP−1q

andP−1q = αSHSc, we have:

p = αSHSc + αabT PSHSc.

Multiplying both sides above bySD gives:

SDp = αSDSHSc + αSDabT PSHSc.

Using the matrixT and vectord defined in (25) and (26),
respectively, and denoting by

u = αSDa, vT = bTPSH , (29)

we have:
(T + uvT )d = SDp,

and therefore

d = (T + uvT )+SDp. (30)

Finally, employing the result of [1] (page 50, Corollary 3.3.1),
the pseudo-inversion in (30) can be determined based on the
pseudo-inverse ofT as

(T + uvT )+ = T+ −
T+uvT T+

1 + vT T+u

provided that1+vT T+u 6= 0. Thus, to solve (30) we again
have to calculate the pseudo- inverse of a Hermitian Toeplitz
matrix and the parameter-insensitivity is also guaranteed.
The reconstructed signal is again given by (27).

5. SIMULATION RESULTS

With Ω = π × 80 kHz and the corresponding Nyquist pe-
riod T = π/Ω = 12.5 µs the bandlimited signalx(t) was
generated by its Shannon-representation

x(t) =

65∑

n=−35

x(nT )sinc(Ω(t − nT )),

-0.5 -0.25 0 0.25 0.5 0.75 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (ms)

x(t)

Fig. 2. Overall input signalx(t) and the simulation range
(dashed box) for time encoding.

where the samplesx(−35T ), . . . , x(65T ) were randomly
selected in the range(−0.3, 0.3) and sinc(t) = sin t/t if
t 6= 0 and sinc(0) = 1. This is shown in Fig. 2 in the range
t ∈ [−50T, 80T ]. The dashed box in the figure shows the
simulation ranget ∈ [0 µs, 250.38 µs] for the TEM. With
parametersδ = 7 × 10−6, κ = 1/2, andc = 0.3 the TEM
simulation produced 35 trigger timest0 = 0, t1, . . . , t35.
Fig. 3 shows the error signal defined as the difference be-
tween the right-hand-side and the left-hand-side of (27) in
an even further reduced ranget ∈ [25.125 µs, 225.38µs] to
decrease the boundary effects [4].

50 100 150 200

-75

-50

-25

0

25

50

75

e(t) × 109

t (µs)

eRMS = −154.3 dB

Fig. 3. Error signal using the original formulation in the
reduced range to reduce the boundary effects.

Finally, Fig. 4 shows the results for the RMS error and
the condition number ofT (based on using‖ · ‖2) in terms
of different values ofM by using the new reconstruction
technique. It can be seen that as the condition number in-
creases the accuracy of the reconstruction improves.

Fig. 5 shows the simulation results with the original (squares)
and the parameter-insensitive reconstruction technique (stars).
The error with the original method is the same as that shown
in Fig. 4.
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Fig. 4. Simulation results for the condition numbers and
RMS error.
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Fig. 5. Simulation results for the RMS error.

Using the same parameters as before we found that increas-
ing M the accuracy improves. The nonzero eigenvalues of
T are approaching to those ofG in (23) and practically zero
eigenvalues are introduced ifM is increased. In particular,
having 27 trigger times the error forM = 11 (2M + 1 =
23), M = 13 (2M + 1 = 27), M = 15 (2M + 1 =
31), the corresponding error turned out to be -111.86 dB,
-139.96 dB, -146.28. The accuracy cannot be improved be-
low -154.3 dB corresponding to the case when the original
g(t) is used.

6. CONCLUSIONS

We have shown that the indefinite integral of an arbitrary
bandlimited signal can be directly recovered from the time
encoded sequence associated with the same bandlimited sig-
nal. This simple observation enabled us to devise a fast
algorithm for signal recovery. We have also demonstrated
that our approach can be extended to parameter insensitive
signal recovery. Taken together, these results shed further
light on the close relationship between irregular sampling
and time encoding.
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