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Objective-Driven Monitoring
for Broadband Networks

Subrata Mazumdar and Aurel A. Lazar, Fellow, IEEE

Abstract—An approach to sensor configuration, installation, and activation for real-time monitoring of broadband networks for
managing its performance is presented. An objective-driven measurement strategy for establishing the dynamic and statistical
databases of the network is described. Objective driven monitoring allows the activation of sensors for data collection and
abstraction based on a set of objectives. The objectives are derived from the quality of service requirements for real-time traffic
control and operator submitted queries. The methodology of objective-driven monitoring for selective activation of sensors is

implemented as a set of rules in the knowledge base of the monitor.

Index Terms—Network, quality of service, performance management, sensor, monitoring, knowledge-based systems.

1 INTRODUCTION

ROADBAND networks consist of many subsystems

(switching nodes, multiplexers, links, etc.) that are geo-
graphically distributed, carry multiple classes of traffic and
have access to different information patterns. Although
these subsystems make their own local decisions, they work
together for the achievement of the common system wide
goal of information transport. The common goal is to guar-
antee the Quality of Service (QOS) negotiated during the
call setup for each of the traffic classes [1]. The QOS is
specified through a set of performance parameters.

Monitoring of these parameters and of all network re-
sources, such as buffer space, switching and communica-
tion bandwidth, and call processing, is required in order to
guarantee the QOS [1]. A network monitoring system
should also be applicable to several representative net-
works. Therefore, a proposed set of measurement parame-
ters must be network independent [2]. They must be de-
clared in generic terms, such as throughput, time-delay,
arrival rate, inter-arrival time, etc. Sensors (measurement
points) for these parameters must be made available in all
the networks to be monitored. A set of objective criteria or
strategies are needed by which sensors. can be selectively
activated and deactivated among a large number of sensors
in a distributed environment. One of the main objectives of
the monitoring task is the real-time support of the network
control and management system during the decision mak-
ing process. A consistent view of the network is assumed to
be available for monitoring [3].

The monitoring of networks can be viewed at different
levels of abstraction. Monitoring takes place both at hard-
ware and software level depending upon the hardware and
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software components that support the information trans-
port. In [4], a network operation center to monitor, control,
and manage ARPAnet-like packet-switching networks is
presented. In [5], [6], [7], and [8], network monitoring is
done for LANs or interconnected LANs carrying only sin-
gle class (data) traffic. In the latter work, major emphasis
was on the evaluation of usage of communication resources.
In [9], monitoring of a metropolitan area network, called
MAGNET 11, is carried out by hardware observation units
(HOU) connected to network access points. Real-time traffic
measurements are reported. The quality of service of traffic
classes in the network is evaluated by monitoring the buffer
occupancy distribution, the packet time delay distribution,
the packet loss, and the gap distribution of consecutively
lost packets. In [10], the monitoring of switching resources
was considered for managing AT&T’s dynamic nonhierar-
chical routing algorithm for automatic as well as operator
oriented control of the network.

Since a network can be considered to be a distributed
system, the approaches to monitoring of distributed sys-
tems can also be applied to monitoring broadband net-
works. The monitoring of distributed systems can be classi-
fied as event-driven monitoring and as a database approach
to monitoring. Most of the work in event-driven monitoring
of distributed systems was done on the application level.
Debugging of distributed systems [11], [12], [13] and paral-
lel programming environments [14] are typical examples.
Here, major emphasis was given to the performance
evaluation of processing resources. In [15], a relational ap-
proach to monitoring was presented. In the relational ap-
proach, monitoring is viewed as an information processing
activity and the historical database, a class of relational data-
bases that encode time, is considered an appropriate for-
malization of the information processed by the monitor.

In this paper, the steps required to configure, install and
activate sensors for monitoring broadband networks are
discussed and a knowledge-based approach is presented as
a solution to the problem. In order to monitor object be-
havior, sensors need to be configured and installed in the
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network. Sensor configuration specifies the characteristics
of sensors declared in the knowledge database of the
monitor. These characteristics are specified by a set of at-
tributes and a set of procedures for operations. Sensor in-
stallation involves identification of the measurement points
in the network.

The architecture of our objective-driven monitoring sys-
tem is knowledge-based. It consists of a knowledge data-
base and an inference engine for reasoning on the database
[16]. The inference engine consists, in turn, of two parts: a
deductive inference processor and a statistical inference
processor. The role of the deductive inference processor is
to process the queries about the network behavior and acti-
vate sensors in the network. The role of the statistical infer-
ence processor is to abstract the information obtained by
the sensors.

The monitoring system processes queries on the system
as well as on the conceptual level, and sets up sensors to
collect information. The system level monitor supports que-
ries only if precise knowledge about the system is available.
On the conceptual level, the monitor allows general queries
without the precise knowledge of the system architecture of
the network.

An objective-driven monitoring scheme is presented that
selectively activates and deactivates a subset from among a
large number of sensors already installed in the network.
The objective-driven monitoring scheme is closely related
to the concept of experimental frame of [17] that characterizes
modeling objectives by specifying the form of experimen-
tation required for obtaining answers to the questions of
interest. For the class of objective-driven monitoring tasks
considered in this paper, the fundamental concepts are de-
rived from the requirements of supporting Quality of Serv-
ice and of operator submitted queries. The objective-driven
monitoring scheme deals with the problem of complexity in
monitoring broadband networks through the concept of
observation frame that we have earlier proposed [18].

An object-oriented definition of sensors is introduced
and a method for specifying the configuration of the sen-
sors in the network is given. This definition represents an
alternative to “a collection of code” given in [15]. Through
the specification of object-specific and variable-specific ge-
neric sensors, we can define the starting and stopping time
for monitoring and also how frequently the observation
samples are to be collected and recorded. Since the various
measures for performance analysis are specified through a
set of operators, we can easily add a new set of perform-
ance measures or selectively activate a subset of measures.
Based on our approach, we can select any object, state vari-
able, event or their performance parameter for monitoring.

This paper is organized as follows. Section 2 outlines the
architecture of the experimental environment that repre-
sents a platform for knowledge-based monitoring of broad-
band networks. Section 3 describes the key ideas about sen-
sor configuration, installation and query analysis for
monitoring. Finally, in Section 4, the objective-driven
measurement strategy and a query based activation of sen-
sors for broadband networks are discussed.

2 THE SYSTEM ARCHITECTURE OF THE MONITOR

The architecture of the knowledge-based monitoring sys-
tem was modeled as a real-time system (as shown in Fig. 1)
where the monitor asynchronously interacts with the net-
work through an interface [19]. Thus, the network can be
viewed as the environment for the monitor. The network
behavior is monitored through the interface and the col-
lected information is sent to the monitoring system that
maintains an image of the network. The interface is all the
monitor sees of the network. The characteristics of the inter-
face depend to large extent on the environment. What is
and what is not part of the interface depends on the specific
requirements of the management and control tasks.

Knowledge-Based
Monitoring System

PoFr oy

Environment

Fig. 1. Real-time system model for monitoring of integrated networks.

The interface between the network and the monitor con-
sists of a set of state variables. A state variable is persis-
tently present and throughout its existence it has a value
that changes with progression of time. For the task of
monitoring the network, state variables get their values
from the processes operating in the environment. The se-
mantic information about network objects and the interface
are represented by the Entity-Relationship model [20]. The
computational model consisting of a set of sample path and
performance evaluation operators defined in [18], [19] is
used to describe various processes that are associated with
state variables.

Thus, in representing the environment and the interface,
the concept of modularity was achieved through the object
representation. The location and ownership of a state vari-
able was declared through these objects. These objects are
responsible for acquisition, manipulation, and dissemina-
tion of the information of their state variables. Note that,
while implementing the network architecture, one has to
explicitly declare a set of state variables that form the inter-
face between the network and the monitor. These variables
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characterize the observable behavior of the network. The
exact specification of the interface depends on the monitor
and the specific management tasks, such as performance,
fault and configuration management, that the monitor is
going to support.

The architecture of the knowledge-based monitoring
system (as shown in Fig. 2) consists of the knowledge data-
base and an inference engine for reasoning on the database
for query processing, sensor activation, and interpretation
of data collected by the sensors. The inference engine con-
sists of two blocks:

1) the deductive inference processor and
2) the statistical inference processor.

The role of the deductive inference task is to set up a dis-
tributed observation frame, i.e., a data space in which a query
may be answered.

" 'DESKTOP
A
A
L QUERY
/ PROCESSOR
INFERENCE - ENGINE: —
Inference || Inference e R S
m NETWORK Collection
Activation i

Fig. 2. The system architecture of knowledge-based monitoring.

Fig. 3 shows the organization of the knowledge database
of the network. The knowledge database is organized as
follows. The system level knowledge about the network is
represented in the configuration database. The configura-
tion database contains the knowledge about the network
entities, such as buffers, sources, and servers and their spe-
cific instances. Fig. 4a describes the attributes of those net-
work entities. The dynamic database contains the informa-
tion about the state and event variables of the objects in the
configuration database. Fig. 4b describes the attributes of
the state and event variables. The sensor database contains
the generic description of sensor objects and also any spe-
cific class of state and event variables and all of the in-
stances of the sensor object class. The objects in the sensor
database indicate the specific sampling pattern for data
collection and specific sensor instances indicate the activa-
tion of the sensors. The sensor database together with the
configuration database forms the static database. These two
databases change much less often than the dynamic data-
base. The dynamic database only exists for those state and
event variables that are measured by activating the sensors
in the network. The statistical database is obtained by ap-
plying abstraction operators on both state and event vari-
ables and provides various performance measures for each
state and event variable. Fig. 4c describes the attributes of
the performance parameters.

393
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and Event Variables

Sensor Activation and
Data Collection
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Switch

Conﬁguratlon
Database
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Fig. 3. The organization of the knowledge database.

(defschema NETWORK-OBJECT
(generic_name) :r; Class name of the Object
(key) + Composite artribute defining the key attribuie
(status) vy Indicates the status of object, active or inactive.
)
(defschema BUFFER
(1s-A NETWORK-OBJECT) s Inherits the attribute.
(generic_name BUFFER)
(buffer_id) 1 Key attribute of Buffer.
(buffer_size) : Sive of buffer
)
(defschema SERVER
(Is-A NETWORK-OBJECT)
(generic_name SERVER)
(server_id)

{server_status)

)

(defschema SOURCE
(1s-A NETWORK-OBJECT)
(generic_name SOURCE)
(source_id)

(source_status)

)

Fig. 4a. The attributes of basic network objects.

Typically, a query submitted by the query generator, i.e.,
a control task or a human operator, requires information
about the performance of certain objects in the network.
The query is then processed to find out the specific in-
stances of the performance parameters of interest. Based
upon these parameters, the deductive inference processor
creates a derived object containing the identified perform-
ance parameters and their corresponding state and event
variables. An associated derived sensor capable of moni-
toring the derived object is also created, which in turn cre-
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ates the appropriate sensors in the sensor database for the
selected state and event variables. Creation of the sensors
for state variables in the knowledge database activates the
sensors in the network and data is collected. The statistical
inference processor then applies the statistical operators,
passed during the query submission or implicit in the per-
formance parameter specification, on the collected infor-
mation and transmits the processed information to the
query pTOCESSOr.

(defschema STATE_VARIABLE
(1S-A NETWORK-OBJECT)
(generic_name STATE_VARIABLE)
(VAR-OF-GENERIC-OBJECT) sy the class name of object to which it belongs
(rangc_of_var) ist indicaring the upper and lower bounds
(state_threshold) ;7 threshold value of state variable

(value)
(obs_time)

»iv the value at a sample instant
;vv the time instant of the sample

55 Lhe following attributes represent operators on state variable

(min_value)
(max_value)
(up_count)
{down_count)
{first_obs_time)
(last_obs_time)

»13 recorded minimum over a period

ecorded maximum over a period

number of times threshold is crossed from below
number of times threshold is crossed from above
he starting time sampling ywindow

he time of observation of last sample

(top_hit) y; number of times upper bound is reached
{succ_top_hit) sy mumber of times upper bound is reached successively
(bottom_hit) r; number of times lower bound is reached

(suce_bottom_hit) 7 number of times lower bound is reached successivelv

)

(defschema EVENT_VARIABLE
(IS-A STATE_VARIABLE)
EVENT_VARIABLE)
53 the id of the operator the extracts the event

(generic_name
(event_operator_id)

)

Fig. 4b. The attributes of state and event variables.

(defschema PERF-PARAMETER
(Is-A NETWORK-OBJECT)
{PERF-OF-GENERIC-VARIABLE)
(PERF-OF-GENERIC-OBJECT)
(generic_name PERF-PARAMETER)
(count) s Total number of samples collected for abstraction
{first_obs_time) stari time of the neasurement interval
(last_obs_time) 515 end time of the measurement interval

(min_value)
(max_value)
(av_value)
(var_value)
(time_wtd_av_value)
(time_wid_var_value)
(min_value)
(max_value)
(av_top_hit)
{av_succ_top_hit)
(av_botloni_hit)
(av_succ_bottom_hit)

. minimum value of collected samples

maximum value of collecred samples

average of the collected samples

2 variance of the collected samples

11 time weighted average of sumples

5; time weighted variance of samples

minimum value over measurement inferval

maxintim value over meastirement interval

average of number of times upper bound is hit

average of number of times upper bound is hit successively
average of number of times lower bound is hit

w average of number of times lower bound is hit successively

)

Fig. 4c. The attributes of performance parameters.

3 MONITORING

As mentioned in the previous section, the monitor is de-
fined to be a real-time system that maintains an ongoing
relationship with its environment, i.e., the network. The
interface between the monitor and the network is defined
by a set of state variables. The inferface is all the monitor
sees of the network. Thus, the characteristics of the interface
depend to a large extent on the network.

Depending upon the information requirement, a net-
work can be monitored in two ways: monitoring the states

(status monitoring) and monitoring the events. During status
monitoring the collection of values of any of the state vari-
ables obtained by sensor activation is recorded. The rate at
which the information is generated by sensors depends on
the speed of operation of the corresponding objects, such as
buffers, servers, and sources. For example, on the network
access level, the rate of generation of state information may
be equal to the packet arrival and departure rate; and at the
session layer, it may be equal to the rate of arrival of new
calls. Events are abstractions of state variables obtained by
applying the sample path operators of the computation
model over time. An event derived from a state variable is
recorded by a sensor as an event variable.

The design of the network monitor can be characterized
by the following steps that are in part, adapted from [15]:

¢ Step 1: Sensor Configuration.
This step involves the design of the sensor, ie,
specification of its attributes and the procedures of
operation that handle the necessary interaction with
the monitor, enabling and disabling the sensors and
buffering of monitored data and requested tasks.
The sensor attributes specify the starting and stop-
ping times for monitoring, how frequently the
monitored events, measures, or resources are to be
recorded, and other related performance informa-
tion to be collected simultaneously;

e Step 2: Sensor Installation.
This step involves identifying the state and event
variables that are to be monitored by sensors.

e Step 3: Query Analysis Specification.
This step specifies how to decompose a query, acti-
vate sensors and create various dataspaces for infor-
mation abstraction.

e Step 4: Execution.
This step is comprised of activating the sensors, gener-
ating and abstracting the data collected from the net-
work, transmitting the data from the network to the
monitor, and finally presenting the data on a graphics
terminal. (This step is discussed in Section 4.)

Even though we have adopted the steps in [15], there are
differences between [15] and our approach. In [15], the ap-
proach was relational whereas our approach is object-
oriented. Since a sensor monitors state variables, there ex-
ists only one type of sensors that need to be configured for
installation in the network. Thus, we need to instrument an
object only once in order to obtain various measures, such
as average and variance of buffer occupancy from the
buffer state variable associated with a buffer. In our ap-
proach the various performance measures are defined as
operators for the sensor.

In [15], there is no concept of object-specific or variable-
specific generic sensors. Through the inheritance mecha-
nism of the object-oriented approach we can specify object
or variable specific generic sensors. In the case of sensor
installation, we show how to select the measurement points
based on performance management objectives. These
measurement points are based on the actual variables that
are responsible for generating information and on which
the performance measures are applied. In the query analy-
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sis specification step we show how the data transformation
takes place during data collection and how the interpreta-
tion is done based on this data. We have a clear separation
between the raw data that is collected and its abstractions.
In this step, we show how the information provided by a
simple query is used to identify sensors, collect data, detect
events and how abstraction and interpretation is done on
the collected data.

3.1 Sensor Configuration

A sensor is defined to be an object with a set of attributes
and a set operators (algorithm or code), implemented either
in hardware or software. The sensors installed in the net-
work collect information about the state or event variables
of an object and transfer it to the monitor. From an imple-
mentation point of view, every state and event variable in-
cludes its sensor as a component object. Sensor operations
are executed by the set of sample path and statistical op-
erators described in [18], [21].

Sensors installed in the network to monitor the state
variables of an object are termed primitive sensors. The
primitive sensor corresponds to the object class sENsOR in
the sensor database; its attributes are the same as that of
sensor (as shown in Fig. 5). The attribute sensor code_id
specifies the operator to be applied to abstract infor-
mation from the history of a state variable. The attrib-
ute initiated by indicates the initiator of the query
based on which the sensor is activated. Primitive sen-
sors contain the code for sample path and performance
evaluation operators.

The attributes of a sensor are defined based on the re-
quirements for both status and event monitoring and they
are shown in Fig. 5. The abstraction operators of a primitive
sensor operate on two time scales. The sample path opera-
tors abstract events on the time scale of the state variables.
The performance evaluation operators operate on both state
and event variables on a time scale based on the interval for
statistics collection. The parameters for performance evalua-
tion operators are provided by a set of sensor attributes.
These attributes are sample_count, sample_on, sample_ off,
duration_of_activation, and sampling interval.

The sensor attribute sample count specifies the total
number of state and event variables samples that are to be
collected for statistical inference. The average on a fixed
number of samples is computed based on the value of the
sample_count and it is the default procedure for evaluating
the average over a period. If the value of sample count is
not specified and the attribute sample on is specified, then
the later is used with sampling interval to compute the
total number of samples to be collected for statistical infer-
ence. The specific values of sample_count oOr sample_on for
monitoring a state variable are determined by the rate at
which the variables are changing their values. Their values

are also determined by the control algorithm that is man- -

aging the object. In order to repeat the statistical inference
process, the sensor attribute
specifies the duration of the monitoring process or the
duration of time the sensor remains active. The attribute
sample off of sensor specifies the duration between two
consecutive measurement intervals, i.e., sample_on period.

duration_of_ activation

(defschema SENSOR
(Is-A NETWORK-OBJECT)
(gencric_name SENSOR)
(sensor_code_id) r: code for abstraction operator
(initiated_by) 1SCT qUery or program query
(duration_ol_activation} ow long the sensor remains active
(sample_on_period) ;- length of window open for monitoring
(sample_off_period) 555 tine between two succesive windows
(sampling_interval) sampling rate
(sample_count) si; number of samples to be collected

)

(defschema STATUS_SENSOR
(Is-A SENSOR)
(generic_namc STATUS_SENSOR)
(MONITORING-GENERIC-STATE-VAR)
(MONITORING-STATE-VAR)

nherits sensor’s attributes
class name

; class name of stare-variable
1y name of specific state-variable

)

(defschema EVENT_SENSOR
(1s-A STATUS_SENSOR)
(gencric_name EVENT_SENSOR)
(event_operator_id
(MONITORING-EVENT-VAR)

;; inherits sensor’s attributes

“lass name

he operator id for event extraction
s name of the specific event

)

(defschema DERIVED_SENSOR
(IS-A SENSOR) J; inherils sensor's attributes
(generic_name DERIVED_SENSOR) ,,; class name
(DERIVED_FROM) he names Of component sensors
(MONITORING-GENERIC-OBJECT) “lass name of object being monitored
(MONITORING-OBJECT) s+s name of monitored object

)

(defschema SENSOR_NETWORK_STATION
(1s-A DERIVED_SENSOR)
(generic_name SENSOR_NETWORK_STATION)
(key (node_no st_no))

(node_no)
(st_no)
(MONITORING-GENERIC-OBJECT NETWORK_STATION) :; class name of vbject being monitored

(defschema SENSOR_SWITCH_BUFFER_INFO
(Is-A DERIVED_SENSOR)
(generic_name SENSOR_SWITCH_BUFFER_INFO)
(key (node_no st_no))

(node_no)
(st_no)
(MONITORING-GENERIC-OBJECT SWITCH_BUFFER_INFO)

)

(defschema SENSOR_LINK_BUFFER_INFO
(Is-A DERIVED_SENSOR)
(generic_name SENSOR_LINK_BUFFER_INFO) ;
(key (node_no st_10))
(node_no)
(st_no)

(MONITORING-GENERIC-OBJECT LINK_BUFFER_INFO)
)

(defschema SENSOR_BUS_SWITCH_FABRIC
(Is-A DERIVED_SENSOR)
(generic_name SENSOR_BUS_SWITCH_FABRIC)
(key (node_no st_no))
(node_no)
(st_no)

(MONITORING-GENERIC-OBJECT BUS_SWITCH_FABRIC)
)

(defschema SENSOR_SWITCH_BUFFER
(Is-A DERIVED_SENSOR)
(generic_name SENSOR_SWITCH_BUFFER)
(key (node_no st_no buffer_id))

(node_no)

(st_no)

(buffer_id)

(MONITORING-GENERIC-OBJECT SWITCH_BUFFER)

)

(defschema SENSOR_LINK_BUFFER
(Is-A DERIVED_SENSOR)
(generic_namc SENSOR_LINK_BUFFER)
(key (node_no st_no buffer_id))
(node_no)
(st_no)
(buffer_id)

(MONITORING-GENERIC-OBJECT LINK_BUFFER)
)

Fig. 5. The schema description of sensor and its subclasses.
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Primitive sensors are activated by sending them a mes-
sage. Conversely, a primitive sensor transmits information
to the monitor by sending a message. Each message is time
stamped with the time of creation of the information sent. If
the transmitted message contains the value of a state vari-
able then the time of creation indicates the last sampling
time. If the message contains an event indication, then the
time of creation indicates the event occurrence time. If the
message contains the information about a performance pa-
rameter of a state or event variable, then the time of crea-
tion indicates when the value of the performance parameter
was computed.

Primitive sensors are provided with the capability to
queue up multiple requests for monitoring. The messages
sent by the monitor to the sensor contain information
about the specific sample path and performance evalua-
tion operators to be applied to the collected values. In or-
der to allow multiple users or control algorithms to query
the state and event variables, the primitive sensors are
provided with the ability of both one-to-one and one-to-
many communications.

Two subclasses of primitive sensors, sTaTUS_SENSOR and
EVENT_SENSOR, are defined to monitor the state and the
event variables, respectively. The sTarus_sznsor inher-
its all the attributes of sensor. The relationship type
MONITORING-GENERIC-STATE-VAR and MONITORING-STATE-VAR
establishes the relationships between the sensor and the
subclass of a state variable and the specific instance of the
state variable being monitored, respectively. The
EVENT_SENSOR is declared as a subclass of the sTaTUS_SENSOR
and thus inherits all of its attributes. The evenT_sENsoR has
an additional attribute, event_ operator id, that defines
the operator for extracting the event. Since the behavior of
all objects is represented by their state variables, only one
type of primitive sensors needed to be configured. Thus, no
matter how complex, an object can be monitored as long as
its state variables are declared. Therefore, no object specific
sensor needs to be configured.

In order to monitor an object whose behavior is de-
fined by a set of state or event variables, derived sensors
are defined. The derived sensors are an aggregation of a
set of primitive and derived sensors. Derived sensors
belong to the object class DERTVED_sENSOR, which is a
subclass of sensor. The DERIVED SENSOR is obtained
based on the primitive sensors associated with the state
and event variables of an object to be monitored. An in-
stance of PERTVED_sENsOR created for monitoring an object
will contain the corresponding instance of sTaTUS_SENSOR
and/or EVENT_seNSOR. The DERIVED_SENSOR maintains a
list of primitive or derived sensors by the relationship
attribute DERIVED_FRroM. Since the behavior of an object is
always expressed by its state and event variables, the
sensor that monitors an object is always a member of the
subclass DERTVED_SENSOR and is an aggregate object con-
taining the status and event sensors. Thus, in order to
monitor the state of a BUFFER, a DERIVED_SENSOR will be
created for the ®urrErR and it is composed of a
STATUS_SENSOR that monitors the state variable repre-
senting the BUFFER's state. If an object is an aggregation
of a set of objects, the pERTVED_sENSOR for the aggregate

object will consist of the DERIVED_SENSOR of the compo-
nent object.

The pERTVED_SENSCR may be specialized to represent ob-
ject specific monitoring information such as the sampling
pattern. Thus, in order to obtain the behavior of an object
NETWORK_STATION, SENSOR_NETWORK_STATION, a subclass
of DERIVED_SENSOR, is defined. The relationship be-
tween SENSOR_NETWORK_STATION and the corresponding
oObject class, is established by MONITORTNG-GENERIC-OBJECT
and the relationship between the specific instances of the
SENSOR_NETWORK_STATION and the specific instance of
NETWORK_STATION, which is being monitored, is established
by MONITORING-OBJECT-INSTANCE.

Whenever a specific object in the network is to be moni-
tored, an instance of the DERIVED_SENSOR is created in the
sensor database. The value of the MONITORING-GENERTIC-OBJIECT
of DERIVED_SENSOR specifies the class name of the object
that the derived sensor is monitoring. The instance of the
DERIVED_SENSOR and its association with the object in the con-
figuration database is deleted when the sensor is deactivated
at the end of the monitoring period. The derived sensors only
exist in the sensor database. Unlike primitive sensors, no coun-
terpart of derived sensor exists in the network. Both primitive and
derived sensor instances are stored in a database called sensor
database, as shown in Fig. 3.

3.2 Sensor Installation

Sensor installation allows the selection of the measurement
points in the network, i.e., the state variables of the network
objects that define the interface between the monitor and
the network. Since network object and state variables can be
uniquely identified in the system, the events associated
with state variables and their performance parameters can
be selected. In the modeling process of the monitor in [21],
state and event variables were identified based on the per-
formance management requirements. The sensor location
was determined by the location of the identified state vari-
ables in the network.

Along with sensor configuration, the installation of
primitive sensors is the only manual process associated
with our monitoring scheme. Since the specification of state
variables is to be decided based on the performance objec-
tives of the control tasks, these two steps will now be re-
quired to be carried out during the specification and design
step of the network. This is by itself a manual process.
Thus, the design of the network monitor has been shifted to
the network design phase. This design process results in a
robust network design that requires very little tuning dur-
ing operations. The identification of the sensor location
during the specification phase helps to alleviate the reli-
ability and the correctness problem of sensor operations.

3.3 Query Analysis Specification

Query analysis specification derives levels of abstraction of
the collected information for performance analysis. It also
selects the performance analysis criteria and algorithms for
various performance measures. As shown in Fig. 6a, a
transaction for a query has three parts: an identification
function (I) that selects the state or event variables of a spe-
cific object to be monitored, a data transformation function
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(F) for performance evaluation through statistical inference,
and an inference rule (R) to be applied to the abstracted
data. The dataspace generated by monitoring a state or an
event variable is denoted by the circle F, in Fig. 6a. It is cre-
ated after activating the sensor associated with a state or an
event variable. The data transformation function (F)
(derived from the set of statistical operators) is applied on
the dataspace F, to abstract information from the history of
a state or an event variable. Application of F generates a
dataspace G, that consists of only statistical information. If
the statistical abstraction is not needed then F is reduced to
the identity operator. The inference rule R operates on the
dataspace of G; to further evaluate the statistical informa-
tion, e.g., for event detection through threshold crossing. If
no such operation is needed, then the rule R is reduced to
the identity operator.

QUERY =

= m o~

Q
o

SENSOR £

Fig. 6a. Decomposition of a simple query about a state variable.

The deductive inference rule is used to decompose a
query into a set of simple queries and then aggregate the
information received by servicing the simple queries. For
example, in order to find the total average time delay of a
call; a set of sensors at the nodes along the route of the call
is to be activated to measure the time delay at each node.
Once the average time-delay from every node is available,
they are aggregated to compute the total average time de-
lay. Therefore, a query for the average time delay of a call
will be divided into multiple simple queries and appropri-
ate sensors will be activated to measure the average time
delay at every node along the route of the call. Fig. 6b de-
scribes such a scheme, where sENSOR 1 through sensor_N
measure the time delay at each node along the route of the
call. The function f(D;, ..., D)) in Fig. 6b represents the
deductive part of the query for data aggregation and it is
applied after the data is collected from the appropriate
Sensors.

SENSOR_1

Fig. 6b. Decomposition of a compound query about state variables of
multiple object.

We may also want to find out whether a certain average
throughput-time delay condition, at a buffer of a node, is
satisfied. In this case, we need to activate sensors for both
the throughput and the average time-delay and send an

event indication if the average throughput-time delay
condition is not met. In order to do that, the original
query will be divided into two simple queries based
on the throughput and the time-delay to be computed.
Fig. 6b represents such cases where the original query is
divided into multiple simple queries identifying each of
the state variables to be measured. ]‘(Dtl P DtN ) indi-
cates the function that generates an event if the through-
put-time-delay condition is not met.

Fig. 6c represents the case when a state variable is
monitored for status monitoring and event reporting or
multiple event reporting. f(D,l, ey DtN ) represents any
deduction to be done after the data is collected. One such
deduction scheme is the correlation between two events
generated from the same variable. This scheme can also be
used to define higher level events based on the history of
event variables.

1\ F 1 1
£, G, D,
1
I
1 N,
SENSOR AD,s s D) Q
I 1 1
F N R N
o G, D)
- I :=activates a sensor based on Id to collect data. Fy= raw data acquired by SENSOR.
¢ F :=data transformation function. G:= processed data after application of F on Fi. :
! R :=inference rule solely based on Gl‘ D,:= inferred data after application of R on G‘.

{
N,

.

ﬁD:, ...,D‘IV) = inferencerulcbasedon(D:, )

Fig. 6¢c. Decomposition of a compound query about state variables of
same object.

4 THE OBJECTIVE-DRIVEN MEASUREMENT
STRATEGY

In the process of performance management, a set of objec-
tives often lead to asking a specific set of questions about
the network. The questions of interest could be: Does the
network support a specified performance or can the net-
work provide enhanced performance? They can be an-
swered after appropriate monitoring functions are incorpo-
rated into the system and the observed data is processed.

Monitoring as a process determined by objectives is
called objective-driven monitoring. Objective-driven moni-
toring is closely related to the concept of experimental frame
of [17] that characterizes modeling objectives by specifying
the form of experimentation that is required to obtain an-
swers to the questions of interest.

A query to collect information from the network can be
submitted to the monitor either by an user from a terminal
or by the various knowledge specialists responsible for
network control and management. Such agents are called
Query Generators (as shown in Fig. 2). The submitted
query can be of two types: real-time data query and non-
real-time data query. The real-time data query represents
the query on those objects whose attributes are updated
using the sensors located in the various subsystems of the
network. The nonreal time data query represents the query
on those objects whose attributes’ value do not depend
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upon the sensory information. The nonreal-time queries are
handled based on the information available in the knowl-
edge base of the monitor.

The real-time data queries are handled by using the de-
ductive query processing technique, where the inference
and retrieval phases of the query have been separated [22],
[15]. The schematic of such query processing is shown in
Fig. 2. Based on the relationships established in the knowl-
edge database between the various objects, the monitor
decomposes the requested query into a set of simple que-
ries and analyzes them to determine specific state and event
variables that need to be monitored. Once the state and
event variable is identified, corresponding sensors in the
network are activated. Activated sensors then collect in-
formation about the state and event variables and thus up-
date the dynamic database shown in Fig. 3. If the query
requires statistical abstraction of the collected information,
then the statistical inference processor applies the corre-
sponding operators on the state and event variables and
updates the statistical database.

As described before, one way to find the total average
time delay of a call is to activate sensors to measure the
time delay at the nodes along the route of the call and then
aggregate the average time-delays. A more elegant solution,
however, is to first obtain a derived object that contains all
the state variables that exhibit the average time delay of the
intermediate nodes along the route of the call. A derived
sensor can be attached to this object and finally adding up
the time delays leads to the required result. Thus, to answer
a query only a restricted data space, called an observation
frame, is needed. The observation frame contains only the
state and event variables, the performance parameters, and
the derived sensor and its components. In the next section a
general methodology for an objective-driven measurement
strategy is described.

4.1 Deductive Inference

Real-time control algorithms for resource allocation operate
based on a set of cost functions and a set of constraints on
the behavior of the variables of a system. These system
variables could be either describing the state of the system
or a statistical abstraction of its state. Thus, a control task
first leads to monitoring the system variables. In the case of
integrated networks, QOS parameters define the target oper-
ating points and maintaining these QOS parameters near
the operating point becomes the control objective of net-
work operations.

Based on the specified QOS parameters, a set of perform-
ance parameters are identified. The difference between the
QOS parameters and the performance parameters is that
the latter depend on the systems architecture of the net-
work. From the specification of the QOS parameters, the
corresponding performance parameters are derived by the
deductive processor based on the knowledge about the
system architecture of the network. The latter resides in the
configuration database. As an example, the maximum av-
erage end-to-end time delay might be a QOS parameter.
The average time delay experienced by a call in a given
network is the performance parameter associated with it. It

is the aggregation of all the average time delays at nodes
and links along the route of the call.

Thus, the request for monitoring a QOS parameter is a
query consisting of the class name of an object and the cor-
responding performance parameter. This general query can
be made specific by providing values for one or more key
attributes of the object class. Based on the submitted query,
the deductive inference processor identifies specific objects
and the performance parameters that need to be monitored.
First, all the objects in the knowledge base that contain the
appropriate performance parameter are identified. Second,
the instances of the performance parameters associated
with the selected objects are identified. Third, the instances
of state and event variables associated with the selected
instances of the performance parameters are identified.

For each of the selected objects a component object is cre-
ated and relationships are established between the new object
and the selected performance parameters and the corre-
sponding state and event varjables. In order to monitor the
selected objects, a derived sensor is associated with the each -
of the component objects. The creation of the derived sensor
generates the instances STATUS_SENSOR and/or EVENT_SENSOR
for each of the state and event varjables associated with the
component object. Creation of the sTaTUS_sENsOR or
EVENT_SENSOR activates the corresponding primitive sensors
installed in the network. The component object, the associ-
ated derived sensor, and the collected information repre-
sent a data space called observation frame. Thus, the obser-
vation frame forms a restricted data space. The answer to
queries is obtained by examining, processing, and aggre-
gating monitored information in this space. The statistical
inference process takes place only after data has been col-
lected by the sensors.

4.2 An Algorithm for Objective-Driven Monitoring

The operation of the deductive inference processor de-
scribed above can be formalized into an algorithm consist-
ing of the following steps:

1) identify the instances of the object class specified in
the query;

2) identify the instances of the performance parameter
specified in the query associated with the selected
objects;

3) for each of the selected objects, identify the instances
of state and event variables associated with the se-
lected performance parameters;

4) create a new object and associate with it the selected
performance parameters and the state and event vari-
ables of all the selected objects;

5) associate a derived sensor with the new object and
create sensors that monitor the state and/or event
variables;

6) activate the sensors in the network;

7) apply statistical inference procedures to evaluate the
performance parameter.

The above steps are in part adopted from the “objectives-
driven” methodology for modeling of systems [17].



MAZUMDAR AND LAZAR: OBJECT-DRIVEN MONITORING FOR BROADBAND NETWORKS

399

PERF_PARAMETER

STATE_VARIABLE

NETWORK_OBJECT

SWITCH_BUFFER_I

-

<A 1 ) <A
@ PERF-OF-GEN- 2 STATE-VAR-OF-GEN- ]
VARIABLE OBJECT
PACKET_OUTOF_
THROUGHPUT BUFFER = BUFFER
L PERF-OF-GEN- ]
OBJECT
< < <
® @ @
STATE-VAR-OF-GEN-
PERF-OF-GEN- OBJECT
VARIABLE
THROUGHPUT_ PACKET_OUTOF —
SWITCH_BUFFER SWITCH_BUFFER SWITCH_BUFFER
PERF-OF-GEN-
A OBJECT A A
< < <
@ @ @
PACKET_OUTOF_ HAS-VARIABLE
SWITCH_BUFFER |
THROUGHPUT__

SWITCH_BUFFER_I

HAS-PERF-PARAMETER

L

INSTANCE-OF

INSTANCE-OF

PACKET_OUTOF__
v
SWITCH_BUFFER_0_1_1| ~_

HAS-VARIABLE

INSTANCE-OF

THROUGHPUT_

SWITCH_BUFFER_o_1_1*!t
HAS-PERF-PARAMETER

SWITCH_BUFFER_0_1_1

Fig. 7. Semantic network of performance parameters of BUFFER and its subclasses.

The main goal of the above algorithm is to automatcally
identify the network sensors to be activated in order to com-
pute a generic performance parameter associated with a
given object class. Fig. 7. describes the semantic network as-
sociated with an instance switcH_BUFFER_0_1_I. In step 1, for
a given object class name and and key-values, we identify the
instances of the object class that matches the description.
Then in step 2, we identify the instance of the performance
parameters that matches the generic performance parameter
specified in the query. For example, if we are interested in the
THROUGHPUT of a selected instance swITcH_BUFFER_0_1_I, then
THROUGHPUT_SWITCH_BUFFER_0_1_I will be selected.
Given a specific instance of a performance parameter,
in step 3 we identify the corresponding instance of
variable associated with the object. In Fig. 7, the vari-
able PACKET_OUTOF_BUFFER 0_1_I is associated with
THROUGHPUT_SWITCH_BUFFER_0_1_I. In step 4, we create an
instance of an object class oBs_view, as shown in Fig. 8 and
associate the selected performance parameters and the cor-
responding variables with the new object. In step 5, we cre-
ate an instance of DERIVED_SENSOR and associate it with the
instance of oBJ_viEw. A side-effect of association of a de-
rived sensor with an object is that it will create instances of
primitive sensors (STATUS_SENSOR Or EVENT_SENSOR) to

monitor the variables associated with the object. The in-
stances of 0BJ_vIEW and DERIVED_SENSOR together form the
OBSERVATION-FRAME. In step 6, instances of primitive sensor
will send message to the network to activate sensors in-
stalled in the network. In step 7, statistical inferences are
applied to compute the value of the performance parameter
from the network measurement and sent to the observation
frame in the knowledge base.

4.3 Examples
Two examples are given for objective-driven monitoring.
The first shows the evaluation of the throughput of a
buffer while the second gives the evaluation of the time
delay of a call.

4.3.1 Monitoring a Traffic Buffer

In the following example, it is shown how to monitor the
average throughput of a buffer at a network station of
MAGNET II [23] network. Let us assume that the query
requests the THROUGHPUT of swITcH_BUFFER with following
key attribute-value pair: buffer_id = I at node no = 0
and st_no = 1.



400 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 3, JUNE 1996

OBJ_VIEW

DERIVED_SENSOR

MONITORING-OBJECT
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— >
— >

MONITORING-STATE-VAR

Fig. 8. The schematic of observation frame containing state variables
and sensors.

Based on the specification of the attributes node no,
st_no, and buffer_id, SWITCH_BUFFER_O_1_I, which is an
instance of swITCH_ BUFFER, is identified as the object to be
monitored. Then, THROUGHPUT SWITCH BUFFER_0_1_I, the
specific instance of THROUGHPUT for SWITCH BUFFER_0_1_I is
identified as the performance variable of the oBJECT-vIEW.
Based on the relationship PERF-OF-STATE-vaR between the
THROUGHPUT and PACKET_OUTOF_BUFFER, the event variable
PACKET OUTOF_BUFFER_SWITCH_BUFFER_O_1_I is identified.
Once the performance parameter and the event variable are
identified, an instance of the object class 0BI vIEwW is cre-
ated. The new object is considered a weak entity of the
SWITCH_BUFFER_0_1_I and it is uniquely identified by its
own class name (0BJ_vTEw), the class name of the object
being monitored and key attributes of the latter. The rela-
tionship type HAS-OBT-VIEW-PERF-PARAMETER establishes the
association between the new object and the performance
parameter THROUGHPUT SWITCH_BUFFER_O0_1_I. Similarly, the
relationship type HAS-OBJ-VIEW-STATE-VAR establishes the
association between the new object and the state variable
PACKET_OUTOF_BUFFER_SWITCH_BUFFER_O_1 T.

Once the instance of oBJs_view is created, a derived
sensor is attached to the object. Based on the relationship
OBJECT-VIEW-OF-GENERIC-0BJECT, the derived sensor is
created as an instance of SENSOR_SWITCH_BUFFER, which is
a specialization of DERIVED_SENSOR for SWITCH_BUFFER.
SENSOR_SWITCH_BUFFER contains the SwITCH_BUFFER
specific sampling information and it is a subclass of
DERIVED_SENSOR. If the object class SENSOR_SWITCH BUFFER
does not exist then the derived sensor is created as an in-
stance of object class perRIveD_sEnsor. The relationship
MONITORING-OBJECT establishes the association between
the instances of oBs_view and DERTVED_sENSOR. The attrib-
utes of SENSOR_SWITCH_BUFFER are shown in Fig. 5b. The
existence of the derived sensor implies the creation of an
instance of =EvENT_sENsorR for the event variable
PACKET_OUTOF_BUFFER_SWITCH_BUFFER_O_1_I. It also estab-
lishes the relationship MONTTORING-EVENT-vAR between the
event variable and the instance of the EVENT SENSOR.

Creation of the sensor causes it to send a message for ac-
tivation of the primitive sensor associated with
PACKET_OUTOF_BUFFER_SWITCH_BUFFER_O_1_I in the network

and the activation of sensor causes start of the measure-
ment of the variable. Once the measurement is completed
and the statistical operators are applied, the value of the
throughput performance parameter is sent back to.the
knowledge base.

4.3.2 Monitoring the Time Delay of a Call

The maximum time delay of a call appears as a QOS con-
straint for the Class-I traffic of MAGNET IL In order to
guarantee that this requirement is met, the time-delays of
Class I calls are requested.

Let caLL be the object class that represents a call
with key attributes calling user id, called_user ig,
and traffic_class. Let the two users of a call CALL_a_B_T
be A and B and the values of attributes calling user_ id,
called_user_id, traffic_class be A, B, and I, respec-
tively. The association between a call and the corre-
sponding nodes and links along the route of the call is
needed. Since a node has multiple access points, the de-
scription of the route needs to include the name of the in-
put-output buffers at all the nodes. The relationship type
HAS-VCKT-ROUTE associates the buffers and servers (links
and switches) along the route with the call. Thus, the route
for the call between the users A and B (shown in Fig. 9), will

contain the following objects: B and

iy k! B/l/iz/k' szrillk'

B/. i x as buffers, N ; and N j as switch fabrics, and Lh ;, as
f20820 1 1

links, where the indices j, indicate the node number, i, in-
dicate the access points at the node, k indicate the traf-
fic class. The relationship type Has-vCKT-ROUTE intro-
duces another relationship Has-COMPONENT-OBJECT, to
reflect the fact that buffers, switches, and links form part
of the call. Both relationship types mas-vckr-rouTE and
HAS-COMPONENT-OBJECT are included as multi-valued at-
tributes in the list of attributes of the object class car1.

(A= ] B B. .
7 Ty 2

B..
" 7] — B

Fig. 9. The description of the route of a call between two users.

Since the maximum time delay of a call will be the
aggregation of the maximum time delays of the buffers
and servers along the route of the call, an aggregate
performance parameter is defined to represent the
maximum time delay of the call. The new object class is
called AGGR-PERF-PARAMETER. It is defined as a subclass
of PERF-PARAMETER, but has an additional procedure asso-
ciated with it for aggregating the values of its component
performance parameters. The time delay of the object class
caur is defined as T1ME_DELAY_cant which is a subclass of
AGGR-PERF-PARAMETER. The value of the max_value of
TIME_DELAY_CALL is the sum of the values of the max_value
of its component performance parameters.

In Fig. 10, the description of the carr and its time delay
performance parameter, TIME DELAY CALL, are shown. The
object TIME_DELAY_carL is declared as a subclass of
AGGR_PERF_PARAMETER and associated with the generic ob-
ject caLL.
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(defschema CALL

(i1s-A NETWORK-OBJECT) oo inherits its attributes
(generic_name CALL) J17 class name
(key (calling_user_id called_user_id traffic_class))

(calling_user_id)

(called_user_id)

(traffic_class)

(vekt_no)

(HAS-VCKT-ROUTE)
)

(defschema AGGR_PERF_PARAMETER
(IS-A PERF-PARAMETER) J5; inherits its attributes
(generic_name AGGR_PERF_PARAMETER) ;. class name

)

(defschemu TIME_DELAY_VAR
(Is-A STATE_VARIABLE) ;1 inherits its attributes
(generic_name TIME_DELAY_VAR) class name
(VAR-OF-GENERIC-OBJECT BUFFER) s, state variable of Buffer
)
(defschema TIME_DELAY
(15-A PERF_PARAMETER) J5r inherits its attributes
{generic_name TIME_DELAY) cluss name

(PERF-OF-GENERIC-STATE-VAR  TIME_DELAY_VAR) ;; relationship with state variable

)

(defschema TIME_DELAY_CALL
(1s-A AGGR_PERF_PARAMETER) ;,; infierils its aitributes
(generic_name TIME_DELAY_CALL) class nume
(PERF-OF-GENERIC-OBJECT CALL) 10 relationship with object

)

Fig. 10. The attributes of a call object and its maximum time delay
performance parameters.

In order to monitor the maximum time delay of the call,
the following objective is defined:

Find the maximum time delay of a call between the pair of users
A and B;

Based on the algorithm for objective driven monitoring,
the steps for computation of the average time delay of a call
can described as follow:

1) Create an observation frame oBJ_vIEW_CALL_aA_B_T for
CALL_A_B_I with:

e HAS-PERF-PARAMETER
e HAS-VCKT-ROUTE

TIME DELAY_CALL_A B T
SWITCH_ BUFFER. . .,
Jurnk
SWITCH_BUFFER. . ,,
Tty
SWITCH_. BUFFERjZ/il,k’

SWITCH_ BUFFER; . .,
Jarty ok

SWITCH_BUFFER; . ,,
Jurti ke

SWLTCH_ BUFFER; ; ,,
Initar

SWITCH_ FABRIC]‘1 Y
SWITCH_ FABRICj ’

n
LINKL/Z Y LINK]',,,J“
e HAS-OBJ~VIEW-

PERF-PARAMETER TIME_ DELAY_ SWITCH_

BUFFER; ; |

TIME_DELAY_ SWITCH_

BUFFER; ;

’

TIME_ DELAY_ SWITCH_

BU oo
FFER]" iy 1

e HAS-OBJ-VIEW-
STATE-VAR TIME_DELAY VAR_

SWITCH_ BUFFERj il
10

TIME_ DELAY_ VAR__

SWITCH_ BUFFER;
Jita d

TIME_DELAY_ VAR_

SWITCH__ BUFFER; .
Juria T

2) For each TIME_DELAY VAR_ SWITCH_ BUFFER; ; |, send
n’'nt

a message to the corresponding sensor at the buffer to
compute the maximum time delay. The location of the

variable is given by the values of j, and i, and the
buffer is identified based on the buffer_id (equal to 1).
3) Once the value of TIME_ DELAY SWITCH_ BUFFER;

Jurky
is computed, all the values sent to

OBJ_VIEW_CALL_A_B_I.
When all the TIME_ DELAY_VAR_ SWITCH_ BUFFER

are

4

~

Juotad
are available, rtve_perav_cari_a_s_1 is computed based
on (4.1).

TIME_ DELAY_ CALL_A_B_I.Mmax_value
R
= | TIME_DELAY SWITCH_BUFFER; ; ;.MAX_ value
n= el
R
+ z | TIME_ DELAY_SWITCH_BUFFER; ; -MaX_ value
- i
R 0
+ 2 | SWITCH_FABRIC; . time_ delay
n= n
+ time_ del
n=1 LINK/w/nH. ume_ae ay'

4.1

where R is the total number of nodes in the route of
canL_a B and LINK; . .time_delay is the fixed

Jarlnn

transmission time delay of the link LINK,

wodnat

5 CONCLUSION

A step-by-step design procedure of sensor configuration
and activation for monitoring network behavior has been
presented. The sensor configuration uses the modeling ap-
proach for specifying the attributes of the sensors and the
procedures for sensor operations.

An objective driven measurement strategy has been pre-
sented that selectively activates the sensors needed for col-
lecting the required information. The objectives for moni-
toring are obtained from the real time control task for re-
source management or operator submitted queries. The
queries are processed by a deductive inference processor
that identifies the state variables that are to be monitored.
The role of the deductive inference processor is to set up an
observation frame, i.e.,, a data space in which only data
relevant to the query is allowed. The answer to queries is
obtained by examining, processing, and aggregating
monitored information in the data space. The sample path
and statistical operators are applied to compute the per-
formance of the network.
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