
Resource Allocation and Networking Games

Lecture 6: Game Theoretic Approach to

Scheduling Algorithm

EE E6970, Prof.Aurel A. Lazar

note taken by Raymond R.-F. Liao

liao@ctr.columbia.edu

April 1997

1 Introduction

This course note covers three consecutive classes delivered in March 1997 on

using game theory to analyze the scheduling algorithms. The course material

mainly follows the results from Scott Shenker in [1].

Performance problems arising from the evolving high-speed, wide-area net-

works such as Internet and ATM have been calling for distributed and robust

control algorithms. Quite often the problems can be more realistically repre-

sented in a noncooperative paradigm due to various network delay and sel�sh

user behavior. Game theory o�ers a refreshing perspective to understand these

noncooperative behaviors and to systematic design e�ective and robust network

control algorithms for noncooperative (i.e. most realistic) networks.

Game theory has been applied in all the aspects of network control areas,

including ow control, routing, pricing and scheduling. However, most of the

work are in the �rst three areas due to tractability. For scheduling, the focus

shifts from users' utility function to the allocation rule which is the switch

scheduling algorithm. Lack of formulation on the scheduling algorithms and of

the underlying game structure makes the problem more di�cult to solve. So

far, few solid results have been reported except [1] which has to heavily rely on

postulation.

Nevertheless, the design of scheduling algorithms for noncooperative users

is a very useful issue because switch scheduling algorithm is the most e�ective

control method that could be designed to improve network performance at a

short time scale.

In the following, we present the notation and problem formulation in Sec-

tion 2, introduce a speci�c scheduling algorithm in Section 3, present its good

features in Section 4 and summarize in Section 5.

1



2 Notation and Game Formulation

The system considered here is a single switch shared by N users. Each user

sends packets to the switch at a Poisson rate. The rate at which user i sends

packets to the switch is ri. The user controls this rate by using a ow control

algorithm. The switch is serviced by an exponential server. The congestion

experienced by a user, ci, is measured by the average number of packets from

user i waiting in the server's queue. The congestion is dependent on both the

rates at which the various users send packets to the server and on the service

discipline. The server has control on the bu�er dimensioning and scheduling

algorithm.

The notations used in the lecture are di�erent from the ones in the reference

paper [1] in some cases. This note follows mainly with the notations used in

the paper (which are also used in the routing part of the lecture) with a few

modi�cations shown below to be consistent with the lecture.

� the rate strategy pro�le of user i given the others are �xed is represented

by (ri; r�i) in this note but (~r ji ri) in the reference [1].

� the Nash equilibrium point in the strategy space is represented by r�

here but ~rNash in the reference, and the inequality condition for Nash

equilibrium becomes : Ui(r
i�; Ci(r�)) � Ui(r

i; Ci(ri; r�i
�

)) instead of the

Ui(ri
Nash; Ci(~rNash)) � Ui(r̂i; C

i(~rNash
j
i r̂i)) in the reference.

The game-theoretic analysis of this system is based on four principles.

1. User i's satisfaction, its utility function Ui(r
i; ci), models the amount and

quality of service provided by the switch, where ri is the Poisson arrival

rate and ci is the average queue length experienced by user i. This func-

tion relates the user's level of satisfaction with a given service level. In

particular, the utility function allows us to distinguish between the dif-

ferent levels of satisfaction by comparing a user's utility under di�erent

allocations, i.e. comparing Ui(r
i; Ci(ri; r�i)) with Ui(r̂

i; Ci(r̂i; r�i)). In a

noncooperative system, the user's utility function is private, and the user

is only aware of his own ri and ci.

2. Users are sel�sh. Each user tries to maximize his utility by adjusting the

rate at which he sends packets to the switch. The stable operating points

of the system are the Nash equilibria.

The noncooperative user assumption may initially appear to be a regret-

table reality. However, assuming user to be sel�sh actually allows user to

adopt simple hill-climbing optimization method without abstract knowl-

edge of their preference; enables network to satisfy a wide variety of service

requirements by placing the onus on user to optimize their own satis-

faction; and avoids requiring any universal ow control algorithm which

2



could impede the use of new network technologies. Therefore, the game-

theoretical approach may in fact be the best way to insure good perfor-

mance in the large, heterogeneous, and rapidly changing networks of the

future.

3. The switch algorithm is under a centralized control. While users are inde-

pendent entities, the switch is a shared resource. The focus of this work

is on the switch service disciplines, which in economic term, is to control

the allocation of cost (congestion).

4. The performance of the switch is measured by level of total user sat-

isfaction achieved, which is the optimization criterion of the scheduling

algorithm. Other criteria include power, utilization, or delay but they

neglect the di�erences among users' preferences.

The meaning of good performance of a scheduling algorithm in a nonco-

operative system has three main factors: the equilibria need to be e�cient

and fair; need to be unique and easy to obtain (i.e. quick to converge)

; and need to be robust, that is when not in a state of equilibrium, the

system must perform at some minimal level of satisfaction.

Next we present the mathematical model for the design of scheduling algo-

rithm under noncooperative users.

3 Mathematical Model

For tractability reason, the queueing model used here is M/M/1 . Each of

the N users adds packets to the system at a rate ri > 0. The average number

of user i packets enqueued, ci, is dependent on the service discipline used. In

addition, the switch is shared by all the users.

The pair of quantities (r; c) shows how the switch is allocated among the

users. This scheduler must satisfy the work-conserving condition. Because

all the work-conserving schedulers have the same busy time distribution, the

aggregated arrival processes all have the same average waiting time, no matter

whether the individual ows have priority above one another.

This condition can be represented as
PN

i=1 c
i = f(r) where f(r) is the queue

length of the FIFO M/M/1: f(r) = g(
PN

i=1 r
i) and g(x) = x

1�x
.

Furthermore, for any subset of users, because the best performance they can

achieve is the performance without the interference from the other users, which

equals to the FIFO M/M/1 queue length, therefore the aggregated queue length

should be lower-bounded by the FIFO M/M/1 queue length for the same subset.P
i2I c

i
� g(
P

i2I r
i), I � f1; 2; :::;Ng.

Let AC denotes the set of acceptable allocation functions that satisfy the

above conditions and the conditions that C(r) is symmetric in r and continuous

on �rst derivatives.

3



The allocation function for FIFO is simply the proportional allocation given

by

CiP (r) = ri

1�

P
N

j=1
rj

Next we introduce the Fair Share scheduling which is constructed from the

Fair Queueing intuition that the user should always maintain a fair share of the

service, independent of the other users' actions. However, the de�nition of Fair

Share is more synthetic towards the warrant of good game theoretical properties

like the existence and convergence of Nash equilibrium.

The operation of Fair Share scheduling can be better viewed as a preemptive

priority queueing system shown in Figure 1.

.

.

.

s -

s -
s -
s -

s -

s -

s -
s -

s -

Priority 1

Priority 2

Priority 3

Priority N

��

��

@
@
@
@
@
@R

HHHHHHj -

-

�
�
��

�
��3

J
J
JĴ 

















���

��
��*

Preemptive Priority

random routing

User 1 arrival: r1

User 2 arrival: r2

User N arrival: rN

User 3 arrival: r3

r1

r2 � r1

r3 � r2

rN � rN�1

Figure 1: Illustration of Fair-Share Scheduling

All of user one's packets are in the highest priority queue, together with the

same rate r1 of packets from all the other users. Similarly, the rest users all

have rate of r2� r1 packets in the second highest queue. The procedure repeats

until all the portions of all the rates are assigned with priorities.

The formal de�nition of Fair Share scheduling is : with the users labeled so

that their ri's are in increasing order, the kth user's allocation is de�ned as

C1
FS

(r) =
g(nr1)

n

4



and

CkFS (r) = Ck�1FS(r) + [g((n� k + 1)rk + rk�1 + � � �+ r1)

�g((n � k + 2)rk�1 + rk�2 + � � �+ r1)]=(n� k + 1)

The above de�nition is deduced from the M/M/1 preemptive priority queue

shown in Figure 1. g((n � k + 2)rk�1 + rk�2 + � � � + r1) is the total queue

length for the �rst (k � 1) priority queues, which is actually derived from the

single priority M/M/1 queue with the same aggregated tra�c intensity by using

the work-conserving argument we discussed previously. Similarly, g((n � k +
1)rk + rk�1 + � � �+ r1) is the total queue length for the �rst k priority queues.

Therefore, the second part of the right-hand-side of the equation is the mean

queue size for each of the (n�k+1) users sharing the kth priority queue. With

the recursive de�nition, the above equation holds.

Since for i 6= j, we have (@C
iFS

@rj
> 0) () (ri < rj), namely CiFS depends

only on those rj which are less than ri. Small variations in rj will a�ect CiFS

if and only if rj � ri. This partial insularity is crucial for the good properties

the Fair Queueing obtained. It allows the noncooperative users to compete for

the resource in a limited way so that they can converge to equilibrium.

Intuitively, during the evolution of the Fair Share system toward equilibrium

, the highest priority queue �rst reaches equilibrium, hence user one �rst reaches

equilibrium, then followed by the second highest priority queue, and user two,

etc., until the last priority queue and the user n reaches equilibrium.

The service disciplines in AC have various good properties. We would like

to focus on the service disciplines in a subset of AC which obey certain mono-

tonicity conditions so that the achievable properties lead to a unique scheduling

algorithm, the Fair Share algorithm. In fact, the de�nition of this restricted set,

called MAC, strongly postulates on the partial-insularity structure of the Fair

Share algorithm.

De�nition 1 An allocation function in AC is in MAC if

1.
@ci

@rj
� 0 for all i and j

2.
@ci

@ri
> 0 for all i

3. f
@ci

@rj
= 0 at rog =) f

@ci

@rj
= 0 8r with rj � rj

o
; j 6= i;and ri � ri

o
g

The �rst two conditions assume that no user bene�ts when other users

consume more throughput. The third condition exactly speci�es the partial-

insularity. It states that if rj has no impact on ri at point ro, then the impact

is kept at 0 as rj increases or ri decreases.
Even though the set of MAC encompasses many scheduling algorithms like

FIFO, LIFO, processor sharing, polling and HOL priority, these algorithms don't

have the partial-insularity property. In fact, the condition (3) is void to them

because for these algorithms, @ci

@rj
6= 0.

5



It is not surprising to see that the Fair Share allocation is the only allocation

function in MAC such that @Ci

@rj
= 0 whenever rj = ri; i 6= j, which means

when the rates of two users equal to each other, their mutual interference stops.

Furthermore, from MAC property (3), for any allocation function in MAC,

f
@Ci

@rj
= 0 for all i 6= jg =) frj = ri for all i,jg. Additionally, the Fair Share

allocation is the only allocation function in MAC such that the matrix @Ci

@rj
is

always acyclic.

For the bene�t of the existence of Nash equilibrium, the user's utility func-

tion Ui(r
i; ci) is assumed to be strictly monotonic in both variables, increasing

in ri and decreasing in ci and is a function of only that user's service alloca-

tion. Furthermore, Ui is required to be concave1, and continuous in the second

derivatives. Denote by AU the set of acceptable utility functions that satisfy

the above conditions.

The utility function is a representation of the user's preference orderings

of the various allocations (ri; ci). Each user i independently maximizes his

individual utility function by adjusting ri while holding the other rj constant.

If an equilibrium is reached in such a noncooperative environment, then it is a

Nash Equilibrium.

De�nition 2 A point r� is a Nash equilibrium point if

Ui(r
i�; Ci(r�)) � Ui(r̂

i; Ci(r̂i; r�i
�

) for all r̂i and i.

In a set of acceptable utility functions, under the fair share algorithm, every

point that satis�es the Nash First Derivative Condition (FDC), dUi
dri

= 0 or

Mi(r
i; ci) = @Ci

@ri
, Mi(r

i; ci) � @Ui
@ri

=@Ui
@ci

for all i, is a Nash equilibrium.

The Nash equilibrium is an optimal operating point of a noncooperative

system.

It is not always possible for the users to optimize their performance. In

such a situation an induced allocation function is used and must have the same

properties as c(r) but with some of the variables held constant.

If users are greedy, i.e. able to self-optimize their own performance, then

the equilibrium operating point is the Nash equilibrium. To achieve good per-

formance the Nash equilibria must have certain required characteristics. The

standard criterion for e�ciency, user satisfaction, is that of the Pareto optimal-

ity.

De�nition 3 An allocation (r; c) is Pareto optimal if there is no other feasible

allocation (�r; �c) 2 AC such that

1. Ui(r
i; ci) � Ui(�r

i; �ci) for all i
2. Ui(r

i; ci) < Ui(�r
i; �ci) for at least one i

1Note: Typo, reference[1] assumes Ui to be convex, which is wrong because otherwise the

Nash derivative condition
dUi

dri
= 0 is not su�cient to guarantee that Fair Share allocation

reaches Nash equilibrium.

6



A point (r; c) is Pareto optimal if and only if there exists a vector ~W , where

Wi > 0 2 and
PN

i=1Wi = 1 such that
PN

i=1WiUi(r
i; ci) �

PN

i=1WiUi(�r
i; �ci)

for all feasible (�r; �c). As a result, each Pareto allocation maximizes at least one

weighted sum of the utilities.

The necessary condition that
PN

i=1WiUi(r
i; ci) has optimumwith condition

F (r; c) = 0 leads to the following equation with the help of Langrange multiplier:

@Ui
@ri

=
@F

@ri
=
@Ui
@ci

=
@F

@ci
=)

@Ui
@ri

=
@Ui
@ci

=
@F

@ri
=
@F

@ci
=)Mi(r

i; ci) = Zi(r
i; ci)

with the de�nition Mi(r
i; ci) � @F

@ri
= @F
@ci

= �
@f

@ri
= �(1�

PN

j=1 r
j)�2.

Unfortunately, an allocation function can not be chosen such that the Pareto

optimal and the Nash equilibrium points are the same point for every set of

utility functions. This leads to the next section on the performance of the

scheduling algorithms.

4 Performance

4.1 E�ciency

Theorem 1 There is no allocation function in MAC such that every Nash

equilibrium is Pareto optimal.

Brief proof: This theorem is proved by contradiction. Assume, to the con-

trary, that C(r) is an allocation function inMAC such that every Nash equilib-

rium is also Pareto optimal. For any point r 2 D we can �nd a vector of utility

functions ~U 2 AUN that has this point as a Nash equilibrium (Lemma 5 in [1]).

Combining the Pareto and Nash FDC conditions, the allocation function must

satisfy the relation @f

@ri
= @Ci

@ri
throughout D. We shall show that this condition

is too strong to be satis�ed by the allocation function for all the constraints.

Upon integrating we can express the allocation function in terms of a set of

functions hi : Ci = f � hi, where
@hi
@ri

= 0. Demanding that the allocation

functions satisfy the constraint yields the relation (N � 1)f(r) =
PN

i=1 hi(r).
This is clearly not satis�ed by our constraint function.

2

Furthermore, the combined Pareto and Nash FDC conditions are too strong

to be met even when the users are allowed to signal the scheduler their prefer-

ences.

Corollary 1 Consider allocation functions C(r; �) that are continuous upto the

second derivative, where � is a vector of constants representing user speci�ed

2Note: Typo, reference[1] usesWi � 0 which is not right for the su�cient condition because

Wi = 0 doesn't lead to the inequalities for user i.

7



signalling parameters. There is no allocation function in MAC such that every

Nash equilibrium is Pareto optimal.

However, if we relax the work-conserving condition on the scheduler, it is

possible to �nd allocation functions whose Nash equilibria are all Pareto optimal.

Theorem 1 states that no allocation can guarantee that for all utility func-

tions is AU , every Nash equilibrium is Pareto optimal. However, the next theo-

rem shows that for a given set of utility functions, it is possible to have a service

discipline whose Nash equilibria are Pareto optimal, and if all the users have

the same utility function, then the Nash equilibria of the Fair Share allocation

technique are always Pareto optimal.

Theorem 2 Consider an allocation function in MAC, and a vector of utility

functions in the set of acceptable utility functions.

1. If the Nash equilibrium is Pareto optimal, the ri = rj for all i and j.

2. Any completely symmetric r that gives rise to a Pareto optimal allocation

is also a Nash equilibrium of the Fair Share allocation function.

Brief proof: From the proof of Theorem 1, we know that at a Nash/Pareto

point we have the FDC @Ci

@ri
= @f

@ri
. The feasibility condition on allocation

functions requires that
PN

i=1C
i = f(r). Taking the derivative of this with

respect to rj and then combining it with the Nash/Pareto FDC, we �nd that
P

i6=j
@Ci

@rj
= 0. Since allocation functions in MAC have @Ci

@rj
� 0, we must have

@Ci

@rj
= 0 for all j 6= i. Thus we have ri = rj for all i, j.
Prove the second claim: At such a symmetric point, the delay values are

completely determined by the constraint. Consequently, the Fair Share allo-

cation function realizes the same Pareto optimal allocation. The question is

whether or not this point is a Nash equilibrium for the Fair Share allocation

function. The Fair Share mechanism satis�es the Nash FDC conditions, since
@Ci

@rj
= 0 for all j 6= i at this point, which is su�cient to guarantee that this point

is a Nash equilibrium. Thus, any completely symmetric r that gives rise to a

Pareto optimal allocation is also a Nash equilibrium of the Fair Share allocation

function.

2

The Fair Share allocation function achieves all points where Nash equilibria

are Pareto optimal, as opposed to the proportional allocation functions that

always have @Ci

@rj
> 0 and never have Pareto optimal Nash equilibria.

4.2 Fairness

In addition to e�ciency, it is preferable to have fairness property. An alloca-

tion is deemed fair if it is envy-free. Under envy-free environment, user i will not

8



be envious of user j if Ui(r
i; ci) < Ui(r

j ; cj). Envy doesn't involve comparison

of two users' utility functions (in fact di�erent users' utility functions are not

comparable). It only involves the comparison of two user's allocations under the

preference ordering of one of the users. The condition de�ned next states that

no matter what else does, if a user maximizes her own utility by choosing ri,
she will envy no one. The allocation functions satisfy this unilaterally envy-free

condition have envy-free Nash equilibria.

De�nition 4 An allocation function is unilaterally envy-free if

fUi(r
i; Ci(r)) � Ui(r̂

i; Ci(r̂i; r�i)) for all r̂ig =)
fUi(r

i; Ci(r)) � Ui(r
j ; Cj(r)) for all jg

Theorem 3 1. The Fair Share allocation function is unilaterally envy-free in

all subsystems.

2. Fair Share is the only MAC allocation function which is unilaterally

envy-free.

Proof on the �rst claim: Assume that user one has the utility function U

in AU. User one will envy user two if the function E(r1; r2) = U (r2; C2
FS

) �

U (r1; C1
FS

) is positive. For a given r2, let r1 assume the value that maximizes

U (r1; C1
FS

); call this value rum, the unilateral maximum. At this point we

have the FDC d
dr1

U (r1; C1
FS

) = 0. There are two cases. If rum � r2 then there

is no envy because E(rum; r2) � E(r2; r2) = 0. We now need to show that if

rum < r2, then E(rum; r2) � 0. We can maximize this envy by �xing r1 = rum

and varying r2 between rum and 1. Varying r2 does no a�ect C1
FS

under the

Fair Share allocation function, so that maximizing the envy is equivalent to

maximizing the function U (r2; C2
FS

) But, from the de�nition of rum, we know
that this function satis�es the FDC d

dr2
U (r2; C2FS) = 0 at r2 = rum and also

that d2

dr22
U (r2; C2

FS
) � 0 for r2 between rum and 1. Thus, when rum < r2, we

have no envy since E(rum; r2) � E(rum; rum) = 0. This proof also applies to

all subsystems.

2

4.3 Convergence

There are a variety of desired characteristics required during the convergence

of the system to an equilibrium such as the uniqueness of the equilibria, the rate

of convergence, and the viability of the technique. Without uniqueness there is

ambiguity, therefore there must be only one Nash equilibrium point. The Fair

Share allocation function is the only MAC service discipline that ensures there

will be one and only one Nash equilibrium.

9



Theorem 4 1. The Fair Share Mechanism always has a unique Nash equilib-

rium.

2. Fair Share is the only MAC allocation function for which every Nash

equilibrium is unique.

Another requirement for convergence is robustness. One technique used to

�nd an equilibrium point is the hill-climbing technique. In an environment

where all the users are performing optimization at the same time the hill climb-

ing algorithm dynamics can be very complex. The sophisticated user becomes a

leader, with the other less sophisticated users following. The simple hill climbing

users can be exploited if a sophisticated user has information about other users'

utility functions, and therefore knows how their ow control could react. Con-

sequently, the hill climbing technique needs to be invulnerable to sophisticated

strategies.

De�nition 5 Let user one be the leader, and let �r(r1) be a function such that

1. the �rst component of the vector is given by the argument, and

2. for all i > 1, Ui(�r
i; Ci(�r)) � Ui(r̂

i; Ci(r̂i; �r�i)) for all r̂i.

We then consider it a Stackelberg equilibrium with user one leading if U1(r
1; C1(�r(r1)) �

U1(r̂
1; C1(�r(r̂1))) for all r̂1.

The leader's utility in Stackelberg equilibrium is never less than its corre-

sponding Nash equilibrium. As a result, one should implement an allocation

function that gives rise to Nash equilibria that are also Stackelberg equilibria.

Moreover, the convergence to the Nash equilibrium should be robust enough

so that the convergence is assured as long a user implements any reasonable form

of self-optimization. We de�ne a reasonable learning algorithm as an algorithm

where users eliminate all the values of ri which will produce worse performance

than other values of ri. The convergence will be robust if any combination of

generalized hill climbing optimization algorithms converge to the unique Nash

equilibrium within a �nite amount of time.

Theorem 5 1. With the Fair Share allocation function, all generalized hill

climbing algorithms converge to the Nash equilibrium.

2. Fair Share is the only MAC allocation function for which, in all subsys-

tems, every Nash equilibrium is also a Stackelberg equilibrium.

If the users report their utility functions directly to the switch, we need an

allocation mechanism that is a function of the reported utility functions. This

will improve the e�ciency of the protocol even more. There is a function B
that maps the set of reported utility functions into a set of (r,c) allocations:

(ri; ci) = Bi(Û ). This function is called a revelation function. It encourages

users to tell the truth about their utility functions and not to exploit their

followers, which is what we mean in the Vickery auction game, the incentive

compatibility.

10



4.4 Robustness

It's quite possible that the usual operating points of the system are out-of-

equilibrium. Therefore the robustness of the allocation functions is important.

The unilaterally envy-free condition guarantees that a self-optimizing user will

envy no one, but this is not enough to guarantee the satisfaction of the user.

Here we de�ne a service discipline protective if the allocated congestion is upper

bounded by Ci(r) = ri=(1� Nri) where all the elements in r are equal.
The protective property gives a minimum guarantee to each user. The Fair

Share allocation has this property because of its partial-insularity.

Theorem 6 1. The Fair Share allocation function is protective in all subsys-

tems.

2. Fair Share is the only MAC allocation function that is protective in all

the subsystems.

5 Summary

In a noncooperative network a state of equilibrium can be reached with the

proper choice of service disciplines. The Fair Share allocation allows us to reach

a fair Nash equilibrium by any set of reasonable optimization algorithms due to

its partial-insularity property. These optimization techniques converge quickly,

and during the convergence process all users are protected.

Last, before conclude the topic, we compare the di�erence between the auc-

tion game and the scheduling/ow control problem. In auctioning, the model

we considered is deterministic model, the game has no repetition; in the schedul-

ing problem, we use stochastic model, the preemptive server can allow a later

higher bidder to stay in service, furthermore the game is repetitive as a tour-

nament. Besides this, the essential di�erence between "Auctioning Game" and

"Scheduling Game" is the incentive compatibility. Auctioning uses price

to drive users' incentive compatibility. While for scheduling, even though Fair

Share tries to achieve this, it is still constrained by the time scale of the scheduler

unless pricing is applied only at the connection level.

References

[1] Scott J. Schenker, \Making Greed Work in Networks: A Game-Theoretic

Analysis of Switch Service Disciplines", IEEE/ACM Trans. on Networking,

Vol. 3, No. 6, pp819-831, Dec. 1995.

[2] Sareh Greher, Course Note of Lecture 6, EE E6940, \Game Theory and Its

Application to Network Flow Control in a Noncooperative Environment",

1995.

11


