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Auctions for Resource Sharing

1. Introduction

In real networking environments, where multiple users compete with each other, in order to acquire
available resources, centralized algorithms for pricing, control, scheduling etc. are not applicable. The
reason why, is because individual users’ properties and objectives cannot be estimated  and optimally
compared in a both scaleable  and centralized manner. We consider the use of an auction as a decentralized
mechanism for efficiently and fairly sharing resources inside a network. Auction  is a decentralized
mechanism because prices are not calculated by an a-priori formula, but derive from the users’ different
valuations and willingness to pay for resources.

In this session the auction rules of Second Price (Vickerey Auction) and Progressive Second Price
are being presented and analyzed. Their importance lies on the fact that these rules demonstrate a number of
nice properties such as stability, efficiency and fairness. Furthermore, through their analysis, the reader is
introduced to the concept of Nash Equilibrium, which is one of the fundamental concepts in Game Theory.

2.  Formulation of Auctions for Resource Sharing

Let us consider that a quantity Q of a resource is to be shared among several players. Q might
represent a portion of the wireless spectrum, a number of TDMA slots etc. Auction is a mechanism
consisting of players submitting bids, i.e. declaring their desired share of the resource and the price they are
willing to pay for it, and the auctioneer who allocates shares of the resources based on their bids.

Let I = {1, … , K} be the set of players competing for the resource Q. We define the k-player’s bid

as the vector ( ) [ ] [ )s q p S Qk k k k= ∈ ≡ × ∞, , ,0 0 , where qk is the amount if resource that the player is

biding for, and pk is the price per unit of resource he is willing to pay. A bid profile s is a K×2 array, that
contains the bids of the players that participate in the game.
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We will now introduce the following notation, which is really helpful in order to present all
subsequent propositions and lemmata:
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   so that   ( )s ps qs= ,

We  similarly denote k-player’s quantity and price in the following manner :
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and the opponent bid profile as :
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,    so that   ( )s s sk k= −,

The allocation rule A(s)  is a function that describes the procedure of dividing  the resource among players
and assigning prices according to their bids. The allocation is done by the auctioneer. A(s) is formally
defined as shown below :

A:   S SK K→ ,     where  S SK

k

K

=
=

∏
1

   and  [ ] [ )S Q= × ∞0 0, ,

The k-th row of the matrix A(s) is the allocation to player k, which consists  of the amount of resource the
player actually gets and the price he pays for it.

 ( )A s qA s pA sk k k( ) ( ) ( )=

 We say that an allocation rule A(s) is feasible if both the following conditions are satisfied:

• The sum of all the amounts allocated to players does not exceed the available resource Q.
 

 qA s Qk
k

K

( )
=

∑ ≤
1

 
• Every player is never given more quantity than he asks for,  and the price he has to pay does not exceed

the one declared through his bid.

A s s( ) ≤

where the operator less-or-equal (≤)  denotes element by element comparison.



Each player’s objective is described by a function u sk ( )  which is called utility function, or simply

utility.  This function takes as argument a bid profile and a returns a value that expresses how profitable is
the corresponding allocation to a particular player.  In the following  sections we will use the definition for
uk(s),  shown below.

u s qA s qA s pA sk k k k k( ) ( ) ( ) ( )= −θ

We assume that player k has a valuation θk ≥ 0  for each unit of the resource he gets, so the total

value of his allocation is  θk kqA s( ) . His utility is thus defined as the difference between the value and the

cost of the acquired quantity.      

Finally we consider an auction game is defined by an allocation rule, a set of utility functions and
an amount of available resource:

( )Q u s u s u s A sK, ( ), ( ), ..., ( ), ( )1 2

3.  Second Price Auction

The Second Price Auction (also called Vicrey Auction) is an auction game designed, in such a way
that it enforces players to bid at their own valuation of the resource. This property of the game is called
incentive compatibility and its importance lies on the fact that every player’s utility is maximized, exactly
when he bids truthfully.

In the Second Price Auction we assume that the resource is non-divisible. This means that qk = Q
for all k. The bid profile thus has the following form:
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Let us consider that players are ordered in such a way that :

0 1 2≤ ≤ ≤ ≤θ θ θ... K

According to the  Second Price allocation rule,  the player who bids at the highest price gets the
resource, and he pays the second highest price. Now, let us consider each player’s utility uk(s). As we
mentioned in the previous section the utility function for each player is defined as the difference between
the actual value of the quantity he gets and its cost. Thus, for the Second Price auction game:

u pk K l k k= − ≠θ max ,     if   p pk l k l> ≠max
or 0 otherwise.

Now we will state and prove the following lemma:

Lemma 1: (incentive compatibility)

For each player k, the strategy of bidding at his own valuation pk k= θ weakly dominates other

strategies, i.e.:



( ) ( )u p p p u p p p pk k k k k K1 2 1 2, , ..., , ..., , ..., , ...,,θ ≥

Proof:

Let r pk l k k= ≠max . The proof for the lemma presented above derives directly from the

graphical representations of uk as a function of rk.

Situation 1: θk kp<
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Situation 2: θk kp>
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Situation 3: θk kp=
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For rk ≤ θk , we observe that uk decreases linearly, until it reaches zero, in situations 1 and 3,
whereas, in situation 2, it decreases rapidly to zero at a particular value (pk) before the valuation θk. This
happens because for rk > pk, the player is being allocated no quantity and therefore his utility is zero.

For rk ≥ θk , the utility is zero in situations 2 and 3 and negative for some values of rk, in situation
1. This happens because the player bids at prices higher than his valuation and therefore has to pay more
than the value of the resource, in case he wins the auction game.

Comparing situations 1,2, and 3 we observe that for every rk  the following property holds:

( ) ( )u p p p u p p p pk k k k k K1 2 1 2, , ..., , ..., , ..., , ...,,θ ≥

4.  Progressive Second Price Auction

The Progressive Second Price (PSP) auction game, is the generalization of the Vicrey Auction for
the case of divisible resources. As we will show latter, the PSP game is incentive compatible and can result
in equilibrium  points which are both fair and efficient.

The difference between the bid profile in the Progressive Second Price and Second Price games is
that quantities may be lower than Q:
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The PSP allocation rule is described below :
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The first equation presented above  tells us that a player can get the quantity he asks for, provided
that the resource which is not given to higher price players is sufficient for him. Otherwise, he is being
allocated the leftover amount, which may be nothing at all in the worst case. A player is more likely to get
the quantity he wants if he bids at relatively high prices.

Now, the second equation reveals the exclusion-compensation principle, which is the fundamental
design guideline for the PSP game. In fact, player k has to pay the average unit price that would have been
paid by other players if there were no player k in the game. The denominator in the expression shown above
is in fact the quantity qAk(s), and the summation takes actually place for all l: ps psl k< , because higher

price players are not really affected by player k.
It is worth noticing that the unit price pAk(s) increases with qAk(s) in a way similar to the income

tax rate. Let’s assume a scenario where we have K players and apply PSP allocation rule without initially
considering player k in the game. Let m be the lowest clearing opponent. It is obvious that in order for
player k  to be given some quantity, he has to bid at a price ps psk m≥ . Now, let qAk =0. While qAk

increases the first few units will be taken away from player m, and they will cost psm. After player k takes



all the quantity qAm, he will start taking units of resource from the next lowest clearing opponent, ′m and
these units will be more expensive than the previous ones because  ps psm m′ > . So, the more quantity a

player asks for,  the higher unit price he is likely  to pay for this amount.
We can see that, in the case where qs1 = qs2 = … = qsK = Q, the PSP allocation rule is the same as

the one of the Vicrey auction game. The quantity is being allocated to the highest price player, and the price
he has to pay is the second highest price, because if the player does not participate in the game the whole
resource is being given to the second highest player.

We can also develop some intuition to see why the Progressive Second Price auction is indeed
incentive compatible. Generally, as we said before, if a player bids at higher prices he is more likely to get
the amount he wants. And so, his utility is being increased. But how high can his bidding price be? Well,
the exclusion-compensation principle discourages players from bidding at prices higher than their own
valuation, because for some units of resource, they would have to pay more than their actual value.

In the next section we will formally prove the incentive compatibility property.

5.  Incentive Compatibility

Before presenting the incentive compatibility property, we need to show some useful lemmata:

Lemma 2:

If  s sk k≤ ′       then   qA s s qA s sk k k k k k( ; ) ( ; )− ′ −≤  , and

              if  s sk k− − ′≤    then    qA s s qA s sk k k k k k( ; ) ( ; )− − ′≥

These equations tell us that a player is being allocated less or equal quantity if he decreases his bid,
and greater or equal quantity if the opponent profile decreases.
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Lemma 3:

For all opponent profiles s Sk
K
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Proof:

As we mentioned in the previous section the quantity allocated to player k is equal to the sum of all
additional quantities that his opponents acquire, if the player does not participate in the game:
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Using this equation, player k’s utility can be written as:
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Subtracting the last equation from the previous one, we have that:
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Lemma 4: (incentive compatibility)

Given an opponent profile s-k:

( )( ) ( )( )u qs s u qs ps sk k k k k k k k, ; , ;θ − −≥
Proof:

Using Lemma 3, we can write that:
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Situation 1

We assume that  psk k≤ θ . Player k, belongs to the set of player l’s opponents. Therefore using

Lemma 1 we have that:

( )( ) ( )( )qA qs ps s qA qs sl k k k l k k k, ; , ;− −− ≥θ 0

Now, for all l: psl k≤ θ ,
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For all the players that psl k> θ , their allocation is not affected by player k, who bids at lower

prices. Therefore:
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So, we can write that:
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Situation 2

Now, we consider that  psk k≥ θ . Using Lemma 1 we have that:

( )( ) ( )( )qA qs ps s qA qs sl k k k l k k k, ; , ;− −− ≤θ 0

For all l: psl k≥ θ ,
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For all the players that psl k<θ , their allocation is not affected by player k, who bids at higher

prices and does not alter his quantity.
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So, we have that:
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hence the incentive compatibility property is proven.

6. Nash Equilibrium

So far we explored the really attractive property of incentive compatibility. What it tells us is that
given a particular quantity qsk  the truthful bid sk = (θk, psk) is always optimal. However, the optimal reply
that derives from the incentive compatibility lemma, presupposes that the bidding quantity qsk  is known.
What we are interested in, is to explore whether a game like the PSP auction can reach an operating point,
in which it is not beneficial for every user to deviate from it. Such an operating point is called  Nash
equilibrium.

We consider that every player is constrained by a budget bk ≥ 0, so that his bid must lie in the set:

( ) ( ) ( ){ }S s s S qA s s pA s s bk k k k k k k k k− − −= ∈ ≤: ; ;

We define the set of best replies to a profile s-k of opponent bids as the set:

( ) ( ) ( ) ( ) ( ){ }S s s S s u s s u s s s S sk k k k k k k k k k k k k k
* : ; ; ,− − − − −= ∈ ≥ ′ ∀ ′ ∈

Now let ( ) ( )S s S sk k
k

* *= −∏ . A Nash Equilibrium is defined as a fixed point of S* , i.e. a profile

s* such that  ( )s S s kk k k
* * * ,∈ ∀− .

Now, an interesting question is, if we can find among Nash Equilibria, solutions which are of a
simplified form as indicated by the incentive compatibility property.

Let us consider the unconstrained set of player k’s truthful bids:

{ }T s S psk k k k= ∈ =: θ

We also define:  T Tk
k

= ∏ , ( ) ( )T s T S sk k k k k− −= ∩  the set of constrained truthful bids, and

( )R T S sk k k k= ∩ −
* , the set of truthful optimal replies.

Lemma5: (existence of truthful best reply)

For every player k∈ K, and for every opponent profile s Sk
l k

−
≠

∈ ∏ ,

( )R s k− ≠ ∅

Therefore, by setting ps kk k= ∀θ ,  we can reduce the parameters to the problem and still obtain

feasible best replies. Thus a proper truthful sub-game is formed, where the strategy space is T S⊂ , the

feasible sets are   ( ) ( )T s S sk k k k− −⊂ , and the best replies are ( ) ( )R s S s⊂ * . A fixed point of R in T is a

fixed point of S* in S. Thus an equilibrium of the sub-game is an equilibrium of the game.

Proposition 1:

In the PSP auction game defined in the previous sections, there exists a Nash Equilibrium point

s T* ∈ .



7.  Equilibrium properties: Fairness

One of the most intuitively appealing definitions of a fair allocation is the envy-free definition. We
say that an allocation is envy-free if every player k, does not “envy” his opponents l. This means that if
player k is assigned quantity qAl(s) at  price pAl(s), his utility does not increase, for every l≠k.

We formally define the envy-free allocation rule as the one for which:

( )( ) ( )( )u A s u A s k l Kk k k l≥ ∀ ∈, ,

From the definition of the envy-free allocation, we can see that a rule A(s) is not fair, if some
players are being assigned more quantities at lower prices, in relation to others. If for a particular player k,
there exists a player l for which qA s qA sl k( ) ( )≥  and  pA s pA sl k( ) ( )≤ , then:

( )( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( )( )u A s qA s pA s qA pA s qA s pA s u A sk k k k k k k l l k l k l= − ≤ − ≤ − =θ θ θ

Proposition 2:

Let us consider that players are ordered in such a way that :

0 1 2≤ ≤ ≤ ≤θ θ θ... K
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then, there exists an equilibrium point s T* ∈ such that the allocation A(s*) is fair.

Intuition:

Let us consider that player m fixes his bid at ( )s Qm m= ,θ . Then the other players have an

equilibrium point s m−
* . By Lemma 4  (incentive compatibility) sm is an optimal reply, provided that it is

feasible. The first of the equations presented above exactly assures that sm is feasible. If this is the case, then
m is the lowest clearing opponent. In the equilibrium point players k with k>m are being assigned quantities

bk m/ θ   at price θm , whereas player m is being assigned the leftover amount Q
bl

ml l m

−
>

∑θ:

at price θm−1 . 

This allocation is indeed envy-free, because players k >m  cannot envy each other since they pay
the same unit price and they all get the maximum quantity for their budget, and  none of them envies player
m.  The latter assertion derives from the second equation shown above.

( )( ) ( )( )u A s u A sk k k m≥ ⇔
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