
978 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 4, APRIL 2007

A Modular, Scalable, Extensible, and Transparent
Optical Packet Buffer

Benjamin A. Small, Member, IEEE, Member, OSA, Assaf Shacham, Student Member, IEEE,
and Keren Bergman, Member, IEEE, Fellow, OSA

Abstract—We introduce a novel optical packet switching buffer
architecture that is composed of multiple building-block modules,
allowing for a large degree of scalability. The buffer supports
independent and simultaneous read and write processes without
packet rejection or misordering and can be considered a fully
functional packet buffer. It can easily be programmed to support
two prioritization schemes: first-in first-out (FIFO) and last-in
first-out (LIFO). Because the system leverages semiconductor op-
tical amplifiers as switching elements, wideband packets can be
routed transparently. The operation of the system is discussed
with illustrative packet sequences, which are then verified on
an actual implementation composed of conventional fiber-optic
componentry.

Index Terms—Buffers, optical fiber communication, photonic
switching systems.

I. INTRODUCTION

BUFFERING in optical packet switching (OPS) networks
is a challenging problem that has been studied for some

time. For nearly all network topologies, packet buffering has
the potential to significantly improve network acceptance rates
and thereby increase overall throughput and efficiency [1].
However, the physical nature of optical signals prohibits the
implementation of optical buffers in a manner similar to con-
ventional electronic ones. Because, at present, buffer schemes
that require slowing the speed of light in exotic materials have
their own distinct challenges [2], schemes that instead use long
loops of conventional optical fiber to delay the signals provide
more opportunities for successful implementation in current
systems.

Numerous architectures have been proposed and imple-
mented. We detail a new buffer architecture that is modular,
scalable, extensible, and transparent and therefore provides
significantly improved performance over other designs. This
architecture was first introduced briefly in [3], and we provide
a complete description here.

Two important characteristics of a successful OPS buffer
architecture are 1) physical-layer transparency, or conservation
of optical power and signal quality without introducing signif-
icant distortions, and 2) the ability of the buffer structure to
support independent and simultaneous read and write processes

Manuscript received November 1, 2006; revised December 14, 2006. This
work was supported by the U.S. Department of Defense under Subcontract
B-12-664.

The authors are with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: bas@ee.columbia.edu;
assaf@ee.columbia.edu; bergman@ee.columbia.edu).

Digital Object Identifier 10.1109/JLT.2007.891176

without requiring modifications to the surrounding subsystems.
The implementation detailed here is the first to fully address
both concerns.

Buffer architectures based on cascaded fiber delay line (FDL)
modules and parallel FDL arrays have been proposed [4]–[10]
and implemented [8], [11]–[13]. However, a careful examina-
tion of complexities associated with the actual implementation
of these structures reveals that read and write processes cannot
be executed independently under physical timing requirements.
Parallel FDL structures [5]–[9] and other architectures that
allow packets to be stored for a predetermined amount of time,
such as in [12], require advanced knowledge of the packet’s du-
ration in the buffer and, hence, do not support truly independent
read and write processes. Schemes based on cascaded FDLs
[4], [8]–[11] are difficult to construct in a way that maintains
physically realizable timing and signaling necessary to serve
multiple packets simultaneously. The architecture proposed in
[10] cleverly addresses these concerns but does not guarantee
packet arrival; some packets are dropped or routed incorrectly.

Many of these schemes only support an independent treat-
ment of the stored packets. That is, first-come–first-served
(FCFS) or first-in–first-out (FIFO) prioritization is not easily
supported. However, having well-defined behavior is essential
for maintaining fairness and ordering in OPS systems [1],
[14]. The architecture presented here meets all of these re-
quirements, supporting both FIFO and last-in–first-out (LIFO)
prioritization. Furthermore, with minor adjustments, the buffer
can support a priority queue implementation and a number of
other schemes.

Our architecture behaves like a complete buffer, in the sense
that designers of electronic packet-switched networks and net-
working protocols expect: Packet read and write operations are
executed independently, and the whole system manages itself. It
is not meant to provide retiming functions and fractional delay
offsets, but instead operates in an entirely time-slotted manner.
The buffer architecture maintains scalability and extensibility
because of its modular structure. It also guarantees complete
and independent read and write functionality without packet
rejection, misordering, or loss (except in the case of overflow)
and can be dynamically extended to increase capacity.

In the subsequent sections, we first discuss the functionality
and operation of the proposed architecture. Routing examples
are also provided to illustrate this functionality. We then present
a network performance analysis of the buffer architecture, given
its unique internal routing behavior. Finally, the implementa-
tion of a prototype system is detailed, and we demonstrate
independent read and write operations on that implementation;

0733-8724/$25.00 © 2007 IEEE

SMALL et al.: MODULAR, SCALABLE, EXTENSIBLE, AND TRANSPARENT OPTICAL PACKET BUFFER 979

Fig. 1. Cascaded buffer architecture with intraconnecting optical fibers for
packets and electronic cables for read request signals. (Inset) Full 3 × 3 cross-
connect, of which a subset is used in each module.

power penalty measurements are also taken as a measure of the
distortions incurred on buffered packets.

II. FUNCTIONALITY

A. Overview

The optical packet buffer is composed of independent and
identical building-block modules that are cascaded to form
a complete buffer implementation. When the entire system
is assembled, it has one input port for optical packets and
one output port, in addition to the input and output for a
read request signal, which is transmitted from the switching
network or router. The total capacity of the buffer equals the
number of modules it contains since each contains one FDL
(see Section II-B).

The individual building-block modules are all prepro-
grammed with a particular routing logic, which can allow the
whole system to behave either as a FIFO (or queue) or as a
LIFO (or stack) buffer. This behavior is complete and fully
functional, and the buffer is transparent to the surrounding
OPS system. Packets are simply stored in the structure and
released upon receiving a read request signal; these processes
are entirely independent.

The buffer implementation has no central arbitration of any
kind and requires no central management; all routing and man-
agement is entirely distributed, with each module functioning
individually. After the root module has been inserted on a
pathway between a packet source and the OPS system, an
arbitrary number of modules can be cascaded laterally from
it (Fig. 1). Because these modules are all self-contained and
independent, it is not necessary to configure or customize the
assembled buffer structure further.

B. Module Structure

The individual building-block modules that make up the
buffer structure have two input ports and two output ports, one
each connected to adjacent modules. The modules also contain
an FDL, so that each can hold a single packet when necessary.

Fig. 2. Schematic of module for (a) FIFO implementation and (b) LIFO
implementation (except root module) with ovals for couplers. L, B, and D for
their respective low-speed receivers; dashed lines for read request signals.

In order to provide the optical pathways to allow for packets
to propagate to and from either of the adjacent modules or the
internal buffer (i.e., FDL), a subset of a 3 × 3 cross-connect is
used (Fig. 1 inset; Fig. 2).

In addition, in order to maintain functional modularity, each
module has read request signal inputs and outputs that are
connected to the two adjacent modules. The individual modules
execute routing logic based only on the incoming read request
signal and the presence or absence of packets on each of the
three inputs (including the internal buffer); the routing logic
itself is memoryless (i.e., combinatorial logic). This kind of
modular and distributed structure leverages the same paradigm
as [15]–[18]. Table I details the truth table needed to implement
the routing logic in each module as required for the queue
(FIFO) functionality; Table II implements a stack (LIFO).

For each buffer configuration, only a subset of the complete
3 × 3 cross-connect is required. The modules are arranged so
that, by the nomenclature used here, packets enter and exit
the bottom module and are passed upward for storage and
downward to exit in response to a read request signal. The lower
modules in the structure remain occupied, whereas the upper
ones are empty until more packets enter the buffer. Overflow
occurs when each module contains a packet, and then, one more
packet is injected into the buffer without a simultaneous read
request signal; in this case, only a single packet is lost (the
newest in the FIFO; the oldest in the LIFO), whereas the rest
of the buffer remains intact and coherent.

Although each module can store only one packet at a time
in its FLD, packets can pass packets between adjacent modules
without limitation. This allows the buffer to maintain the or-
dering required by the FIFO or LIFO prioritization schemes.

980 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 4, APRIL 2007

TABLE I
TRUTH TABLE FOR FIFO (QUEUE) OPERATION

TABLE II
TRUTH TABLE FOR LIFO (STACK) OPERATION

The behavior of a module that implements these schemes is
very similar; read and write operations are nearly identical
between the two. Differences occur only when managing the
order of the packets within the buffer; this depends on which
prioritization scheme is used.

For the FIFO prioritization (Table I), when a packet enters
a module (via the down or “D” port), it is passed up to the
next empty module (via the up or “U” port), ensuring that older
packets are the first to exit the queue. When a packet receives
a cascaded read request signal, it sends its packet down to the
previous module and propagates the read request signal up the
chain to the next module (RO), which results in another packet
being sent down to it. This scheme ensures that all packets
are placed in adjacent modules, so that the buffer can be read
out as quickly and efficiently as possible. When a read request
signal is sent to an empty module, the read request signal does
not need to propagate further since that module is necessarily
the last used module in the chain. When a packet enters an
unoccupied module at the same time that a read request signal
is received, it is immediately sent down to the previous module.
When no read request signals are present, packets are circulated
within the FLDs of each module to hold the state of the buffer.

The LIFO prioritization (Table II) is very similar to the one
described. The biggest difference is that new packets are not
sent up to the end of the buffer; they are instead stored in the
first module, pushing all other packets further up the stack.
Thus, the first packet to exit the stack on a read request signal
is actually the newest one.

For both schemes, it is impossible to have packets in both the
buffer and coming from the next module simultaneously since
packets are requested from the next module (via a propagated
read request signal) during a read process, which first requires
the buffer to be emptied.

The functionality of the complete buffer structure based on
modules that execute the truth tables found in Tables I and II
has been verified with a specially designed model in Verilog
(a hardware description language typically used for digital
systems). Illustrations of the behavior of the buffer under both
prioritization schemes, which discuss the specific operations in
more detail, are provided later in the text.

Finally, it is important to note that neither scheme requires
all nine gates from the 3 × 3 cross-connect structure. For
the queue, the buffer-to-up (B2U) and up-to-up gates are not
needed for any module [Fig. 2(a)]. For the stack, the down-
to-up (D2U) gate is not needed by any module; only the root
module uses the down-to-down (D2D) one [Fig. 2(b)]. These
gates are unnecessary since the specified routing logic does not
utilize certain transitions for each prioritization scheme (empty
columns in Table I or II).

C. Illustrations of Buffer Operation

In order to provide an instructive illustration of the buffer
architecture, consider a buffer that contains two modules. Fig. 3
traces the paths taken by the packets for a particular sequence of
injected packets and read request signals. Fig. 3(a) depicts the

SMALL et al.: MODULAR, SCALABLE, EXTENSIBLE, AND TRANSPARENT OPTICAL PACKET BUFFER 981

Fig. 3. Timing diagrams for (a) queue (FIFO) and (b) stack (LIFO) implementations that process sequences of read (R) and write (W) operations according to
the rules in Tables I and II. With packets (sold lines) and read request signals (dashed lines) entering from the bottom edge, the lower rectangles represent the
root module, and the upper ones represent the second module. Time advances from left to right, with the second module lagging slightly behind the root one, as
mentioned in Section IV.

queue (FIFO) functionality, whereas Fig. 3(b) is for the stack
(LIFO) functionality. The reader can verify that the overall
behavior of the buffer results from the correct execution of the
appropriate truth table at each module. Clearly, this modular
behavior could be extended to larger buffer systems as well.

1) Queue (FIFO): During the first timeslot, a packet is
offered to the root module (i.e., write operation), and since
the buffer is empty and no read request signal is received,
the packet is simply directed into the internal buffer with the
D2B gate.

Another packet is injected at the second timeslot, and now,
because the root module’s buffer is already occupied, the root
module sends the packet up to the next module with D2U. That
module is empty and therefore behaves in exactly the same way
as the root module did during the first timeslot: The packet is
sent to the buffer with D2B. Meanwhile, the first packet is held
in the root module’s FDL by B2B.

Next is a simple read operation. To maintain FIFO ordering,
the packet in the root module’s FDL, which is necessarily the
oldest, egresses from the buffer structure by the B2D gate. The
root module also propagates the read request signal to the next
module, which behaves in an identical way: It sends its packet
down via B2D. This packet will reach the root module (now
into the up port) at the beginning of the next timeslot.

For the fourth timeslot, no read or write operation occurs;
thus, the packet that is just now entering the root module
through the up port is directed to the FDL with U2B. (It
is important to note that read and write operations could be
correctly performed during this timeslot as well, independent of
other activity within the modules. In those cases, the logic on
the “subsequent read” or “write after read” lines from Table I
are executed.)

During the fifth timeslot, a simultaneous read–write opera-
tion occurs. To maintain FIFO prioritization, the packet in the
root module’s FDL, which has been in the buffer system for
three timeslots now, is allowed to egress via B2D. Simultane-
ously and independently, the new packet is sent up to the next
module with D2U at the same time that the read request signal
propagates upward. The second module encounters both the
incoming packet and this signal; thus, the packet is sent back to
the root module with the second module’s D2D gate. Although
this functionality seems wasteful, the effect is to hold this
packet between the two modules for a single timeslot, buffering

it in a manner similar to an FDL, since the packet enters the root
module (through the up port) only at the beginning of the next
timeslot.

The sixth timeslot contains only a read operation. Because
the aforementioned packet comes from the second module, the
root module enables the U2D gate, allowing the packet to egress
from the queue. The read request signal is also propagated
upward since the root module has no information about whether
the next module is empty or not.

The seventh timeslot contains another simultaneous
read–write operation, but because the buffer structure is empty,
the execution differs from the fifth timeslot. The root module
instead behaves in the same way as the second module did. Its
D2D gate routes the packet back out of the queue. Because the
root module’s buffer was empty, none of the other modules
could contain packets either, and propagation of the read
request signal is unnecessary.

Finally, on the eighth timeslot, the buffer rests.
2) Stack (LIFO): The root module receives a packet during

the first time slot. Because the stack is empty, this packet is to
be stored in the root module’s FDL and is directed there by the
D2B gate.

Another packet ingresses during the second timeslot. Now,
because the root module already contains a packet, that first
packet is sent up the stack to the second module with B2U.
The root module and the second module both receive their new
packets and store them in their respective FDLs with the D2B
gates, just as the root module did in the first timeslot (cf. first
two timeslots of FIFO illustration).

During the third timeslot, a read request is received. The root
module allows its packet to egress the buffer with B2D. The
read request signal is propagated to the second module, which
also enables the B2D gate.

Another read operation occurs during the fourth timeslot.
In this case, the root module allows the packet that was sent
from the second module to egress with the U2D gate. The read
request signal is propagated to the second module, but because
that module is empty, the signal is curtailed.

The fifth timeslot is identical to the first.
In the sixth timeslot, however, a simultaneous read–write

operation is executed. While the root module has a packet
contained in its FDL by B2B, a second packet is written
and immediately read, passing only through the D2D gate.

982 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 4, APRIL 2007

The packets are handled independently in the root module for
this operation, and the root module is the only one in the stack
implementation that must execute this particular functionality.
Moreover, because no changes to the buffer structure occur
outside of the root module, propagating the read request signal
further is unnecessary. (Note that U2B can also be used simul-
taneously with D2D.)

The seventh timeslot requires that the root module read a
packet from its FDL, just as it did during the third timeslot.

Finally, on the eighth timeslot, the buffer rests.

III. ANALYSIS

It has been demonstrated that the architecture described here
allows for a complete and fully functional implementation of
a FIFO or LIFO buffer. This functionality is consistent with
the propositions of conventional queuing theory. However, the
physical execution of the buffer structure is unique and must
be analyzed in the context of OPS. For many OPS systems,
the number of switching gates or amplifiers traversed by a
particular optical packet is an important metric for estimating
signal quality. This is a result of the unfortunate fact that optical
packets experience signal degradation very easily when they
encounter these devices. This section provides equations that
count the number of switching elements traversed by packets
within the buffer architecture.

As mentioned earlier, the implemented optical packet buffer
architecture is able to execute read and write processes indepen-
dently and simultaneously. Packets are stored in the structure,
and service order is well defined; thus, the architecture meets
Erlang’s formal definition of a queue, as used in the discipline
of queuing theory [19], [20]. In most analyses, traffic is as-
sumed to arrive and to be serviced with uniformly distributed
processes; that is, there is Bernoulli traffic and similar statistics
for the read request signals. This scenario is classified as an
M/M/1 queue, for which significant theoretical background
exists [19]–[21]. Naturally, application-specific traffic patterns
should also be used to analyze the buffer capacity more pre-
cisely, but we provide an approximate analysis here based on
these common assumptions.

First, load factor ρ is defined by convention as

ρ = λ/µ (1)

where λ is the mean arrival time (i.e., arrival rate 1/λ), and µ is
the mean service time (service rate 1/µ). Markov chain analysis
reveals that the mean number of packets in the buffer at a given
time (the buffer occupancy) is then

N =
ρ

1 − ρ
. (2)

Applying Little’s law [21], the mean number of timeslots that a
packet spends in the buffer is

T =
N

λ
=

1
λ

ρ

1 − ρ
=

1
µ − λ

(3)

which is the universal result for an M/M/1 queue. (Technically,
when packets arrive on discrete timeslots, the queue is of type

Geom/Geom/1 with a discrete uniform distribution instead of
a continuous uniform one; however, the important results are
identical to the M/M/1 case [20].)

For the queue (FIFO) implementation, packets must first
ascend the cascade of modules to the first unoccupied one.
This process requires N + 1 semiconductor optical amplifier
(SOA) hops if the buffer already contains N packets. (Even if
the buffer is empty, a single SOA hop is required to enter the
root module.) Then, the packet is held for a total of T timeslots
within the buffer, possibly in different modules; each timeslot
requires a single SOA hop. Because the packet descends the
cascade of modules throughout its duration in the buffer, the
last module in which it is held for a timeslot is necessarily
the root module. Thus, for the queue (FIFO) implementation,
the required number of SOA hops for a particular packet is

S = N + T + 1. (4)

This result can be confirmed by reexamining the illustration
in Section II-C. The first packet traverses three SOAs; the
second, five; the third, three; and the fourth, one.

Finally, using the universal definitions (1)–(3) in (4), and in
accordance with the law of large numbers, the mean number of
SOAs through which packets propagate in the queue is

S = N + T + 1 =
ρ

1 − ρ

(
1 +

1
λ

)
+ 1 =

µ + 1
µ − λ

. (5)

For the stack (LIFO) implementation, because packets are
pushed up and down the buffer contiguously, the number of
SOA hops S required for a particular packet is just

S = T + 1 (6)

independent of the number of packets that preceded it. Re-
ferring again to the illustrations in Section II-C, but this time
for the LIFO implementation, the first packet encounters four
SOAs; the second, two; the third, three; and the fourth, one. By
the same argument as is used to obtain (5), the mean number of
SOAs through which packets propagate in the stack is

S = T + 1 =
µ − λ + 1

µ − λ
. (7)

IV. IMPLEMENTATION

Buffer modules that implement the desired functionality can
be assembled from conventional photonic and fiber-optic com-
ponents in a relatively straightforward manner (Fig. 4). Elec-
trically controlled SOA switching gates are used to implement
the appropriate subset of the 3 × 3 structure. Standard fiber-
optic couplers combine and divide the necessary pathways; no
optical filters are necessary. A small amount of power is tapped
from each of the three inputs and directed to low-speed optical
receivers in order to determine the presence or absence of a
packet (Fig. 2). These three signals, in addition to an electronic
read request signal transmitted over microwave cables, are the
only inputs used to execute the routing decision by a standard

SMALL et al.: MODULAR, SCALABLE, EXTENSIBLE, AND TRANSPARENT OPTICAL PACKET BUFFER 983

Fig. 4. Photograph of implemented buffer system; the two circuit boards
(midground) contain SOAs and the CPLDs for the two modules, with additional
SOAs (further background) and passive fiber-optic components (foreground).

commercial complex programmable logic device (CPLD), as
specified by Tables I and II, or by any similar table that could
implement other priority schemes.

While the routing decision is computed by the CPLD, the
packets are held in a short length of fiber. Then, the appropriate
SOAs are enabled, so that the packet or packets are routed to the
correct module output. An electronic read request signal can
also propagate to the next module in the buffer. This part of the
node latency is approximately 22 ns. Packets that then ascend
the buffer propagate through a fiber delay of approximately
15 ns before reaching the next module, those that descend the
buffer face a 65 ns delay, and those that remain buffered within
the module are held in an FDL with a latency of approximately
80 ns. With this timing arrangement, the implemented system
functions correctly with 102-ns packet timeslots. The packets
themselves are approximately 90 ns long, allowing for 12 ns of
deadtime between the packets, which is more than enough to
accommodate the SOA gate switching time of less than 2 ns.
This implementation can be adjusted to support other packet
slot times by increasing or decreasing the length of fiber in the
modules’ FDLs.

All packets remain in the optical domain throughout their
lifetime in the buffer, and because only wideband components
(i.e., SOAs and couplers; no optical filters) are used in the opti-
cal paths, the buffer can transparently route packets that contain
wavelengths over almost the entire C-band. These packets can
also have a multiple-wavelength (wavelength-striped) format,
as is found in [15], [16], and [22].

The gain of the SOAs is set to exactly compensate for the
coupler losses found in their particular branch of the 3 × 3
cross-connect. Because these losses depend on which branches
are required for a particular module implementation, the SOAs
are set to deliver between 6 and 11 dB of gain, which requires
between 45 and 75 mA of drive current. The net gain or loss
incurred on each packet payload can be kept to less than about
0.5 dB, as in [15], [16], and [24].

A fully operational two-module buffer is constructed to ex-
perimentally verify functionality and to perform physical-layer
investigations. The two modules are completely independent, as
is specified in Section II, and therefore, this setup can easily be
extended to include more modules while maintaining consistent
operation.

V. EXPERIMENTAL RESULTS

In order to verify the behavior of the architecture, a routing
experiment is performed on both the FIFO and LIFO implemen-
tations of the buffer. These results confirm for the implemented
buffer that read and write operations occur independently and
that the desired ordering is maintained. Furthermore, power
penalty measurements are taken on packets that traverse the
whole buffer structure, propagating through varying numbers of
SOAs. These data show the minor signal degradation induced
by the buffer, which is in support of its overall physical-layer
transparency and scalability.

A. Routing Verification

In order to verify the overall routing behavior of the buffer,
numerous trials were performed. Examples, including one each
for the FIFO or queue [Fig. 5(a)] and LIFO or stack [Fig. 5(b)]
implementations, are provided here. Packets are offered to the
buffer, along with read request signals, in a manner identical to
the illustrations provided in Fig. 3 and detailed in Section II-C.
The 90-ns packets, which are spaced in 102-ns timeslots, con-
tain a 10-Gb/s payload in addition to a unique 7-bit packet
label, so that individual packets can easily be identified during
the experiment. Incoming packets have a total average power
of approximately −10 dBm; this keeps the SOAs well within
the linear operating regime [24]. The implemented two-module
buffer also includes internal packet and read request signal
monitoring for troubleshooting and verification. A careful ex-
amination of the label waveforms in Fig. 5 reveals that packets
are kept in FCFS order for the FIFO implementation and last-
come–first-served (LCFS) order for the LIFO implementation,
exactly as intended. The second packet in the FIFO sequence
and the first packet in the LIFO are both delayed for 330 ns
(three full timeslots plus processing), which is the longest delay
experienced for the examples provided.

B. Power Penalty

In order to quantify the physical-layer transparency of the
SOA-based buffer, power penalty measurements are taken on
packets that encounter different numbers of SOAs within the
structure. Using the packets from the routing verification, which
contain 10-Gb/s payloads, bit-error-rate (BER) values are mea-
sured (Fig. 6) with a tester that is synchronized to the packet
generator. With the FIFO or queue implementation, the first
and third packets encounter two SOAs: the second, five; and
the fourth, one, as discussed previously. From this selection of
routing options, it can be deduced that each SOA hop introduces
approximately 0.4 dB of power penalty on average. This result
is similar to those for other simplistic SOA-based OPS nodes
and modules [11], [15], [17], [23], [24].

984 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 4, APRIL 2007

Fig. 5. Waveforms for routing verification. (a) FIFO implementation. (b) LIFO implementation. Packets are introduced to the root module of the buffer, containing
both payloads (P) and labels (L), along with read request signals (R). The correct sequence of packets can be seen exiting the module (Po and Lo) in response to
the read request signals. Within the buffer, each module’s FDL is monitored (B0 and B1), as are the propagated read request signals (R1 and R2). Note the order
of the labels on the inputs and outputs, which are (a) FCFS or (b) LCFS based on the read request signals (cf. Fig. 3).

Fig. 6. Power penalty curves for each packet in the illustrative sequence
for the FIFO, which are labeled in order with the number of SOA hops
parenthetically.

Also, in order to demonstrate the wideband transparency of
the buffer implementation, eye diagrams for different payload
wavelengths are presented as well (Fig. 7). All payloads can
easily attain 10−12 BERs, and no error floor is observed.

VI. CONCLUSION

A novel OPS buffer architecture is introduced and discussed.
This architecture supports independent read and write processes
and manages itself in a way that leaves the rest of the network
unaffected. It also maintains physical-layer transparency by
introducing minimal signal degradation on wideband opti-
cal payloads. The buffer is composed of multiple identical
building-block modules, each of which contains a single FDL
for holding packets. This design is scalable and extensible,
having the ability to implement a buffer of any size and support
at least two distinct prioritization schemes (i.e., FIFO and
LIFO). An algebraic analysis of the buffer architecture is also

Fig. 7. Eye diagrams of payloads with BER thresholds of 10−12 for payloads
at three wavelengths (columns) at the buffer input and for the four packets in
the illustrative sequence for the FIFO implementation with the number of SOA
hops parenthetically (rows).

included. The actual implementation of a two-module buffer
illustrates the feasibility of this architecture and attests to its
elegance.

REFERENCES

[1] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA: Morgan Kaufmann, 2004.

[2] R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical
buffers: Capabilities and fundamental limitations,” J. Lightw. Technol.,
vol. 23, no. 12, pp. 4046–4066, Dec. 2005.

[3] A. Shacham, B. A. Small, and K. Bergman, “A novel optical buffer
architecture for optical packet switching routers,” presented at the 32nd
Eur. Conf. Optical Commun., Cannes, France, Sep. 2006, Paper We1.4.4.

[4] D. K. Hunter and I. Andonovic, “Optical contention resolution and
buffering module for ATM networks,” Electron. Lett., vol. 29, no. 3,
pp. 280–281, Feb. 1993.

SMALL et al.: MODULAR, SCALABLE, EXTENSIBLE, AND TRANSPARENT OPTICAL PACKET BUFFER 985

[5] R. Langenhorst, M. Eiselt, W. Pieper, G. Großkopf, R. Ludwig, L. Küller,
E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightw.
Technol., vol. 14, no. 3, pp. 324–335, Mar. 1996.

[6] R. S. Tucker and W. D. Zhong, “A new wavelength-routed photonic packet
buffer combining traveling delay lines with delay-line loops,” J. Lightw.
Technol., vol. 19, no. 8, pp. 1085–1092, Aug. 2001.

[7] W. A. Vanderbauwhede and H. Novella, “A multiexit recirculating optical
packet buffer,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1749–1751,
Aug. 2005.

[8] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson,
P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong,
R. T. Hofmeister, C.-L. Lu, A. Mekkittikul, D. J. M. Sabido, IX,
C.-J. Suh, and E. W. M. Wong, “CORD: Contention resolution by delay
lines,” IEEE J. Sel. Areas Commun., vol. 14, no. 5, pp. 1014–1029,
Jun. 1996.

[9] C.-S. Chang, Y.-T. Chen, and D. S. Lee, “Constructions of optical
FIFO queues,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2838–2843,
Jun. 2006.

[10] D. K. Hunter, D. Cotter, R. B. Ahmad, W. D. Cornwell, T. H. Gilfedder,
P. J. Legg, and I. Andonovic, “2 × 2 buffered switch fabrics for traffic
routing, merging, and shaping in photonic cell networks,” J. Lightw.
Technol., vol. 15, no. 1, pp. 86–101, Jan. 1997.

[11] E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for
optical packet buffering,” IEEE Photon. Technol. Lett., vol. 18, no. 1,
pp. 103–105, Jan. 2006.

[12] Y.-K. Yeo, J. Yu, and G.-K. Chang, “A dynamically reconfigurable
folded-path time delay buffer for optical packet switching,” IEEE Photon.
Technol. Lett., vol. 16, no. 11, pp. 2559–2561, Nov. 2004.

[13] J. Spring and R. S. Tucker, “Photonic 2 × 2 packet switch with input
buffers,” Electron. Lett., vol. 29, no. 3, pp. 284–285, Feb. 1993.

[14] M. Andrews, B. Awerbuch, A. Fernández, T. Leighton, Z. Liu, and
J. Kleinberg, “Universal-stability results and performance bounds for
greedy contention-resolution protocols,” J. ACM, vol. 48, no. 1, pp. 39–
69, Jan. 2001.

[15] B. A. Small, A. Shacham, and K. Bergman, “Ultra-low latency optical
packet switching node,” IEEE Photon. Technol. Lett., vol. 17, no. 7,
pp. 1564–1566, Jul. 2005.

[16] A. Shacham, B. A. Small, O. Liboiron-Ladouceur, and K. Bergman, “A
fully implemented 12 ×12 data vortex optical packet switching inter-
connection network,” J. Lightw. Technol., vol. 23, no. 10, pp. 3066–3075,
Oct. 2005.

[17] A. Shacham, B. G. Lee, and K. Bergman, “A wideband, non-blocking,
2 × 2 switching node for a SPINet network,” IEEE Photon. Technol. Lett.,
vol. 17, no. 12, pp. 2742–2744, Dec. 2005.

[18] A. Shacham, B. A. Small, and K. Bergman, “A wideband photonic packet
injection control module for optical packet switching routers,” IEEE Pho-
ton. Technol. Lett., vol. 17, no. 12, pp. 2778–2780, Dec. 2005.

[19] A. K. Erlang, “Solution of some problems in the theory of probabilities of
significance in automatic telephone exchanges,” Post Off. Electr. Eng. J.,
vol. 10, pp. 189–197, 1917.

[20] D. G. Kendall, “Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded Markov chain,” Ann.
Math. Stat., vol. 24, no. 23, pp. 338–354, Sep. 1953.

[21] J. D. C. Little, “A proof of the queueing formula L = λW,” Oper. Res.,
vol. 9, no. 3, pp. 383–387, May/Jun. 1961.

[22] T. Lin, K. A. Williams, R. V. Penty, I. H. White, M. Glick, and
D. McAuley, “Performance and scalability of a single-stage SOA switch
for 10 × 10 Gb/s wavelength striped packet routing,” IEEE Photon.
Technol. Lett., vol. 18, no. 5, pp. 691–693, Mar. 2006.

[23] B. A. Small, T. Kato, and K. Bergman, “Dynamic power considerations
in a complete 12 × 12 optical packet switching fabric,” IEEE Photon.
Technol. Lett., vol. 17, no. 11, pp. 2472–2474, Nov. 2005.

[24] O. Liboiron-Ladouceur, B. A. Small, and K. Bergman, “Physical layer
scalability of WDM optical packet interconnection networks,” J. Lightw.
Technol., vol. 24, no. 1, pp. 262–270, Jan. 2006.

Benjamin A. Small (S’98–M’06) received the B.S.
(with honors) and M.S. degrees in electrical and
computer engineering from Georgia Institute of
Technology, Atlanta, in 2001 and 2002, respectively,
and the M.Phil. and Ph.D. (with distinction) degrees
in electrical engineering from Columbia University,
New York, NY, in 2005.

He is currently a Postdoctoral Research Scien-
tist with the Department of Electrical Engineering,
Columbia University. His interests include optoelec-
tronic device physics and modeling, as well as opti-

cal packet switching interconnection network traffic analysis and system-level
behavior.

Assaf Shacham (S’03) received the B.Sc. (cum
laude) degree in computer engineering from the
Technion, Israel Institute of Technology, Haifa,
Israel, in 2002 and the M.S. degree in electrical en-
gineering from Columbia University, New York, NY,
in 2004. He is currently working toward the Ph.D.
degree in electrical engineering at the Department of
Electrical Engineering, Columbia University.

From 1999 to 2001, he was a Circuit Designer
with the Mobile Products Group, Intel Inc., Haifa.
He then joined Charlotte’s Web Networks in 2001

and spent two years working as a Logic Design Engineer in the core router
hardware group. His research at Columbia University is focused on architec-
tures of photonic chip-to-chip and intrachip interconnection networks in high-
performance computing systems.

Keren Bergman (S’87–M’93) received the B.S.
degree from Bucknell University, Lewisburg, PA,
in 1988 and the M.S. and Ph.D. degrees from
Massachusetts Institute of Technology, Cambridge,
in 1991 and 1994, respectively, all in electrical
engineering.

From 1994 to 2000, she was an Assistant Profes-
sor with the Department of Electrical Engineering,
Princeton University, Princeton, NJ. She then joined
the Optical Networking Group, Tellium, where she
headed the optical design of large-scale MEMS-

based cross-connects. Since 2001, she has been with the Department of Electri-
cal Engineering, Columbia University, New York, NY, where she is a Professor
of electrical engineering and directs the Lightwave Research Laboratory. She
also leads multiple research projects in optical packet-switched networks,
distributed grid computing over optical networks, photonic interconnection net-
works, nanophotonic networks-on-chip, and applications of optical networking
in high-performance computing systems.

Dr. Bergman is a Fellow of the Optical Society of America (OSA). She
is currently an Associate Editor of the IEEE PHOTONICS TECHNOLOGY

LETTERS and the OSA Journal of Optical Networking.

