
Optical Packet Buffers with Active Queue
Management

Assaf Shacham and Keren Bergman

Columbia University, Department of Electrical Engineering, New York, NY 10027
bergman@ee.columbia.edu,

http://lightwave.ee.columbia.edu

Abstract. Active queue management (AQM) is an important function
in today’s core routers that will be required in the future optical internet
core. A recently reported novel architecture for optical packet buffers
is extended by implementing necessary AQM functions. The suggested
AQM scheme is validated and explore via simulations.

1 Introduction

One of the key challenges to the implementation of all-optical routers is the dif-
ficulty of realizing optical packet buffering. Contemporary internet routers use
very large packet buffers, which store millions of packets, to efficiently utilize
expensive long haul links. These large buffers are clearly impractical for im-
plementation using photonic technology. Recent studies have indicated that by
sacrificing some of the link utilization, buffer sizes can be reduced dramatically
to the capacity of approximately 20 packets [3].

Photonic packet buffers of this capacity have the potential of realization.
Numerous optical buffer architectures have been suggested (see, for example,
Refs. [1, 2, 5], among others). However, many of the suggested architectures suf-
fer from fundamental drawbacks that prohibit scaled implementations or make
them unusable in optical routers. For example, some are designed to store a
single packet and others require a complex and nonscalable control schemes. In
previous work [8, 9] we have presented a new buffer architecture that is mod-
ular, scalable, extensible, and transparent and therefore provides significantly
improved performance.

In this paper we extend this work by considering an active queue management
(AQM) scheme which can be straightforwardly implemented on the optical buffer
architecture. AQM is a technique used for congestion control in packet-switched
routers. In a typical AQM technique, known as random early detect (RED)
[4], packets are deliberately dropped even when the router’s buffers are not
completely full, to provide an early congestion notification (ECN) signal to the
TCP terminals and the network endpoints.

In the scheme suggested here, AQM is employed to solve another problem:
packet-loss may occur when a low-capacity buffer is operated under high load.
While this may be a price that a designer is willing to pay in an optical router



with small buffers [3], the buffer is operated in a nearly full state most of the
time, thus incurring an unnecessarily high queueing latency on all packets. AQM
can be used to reduce the queueing latency while increasing the packet loss rate
(PLR) by a small amount.

This paper is organized as follows: In Section 2 the buffer architecture is
reviewed and explained. The suggested AQM scheme and its mapping on the
existing architecture are presented in Section 3. A simulation based exploration
of the AQM parameters then follows in Section 4 and a concluding discussion is
provided in Section 5.

2 Architecture Overview

The optical packet buffer is comprised of identical buffer building-block modules
that are cascaded to form a complete buffer (see Fig. 1). Each building-block
module has two input ports and two output ports and is capable of storing a
single packet on a fiber delay line (FDL). A pair of ports (Up-in and Up-out)
connects the module to the next module in the cascade, and the Down-in and
Down-out ports are connected to the previous module. In the root module the
Down-in and Down-out ports are used as the system input and output ports,
respectively. Each module is also connected to the next module in the cascade
by an electronic cable, for the transmission of Read signals.

Fig. 1. The buffer’s cascade structure (large image). A 3×3 non-blocking switch, of
which a reduced version is used to implement the modules (inset) [9]

Writing packets to the buffer is performed implicitly: optical packets arrive
into the Down-in port of the root module, aligned with system timeslots. The



packets are either stored locally if the internal FDL buffer is empty, or routed
to the Up-out port to be stored in the next module in the chain. Each packet is
forwarded in this manner up the cascade, and is stored in the first empty module
it encounters, which is necessarily the last position in the queue.

The read process is completely independent from the write process: when a
Read signal is received, the locally stored packet is transmitted from the Down-
out port and a Read signal is sent to the next module in the cascade to retrieve
the next packet. With each Read signal all the packets in the chain move a step
closer to the output port, while maintaining the packet sequence.

This distributed modular structure has several advantages: (1) no central
management is required – all modules follow an identical simple set of rules; (2)
the buffer capacity can be increased simply by connecting additional modules at
the end of the cascade; (3) packet dropping, in the case of overflow, is cleanly
executed by routing packets to the Up-out port of the last module, which is not
connected.

Fig. 2. Schematic diagram of the building-block module with ovals for couplers; U , B,
and D for their respective low-speed receivers; dashed lines for read request signals [9]

2.1 Building-block module structure

Each building-block module in the buffer is implemented as an SOA-based 3×3
non-blocking optical switch (Fig. 2). At each of the three inputs (Up-in, Down-
in, and Buffer-in), the packet’s power is split by a coupler. A portion of the
packet power is directed to a low-speed p-i-n-TIA optical receiver acting as an
envelope detector. The envelopes of the packets from all input ports along with
the input electronic Read signal are used in an electronic decision circuit to set
the state of the SOA-based switch. The decision rule used by the electronic
circuitry is represented by the truth table in Table 1. The table should be read



as follows: the four left columns R,U ,B,D are the Read signal, and the three
inputs representing the existence of packet on the input ports (Up-in, Buffer-in,
Down-in), respectively. The next nine columns represent the switching states of
the SOAs (e.g. U2B means Up-in to Buffer-out, etc.) Finally, the last column
(ER) represents when a Read signal is transmitted to the next module in the
chain.

Table 1. Truth table for building-block module (∅ represents a don’t-care value)[8]

R U B D U2U U2B U2D B2U B2B B2D D2U D2B D2D ER

∅ 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1 1

0 1 0 0 1

0 1 0 1 1 1

∅ 1 1 ∅ illegal states

1 0 0 1 1

1 0 1 0 1 1

1 0 1 1 1 1 1

1 1 0 0 1 1

1 1 0 1 1 1 1

To assist in understanding the decision rule, the following examples are given:
line {0011} represents a case where a new packet is received from the Down-in
port (D=1), while another packet is locally stored in the buffer (B=1). In that
case the locally stored packet is routed back to Buffer-out (B2B=1) while the
new packet is routed to the next module through the Up-out port (D2U=1). Line
{1010} represents the case where a Read signal is received (R=1) and a packet is
locally stored (B=1). In this case, the local packet is sent to the Down-out port
(B2D=1) and a Read signal is sent to the next module (ER=1) to retrieve the
next packet in the queue. Careful inspection of Table 1 reveals that some states
can never occur if all the modules follow the rules. More importantly, two paths
(Up-in to Up-out and Buffer-in to Up-out) are never used so the module can be
implemented using only seven SOAs, as appearing in Fig. 2.

3 Introducing AQM to the Buffer

As explained in the introduction, the suggested buffer architecture, as any other
FDL-based optical buffer architecture, is practical for the implementation of
small buffers, capable of storing tens of packets, at most. In an optical router,
typically, a buffer would be designed to store as many as 20 packets [3]. In these
systems, when routers face periods of high load and congestion, it is reasonable



to assume that buffers will fill up very quickly and packet dropping due to buffer
overflow will be frequent. While higher layer mechanisms, such as TCP, are used
to recover lost packets and regulate the transmission rates of network terminals
in these cases, these mechanisms operate with fairly slow time-constants. Thus,
when overflow-generated packet-loss is used as the sole mean of congestion no-
tification, buffers remain full and overflowing for long periods of time, and the
penalty in terms of packet loss rate (PLR) and end-to-end latency can be se-
vere. Further, in the case of buffer overflow many packets are dropped at the
same time and thus many sources are requested to throttle their transmission
at the same time. This effect leads to the well-known and undesirable effects of
terminal-synchronization, TCP oscillations, and failure to reach equilibrium [6].

AQM can be used, in optical routers, to improve the overall network perfor-
mance by dropping packets even before the buffers reach overflow. By dropping
these packets, an early congestion notification (ECN) signal is sent to the end
terminals, thus causing rate throttling before the buffers reach full capacity.
Further, when probability-based methods are employed to decide when to drop
packets, ECN messages are sent to different TCP terminals in different times,
oscillations are prevented and the network is more likely to reach equilibrium [6,
4].

The distributed structure of the buffer facilitates a simple AQM implementa-
tion. The digital decision circuit in every building block module is modified by the
addition of a circuit emulating a Bernoulli random number generator (BRNG),
or a biased coin-flip. In every slot, the result of the BRNG (a true/false value)
is checked. If the BRNG result is true while a packet is about to be buffered in
the module, the packet is discarded. This policy is implemented by performing
a logical AND operations of the individual control signals of three SOA gates
(U2B, B2B, and D2B) with the negation of the BRNG value:

U2BNEW = U2B ∧ ¬BRNG

B2BNEW = B2B ∧ ¬BRNG

D2BNEW = D2B ∧ ¬BRNG

When a packet is dropped, a read signal is emitted to the next module up the
cascade, so that the module is replenished and the packets in the queue advance
by one spot:

ERNEW = (U2B ∨B2B ∨D2B) ∧BRNG

The BRNG in each module is programmed with a different Bernoulli pa-
rameter which is the probability that a packet buffered in that module will be
dropped. The parameter in the kth module (The 0th module is the root module)
is pd(k), or the packet-dropping probability function. Hence, in a given slot
time a packet which is buffered in the kth spot in the queue is discarded with a
probability pd(k).

The packet-dropping probability function is a monotonously non-decreasing
function in k and pd(0) = 0. Thus, packets are never dropped in the root module



and the probability that a packet is dropped rises in the modules that are further
down the queue. Constructing specific pd(k) functions is the topic of Section 4.

The feasibility and correctness of the suggested distributed AQM scheme
is validated using simulations on a specifically developed simulator, built using
the OMNeT++ event-driven simulation environment [7]. OMNeT++ provides
support for modular structures and message exchange and the simulator is highly
parameterized and offers complete configuration flexibility to simulate buffers of
varying sizes and varying internal parameters. The simulator is also used to
explore the design parameters of the AQM probability function in the next
section.

4 Exploring AQM Parameters

The buffer performance, i.e. PLR and latency, is highly dependent on the chosen
dropping-probability function. As described in Section 3, the function pd(k) is
a monotonously non-decreasing function in k and pd(0) = 0. To perform an
initial study of the optical buffer with AQM, and to explore different functions
we define the function pAQM (k) as follows:

pAQM (k) =
{

0 k ≤ x1
y2·(k−x1)

C−x1
k > x1

}

where C is the total number of modules in the buffer (i.e., the buffer capacity)
and x1 and y2 are parameters defining a given function. Fig. 3 clarifies the
pAQM (k) function and its parameters: x1 is the threshold capacity above which
packets start to be actively dropped and y2 is the maximum drop probability
under AQM.

In this section we explore the effect of the two parameters: the threshold
capacity (x1) and the maximum drop probability (y2), examine their effect on
the PLR and latency, and compare them to the case where AQM is not used. In
the simulations conducted, the arrival and service processes are both Bernoulli.
The goal of the simulations is perform an initial evaluation of the suggested
AQM scheme. The simulated case is, therefore, constructed such that the buffer
is heavily loaded and the PLR due to overflow, in the absence of AQM, is fairly
high (nearly 3%). To achieve these conditions, the arrival parameter is chosen to
be p = 0.50 and the service parameter is q = 0.52. The buffer capacity is chosen
to be 10 packets.

Obviously, to fully evaluate the performance of an AQM scheme, the systems
should be simulated with traffic comprised of a large number of multiplexed TCP
flows, such that the interaction of the AQM mechanism and the TCP sources
can be studied. This work is planned but is beyond the scope of this paper. The
work here studies the effect of the AQM function on the latency and PLR under
simpler traffic models.



Fig. 3. The AQM dropping-probability function, defined by x1 and y2. In this case
x1 = 4, y2 = 0.4 and the buffer capacity is C = 10.

4.1 Controlling AQM Maximum Dropping Probability

To evaluate the effect of the dropping-probability function, we first simulate
different values of y2, the maximum drop probability. This value can be seen as
the intensity of the AQM scheme. When y2 is increased the dropping probability
due to AQM is increased and the dropping due to overflow is reduced. Simulation
should be used, however, to verify that the AQM is not too strong such that it
unnecessarily increases the total PLR. The results of the y2 study are shown in
Fig. 4. In these simulations, the threshold capacity value is x1 = 4.

Fig. 4. The PLR and average latency of a 10-packet buffer with varying levels of
maximum drop probability, y2 (x1 = 4).

The results in Fig. 4 show that with any degree of AQM applied to the buffer,
the total PLR increases. As expected, as the AQM becomes more dominant, the
PLR due to overflow is diminished. The negative effect of the higher PLR is



accompanied by a favorable effect of lower queueing latency, resulting from the
lower occupancy in the buffer due to the AQM. Another effect that should be
considered is that we can view the AQM packet drops as better drops, because
of the more gradual effect they have on the TCP sources at the network edges
[6, 4].

4.2 Controlling the Threshold Capacity

The threshold capacity can be used as a mean of controlling the spread of the
AQM function across the buffer. In this case, for a given maximum dropping-
probability level, the AQM threshold and the slope of the AQM function are
varied. When x1 is low, the function becomes smoother: packet dropping starts
at a low capacity and the dropping-probability function rises slowly. When, con-
versely, x1 is high, the AQM does not have an effect until the buffer occupancy
is high, and the dropping-probability function, then, rises sharply. The results
of the x1 value study are shown in Fig. 5. In these simulations, the maximum
drop probability value is y2 = 0.20.

Fig. 5. The PLR and average latency of a 10-packet buffer with varying levels of
threshold capacity, x1 (y2 = 0.20).

The results in Fig. 5 resemble the ones in Fig. 4. As x1 moves down, the total
AQM drop probability increases, suppressing the overflow drop rate, but making
a contribution to the total PLR. The latency is reduced by a value corresponding
to the rising PLR. When we attempt to compare the two scenarios, trying to
evaluate which is a better method to control the effect of the AQM, we see that
for a given PLR – the corresponding latency is equal in both scenarios, so there
is no conclusively better method.

5 Conclusions and Future Work

In this paper we extend previous work on the design of a scalable optical packet
buffer architecture by adding AQM capabilities. Several versions of AQM-RED
are used in contemporary electronic internet routers to complement TCP and



overcome some of its inherent problems. It is expected that the implementation
of AQM will be required in the optical routers in the future internet core.

The presented buffer architecture, which is scalable, extensible and transpar-
ent, also lends itself to a simple implementation of AQM. This implementation
was presented in this paper and was validated through extensive simulations. The
design of the AQM dropping-probability function determines the performance
of the AQM system. In this paper we present a simple function and explore its
parameters using simulations. The simulations reveal that while the suggested
AQM scheme does reduce latency, it does it at the expense of increasing the
PLR.

In future work, the optical packet buffer with the suggested AQM scheme
and other schemes will be simulated under a large number of multiplexed TCP
streams. This complex modeling of the actual traffic and environment will fa-
cilitate the development of AQM schemes which are appropriate for the future
optical routers in the internet core.

References

1. C.-S. Chang, Y.-T. Chen, and D.-S. Lee. Constructions of optical FIFO queues.
IEEE Trans. Inform. Theory, 52(6):2838–2843, June 2006.

2. I. Chlamtac et al. CORD: Contention resolution by delay lines. IEEE J. Select.
Areas Commun., 14(5):1014–1029, June 1996.

3. M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden. Part iii:
Routers with very small buffers. SIGCOMM Comput. Commun. Rev., 35(3):83–90,
2005.

4. C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On designing improved con-
trollers for AQM routers supporting TCP flows. In 20th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM 2001), volume 3,
pages 1726–1734, Apr. 2001.

5. D. K. Hunter and I. Andonovic. Optical contention resolution and buffering module
for ATM networks. Electronic Letters, 29(3):280–281, Feb. 1993.

6. C. Jin, D. X. Wei, and S. H. Low. Fast TCP: Motivation, architecture, algorithms,
performance. In 20th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2001), volume 4, pages 2490–2501, Mar.
2004.

7. OMNeT++ discrete event simulation system. available online at
http://www.omnetpp.org/.

8. A. Shacham, B. A. Small, and K. Bergman. A novel optical buffer architecture for
optical packet switching routers. In European Conference on Optical Communica-
tions (ECOC ’06), Sept. 2006.

9. B. A. Small, A. Shacham, and K. Bergman. A modular, scalable, extensible, and
transparent optical packet buffer. J. Lightwave Technol., 25(4), Apr. 2007.


