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ABSTRACT
There has been an increasing interest on designing a single-
radio client for time-division access to multiple Access Points
(APs) on different radio-channels. These works have focused
mainly on different scheduling policies at the client-side to
allocate the percentage of time to each AP. However the
performance of these systems is limited by 1) the overhead
to switch between APs on different radio-channels, 2) the
jitter in the switching procedure, that modifies the expected
percentage of time assigned by schedulers and 3) the packet
losses caused by the switching.

In this paper, we introduce WiSwitcher, a client able to
connect to multiple APs that i) reduces the cost of switching
down to the hardware switching time and ii) increases the
stability of the percentage of time assigned by schedulers,
even if the station transmits in saturation mode. We imple-
ment WiSwitcher over commodity hardware and show that
it achieves high aggregate throughput over the connecting
APs and seamlessly transmits TCP traffic under controlled
scenarios. Finally, we characterize the dependency between
the switching frequency at the WiSwitcher client and the
packet losses in off-the-shelf APs.
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1. INTRODUCTION
Wireless local area networks (WLANs) were traditionally

envisioned with the goal of increasing the coverage range
for connecting to the Internet. As a typical example, home
wireless connection is nowadays a standard “de-facto” for
residential Cable/ADSL subscriptions.

While the Cable/ADSL lines are generally low speed and
under-utilized connections, wireless connectivity to the Ac-
cess Point (AP) can achieve up to 20 times the speed of
the Cable/ADSL lines. The density of these Cable/ADSL
deployments with wireless connectivity tends to be high [1]
and represents the bottleneck in the end-to-end communi-
cation [2]. Then, Cable/ADSL bandwidth aggregation via
wireless connectivity is attractive and incurs in no extra in-
frastructure cost [3].

In this scenario, previous work [3, 4] has mainly focused
on the definition of a time-division scheduler to assign the
percentage of connection to each AP. On the other hand,
little attention has been given by the literature to solutions
with fine-grained timing. In fact, time-division approaches
need precise time in scheduling to ensure that transmis-
sions/receptions occur when expected.

There are two main factor of timing degradation, both re-
lated to the management of APs on different radio-channels.
First, a MAC delay processing occurs while switching to an
AP at a different radio-frequency, because of operations as
sending probe messages, resetting the hardware, etc. This
overhead has a negative impact on the throughput.

Second, the hardware queue must be drained before switch-
ing to a different frequency. This operation introduces un-
predictable jitter in the timing procedure, which modifies
the expected percentage of time assigned by the upper sched-
uler. Imprecise jitter can be resolved by long guard peri-
ods [5]. However, this would degrade the throughput fur-
ther.

In this work, we present WiSwitcher, a single-radio wire-
less client that can connect to multi-frequency APs, and ag-
gregate their available Cable/ADSL bandwidth. WiSwitcher
increases the throughput observed by the client, thanks to
a virtualized 802.11 MAC client that:

• reduces the AP switching cost down to a mere hardware-
imposed switching delay.
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Figure 1: Topology

• increases the stability of the percentage of time as-
signed by the schedulers to each AP.

We design and implement WiSwitcher in commodity hard-
ware and demonstrate the feasibility of the implementation
in controlled scenarios. Finally, we also study the impact of
packet losses on the performance and show that off-the-shelf
APs add packet losses when switching.

The rest of this manuscript is organized as follows. Sec-
tion 2 presents related work. Section 3 introduces WiSwitcher
and Section 4 presents the implementation details. Section 5
validates the WiSwitcher implementation in a controlled en-
vironment and finally Section 6 gives the conclusions.

2. RELATED WORK
The idea of connecting to multiple APs through a single

radio interface is shown in VirtualWiFi [4]. The authors rely
on the Power Save (PS) mode feature of the WLAN stan-
dard to switch among different Wi-Fi nodes (in AP and/or
Ad-hoc mode) in a time-division fashion. A client can in-
form the current Wi-Fi node that it is going into PS mode
— so that it can buffer packets directed to it — and switch
radio-frequency to other Wi-Fi nodes, only to come back to
the original node before the PS period expires. Switching
between networks is transparent to the applications, but at
a high cost in time (30-600 msec). In fact, VirtualWiFi im-
plements the code on top of the driver card and run a MAC
instance for each network, with a scheduler that assigns more
active time to the MAC instance with higher amount of data
to send.

FatVAP [3] studies the problem of Cable/ADSL band-
width aggregation via wireless connectivity. The authors
introduces a scheduler to select the percentage of connec-
tion time on each AP to maximize the aggregate through-
put. The solution leverages on the fact that the high speed
wireless card needs to be connected on each AP for a short
period of time in order to collect all the pending data. Fat-
VAP has an average switching cost of 2.8 msec plus another
2.8 msec of standard deviation that is taken into account in
the scheduler calculation. However, no study of the effect of
jitter has given on the scheduler performance.

Finally, Juggler [8] focuses on the support for a seamless
hand-off between WLAN APs and operates over a switching
cost similar to FatVAP.
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Figure 2: Relation between duty cycle and wireless
period.
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Figure 3: Procedure to switch the virtual station.

3. OVERVIEW
An example scenario with a WiSwitcher station is given in

Fig. 1. In WiSwitcher, the wireless driver on top of the sin-
gle radio card is virtualized, i.e., it appears as independent
Virtual STAtions (VSTAi) associated to their respective Ac-
cess Point APi. Each of these virtual clients connects to
Internet via its AP backhaul, and independently of the AP
radio-frequency. In the example in Fig. 1, there are 3 virtual
clients VSTA1, VSTA2 and VSTA3, each one connected to
one AP.

WiSwitcher assigns the control of the card to a VSTAi for
a given time, called duty cycle (see Fig 2). During this time,
it transmits/receives frames over the AP backhaul while the
other VSTAs (and the corresponding APs) can only buffer
packets.

WiSwitcher manages the multiple backhaul connections
relying on the 802.11 PS mechanism. Particularly, referring
to the example in Fig 3:

• During the reserved duty cycle, VSTA1 transmits and
receives data according to the 802.11 DCF protocol.
The other VSTAs are in PS mode, and hence they
(and the corresponding APs) can only buffer packets.

• When the duty cycle expires, VSTA1 sends a frame to
inform AP1 that is going to PS mode and waits for
its MAC ACK. According to the 802.11 protocol, APi

starts to buffer the packets directed to it.

• WiSwitcher assigns the control of the card to VSTA2

and switches to the AP2 radio-frequency.

• VSTA2 sends a frame to announce that it can send/
receive traffic and waits for its MAC ACK.

We denote wireless period as the sum of the duty cycles.
The wireless period represents the amount of time to cycle
through all the VSTAs.

4. IMPLEMENTATION
WiSwitcher has been implemented as a wireless client

based on the MadWiFi driver 0.9.4 [6] and Click Router
1.6.0 [7]. WiSwitcher selects in a time-division fashion the
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APs to connect to and does not require any modification to
the APs.

In the implementation, we incur in a channel-switching
cost — i.e. the time where WiSwitcher cannot transmit/
receive any traffic — of 1.2 msecs for uplink traffic and 1.5
msec for downlink traffic. This cost is less than half of the
one obtained in the time-division implementation given in
[3,8], thanks to key points discussed in the next section.

The bulk of the cost is caused by the hardware opera-
tion delay, which is in the order of 800 μsec in our Atheros
chipset-based cards. This cost is hardware dependent and
in other chipset implementations is reduced to 200-500 μsec
[8,9].

Key points
Let us consider the Fig 4. WiSwitcher implementation is
based on four key points, below described.

First, WiSwitcher creates a MAC queue per VSTA. Since
the Linux kernel does not implement the queues for virtual
devices, we use the PS queues1 as VSTA MAC layer queues.
We setup each of these queues to accept packets from the
upper layer, up to a limit of 200 packets. Based on the
MAC address, WiSwitcher copies the IP packets in the cor-
responding MAC layer queues but only the (single) VSTA
out of PS can copy the packets from the VSTA MAC layer
queue to the H/W queue for the subsequent transmission.

Second, WiSwitcher efficiently manages a H/W queue size
equal to one (1) data packet. This feature is not supported
in normal drivers, that present high performance drops in
such a configuration. In order to by-pass this problem,
WiSwitcher copies each packet that arrives from the IP layer
to the tail of the VSTA MAC layer queue. Then:

• if the hardware queue is empty (i.e. no data packet in
the H/W queue) and the VSTA is currently selected,
the packet on top of the PS queue is copied immedi-
ately in the H/W queue and transmitted according to
the 802.11 DCF protocol.

• if the hardware queue is empty (i.e. no data packet
in the H/W queue) and the VSTA is currently not se-
lected, the packet on top of the PS queue is copied later
in the H/W queue, when the VSTA will be selected.

• if instead the hardware queue is not empty (i.e. one
data packet in the H/W queue), the next packet will
be copied in the hardware queue 1) if the duty cycle
is not expired and 2) the packet in the H/W queue
receives a MAC ACK or reaches the maximum MAC
retry.

Third, since the Power Save mode simply relies on the
Power Management bit in the MAC header, this bit is set
equal to 1 or 0 according to the VSTA PS state. Hence,
instead of generating probe messages for sending just 1 bit
of information, as normally done in 802.11 implementations,
WiSwitcher uses regular data traffic buffered in the MAC
VSTA layer queue to switch the PS state. This feature is
used in three procedures:

1. When the duty cycle expires on VSTAi, WiSwitcher
takes the packet on top of the currently active MAC

1In MadWiFi, one PS queue is created for each virtual in-
terface.

H/W queue
(1 Data packet)

IP queue

queue queue queue

PS=1PS=1

queue
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IP queue
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H/W queue
(1 Data packet)

PS=1

queue
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����
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Figure 4: Queue Management in WiSwitcher.

VSTAi queue, changes its PS flag bit to one, flushes it
in the H/W queue, and sends it to APi.

2. When the new VSTAj has been selected, WiSwitcher
takes the packet on top of the new active MAC VSTA
queue, selects the flag PS bit set to zero, flushes it in
the H/W queue, and sends it to APj

2.

3. There are situations where the packet with flag PS bit
set to zero is not acknowledged within the maximum
MAC retransmission counter. As a recovery mecha-
nism, WiSwitcher takes the next packet on top of the
new active MAC VSTAj queue, sets again the flag PS
bit to zero and sends it to APj . This procedure is
repeated until the packet is successfully acknowledged
or the duty cycle expired. If there are no more pack-
ets in the MAC VSTAj queue, WiSwitcher stops the
recovery mechanism.

Fourth, the rate selection algorithm works independently
for the different VSTAs. This allows to connect to APs with
different quality. Anyway, in case of high traffic load and/or
low wireless channel quality, the packet sent to switch to PS
mode can delay the start of the connection to the next AP
and increase the wireless period. Then, in order to minimize
the effect on switching delay, this extra-time of transmission
has subtracted from the next duty cycle assigned by the
scheduler to the VSTA3. This guarantees that the wireless
period does not fluctuate.

State machine management
In order to manage and keep the N VSTAs, the 802.11 state
machine has been modified. Each operation within the state
machine is scheduled in the WiSwitcher station according to
the software kernel interrupts, at the granularity of 1 msec.

In the initialization phase, WiSwitcher creates N VS-
TAs, and each one of them starts to actively scan for APs
(Scan_Mode). During the Scan_Mode, each VSTA scans over

2Note that WiSwitcher still sends probe messages when the
MAC layer queues are empty. In this case, for evaluating
the switching cost, we compared the start of back-off time
of the probe message with the completion time of the H/W
switching procedure. For calculating the start of the back-
off time we used a methodology similar to the one presented
in [10].
3Note that the correct acknowledgment of the PS packet
within the maximum MAC retry guarantees that the AP
does not attempt to send packets to a WiSwitcher client
while it is transmitting/receiving on another channel.
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Figure 5: Duty Cycle Assessment.

a time of wireless period/N before switching to the next
VSTA.

APs are dynamically selected based on their essid. In fact
each 802.11 standard compliant AP of our network uses the
same essid and APs are only differentiated based on their
MAC address. When one VSTA is associated to the cor-
responding AP (Run_Mode), the driver schedules only these
subset of interfaces, for a time equal to the assigned duty
cycle. On the other hand, if the duty cycle of one virtual
interface is forced to zero, the corresponding VSTA disasso-
ciates from its AP.

WiSwitcher also does a background scanning of the APs
in range both for the VSTAs in Run_Mode and the VSTAs
in Scan_Mode. This procedure can start only if there is no
traffic pending on the current selected VSTA in Run_Mode.
The scanning can be eventually stopped in case WiSwitcher
needs to switch VSTA, and later resumed if again there is no
traffic pending. This also implies a dynamic update of the
available APs without affecting the foreground connectivity.

Statistics per channel
Wireless channel occupancy can differ according to the traf-
fic load and transmission rate. Moreover, the occupancy is
radio-frequency dependent and nearby frequencies have cor-
related statistics.

In order to efficiently manage the available spectrum and
estimate the radio-frequency utilization, WiSwitcher esti-
mate the utilization of each 802.11 radio-frequency. This
metric is defined as the conditional probability that the
channel is busy when the VSTA is not transmitting. The
statistics are updated at both Scan_Mode and Run_Mode and
rely on specific 802.11 baseband registers, wherein the NIC
card updates both the busy and the total time with an ac-
curacy of the 802.11 clock (i.e. 44 MHz).

Reverse-NAT
APs commonly use NAT to share a wired link and assign
IP addresses from private blocks. Then, in order to guar-
antee transparency to higher layer, we implement a reverse-

network address translation (NAT) module with two func-
tions: i) assure that the packets leave the host with the
correct source IP address (i.e. the one corresponding to the
outgoing virtual interface) and ii) that the incoming pack-
ets are presented to the OS with the expected IP address.
The implementation of this module uses the Click modular
router [7] and it is similar to the one given in [3] and [8].

5. ASSESSMENT
In this section we perform an experimental evaluation of

the WiSwitcher implementation. The results show that:

• there is a low impact of the switching cost on the
throughput, even for the case of a few milliseconds
of connection time.

• the jitter caused by the draining of the hardware queue
at each switching is minimized.

• there is a constant number of packet losses generated
by off-the-shelf APs in each switching procedure.

Throughput
In this section we show the throughput performance of a
WiSwitcher client in two different configurations, i) as func-
tion of the duty cycle and ii) in presence of a high number
of APs.

First, we performed a set of tests with a WiSwitcher sta-
tion connected to 2 servers at 100 Mbps Ethernet cable speed
via 2 APs using a physical transmission rate of 54Mbps. In
this controlled scenario, we fixed the percentage of connec-
tion to 50% on each of the two APs. In the testbed, we
measured the TCP throughput over 1 AP connection as a
function of the duty cycle and compared it to the expected
maximum bandwidth — i.e. half of throughput that we
get without switching (upper bound curve). The results are
shown in Fig. 5(a). For each point of the plot, we ran five
tests with a duration of 100 secs, with the duty cycle that
sweeps from 6 ms to 24 ms.
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Figure 6: Impact of the hardware queue length in the duty cycle duration.

We observe that WiSwitcher can get high throughput per-
formance both in uplink and downlink using very small con-
nection time, with a slightly better performance of uplink
for given duty cycle. This finding can be easily explained as
follows: in the uplink traffic, a data packet is always on top
of the VSTA MAC layer queue. Then this packet can be
used to go and return from PS mode. Instead, in the down-
link, the session may have TCP ACK sent with the delayed
ACK option — i.e. it sends one TCP ACK every two TCP
data — resulting in an empty virtual queue at the VSTA
at the moment of switching. When the queue is empty, in
order to switch to PS, the VSTA sends a probe message with
NULL data, which represents an overhead for WiSwitcher.
This has the effect of an increase the switching cost from 1.2
msec in uplink to 1.5 msec in downlink.

Fig. 5(a) also shows the performance of a FatVAP station.
Whereas WiSwitcher starts at 85% of the expected through-
put with 6ms of duty cycle, FatVAP is unable to get half of
the expected maximum throughput. This is caused by the
higher switching cost in the FatVAP implementation. The
benefits of WiSwitcher reduce at higher duty cycles, with a
22% higher throughput respect to FatVAP at the duty cycle
of 15 msecs. At this duty cycle, WiSwitcher achieves the
95% of the expected throughput. As a result of the tests,
we conclude that the minimum duty cycle to get a stable
throughput performance is 15ms.

We now evaluate the throughput of a WiSwitcher client
connected to six APs at six different radio-frequencies, where
each VSTA connects to the corresponding AP for a duty
cycle of 15msec. Fig. 5(b) depicts with a different color
band the throughput achieved on each of the 6 APs versus
the time. The sum of the contribution is very close to the
theoretical maximum of 21.7 Mbps that can be achieved
connecting 100% of the time to only 1 AP. This throughput
confirms that the switching cost can be effectively neglected
at a duty cycle of 15msec.

Reducing Jitter
In this section we show that WiSwitcher allows for a trans-
parent design of the scheduler by reducing the fluctuation

of the duty cycle caused by the draining time of the H/W
queue prior to each switching.

In stations with unmodified MadWiFi driver the hardware
transmit queue is set to 40 data packets. In this configura-
tion, when a station has to switch from one AP to another
and it transmits at high speed, it might fill up the hard-
ware queue of the wireless card. The draining of this queue
before switching to the next AP might take a considerable
amount of time — compared to the duty cycle duration—
and depending on the i) wireless channel contention and ii)
the wireless period size. As a result of this draining time,
the real amount of time connected to a certain APi increases
in each duty cycle — respect to the expected value given by
the upper layer scheduler — and consequently does the wire-
less period. It follows that the draining procedure leads to
an uncontrolled fluctuation of the percentages of connection
initially set by the upper layer scheduler since these duty
cycles will change independently.

Then, it is important to ensure that the wireless period
and the duty cycle remain as stable as possible to guarantee
a perfect match between the expected duty cycles given by
an upper layer scheduler and the real values.

In order to assess the variation of the duty cycle depending
on the cost of draining the hardware queue, we performed
five tests for five different hardware queue length’s: 1 packet
(which is the configuration of WiSwitcher), 10, 20, 30, and
40 4. In the test, we used a wireless period and a duty cycle
for the WiSwitcher station of 100ms and 50ms respectively.
In order to fill the transmission hardware queue, the test
was done in uplink. No queuing disciplines were set in the
wired network in order to push the wireless network as much
as possible with the highest throughput and making it to
become the bottleneck.

Fig. 6(a) shows the probability distribution function (pdf)
of the draining time for each hardware queue length. We
observe that the mean value increases with the hardware

4To perform this test we needed to optimize the relation and
communication between the different queues as described in
Section 4.
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queue length increases. From this figure we can conclude
that the draining time increases with the H/W queue length.
In addition, the draining time standard deviation increases
with the hardware queue length.

In Fig. 6(b) we show the mean draining time respect to
the hardware queue length with the corresponding error
bars. The figure shows the linear increase of both the av-
erage and standard deviation in the draining time. We see
that the most stable duty cycle can be obtained with the
smallest hardware queue, which is the configuration used by
WiSwitcher.

Packet losses at the AP
Packet loss assessment is fundamental in protocols as TCP,
that treats losses as an indication of congestion and reduces
its sending rate in their presence. While Cable/ADSL ex-
hibits low packet loss rate [11], this is not guaranteed in the
wireless path. In presence of good wireless channel quality5,
the main cost of packet losses in WiSwitcher is the switching
procedure.

In order to characterize the effect of switching, we mea-
sured the TCP RTT, the amount of TCP packet retransmis-
sions and the number of times that TCP detects a conges-
tion signal. As a result of using SACK, congestion signals
are mainly caused by fast retransmissions due to duplicated
ACKs because its goal is to avoid retransmission timeouts.
We then considered packet loss rate as the percentage of
congestion signals triggered per acknowledged TCP packet.

Fig. 7 shows the packet loss rate versus the duty cycle du-
ration and compares them to the evolution of the number
of switching procedures per second. For the test, we con-
sidered a 50 % of time connected to the AP under analysis.
Each value of the plot is the average over 5 tests of 300 secs
each one, where we subtracted the average packet loss rate
we found without switching.

As it can be seen in Fig. 7, initially, the packet loss rate
decreases exponentially with the duty cycle, following the
same shape of the number of switching per second (labeled
as switching frequency in the figure). The implication of
this result is that the higher is the switching frequency, the
higher are the packets lost and in consequence, it is possi-
ble to assume a certain rate of packets loss per switching
procedure.

After this initial exponential phase, the packet loss rate
remains around 0.01% of increase respect to the no-switching
situation. Particularly, the frequency switching introduces
a low number of packet losses as long as the duty cycle is
kept above or equal to 30 msecs (around 0.25 ∗ 10−3 of the
total transmitted TCP segments at 20 msecs).

Concluding, these results are caused by current APs im-
plementations. In fact, they do not support fast switching
rate and then, the high frequency switching causes TCP to
perceive a higher packet loss rate, likely generated by both
out-of-order packets and packet losses in the AP H/W and
PS queues.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented WiSwitcher, a wireless

station that can connect to different APs in range on differ-
ent radio-frequencies and aggregate their unused AP back-

5Negligible number of MAC frames that reach the maximum
MAC retransmission counter.
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Figure 7: Packet Losses are generated at high
switching rate in off-the-shelf APs.

haul bandwidth. WiSwitcher achieves fine-grained timing
at MAC/PHY level and allows stable performance even un-
der saturated conditions. Future work aims at reducing the
packet losses at the APs in open-source drivers and testing
the performance of WiSwitcher with different schedulers.
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