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Abstract—The CSMA/CA protocols are designed under the
assumption that all participant nodes would abide to the protocol
rules. This is of particular importance in distributed protocols
such as the IEEE 802.11 distributed coordinating function
(DCF), in which nodes control their own backoff parameters. In
this work, we propose a method to detect selfish misbehaving
terminals that may deliberately modify its backoff window
to gain unfair access to the network resources. We develop
nonparametric batch and sequential detectors based on the
Kolmogorov-Smirnov (K-S) statistics that do not require any
modification on the existing CSMA/CA protocols, and we apply
it to detect misbehaviors in an IEEE 802.11 DCF network using
the ns-2 simulator. We compare the performance of the proposed
detectors with the optimum detectors with perfect information
about the misbehavior strategy, for both the batch case (based
on the Neyman-Pearson test), and the sequential case (based
on Wald’s sequential probability ratio test). We show that the
proposed nonparametric detectors have a performance compa-
rable to the optimum detectors for the majority of misbehaviors
(the more severe) without any knowledge of the misbehavior
strategies.

Index Terms— CSMA/CA, MAC misbehavior, Kolmogorov-
Smirnov test, IEEE 802.11.

I. INTRODUCTION

HE CARRIER-SENSE multiple-access with collision

avoidance (CSMA/CA) protocol relies on the random
deferment of packet transmissions for contention resolution
and efficient use of the shared channel among many nodes
in a network. This contention resolution is typically based
on cooperative protocols (such as the IEEE 802.11 distributed
coordination function, DCF), and it is one of the most popular
protocols for wireless networks. The operation of the protocol
is based on the time multiplexing access of the terminals, and
in the trust that all the nodes will obey the protocol guidelines.
However, the pervasive nature of wireless networks together
with the requirement for flexible and readily reconfigurable
protocols has led to the extreme where wireless network
devices have become easily programmable [1]. Terminals can
easily modify their wireless interface software and change
the protocol parameters for their own benefit, to gain advan-
tage over other peers (selfish misbehavior), or to disrupt the
network operation (denial-of-service, DoS). It is important,
then, to have a mechanism to detect when a terminal is
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not abiding by the protocol rules. Detecting misbehavior,
however, is not an easy task. The main difficulty comes
from the random operation of the CSMA/CA protocol, and is
exacerbated by the nature of the wireless medium itself, where
channel impairment and interference make network conditions
to appear different for different terminals.

Deviation from legitimate protocol operation in wireless
networks has received considerable attention from the research
community in recent years. Most of the current research deals
with the case of “malicious” attacks, in which terminals do
not obey the protocols with the sole objective of disrupting
the operation of the network, even in their own determent.
Malicious misbehaviors of this kind are often referred to as
denial-of-service attacks. These and other security issues in
wireless networks can be found in [2].

While malicious misbehavior is abundant, it lacks a clear
incentive from the attacker and hence it is usually limited
to a small percentage of users. “Selfish” misbehaviors, on
the other hand, are inflicted by users who wish to increase
their own share of the common transmission resources; these
users are rational, and not malicious [3]. Selfish terminals
are often analyzed in the framework of game theory, as
they compete to maximize their own utilities [4] [5] [6]. A
typical selfish misbehavior may include terminals that refuse
to forward packets on behalf of other hosts to conserve energy,
or terminals that knowingly modify protocol parameters to
gain unfair access to the channel. The threat of a selfish
terminal is more credible, as every terminal in the network has
a clear incentive to misbehave. The prompt detection of such
misbehaving is a major security issue. In fact it is shown in
[7] that an IEEE 802.11 DCF can be designed with complete
stability (i.e., free of misbehavior) if there exists a way to
detect terminals that deviate from the protocol in a prompt
way. In this work we present robust nonparametric batch and
sequential detector based on the Kolmogorov-Smirnov (K-S)
statistics that does not require any modification on the existing
CSMA/CA protocols, so it can be used by any terminal in
the network that monitors the transmissions. Our method is
robust, i.e., it would detect any deviation from the protocol
even in the presence of an intelligent attacker. Moreover, it
can be adjusted to provide specific false alarm and detection
probabilities, being applicable to a wider range of scenarios.

Protocol misbehavior has been studied in various scenarios
in different communication layers and under several mathe-
matical frameworks. Most notably a heuristic set of conditions
is proposed in [8] for testing the extent to which MAC protocol
parameters have been manipulated. The heuristic nature of
the method limits its application to specific protocols, and the
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technique can be compromised by any malicious user that
knows those conditions. Moreover, it is difficult to determine
its statistical performance (e.g. detection or false alarm prob-
abilities), and it relies in expert knowledge in order to set up
and maintain the set of heuristic rules. In [3], a modification
to the IEEE 802.11 MAC protocol is proposed to detect selfish
misbehavior. The approach assumes a trustworthy receiver,
since the latter assigns to the sender the back-off value to
be used. Relying on the receiver and modifying the IEEE
802.11 protocol represent its major drawbacks. Finally, in
[1], a minimax detection framework is employed to analyze
the instance of theoretical worst-case attacks. The approach
is more robust, but no operational method to detect misbe-
havior is proposed. It assumes, in the first place, that any
transmission by a terminal is observable. However, only the
success ful transmissions are observable, and in the event
of a collision, it is not possible to determine what terminals
where involved in it. Second, it assumes an ideal scenario in
which the misbehavior strategy is completely known. For those
reasons, the detection mechanism proposed in [1] can not be
used in practice. Good discussions can be found in [3] and [1]
on other techniques to treat misbehavior in ad-hoc networks
[9], fairness [10] and other layers other than the MAC layer
[11].

The remainder of this paper is organized as follows. Sec-
tion II describes the CSMA/CA protocol and its vulnerability
to misbehavior. In Section III we present the problem for-
mulation and give a formal characterization of misbehavior in
CSMA/CA. We propose our misbehavior detection algorithms
in Section IV. The performance of the algorithms is evaluated
in Section V by using realistic ns-2 simulations. Finally,
Section VI concludes the paper.

II. CSMA/CA ProtocoL AND IEEE 802.11 DCF

CSMA is a contention-based MAC protocol in which
the transmitting terminal senses the shared medium before
transmitting. The rationale behind it is to avoid more than
one terminal transmitting at the same time, hence avoiding
collisions. If the channel is sensed busy or a collision occurs,
the terminal waits for a randomly chosen period of time
(backoff), and then checks again to see if the channel is clear.
Collision avoidance (CA) is used to improve the performance
of CSMA by attempting to reserve the network for a single
transmitter. This is important for systems in which collisions
are very costly, such as in wireless networks, where they
cannot be detected by the terminals producing them.

A. IEEE 802.11 DCF

The IEEE 802.11 DCF protocol is a CSMA/CA protocol
that defines two distinct techniques to access the medium: the
basic access and the RTS/CTS access [7].

Basic Access: In the basic access, the terminals implement a
two-way handshake mechanism. A terminal senses the channel
to be idle before starting a transmission. If the channel is idle,
then the terminal is allowed to transmit. If during this sensing
time the channel appears to be busy at any time, the terminal
defers the transmission and enters into the collision avoidance
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(CA) mode. In CA mode the terminal generates a random
backoff interval during which it waits before attempting an-
other transmission. This random backoff is used to minimize
the probability of collision between terminals accessing the
medium. The idle time is slotted, and the terminals are only
allowed to transmit at the beginning of the slot time.

The random backoff timer is uniformly chosen between
[0,v), where v is called the contention window, and satisfies
v € [CWhin, CWiax], Wwhere CWipniy, and CWiax are called
the minimum and maximum contention windows respectively.
At the first transmission attempt v is set to CWyy,. The
backoff timer is decremented while the channel is idle (i.e., it
only counts the idle time). If at any time the channel is sensed
busy, the backoff timer is paused until the channel is sensed
idle again. When the backoff timer reaches 0, the terminal
is allowed to transmit. Following the successful reception
of the data, the receiving terminal transmits an ACK to the
transmitting terminal. Upon reception of the ACK, the backoff
stage is reset to 0 and v = CWyyy,. This is referred to
as a “heavy decrease” in [12]. If the source terminal does
not receive the ACK after a timeout period (ACK_timeout)
or it detects the transmission of any other frame in the
channel (collision), the frame is assumed to be lost. After
each unsuccessful transmission the value of v is doubled
up to a maximum of CWyax = 2™CWhpin, Where m is
usually referred to as the maximum backoff stage [12]. This
mode of operation is often referred to as a binary exponential
scheme. The values of CWyin, CWhax and the slot size are
determined by the characteristics of the physical layer.

The RTS/CTS access is similar to the basic access, but it
makes use of a four-way handshake protocol in which prior to
data transmission a terminal transmits a special short request-
to-send frame (RTS) to try to reserve the transmission and
reduce the cost of collisions.

While the techniques presented in this paper apply to any
CSMA/CA protocol, we will focus our attention, without loss
of generality, on the IEEE 802.11 DCF protocol.

B. Effect of Selfish Misbehavior in IEEE 802.11 DCF

Given its distributed nature, the IEEE 802.11 DCF bases its
operation on the individual terminals correctly assigning their
backoff intervals according to the protocol. In the absence
of a central controlling unit enforcing this policy, a selfish
terminal might try to select small backoff intervals to gain
a significant advantage in channel access probability over
time. By increasing their transmission probabilities, selfish
terminals produce an increment in the number of collisions in
the network, forcing the rest of (well-behaved) terminals to,
in turn, increment their backoff intervals, further increasing
the advantage for the selfish terminals. Typical techniques of
a selfish terminal include reducing their contention window,
selecting a smaller minimum window size or using a different
scheme instead of the binary exponential (e.g., waiting for a
fixed amount of time). For the rest of the paper we consider
a terminal to be operating correctly if it uses the binary
exponential protocol described in Section II-A, with CWy,;, =
32 and CWpax = 1024.

The effect of a misbehaving terminal can be drastic to the
operation of the protocol, especially for the well-behaved ter-
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Fig. 1.

minals as the following example illustrates. Figs. 1(a) and 1(b)
show the collision probability and transmission probability of
an IEEE 802.11 DCF network with one misbehaving node
that either uses a fixed backoff window with CWyin =
CWax = 8 (an intense misbehavior), or uses the binary
exponential protocol with CW,i, = 16 and CWp, = 1024
(a moderate misbehavior). Each point in the figures was
obtained by performing 1000 runs in the ns-2 simulator for
different number of terminals saturating in the network, using
the parameters and scenario described in Section V-A. As we
can see, the misbehaving terminal will observe a much reduced
collision probability, resulting in a share of the medium as
high as 5 times of those of the well-behaved terminals. The
difference is notable even for more moderate misbehaviors,
hence there is a strong incentive for a node to misbehave, as
the potential benefit in terms of increased throughput is high
even for a small deviation from the protocol.

III. PROBLEM FORMULATION
A. Hypothesis Test

The main and most important characteristic of a selfish
misbehavior is that the strategy used by the misbehaving
terminal is completely unpredictable. This uncertainty makes
the problem of detecting misbehaving terminals a difficult one.
Our objective is to develop a method to detect when a terminal
is misbehaving by observing its operation in the network, and
we do it following the signal detection framework [13].

Let x1,...,zx be a sequence of observations related to
the operation of a CSMA/CA terminal. We consider two hy-
potheses, the null hypothesis H corresponds to the observed
terminal not misbehaving, while the alternate hypothesis H;
corresponds to the case that the terminal is misbehaving. We
bias towards the not misbehaving case because the cost of a
false alarm is high, as it is more important to guarantee that the
well-behaved terminals are not accused of misbehaving (and
potentially being disconnected from the network). We write
this problem as

Hy:zq,...,25 ~ fo 1)

choose
{ Hl PLLy e LK fla
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Effect of having just one misbehaving node in an IEEE 802.11 DCF network.

where fy and f; are the probability distributions of the
observations when a node is not misbehaving and misbehaving
respectively. We want to design a decision rule 6(x1, ..., xx ) €
{0, 1} to discriminate between the two hypotheses.

With the above formulation two questions arise. First, what
are the possible observations z1, ..., i, and more importantly,
if there exists a way to take advantage of those observations
to identify misbehavior? Second, what are the probability
distributions of the observations for the non-misbehaving case
fo, and for the misbehaving case f1? We refer to these
distributions as the strategy of a terminal.

The detection of a misbehaving terminal faces several prob-
lems. The random operation of the CSMA/CA protocol makes
it difficult to distinguish a well-behaved terminal that has
randomly selected small backoff intervals from a misbehaving
terminal that has deliberately selected small backoffs. This
is exacerbated by the inherent volatile nature of the wireless
medium itself [1]. If misbehavior is detected, the observer
terminals should have a mechanism to inform the rest of the
network, e.g., the access point, in order to take appropriate
actions. The specifics of such a mechanism, however, fall
outside the scope of this paper.

B. The Measurements

A common approach in the study of misbehavior and
unfairness makes use of the difference in throughput observed
by different terminals. The problem with this approach is
that throughput is not a part of the protocol itself, but just a
consequence (e.g., CSMA/CA does not define that terminals
should have certain throughput, or even that all of them should
share the medium fairly, although it is certainly expected).
Moreover, channel conditions may cause certain terminals to
have more throughput than others while still abiding by the
protocol. Also, throughput measurements depend on system
parameters such as slot size and access mode that are in turn
dependent on the specific characteristics of the underlying
protocol.

The IEEE 802.11 DCF does not specify throughput, but
only defines the method to select the backoff intervals. We
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are interested in knowing the sequence of backoff intervals
selected by a given terminal, in particular, how many idle
slots the terminal waited since its last transmission before
attempting a new transmission, so that we can then check if
that sequence corresponds to the case of a binary exponential
increase with the correct CWy;, and C'Wy,,x parameters.
However, the sequence of backoff intervals selected by a ter-
minal, i.e., its transmission attempts, is not directly observable
in a CSMA/CA system, and in particular in an IEEE 802.11
system, because the only observable transmissions from a
terminal are successful transmissions. Attempted transmissions
that result in collisions can be observed, but it is not possible
to distinguish which terminals are involved in them. So our
observation events are the specific times at which a given
terminal transmits successfully.

Because the terminals only decrement their backoff counters
when the channel is idle, we focus on the number of idle slots
between two consecutive successful transmissions of a certain
terminal. We can use the procedure in [1] to obtain the number
of idle slots in the network. Consider the RTS/CTS access in
the IEEE 802.11 DCEF. Let ¢;_1 be the end time of the last
transmission of any terminal and let ¢; be the time of the
current RTS packet reception. We assume that those events
are observable from all the nodes in range. The number of

idle slots between those events can be calculated as
ti —tic1 —TIprrs — To
xT; = o )

1> 1, 2)
where Tprps is the duration of the DIF'S frame, o is the
duration of an idle slot, and T is the duration of transmissions
from other terminals and collisions, including their interframe
times. A terminal that is not directly in range of the terminal
that transmits the RT'S frame can also compute the backoff
by using as a reference the time of reception of the overheard
ACK from the receiver of the previous data segment as

follows:
t! —Tack,i-1 — Tpirs — Trrs — Tsirs — To

Tr; = ’
g

1>1. (3)

where ¢/ is the time of reception of the CTS packet, Tack i—1
is the duration of the previous ACK frame and Tprrs, Tsirs
and Trrg are the durations of a DIFS and SIFS periods,
and the RTS frame respectively, and T is defined as in (2).
The number of idle slots for the case of basic access can be
obtained similarly.

C. Probability Distribution of Legitimate Terminals

To calculate the distribution of the samples x; under Hy, we
consider a typical IEEE 802.11 DCF, where CWy,,;, = 32 and
CWhax = 1024. We derive the distribution fy of the number

of idle slots a terminal would wait between successful trans-
missions as follows. Although the possible back-off values are
discrete, for simplicity we use continuous distributions to facil-
itate mathematical treatment. Let us assume that the legitimate
terminal is saturating, i.e., it always has a packet to send, and
let p. be the probability that the terminal will suffer from a
collision if it transmits in the current slot. After a successful
transmission of a terminal, the next attempt to transmit will
happen after 71 idle slots where 71 ~ U[0, 32] and U denotes
the uniform probability distribution. That transmission will
be successful with probability (1 — p.), and hence z; = 74.
If there is a collision, with probability p., then the terminal
would double its window size and make another attempt after
7o ~ U0, 64] slots. If that last transmission is successful then
the number of idle slots after the last successful transmission
is &, = m + 1 ~ U[0,32] + U[0,64] with probability
pe(1—p.). Following the above argument we can easily obtain
the distribution of the number of idle slots between successful
transmissions, fo(x;), assuming p. does not vary between suc-
cessful transmissions, as given in (4), where n, < I ax is the
number of collisions that the transmission undergoes and Iy, ,x
is the maximum allowable number of collisions. Fig. 2 shows
the probability density function given in (4), and the histogram
of the number of idle slots between successful transmissions
in an IEEE 802.11 DCF network with 10 saturating terminals
obtained using the ns-2 simulator with the parameters and
scenario described in Section V-A. Note that f; has the support
[O,ZZZO 2:CWinin + Ef:z;axfm 2" CWhin|, where m is
maximum backoff stage. As the figure shows, the analytical
model presented in (4) matches perfectly with the empirical
data obtained from the simulations.

We denote the pdf f; calculated above as the strategy of a
saturating legitimate terminal, that is, a terminal that follows
the protocol and always has a packet to send. The calculation
of fy requires the estimation of the collision probability p. for
the legitimate terminals, which will be discussed in Section I'V-
A.

D. Characterizing Misbehaving Terminals

Unlike the strategy of a legitimate terminal, the unknown
strategy of a (potentially) misbehaving terminal is not unique.
Let us define f; as the unknown strategy of the observed
terminal for which we are interested in determine whether
or not it is misbehaving. In order to characterize and quantify
misbehavior we will compare f; to the strategy of a saturating
legitimate node fj. Denote F3 (z) and Fy(x) as the cumulative
distribution functions (cdf) for f; and fy respectively.

Let us focus exclusively on the terminals that abide by the
protocol rules. Those terminals are obviously not misbehaving.
If the terminal is saturating, then it is clear that Fj(z) =
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Fy(x). If the terminal is not saturating, e.g., it rests for a
unknown time A > 0 after each or some transmissions, then
obviously its cdf satisfies Fi(x) < Fy(x), V. In general,
for any terminal using the correct protocol, either saturating
or not, we have Va, Fi(z) < Fy(z). Intuitively, if the
cdf of a terminal is always on or below the cdf of a well
behaved terminal that is always transmitting, then the terminal
is definitely not misbehaving [14].

The above discussion leads to our definition of misbehavior:
a terminal using a unknown strategy f; with cdf Fp is
misbehaving, if 3z, s.t. Fi(z) > Fo(x), where Fy is the cdf
of the strategy of a legitimate terminal that is saturating.

Note that our definition of misbehavior does not take into
account the transmission probability (and hence, the through-
put) of the terminals. It is easy to find a terminal satisfying
da Fi(a) > Fy(a) and Vo # a Fi(z) < Fy(z), that has
a transmission probability lower than that of the legitimate
saturating terminal, and therefore appears non-misbehaving.
However, the CSMA/CA protocol is designed so that the trans-
missions of a terminal are distributed as uniformly as possible
in time to avoid collisions. Fairness is achieved as long as
every terminal uses the same strategy. A terminal transmitting
less than a legitimate terminal but using a different strategy
may produce a disruption in the service at its transmission at-
tempts, perturbing the normal operation of the protocol. Those
terminals should be considered as misbehaving terminals. Our
definition of misbehavior is general enough to capture this
often overlooked type of misbehavior.

IV. MISBEHAVIOR DETECTION STRATEGIES

We are interested in developing a detector that can discrimi-
nate between a legitimate terminal using f, and a misbehaving
terminal that does not.

It is well known that the optimal decision rule for the
binary hypothesis test problem in (1) involves computing the
likelihood ratios

fl(l‘l, ...,QTK)

fo(xl,...

7xK)

Sk = log ; (&)
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and comparing it with a threshold. Unfortunately, the like-
lihood ratio test cannot be used to detect the presence of
any arbitrary misbehavior because the distribution f; of the
number of idle slots between successful transmissions of
a potential misbehavior, or any other parameter about its
operation is unknown. It is necessary then to use distribution-
free or nonparametric approaches to perform the detection.
In what follows we will present a nonparametric test based
on the Kolmogorov-Smirnov statistic, that fits seamlessly with
our definition of misbehavior using a fixed number of samples,
and then we will propose a sequential version of the test.

A. Collision Probability Estimation

As seen in Section III, in order to obtain the distribution
fo of the idle slots between successful transmissions for a
saturating legitimate terminal, the probability of collision in
the network p. has to be estimated. A terminal can keep track
of its own transmissions and count how many of them resulted
in collisions. That is, an estimate of the collision probability
is given by

C

where T is the number of transmission attempts and C' is
the number of those resulting in collisions. The terminal may
increase or decrease the observation interval 7' to estimate the
varying collision probability p. more accurately.

The above approach requires the measuring terminal to
transmit in order to count the number of transmission attempts
that result in collision, which makes it not suitable for termi-
nals that do not have anything to send. Moreover, if a mis-
behaving terminal is present in the network, the transmission
rate of a legitimate terminal could be much lower than that
of the misbehaving terminal, so the above estimator could be
too slow compared to the transmission rate of a misbehaving
terminal. A faster estimate can be obtained if a terminal
does not count how many of its own transmissions resulted
in collisions, but instead how many of the total number of
transmissions in the network resulted in collisions. While it
is not possible to observe how many terminals attempted
a transmission for any give collision, because the identity
and the number of the colliding terminals is hindered by
the collision itself, the average number of terminals colliding
(collision factor) v is a function of the protocol and the
number of terminals competing in the network. For example,
Fig. 3 shows the average number of terminals involved in
a collision in a standard IEEE 802.11 DCF network with
CWoin = 32 and CWpax = 1024 when all the terminals are
well behaved. The figure was obtained by performing 1000
runs in the ns-2 simulator using the simulation parameters
described in Section V-A for each value of U. We define this
new estimator as

- Cvy

pc:ma

where C is the number of collisions, 7" is the number of
success ful transmissions observed by the terminal in the
network, and +y is the collision factor. Note that 77+ C'y is the
average number of transmission attempts in the network, and
C# is, on average, how many of them resulted in collisions.

(N
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As before, the measuring terminal may increase or decrease
the observation interval 7”. In our simulations we set 7" = 30.

The estimate p. requires the use of the appropriate -y
corresponding to the number of competing terminals U. While
U can be estimated with techniques such as those in [15],
in an IEEE 802.11 DCF network with U < 25!, we have
observed that selecting a fixed v = 2.14 results in a very good
approximation p. ~ p. for any given U. Fig. 4 shows the true
collision probability and the estimated collision probability
using (7) with v = 2.14, obtained in the ns-2 simulator using
the parameters described in Section V-A. The small error in
the estimation of the collision probability has virtually no
effect on the false alarm probability of the detectors, and
simplifies the system, as U does not have to be estimated.
This approximation, however, comes at the cost of reducing
the probability of detection, although only for misbehavior
cases that are extremely close to the legitimate operation of
the protocol, which are undoubtedly of less interest.

It is expected that the true collision probability p. varies
slowly with respect to the time scale of the transmissions
by any terminal in the network. However, the noise in the
estimates p. and p. may overshoot p. so that a legitimate
terminal may appear as misbehaving. This is of no concern
when there is a misbehaving terminal in the network, as the
difference in collision probability is larger than the noise,
however it affects the false alarm probability. Because the cost
of a false alarm is very high, we filter the data to reduce the
noise, using a robust locally weighted polynomial regression
model (rloess)? with smoothing parameter of 5.

Finally, let 159), - ﬁé‘” be the sequence of collision prob-
abilities estimated using (7) and filtered as indicated above.
The cdf of the number of idle slots between successful
transmissions for a legitimate saturating terminal in that period
can be calculated as the average of the cdfs for each of the

Note that U is the number of terminals that are simultaneously sending
at any given point in time, not the total number of terminals in the network.
So U < 25 is a reasonable assumption.

2We used the implementation provided by MATLAB, because it is widely
available; and the function smooth with parameter rloess, as it provided
the best empirical results in our tests.
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observed ;5&“, ie.,

Fo= 2> R (1)), ®)
(@)

where Fy(pe) is the cdf of fo (p_gi)), which is calculated using
(4) with collision probability pg).

B. The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) test [16], [17], is the most
widely used goodness-of-fit test for continuous data. It is based
on the empirical distribution function (edf), which converges
uniformly almost surely to the real population cdf (Glivenko-
Cantelli Theorem) [18]. The K-S test determines whether the
underlying distribution f;, from which samples are drawn,
differs from an hypothesized distribution fy. The K-S test
compares the edf 13'1 obtained from the data samples with
the hypothesized cdf F{y, and determines whether F} = Fy, or
F1 < Fy, or F1 > Fj. For the misbehavior detection problem,
we define the null hypothesis as the event where a node is not
misbehaving, and hence we will use the one-sided test

Hy: Fy < Fy (not misbehaving)
Choose{ H,:F, >F, (misbehaving). ®)
Let x1,x2,...,xx be the observations of the number of idle

slots between successful transmissions from a terminal using
an unknown strategy fi. The edf of the observations is given
by
. 1 &
FMar)zE;ﬂ{azigx}, (10)
where 1(+) is the indicator function.

The one-sided K-S test statistic D is defined as the maxi-
mum value of the difference between the two cdfs as

D£  max {Fi(x) - Fo(@)}, (an
and can be calculated as
D= max {Fi(x) - Fu()], (12)
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Algorithm 1 K-S test for a fixed number of samples with
PF A=«
1: Calculate K observations of the number of idle slots
between transmissions of the observed terminal
1, ..., LK, using (2) or (3). Calculate the edf ﬁ'l from
the samples of the observed terminal using (10).
2: Simultaneously, collect the estimates 132”, ..,]3@ using
(7), and filter as indicated in Section IV-A. Calculate
the cdf of a legitimate terminal Fy using (8).
3: Perform the one sided K-S test for Fl > FO and obtain
the significance level P using (14).
if P < « then
reject Hy. The terminal is misbehaving.
else
do not reject Hy. The terminal is not misbehaving.
end if

® R

where £y and F} are given respectively by (8) and (10).
Define [16]

/\(f))zmax{<\/_+012+?/—%>p 0}

Then, the hypothesis Hy is rejected at a significance level «
if P(D > D) < a, where [19]

(13)

P(D > D) = =220, (14)

It is known that the Kolmogorov-Smirnov statistic is more
sensitive near the center of the distribution than at the tails.
Several methods have been proposed that solve this limitation,
such as the Anderson-Darling test [19]. However, the distri-
bution of the Anderson-Darling statistic is not known for an
any arbitrary distribution. For this reason there is not a similar
expression for its significance such as (13)-(14), and so we do
not use it in this work. It is also shown in [18] that the power
of the K-S test can be improved by a slight modification in the
calculation of the edf, by applying Bloom’s ‘«,/3-correction’.
The two-stage J-corrected K-S test uses these modifications.
We have investigated the performance of the modified test,
and have observed that the performance gain is negligible,
if at all, in our particular scenarios where K > 20 and the
probability of detection Pp > 0.9. For these reasons we will
simply employ the standard K-S test.

We can now give the algorithm to test if a terminal is
misbehaving: fixing the number of samples K, the measuring
terminal calculates a new x; using (2), (3) for each successful
transmission of the observed terminal. Simultaneousl , it cal-
culates a new estimate of the collision probability p’ ) using
(7), every T" successful transmissions in the network (from
any terminal). After the K -th successful transmission of the
observed terminal, the algorithm uses the collected sequence
of idle slots between successful transmissions x1, ..., zx and
the calculated se uence of estimates of the probablhty of
collision p pC , - ,pc , to perform the hypothesis test in (9) with
a false alarm probability Pr4 = «. Algorithm 1 describes the
K-S test in detail.

The algorithm can be used by any terminal in the network.
A typical scenario would involve the IEEE 802.11 DCF
access point (AP) collecting samples x; and implementing
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the algorithm for each terminal. Upon the detection of a
misbehaving terminal, the AP can take appropriate actions,
such as disconnecting the offended terminal from the network
for a period of time. In the case of an ad-hoc network,
terminals may implement the algorithm on their neighbors and,
for example, deny forwarding privileges to those misbehaving.
Our detector can also be used to implement the Nash equi-
librium described in [7], where it is shown that it is possible
to dissuade terminals from misbehaving by using a punishing
strategy as long as there exists a reliable detection mechanism
to detect misbehavior. Our mechanism is not affected by the
presence of intelligent attackers that collude, as the detection
can be performed by any terminal in the network, even those
not involved in transmissions. The colluding attackers would
be detected independently by any terminal monitoring their
transmissions. Finally, network conditions such as interference
do not negatively affect the detection, as the measuring termi-
nal takes the network conditions into account by continually
estimating the probability of collision p. in the network. Any
terminal should use the legitimate strategy corresponding to
the probability of collision observed in the network, wether
that collisions are produced by other terminals transmitting,
or are caused by external interference.

C. N-truncated Sequential K-S test

Given the the sequential nature of the problem, in which
a terminal acquires observations from other terminals in a
sequential manner, it is also of interest to approach the
misbehavior detection problem sequentially. That is, instead
of using a fixed number of samples for each decision, some
realizations of the observation sequences may allow us to
make decision after only few samples, whereas for other
realizations we may need to continue sampling to make a
decision.

While the algorithm described in the previous section is
designed for a fixed number of samples, the significance values
of the K-S statistic (14) allows us to make sequential decisions
on the null hypothesis. With each new sample, the edf FY can
be updated and the K-S statistic reevaluated.

A sequential K-S test can be formed by concatenating N K-
S tests, starting with 1 sample and adding one sample at each
subsequent stage up to /N stages, where IV is the truncation
point of the test. We fix the desired false alarm probability of
the sequential test to Pr4 = «. Because the sequential test
is composed of N tests, we need to calculate the false alarm
probability of each stage in order to meet the overall Pr 4.
Let 3 be the false alarm probability of each stage. Then the
resulting Pr4 of the N-truncated sequential K-S test is

Pl = B+(1-8)8+1-0+..+1-p)N'p

1= (1=p)N (15)

So in order to obtain Pr4 = « in the sequential K-S test,
each individual K-S test should use the threshold 3 where

B=1-% (16)

The sequential algorithm proceeds similarly to Algorithm 1.
At stage n < N the measuring terminal has already calculated
the sequence of idle slots between successful transmissions

= Q.

1—a.



LOPEZ TOLEDO and WANG: ROBUST DETECTION OF SELFISH MISBEHAVIOR IN WIRELESS NETWORKS

Algorithm 2 N-truncated sequential K-S test with Pry = «
1: n=0.
2 8«—1—-¥1-a.
3n«—n+1.
4: Take a new observation x,, of the number of idle slots be-
tween transmissions of the observed terminal. Update
the edf F} with the new sample z,, using (10).
5: Simultaneously, calculate the new estimates
U it 5 since the last observation
ZTp—1 using (7), where p&” is the last estimate
from stage n — 1. Filter the data as described in
Section IV-A. Update the cdf of a legitimate terminal
]3'0 with those new estimates using (8).
6: Perform the one sided K-S test for Fl > FO and obtain
the significance level P using (14).
7. if P < /3 then
: reject Hy. The terminal is misbehaving.
9: else if n = N then
10: do not reject Hy. The terminal is not misbehaving.
11: else
12: go to 2
13: end if

of the observed terminal x1,...,2,-1, and the sequence of
estimates of the collision probability ;3&”, - ;32”. While wait-
ing for the next transmission of the observed terminal, the
measuring node calculates new estimates of the collision prob-
ability p¢" T, 50 pl? | using (7), every T” successful
transmissions in the network (from any terminal). When the
next successful transmission of the observed terminal occurs,
the measuring terminal calculates the number of idle slots z,,
since the last transmissions, and uses the collected sequences
since stage 1, xzi,...,z, and ﬁél), ..,]52“), to perform the
hypothesis test in (9) with a false alarm probability Prq = f.
If a decision is made the algorithm stops, if not it continues
with a new sample x,; until a decision is made or N
is reached. In order to avoid having too few estimates of
the collision probability (e.g., when n is small), we keep a
minimum of 10 estimates obtained before the beginning of
the detection that are discarded as new estimates are collected.
Algorithm 2 describes the N-truncated K-S test in detail.

Note that the edf calculation of Step 6 can be easily done
sequentially, as it only needs to update the edf with a new
sample.

As the threshold (3 used for each stage can be considerably
lower than the o« used for the batch K-S test, one could think
that the detection probability of the sequential K-S test is
lower than the batch K-S test. However, as it will be shown
in Section V, this is not the case, and the performance of the
sequential test is indeed very close to the fixed sample size
K-S test.

V. SIMULATION RESULTS

A. Simulation Setup and Performance Benchmarks

We consider the IEEE 802.11 DCF described in Section II-
A, where a legitimate terminal uses CWy;, = 32 and
CWmax = 1024. We used an ad-hoc based IEEE 802.11
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Fig. 5. Probability of collision observed when a misbehaving terminal uses

IEEE 802.11 DCF with different CWhyiy,.

DCF simulator written in MATLAB to obtain and verify
the analytical cdf of the saturating legitimate terminals (4).
For the rest of simulations, as well as the figures in the
previous sections, we take the observations using the ns-2
network simulator version 2.28 [20], and we implement the
detection algorithms using MATLAB. We modified the 802.11
implementation so the nodes measure the observation slots as
described in Section III-B for estimating the collision proba-
bilities. The simulated scenario is a IEEE 802.11 network with
one access point, and the wireless terminals communicate via
UDP with peers outside the wireless network. One terminal
(e.g. the access point) monitors the transmissions from all the
other terminals and runs the detection algorithms over those
samples. The parameters used in the simulation are typical for
a 11 Mbps 802.11b WLAN. No packet fragmentation occurs,
and the nodes are located close to each other to avoid capture
or hidden terminal problems. The propagation delay is 1 us.
The packet size is fixed with a payload of 1024 bytes. The
MAC and PHY headers use respectively 272 and 192 bits.
The ACK length is 112 bits. The Rx/Tx turnaround time is 20
us and the busy detect time 29 ps. The short retry limit and
long retry limit are set to 7 and 4 retransmissions respectively.
Finally, the slot time is 20 us, the SIFS is 10 us, and the DIFS
is 50 ps.

For simplicity, in our simulations the misbehaving terminals
are assumed to use the binary exponential strategy with
CWiax = 2°CWiin, and CWin € {1,2,...,32}. The case
of CWiin = 32 corresponds to the legitimate terminal. The
case of CWy,in = 16 corresponds to the moderate misbehavior
described in Section II-B. Finally the case of CWy, = 1
corresponds to a case of extreme misbehavior. Fig. 5 shows
the difference in the observed probability of collision in a
20 terminal network when one of them is using the above
misbehavior strategies. The figure shows that, as expected, the
collision probability observed by the misbehaving terminal is
much lower compared to the observed probability of collision
of one of the 19 legitimate terminals. Fig. 6 shows the cdf
for some misbehavior strategies compared to the strategy of a
legitimate terminal when p. = 0.1. All these cases represent
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Fig. 6. Cdf of the number of idle slots between successful transmissions
when a misbehaving terminal uses IEEE 802.11 DCF with different CWyyip,.

a good overview of the different intensity of misbehaviors,
and provide a benchmark for the subjective performance of
our algorithms (i.e., delay until making a decision). Note that
for any misbehavior strategy with CWyi, > 25 the effect of
misbehavior is minimal, so we are interested in a fast detection
of the strategies with CWi,;, < 25.

In order to test the performance of our algorithms for
similar detection and false alarm probabilities, we compare
our method to the optimal detectors for both the batch and the
sequential case, which correspond to the Neyman-Pearson and
the Wald’s sequential probability ratio test (SPRT) respectively
[13]. While in practice the misbehavior strategy f; is not
known, we can arbitrarily specify it in our simulations. The
performance of the optimal detectors with known f; can then
serve as the upper bound for the performance of the proposed
K-S detectors.

For the batch detector we compare our K-S test with the
optimal Neyman-Pearson detector for the same Prg = a.
For the sequential detector, we compare our N-truncated
sequential K-S test with the optimal SPRT detector with the
same Pr4 = o and detection probability Pp.

B. K-S Performance for Fixed Number of Competing Termi-
nals

Consider a network of 10 terminals. Fig. 7 show the
probability of detection of our K-S detector, and the optimal
Neyman-Pearson detector with perfect information for the
misbehavior cases CWyin = 8, CWiin = 16 and CWi, =
20, with Pry = 0.05. The K-S detector is able to detect
the misbehavior terminals very fast, requiring less than twice
the samples needed by the optimum detector with perfect
information.

Fig. 8 shows the number of samples needed to detect a
misbehaving terminal for different C'Wyy;, strategies with
Pra =0.05and Pp = 0.95. Note that the performance of the
K-S detector starts to degrade only for CW,;, > 29, which
is very close to the strategy of a legitimate terminal.

While the number of samples required grows exponentially
as the difference in collision probability is reduced, we are
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more interested in the class of misbehavior that results in
larger gains for the misbehaving terminal. Such a misbehavior
would have the most devastating effects on the network, in the
sense that it would deny channel access to the other terminals
and would lead to unfair sharing of the channel [1]. Hence, it
is more valuable, as our detector does, to perform faster for
the more severe misbehaviors.

Overall, the detection speed of the our K-S detector is high.
Under good SNR conditions, a typical IEEE 802.11g network
can deliver approximately 24Mbps to the upper layers [21],
resulting in an approximate throughput of 2230 packets per
second, assuming packets of 1400 bytes. On such a network,
and taking into account the throughput of the misbehaving
terminal for 10 competing terminals, our K-S algorithm is
able to detect the C'Wi,i, = 29 strategy in slightly less than
2 seconds, and all the misbehavior strategies CWy,i, < 29 in
less than a second. These times are comparable to the time a
terminal needs to subscribe (and acquire an IP address) to an
IEEE 802.11 network.
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C. K-S Performance for Varying Number of Competing Ter-
minals

Our proposed algorithm can be applied without modifi-
cation, to a scenario in which the number of competing
terminals is changing. When the number of competing ter-
minals changes, the observed probability of collision changes
accordingly. However, our algorithm already estimates the
probability of collision with an observation window. The
approximation is valid under the assumption that the prob-
ability of collision does not change between two successive
transmissions for a given terminal. As discussed before, the
speed of the estimation of p. is fast enough to make at least
one estimation of p. for each successful transmissions of the
observed terminal.

Fig. 9 shows the performance of the K-S detector for an
IEEE 802.11 DCF network with one misbehaving terminal
using strategies CWiin = 8, CWhin = 16 and CWiy,i, = 20,
when the number of competing terminals is fixed, and when
the all the terminals (except the one misbehaving) arrive
and leave the network with an exponential distribution of
parameter 1 second. Note that under such a high rate of change
of the number of competing terminals with respect to a typical
IEEE 802.11 DCF network, the performance of the detector
is very close to the case of a fixed number of terminals for
Pp > 0.95.

D. Sequential K-S Performance

While the batch test allows us to characterize the per-
formance of the test in the average case, the nature of the
problem makes sequential detection more convenient. We use
the sequential detector proposed in Section IV-C and we
compare it to an optimal SPRT with identical Pr4 and Pp.
While the sequential K-S detector can only fix Pr4, as the
number of samples tends to infinity, the edf approaches the
population hypothetical cdf almost surely, so the power of the
test can be increased with the number of samples with the
consequent delay cost. However, it is not possible to specify
an arbitrary Pp for the test. This is a consequence of the
nonparametric nature of the K-S test.
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Fig. 10 shows the significance level of the K-S test for
the misbehavior patterns CWy,;, = 8 and CWy,y, = 16, the
legitimate strategy CWpi, = 32 and the non-misbehaving
strategy CWmin = 40. Note that the significance level
converges to 0 when Fi(x) > Fy(x) and it converges to 1
when Fj(z) < Fy(z). Note also that the threshold 5 of each
stage is much lower than «, so it requires more samples for
the detection than a batch K-S test with the same number
of samples. However, the performance of the sequential K-
S detector is very close to the batch K-S detector. Fig. 11
shows the average stopping time of the sequential K-S tests for
different misbehavior strategies compared to the optimal SPRT
at Pp = 0.99. The lines in the figure stop if the correspondent
sequential K-S test is unable to obtain Pp = 0.99. Finally,
we compare the average samples taken by the 1000-truncated
sequential K-S test with the best batch K-S test, i.e., the
fixed-sample-size K-S test that achieves the same Pp with
the minimum number of samples. The figure shows that the
sequential test is virtually as good as just selecting the best
batch K-S test. This results shows that our sequential test does
not have a significant performance loss compared to its batch



1134

350

—6— 1000 sequential K-S
— Optimum fixed size K-S

300

n

a

o
T

200

Number of samples to PD=0.99
@
o

100 ]
50 1
0
0 30
Fig. 12.  Number of samples needed by the 1000-truncated sequential K-S

vs. the optimum fixed size K-S.

counterpart, and hence it should be the preferred method.

VI. CONCLUSIONS

We have proposed a method for detecting misbehaving
terminals in a CSMA/CA network, based on measuring the
number of idle slots between successful transmissions. The
Kolmogorov-Smirnov (K-S) test is employed to determine
whether the samples are consistent with the hypothesis that the
terminal abides by the protocol rules. We have proposed two
detectors, a batch K-S detector and a sequential K-S detector,
and we have applied them to detect misbehaviors in the IEEE
802.11 DCF protocol. The performance of the proposed non-
parametric detectors is close to that of the optimum detectors
that assume perfect knowledge about the misbehavior strategy.
The proposed technique is, to the best of our knowledge, the
first statistically robust misbehavior detector that can operate
without modifying the protocol implementation.
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