
Detecting MAC Layer Collision Abnormalities in CSMA/CA
Wireless Networks

Alberto Lopez Toledo
Telefonica Research

alopezt@tid.es

Xiaodong Wang
Electrical Engineering Department,

Columbia University
wangx@ee.columbia.edu

Abstract—We present a robust non-parametric detection mech-
anism for CSMA/CA MAC layer denial-of-service attacks that
does not require any modification to the existing protocols. This
technique, based on the M -truncated sequential Kolmogorov-
Smirnov statistics, monitors the successful transmissions and
the collisions of the terminals in the network, and determines
how ‘explainable’ the collisions are given such observations. We
show that the distribution of explainability of the collisions is
very sensitive to abnormal changes in the network, even with a
changing number competing terminals. NS-2 simulation results
show that the proposed method has a very short detection latency
and high detection accuracy.

I. INTRODUCTION

The carrier-sensing multiple-access with collision avoidance
(CSMA/CA) protocol relies on the random deferment of
packet transmissions for contention resolution and efficient
use of the shared channel among many nodes in a network
[1]. While its correct operation assumes that all nodes obey
the protocol, this may not be the case, as current wireless
network devices have become easily programmable [2]. Such
devices can easily modify their software parameters to gain
unfair access to the network (selfish misbehavior), or simply
to prevent other nodes from accessing it (denial-of-service or
DoS attack).

MAC DoS attacks are particularly effective in wireless
networks: they are stealthy by nature, as the attacker does
not have to reveal itself in order to perform the attack, and
more importantly, they require very little power [3], as only
specific portions of other terminal’s transmissions need to be
targeted in order to succeed. The impact of such attacks on
the network performance is often catastrophic: due to the
distributed operation of the CSMA/CA protocols, a node being
jammed will defer the transmission of its next frame following
the multiplicative decrease algorithm, so a terminal undergoing
a few successive jams would virtually stop transmission.
On the other hand, the random operation of the CSMA/CA
protocol together with the nature of the wireless medium itself
makes network conditions to appear different for different
terminals [1]. Hence, it is difficult to determine if collisions are
caused by link impairment, a surge in the number of terminals
(such as in hot-spots), or by malicious terminals.

In this paper we first show that it is possible to determine
the probability that a terminal is contributing to an observed
collision by tracking its successful transmissions. We then
introduce the concept of explainability of a collision, i.e., the

probability that a collision can be explained by the events
observed in the network. We show that the distribution of the
explainability of the collisions is very sensitive to jamming
attacks. Finally we propose to detect a jamming attack by
detecting the event that the distribution of the explainability of
the collisions deviates significantly from that under normal op-
erating conditions, using a robust non-parametric Kolmogorov-
Smirnov detector.

II. PROBLEM FORMULATION

Let y1, ..., yK be a sequence of observations related to the
state of a CSMA/CA network. We consider two hypotheses,
hypothesis H0 corresponding to the network performing nor-
mally, i.e., no jamming attack, and hypothesis H1 correspond-
ing to the case where the network is jammed. Hence we have
the following hypothesis test:

choose

{
H0 : y1, ..., yK ∼ f0 (normal operation)
H1 : y1, ..., yK ∼ f1 (abnormal operation),

(1)
where f0 and f1 are the probability distributions of the
observations when the network is operating normally and when
the network is being jammed, respectively.

III. STATISTICAL ANALYSIS OF COLLISIONS UNDER

NORMAL OPERATION

While the techniques presented in this paper apply to any
CSMA/CA protocol, we will focus our attention, without loss
of generality, on the IEEE 802.11 DCF protocol [4] . In
what follows we present an alternative characterization of the
‘normal’ operation of an IEEE 802.11 DCF network that a)
does not depend directly on the observed collision probability;
and b) is more sensitive to the presence of jammers than
only tracking variations on the collision probability, and hence,
offers improved detection capabilities.

A. The Contribution of a Terminal to a Collision

Consider an IEEE 802.11 DCF network with N competing
terminals. We begin by analyzing the probability that each
terminal in the network has participated in a collision, i.e., the
probability that each terminal attempted a transmission in the
slot corresponding to the collision.

From the point of view of an IEEE 802.11 DCF terminal,
time can be slotted into variable length slots. Specifically, one
time slot will either correspond to a fixed length idle slot,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE 1598

Sn c1 c2 ck Sn

t1t0 t2... tk-1 tk

...

Fig. 1: The sequence of states in the network between two consecutive
successful transmissions Sn of terminal n.

a transmission slot, or a collision slot. Consider the state of
the network between two consecutive successful transmissions
of terminal n. Because the backoff timers are decremented
only during idle slots and not during transmissions of other
terminals, without loss of generality we can ignore the trans-
mission slots of terminals other than n. Then, the sequence
of states in the network between two consecutive successful
transmissions Sn of terminal n will have the form depicted
in Fig. 1. Assume that K collisions occur between the two
transmissions of terminal n, denoted by {c1, ..., cK}, and
define the corresponding idle slot sequence as {t0, ..., tK},
i.e., there are ti idle slots between the consecutive collisions
ci−1 and ci. We want to determine the probability that terminal
n has participated in each collision ci based on {t0, ..., tK}.

Define a binary random variable xn
i with xn

i = 1 if terminal
n contributed to collision ci, and xn

i = 0 otherwise. We call the
sequence {xn

1 , ..., xn
K} a collision codeword. We are interested

in calculating the probabilities p(xn
i = 1|t0, ..., tK), i =

1, ..,K, n = 1, .., N . Denote Wi and wi as the window
size and the backoff counter1 of the terminal after collision
ci, respectively. Initially, after a successful transmission, the
terminal n has a window size of W0 = 32, and a backoff
counter of w0 = 0. The terminal randomly selects the backoff
time of u ∼ U [0, 32] before attempting the next transmission.
Then, the probability that the terminal contributed to collision
c1 is

p(xn
1 = 1|t0) = P (u ≤ t0) = t0/W0. (2)

If xn
1 = 1, the terminal n would increase the window size

to W1 = 64 and would again select a backoff time of u ∼
U [0, 64]. On the other hand, if xn

1 = 0, the terminal n does not
change the backoff window size, so W1 = 32, and sets w1 =
t0. By the memoryless property of the uniform distribution, if
p(w) = U [0,W] then we have p(w|w > t) = U [0,W − t]. So,
if xn

1 = 0, it is equivalent to terminal n randomly picking a
new backoff time u ∼ U [0, 32 − t0]. We see that the state of
the terminal after the collision ci depends only on the state of
the terminal after the collision slot ci and the number of idle
slots ti−1 between the collisions ci−1 and ci.

Generalizing, after collision ci−1 let the current window size
of terminal n be Wi−1, and let the backoff counter wi−1 be the
number of idle slots since the last transmission attempt (i.e.,
the number of idle slots since the last event xn

j = 1, j < i).
We say that the state of terminal n is (Wi−1, wi−1). Then, at
collision ci we have

p(xn
i = 1|Wi−1, wi−1, ti−1) =

ti−1

Wi−1 − wi−1
. (3)

1The backoff counter keeps track of the number of idle slots since the last
attempted transmission.

1 B 1Bc1

1 5 8

1/32

x1=1

31/32

x1=0

5/64

x2=1

x2=1

x2=0

x2=0

8/128

5/31

8/5959/64

26/31

8/64

8/26

c2

W0=32
w0=0

W1=64
w1=0

W1=32
w1=1

W2=128
w2=0

W2=64
w2=0

W2=64
w2=5

W2=32
w2=6

W0=32
w0=0

Fig. 2: Trellis corresponding to the idle slot sequence {t0, t1, t2} =
{1, 5, 8}.

When xn
i = 1, terminal n would update its state to (Wi, wi) =

(min(2Wi−1,Wmax), 0) where Wmax is the maximum win-
dow size allowed by the protocol (e.g., Wmax = 1024 in the
standard IEEE 802.11). On the other hand, if xn

i = 0, terminal
n would update its state to (Wi, wi) = (Wi−1, wi−1 + ti).
Finally, after the last collision ck, the probability of the
terminal having a successful transmission after tK idle slots
is given by

p(xn
K+1 = 1|WK , wK , tK) =

tK
Wk − wk

. (4)

Note that this is equivalent to having a trailing bit xn
K+1 = 1

in the collision codeword.
We can use the above probabilities to construct a trellis sim-

ilar to that of a linear block code. To illustrate the construction
of the trellis, consider the example in Fig. 2 that shows the
state of the network between two transmissions of terminal 1.
We observe two collisions {c1, c2} and the idle slot sequence
{t0, t1, t2} = {1, 5, 8}. Also note that there are two transmis-
sions from other terminals denoted as B (or busy slots), that
are ignored for the purpose of terminal 1’s trellis construction.
After the first successful transmission the state of terminal 1
is (W0, w0) = (32, 0). Then, p(x1

1 = 1|t0 = 1) = 1/32. If
x1

1 = 1, then the terminal would double its maximum window
size W1 = 64 and set w1 = 0. On the other hand, if x1

1 = 0
then the terminal would keep W1 = 32 and set w1 = 1.
This would continue until the next successful transmission
is encountered. Note that the trellis can be pruned if certain
branch has probability 0, for example if ti > (Wi−1−wi−1).

From the above trellis we can compute the probability of
each codeword for terminal n by multiplying the transition
probabilities along the correspondent path in the trellis. Fi-
nally, we can estimate the probability of individual bits by
marginalization as

p(xn
i = 1|t0, ..., tK) =

∑
xn

i =1

p(xn
1 , ..., xn

K |t0, ..., tK). (5)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1599

The computation of the marginal probabilities in (5) can
be efficiently implemented by using the forward-backward
algorithm [5].

Note that the total number of nodes at the K-th stage of
the trellis is, in the worst case, 2K . However, in ‘normal’
operation of IEEE 802.11 DCF, and with a number of com-
peting terminals2 ranging from 1 to 25, we observe from
ns-2 simulations that the chance of having K > 20 is only
about 0.9%. The forward-backward algorithm takes less than
3 seconds in decoding codewords with length 20, and millisec-
onds for decoding codewords of length 15 and lower using a
standard desktop PC. However, when a jammer is present, the
codeword lengths increase and the exact computation of (5)
may become intractable. In those cases, a simple Monte Carlo
approximation can be used.

Algorithm 1 Calculation of collision explainability
1: Observe the network until a successful transmission from

any terminal is observed. Let that be a transmission from
terminal n ∈ {1, ..., N}.

2: Denote {c1, c2, ..., cC} as the sequence of collisions and
{t0, ..., tK} the sequence of idle slots observed in the
network since the last successful transmission of terminal
n.

3: Calculate the contribution of n to the collisions
{c1, c2, ..., cC}, i.e., p(xn

1 |t0, ..., tK), ..., p(xn
C |t0, ..., tK).

4: For those collisions ci ∈ {c1, c2, ..., cC} for which all the
p(xj

i |·), j = 1, ..., N are known (where N is the number
of competing terminals in the network), calculate e(ci)
given by (7).

5: Go to Step 1.

B. The Explainability of Collisions

Next we consider the combined contribution of all the
terminals in the network to a collision ci, and we will use
it to determine whether the collision is a legitimate one or it
is abnormal, such as in the case of a jamming attack.

Consider an IEEE 802.11 DCF network with N competing
terminals, and let {c1, c2, ..., cC} be the sequence of collisions
in the network over a period of time. We can calculate the
probability p(xn

i |t0, ..., tK) that each terminal n contributed
to each of the collisions ci, where {t0, ..., tK} refers to the
idle slot sequence relevant3 to collision ci. When there is no

2Note that the number of competing terminals is the number of terminals
that have something to send at a particular time, not the total number of
terminals registered, for example, to an access point.

3Denote Sn
i and Sn

i+1 as two consecutive successful transmissions of ter-
minal n, and let {cj , cj+1, ..., cj+p} and {th, ..., th+p+1} be the sequence
of collisions and the sequence of idle slots in the network respectively between
transmissions Sn

i and Sn
i+1. We say that {th, ..., th+p+1} is the sequence of

idle slots relevant to collisions {cj , cj+1, ..., cj+p}. While each collision in
the network may have a different relevant idle sequence, we will generically
refer to it as {t0, ..., tK}.

jammer present in the network, a collision event is defined as

ci = 11

{
N∑

i=1

xn
i ≥ 2

}
, (6)

where 11(·) is the indicator function. In practice, since {xn
i }

are not observable, we define the explainability of collision ci

as

e(ci) � E

{
11

{
N∑

i=1

xn
i ≥ 2.

}∣∣∣t0, ..., tK
}

= P

(
N∑

n=1

xn
i ≥ 2

∣∣∣t0, ..., tK
)

= 1−
N∏

n=1

p(xn
i = 0|t0, ..., tK)

−
N∑

n=1

p(xn
i = 1|t0, ..., tK)

∏
j �=n

p(xj
i = 0|t0, ..., tK),

(7)

i.e., the probability that there are at least two terminals
contributing to collision ci.

To illustrate the procedure to calculate e(ci), consider the
sequence of network states depicted in Fig. 3. For each
terminal n in the network, we calculate the probabilities
p(xn

i |t0, ..., tK) that the terminal had participated in collision
ci between each consecutive pair of successful transmissions
of terminal n. This calculation is simultaneously performed
for all N terminals competing in the network. Then, for each
collision ci for which all the probabilities p(xn

i |t0, ..., tK), n =
1, ..., N are known, we use (7) to calculate its explainability
e(ci). The process is detailed in Algorithm 1. Note that the
algorithm proceeds sequentially, updating the values of the
probability that a terminal n contributed to the collisions
observed in the network since its last successful transmission.
The algorithm cannot calculate e(ci) until the contributions of
all N competing terminals to collision ci are obtained.

Figs. 4(a) and 4(b) show the cumulative distribution func-
tions (cdf) of e(ci) obtained by Algorithm 1 in ns-2 using the
simulation parameters described in Section V. Note that as
the number of competing terminals in the network increases,
the percentage of collisions that can be explained simply by
observing the sequence of idle slots in the network increases,
and for N > 8 virtually all the collisions can be explained with
probability of at least 0.5. Also, for N < 8 there is a significant
percentage of collisions that are perfectly explainable (i.e.,
e(ci) = 1), and hence there is a jump in the cdf at e(ci) = 1.

Sensitivity of e(ci) to Jamming Attacks: Ideally, if the trans-
mission times of all terminals xn

i were known, the quantities
e(ci) in (7) would suffice to determine whether a collision
is caused by a jammer or not. On the other hand, and under
normal protocol operation, the explainabilities e(ci) have the
distribution shown in Figs. 4(a) and 4(b), and some collisions
can be explained better than others. More importantly, the
distribution of e(ci) is an excellent indicator of the normal

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1600

1 3 2 1 2 3 1
Network

1 B B 1 B B 1

2 B 2

3 B B B 3

c1

terminal 1

terminal 2

terminal 3

c2 c3 c4 c5

)(1
5xp

)(2
2xp)(2

3xp)(2
4xp

)(3
3xp)(3

4xp)(3
2xp)(3

1xp

)(3ce)(1ce)(2ce)(4ce)(5ce

)(1
1xp)(1

2xp)(1
3xp)(1

4xp
c1

c1

c2

c2

c3

c3

c4

c4

c5

c2 c3 c4

Fig. 3: Example of calculating e(ci). The conditionals on the relevant idle slot sequences {t0, ..., tK} are not shown for brevity.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e(c
i
)

cd
f

N=2

N=8

(a) For the number of competing terminals between 2 and 8.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e(c
i
)

cd
f

N=9

N=25

(b) For the number of competing terminals between 9 and 20.

Fig. 4: Distribution of the explainability of the collisions e(ci) in
IEEE 802.11 DCF calculated using Algorithm 1.

protocol operation for a given number of competing terminals.
Fig. 5(a), obtained in ns-2 using the simulation parameters

0 0. 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.1 0.2 0.5 0. 0.7 0. 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e(c
i
)

cd
f

N=4
N=4, p=0.01
N=20
N=20,p=0.01

0.3 1

(a) cdf of collision explainability e(ci).

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of idle slots between collisions

cd
f

N=4
N=4, p=0.01
N=20
N=20, p=0.01

(b) cdf of the number of idle slots between collisions.

Fig. 5: Effect of a jammer in the network.

specified in Section V, shows the change in the cdf of e(ci)
for a number of competing terminals N = 4 and N = 20,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1601

when there is no jammer in the network, and when there is
an attacker present in the network jamming randomly as few
as 1% of the frames. There are two important aspects to note.
The first is that the cdf of e(ci) may significantly change its
shape in the presence of a jammer. The second point is that the
cdf of the explainability of collisions change dramatically even
for a very small percentage of corrupted frames as we can see
in Fig. 5(a), for the case of a jammer corrupting only 1% of
the CTS frames. This contrasts with the effect that jamming
has on the distribution of the frequency of the collisions, that,
as we can see in Fig. 5(b), does not experience significant
change under light jamming, and it is almost unnoticeable for
the case of N = 20. Hence, the quantities e(ci) are excellent
candidates to serve as jamming attack indicators.

IV. THE MAC DOS DETECTOR

In the previous section, we have shown that the distribution
of e(ci) can be used as observations (i.e., yi in (1)) for the
detection of a jamming attack. However, Algorithm 1 assumes
that the number N of competing terminals in the network is
known, which is generally not the case. In this section we
first show how to keep track of the number of competing
terminals, and then we show how to implement a robust MAC
DoS detector. Note that because a jammer artificially affects
the observed probability of collisions, we can not use other
techniques to track the number of competing terminals such
as [6] [7], that assume that the network is performing normally.

A. Probability that a Terminal is Still Competing

Here we propose a method to estimate how long it is
necessary to wait after observing a successful transmission
of a terminal before concluding that the terminal is no longer
competing in the network.

Define a random variable T as the number of idle slots
between successful transmissions of a terminal. Let pc be the
probability that the terminal will suffer from a collision if it
transmits in the current slot. It is shown in [1] that in an IEEE
802.11 DCF with CWmin = 32 and CWmax = 1024, T can
be analytically computed. Let p̂

(1)
c , ..., p̂

(q)
c be a sequence of

collision probability estimates obtained by

p̂c =
of collisions

of transmissions
. (8)

Let Tn be the random variable denoting the number of idle
slots since the last successful transmission of terminal n. Then,
the probability that terminal n is still competing after t idle
slots is given by

Pn
C (t) = P (C|Tn > t)

=
P (Tn > t|C)P (C)

P (Tn > t|C)P (C) + P (Tn > t|C)P (C) ,
(9)

where C is the event that a terminal is still competing, and
C is the event that a terminal has ceased to compete. Note
that P (Tn > t|C) = 1 − Ĝidle(t), where Ĝidle(t) is the
estimated cdf of T . Also note that if terminal n is not
competing, then P (Tn > t|C) = 1. The probability P (C), i.e.,

the overall probability that after a successful transmission a
terminal still has data to send, depends on both the movement
and the transmission pattern of the terminals for the specific
application. Finally, we decide that a terminal has ceased to
compete after τ idle slots after its last transmission where τ
is such that

∑Tmax
i=τ Pn

C (i) = η, η is the desired false alarm
probability, and Tmax = max(T).

We assume that the arrival and departure rate of a terminal
in the network happens in a time scale that is orders of
magnitude greater than the time between two consecutive
successful transmissions of a terminal (e.g., milliseconds in an
IEEE 802.11b network). For our problem we chose η = 0.01,
and we also assume that if a terminal has just transmitted,
it is very likely that it will still have data to send, and set
P (C) = 0.99, which corresponds to a terminal sending on
average 100 frames before ceasing to compete. Note that a
conservative large prior P (C) does not reduce the accuracy
of the estimation as long as the above assumption holds true,
but instead it adds delay to the decision. However, note that
decision speed is not a concern because the calculation of
the values p(xn

i |t0, ..., tK) is always delayed until the next
successful transmission of terminal n is observed. Also, the
number of idle slots to wait before making a decision is never
greater than Tmax.

The algorithm to calculate the number of competing termi-
nals for Algorithm 1 proceeds as follows. Denote N ′ as the
total number of terminals that have been observed transmitting
in the network in the past, and let Tn be the number of
idle slots since the last successful transmission of terminal
n. Initially Tn = 0, n = 1, ..., N ′. Then, for each terminal n,
and as Tn increases, one of the following two events will
happen first: either there is a new successful transmission
from terminal n, or Tn > τ where τ is selected as indicated
above. Let {c1, ..., cp} be the sequence of collisions in the
network since the last successful transmission of terminal n.
If a successful transmission happens first, then it is obvious
that terminal n was competing at collisions {c1, ..., cp}. If, on
the other hand, we have Tn > τ first, then terminal n was
not competing at collisions {c1, ..., cp}. The total number of
competing terminals can then be computed by counting the
number of terminals that were competing at each collision ci.

B. Sequential DoS Detector

As we discussed in Section II, we are interested in devel-
oping a detector that can discriminate between a ‘normal’
operation of the network characterized by a probability dis-
tribution f0, and an ‘abnormal’ operation characterized by an
unknown probability distribution f1. We will use the sequence
of explainability of collisions e(ci) as our observation vari-
ables for the hypothesis testing problem defined in (1), so
that {e(c1), ..., e(cK)} ∼ fi, i = 0, 1. Because the distribution
f1 when a jammer is present is unknown, it is necessary to
use a distribution-free or nonparametric approach to perform
the detection. Hence, we employ the M -truncated sequential
Kolmogorov-Smirnov test introduced in [1].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1602

Algorithm 2 Detecting jammer attacks using the M -truncated
sequential K-S test with PFA = α

1: m = 0.
2: β ← 1− M

√
1− α.

3: m← m + 1.
4: Let {e(ci), ..., e(ci+C)} be last values returned by Algo-

rithm 1, and {N(ci), ..., N(ci+C)} the number of com-
peting terminals at each ci calculated as described in
Section IV-A.

5: Update F0 with the new calculated number of competing
terminals {N(ci), ..., N(ci+C)} using (11).

6: Update the edf F1 with the observations
{e(ci), ..., e(ci+C)} using (12).

7: Calculate the significance level P of the stage as in (16).
8: if P ≤ β then
9: reject H0. The network is behaving ‘abnormally’, e.g.,

there is a jammer in the network.
10: else if m = M then
11: do not reject H0. The network is behaving normally.
12: else
13: go to 2
14: end if

The Kolmogorov-Smirnov (K-S) test [8], is the most widely
used goodness-of-fit test for continuous data. It is based on
the empirical distribution function (edf), which converges uni-
formly and almost surely to the real population cdf (Glivenko-
Cantelli Theorem) [9]. The K-S test compares the edf F1

obtained from the data samples with the hypothesized cdf F0,
and determines whether F1 = F0, or F1 < F0, or F1 > F0.
For the jamming detection problem, we use the following test

choose

{
H0 : F1 = F0 (no jamming)
H1 : F1 �= F0 (jamming).

(10)

Define FN
0 as the cdf of the sequence of the explainability of

collisions in an IEEE 802.11 DCF network with N competing
terminals when there is no jammer in the network (cf. Fig. 4).
Then, for a given sequence of collisions in the network
{c1, ..., cC}, the distribution F0 for the test in (10) is given
by

F0 =
1
C

C∑
i=1

F
N(ci)
0 , (11)

where N(ci) is the number of competing terminals in the net-
work at collision ci calculated using the procedure described in
Section IV-A. Also let {e(c1), ..., e(cC)} be the corresponding
sequence of explainability of collisions. Then, the edf F1 of
the observations for the test in (10) is given by

F1(e(cj)) =
1
C

C∑
i=1

11 {e(ci) ≤ e(cj)} . (12)

The K-S test statistic D, defined as the maximum
value of the difference between the two cdfs, D �

max−∞<x<+∞ {F1(x)− F0(x)}, can be calculated as

D̂ = max
1≤i≤C

{F1(e(ci))− F0(e(ci))} . (13)

Define

λ(D̂) = max
{(√

C + 0.12 +
0.11√

C

)
D̂, 0

}
, (14)

β = 1− M
√

1− α, (15)

where C is the number of samples (i.e., collisions), and M is
the maximum stage the M -truncated sequential K-S test with
probability of false alarm α [1]. Then, at any stage of the K-S
test the hypothesis H0 is rejected if P ≤ β, where P is given
by [10]

P = e−2λ(D̂)2 . (16)

Finally, the algorithm for detecting the presence of a jammer
in the network is summarized in Algorithm 2.

V. SIMULATION RESULTS

A. Simulation Setup

We consider the IEEE 802.11 DCF where a legitimate
terminal uses CWmin = 32 and CWmax = 1024. For all
the experiments in this paper, as well as for the figures
in the previous sections, data are collected using the ns-2
network simulator version 2.28 [11], and we implement the
detection algorithm using MATLAB. The simulated scenario
is an IEEE 802.11 network with one access point, and the
wireless terminals communicate via UDP with peers outside
the wireless network. One terminal (e.g. the access point)
monitors the transmissions from all the other terminals and
implements the detection algorithm. The parameters used in
the simulation are typical for a 11 Mbps 802.11b WLAN. No
packet fragmentation occurs, and the nodes are located close
to each other to avoid capture or hidden terminal problems. We
model the data arrival as an on-off process, where terminals
alternate periods of transmission with periods of silence. Both
the on and the off times are modeled after a Pareto(1.5)
distribution with burst mean (on) of 2 seconds and idle time
mean (off) of 5 seconds.

We only consider the case of intelligent jamming [12], i.e.,
the jammer corrupts frames with the knowledge of the pro-
tocol. For simplicity, we consider p-random jamming attacks,
where the jammer corrupts the CTS frames in the network
with probability p. A particular case of this attack is the full
jamming, in which the attacker corrupts every frame in the
network (p = 1). This attack would correspond to a physical
RF jamming attack. The full jamming attack would serve as
a benchmark for the speed of the detection of worst-case
scenarios.

For comparison, apart from the detector described in Al-
gorithm 2, we also consider a similar M -truncated sequential
K-S detector that does not use the explainability of collisions
as observations, but instead uses the distribution of the number
of idle slot between collisions in the network, i.e., how often
collisions occur. This comparison would allow us to determine
whether a detector based on the explainability of collisions

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1603

0.01 0.05 0.1 1
0

20

40

60

80

100

p

N
um

be
r

of
 s

am
pl

es

0.01 0.05 0.1 1
0

0.2

0.4

0.6

0.8

1

p

P
D

Based on explainability of collisions
Based on distribution of collisions

(a) 100-truncated K-S.

0

100

200

300

400

500

p

N
um

be
r o

f s
am

p
le

s

0.01 0.02 0.05 0.1 1
0.2

0.4

0.6

0.8

1

p

P
D

Based on explainability of collisions
Based on distribution of collisions

0.01 0.02 0.05 0.1 1

(b) 500-truncated K-S.

Fig. 6: Number of samples and probability of detection (PD) of the
detectors when a p-random jammer is present and PFA = 0.01.

is better suited for this problem than detectors based on the
frequency or probability of collisions.

B. Results

Fig. 6 shows the detection performance in the event of a p-
random jamming attack, for both the 100- and 500-truncated
sequential detector based on the explainability of collisions,
and based on the distribution of collisions. As we can see,
the performance of the detectors, as expected, is very good
for a full jamming attack (p = 1), only needing a few
samples for the detection. The sequential detector based on
the explainability of collision consistently outperforms the

one based on the distribution of the collisions, needing, on
average, a little more than half of the samples. The 100-
truncated detector is able to detect the presence of a jammer
up to p = 0.04 with PD ≥ 0.95. In order to detect a 0.02-
random attack with PD ≥ 0.95, it is necessary to increase the
truncation point up to 500. Note that a 0.02-random attack
would almost have no effect on the network performance, and
still, our detector would identify the attack in less than 100
milliseconds in a standard IEEE 802.11b network.

VI. CONCLUSIONS

We have proposed a method for detecting MAC layer
denial-of-service (DoS) attacks (i.e., jamming) in a CSMA/CA
network, based on calculating the probability that the colli-
sions in the network can be explained by simple observation
of the events in the network. The M -truncated sequential
Kolmogorov-Smirnov (K-S) test is employed to determine
whether the samples are consistent with the hypothesis that
the network is operating normally. We apply the test to detect
intelligent jamming attacks in an IEEE 802.11 DCF network
using the ns-2 simulator. We have shown that the distribution
of the explainability of the collisions is an excellent indicator
of the presence of both jammers and misbehaving nodes in the
network, and that it greatly surpasses the standard detectors
that track changes in the distribution of the collisions in
the network. The proposed technique is robust, as it is able
to detect any deviation from the ‘normal’ operation of the
network, and can operates without modifying the protocol
implementation.

REFERENCES

[1] A. Lopez Toledo and X. Wang, “Robust detection of selfish misbehavior
in wireless networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 6, Aug.
2007.

[2] S. Radosavac, J. Baras, and I. Koutsopoulos, “A framework for MAC
protocol misbehavior detection in wireless networks,” in WiSe ’05: Proc.
ACM Workshop Wireless Security, Cologne, Germany, Sep. 2005.

[3] M. Acharya, T. Sharma, D. Thuente, and D. Sizemore, “Intelligent
jamming in 802.11b wireless networks,” in Proc. OPNETWORK 2004,
Washington, DC, Aug. 2004.

[4] A. Lopez Toledo, T. Vercauteren, and X. Wang, “Adaptive optimization
of IEEE 802.11 DCF based on bayesian estimation of the number of
competing terminals,” IEEE Trans. Mobile Comput., vol. 5, no. 9, pp.
1283–1296, Nov. 2006.

[5] D. Mackay, Information Theory, Inference & Learning Algorithms.
Cambridge, UK: Cambridge University Press, 2003.

[6] G. Bianchi and I. Tinnirello, “Kalman fitler estimation of the number
of competing terminals in an IEEE 802.11 network,” in Proc. Infocom
2003, San Francisco, CA, Mar. 2003.

[7] T. Vercauteren, A. Lopez Toledo, and X. Wang, “Batch and sequential
bayesian estimators of the number of active terminals in an IEEE 802.11
network,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 437–450, Feb.
2007.

[8] F. Massey, “The Kolmogorov-Smirnov test for goodnes of fit,” J. Amer.
Stat. Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[9] H. Khamis, “The two-stage δ-corrected kolmogorov-smirnov test,” J.
Applied Statistics, vol. 27, no. 4, pp. 439–450, 2000.

[10] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C: The Art of Scientific Computing. New York, NY:
Cambridge University Press, 1992.

[11] S. McCanne and S. Floyd, Network simulator 2.
http://www.isi.edu/nsnam/ns.

[12] D. Thuente and M. Acharya, “Intelligent jamming in wireless networks
with applcations to 802.11b and other networks,” in Proc. 2006 IEEE
MILCOM, Washington, DC, Oct. 2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1604

