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ABSTRACT

The optimization mechanisms proposed in the literature for
the Distributed Coordination Function (DCF) of the IEEE
802.11 protocol are often based on adapting the backoff pa-
rameters to the estimate of the number of competing ter-
minals in the network. However, existing estimation algo-
rithms are either inaccurate or too complex. In this paper we
propose an enhanced version of the IEEE 802.11 DCF that
employs an estimator of the number of competing terminals
based on a sequential Monte Carlo (SMC) or a approximate
maximum a posteriori (MAP) approach. The algorithm uses
a Bayesian framework, optimizing the backoff parameters
of the DCF based on the predictive distribution of the num-
ber of competing terminals. We show that our algorithm
is simple yet highly accurate even at small time scales. We
implement our proposed new DCF in the ns-2 simulator and
show that it outperforms existing methods. We also show
that its accuracy can be used to improve the results of the
protocol even when the nodes are not in saturation mode.

1. INTRODUCTION

In [1], we developed several Bayesian estimators for the
number of competing terminals in an IEEE 802.11 network,
that outperform the existing best estimator based on the ex-
tended Kalman filter (EKF) [2]. In particular, we developed
an accurate and easy to implement MAP estimator whose
computational load and memory requirements are equiva-
lent to those of the Viterbi algorithm. In this paper we
propose an optimization mechanism that makes use of the
predictive distribution of the number of competing termi-
nals to maximize the throughput of the IEEE 802.11 DCF.
We show that the accuracy of our algorithms is particularly
good at small time scales, which makes our proposal attrac-
tive to optimize the protocol when the terminals are in a
non-saturating regime, a problem rarely addressed.

Existing work on the optimization of the IEEE 802.11
DCF consist either in a change of the contention resolution
algorithm [3], or in the adaptation of the parameters of the
protocol (e.g., backlog parameters) to an estimate of the net-
work status (e.g. number of competing terminals). This

estimate can be a rough approximation [4] or an accurate
estimate relying on advanced filtering mechanisms [2]. The
estimation-based mechanisms have a benefit over their pro-
tocol modification counterparts since they only involve ad-
justing the contention window parameters, while the rest of
the protocol remains unchanged. However, existing meth-
ods based on the estimation of the number of competing
terminals exhibit two problems. First, the number of com-
peting terminals is a non-Gaussian nonlinear dynamic sys-
tem that is difficult to track accurately with conventional fil-
ters. Advanced estimators such as the EKF-based from [2]
provide better results but they are subject to critics due its
complexity. Second, the performance of the IEEE 802.11
DCF is extremely sensitive to the number of competing ter-
minals. This makes the simple approximation methods to
yield suboptimal results compared with the theoretical opti-
mal. In our opinion, there is a need for an accurate estima-
tion algorithm that is able to efficiently track the number of
competing terminals in an IEEE 802.11 network, and, at the
same time, is easy to implement.

2. ESTIMATION OF THE NUMBER OF
COMPETING TERMINALS

Let us consider an IEEE 802.11 network with DCF operat-
ing in the basic access mode. It is shown in [5] that when
the terminals transmit in a saturation regime, i.e., they al-
ways have something to send, the normalized throughput is
a function of the number of competing terminals xt and the
DCF backoff parameters, namely the minimum contention
window CWmin and the maximum backoff stage m, i.e.,

S = S(xt, CWmin,m). (1)

Once the number of competing terminals xt has been es-
timated, the optimization problem involves a selection of
the backoff parameters to maximize the system through-
put. It is also shown in [5] that when the system reaches
a steady state, the number of competing terminals xt can be
expressed as a monotonic increasing function of the colli-
sion probability pc, xt = f(pc). Hence an inverse function
pc = h(xt) = f−1(xt) exists. The estimation of xt can
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therefore be derived from a noisy observation of pc that each
terminal can acquire by monitoring the channel activity.

We use the proportion of busy slots in a given period as
an indication of the collision probability, since any attempt
of transmission in a busy slot would result in a sure colli-
sion. Our observation variable of the collision probability
can be defined at each time step t as yt =

∑tB−1
i=(t−1)B Ci,

where Ci = 0 if the ith time slots is empty or corresponds
to a successful transmission (i.e., no collision), and Ci = 1
if the ith basic time slot is busy or corresponds to an unsuc-
cessful transmission; B is the number of slots that compose
the observation slot for the measurement. It is easy to see
that yt follows a binomial distribution B(B, pc) with B tri-
als and probability of success pc. The state-space represen-
tation of our problem is as follows:

xt ∼ MC(θ), yt ∼ B(B, h(xt)), (2)

where MC(θ) denotes a discrete-time Markovian model
with some unknown parameters θ; xt is the state realiza-
tion of the Markovian model at time t.

In this paper we consider two advanced methods de-
veloped in [1] for estimating xt based on yt: a sequential
Monte Carlo (SMC) and an approximate MAP estimator.

SMC-based Estimator: In [1], it is assumed that the num-
ber of competing terminals evolves according to a first-order
Markov chain with unknown transition probability matrix
A = [ai,j ], i.e., p(xt+1 = j|xt = i) = ai,j where ai,j ≥ 0
and

∑N
j=1 ai,j = 1, N being the maximum number of ter-

minals, and initial probability vector π = [π1, · · · , πN ],
i.e., p(x0 = i) = πi. Denote the observation sequence up
to time t as yt � [y1, y2, · · · , yt] and the network state se-
quence up to time t as xt � [x1, x2, · · · , xt], and denote the
unknown parameters as θ = {π,A}. We are interested in
obtaining a Bayesian estimate of the posterior distributions
p(xt|yt) and p(θt|yt).

The usual SMC approach is not well-suited for parame-
ter estimation (here θ) [6], and the key to the approach de-
veloped in [1] is to see that the complete information about
the transition matrix can be carried over through some suf-
ficient statistics. A well-known strategy for Bayesian infer-
ence is to choose the prior distributions with a suitable form
so that the posteriors belongs to the same functional fam-
ily as the priors. By assuming that the prior distributions
of θ = {π, A} are given by multivariate Dirichlet distribu-
tions, it is shown in [1] that the posterior distributions of θ
given xt and yt are also multivariate Dirichlet distributions:

p(π|xt, yt) = p(π|x1, y1) = D(πi; ρ1, ρ2, · · · , ρN ),
p(ai|xt, yt) = D(ai;αi,1,t, αi,2,t, · · · , αi,N,t),

i = 1, · · · , N, (3)

whereD(.; . . .) denotes the Dirichlet probability density func-

tion. We get the following update procedure:

αi,j,t = αi,j,t−1 + I(xt−1 − i)I(xt − j). (4)

From Bayes theorem we have

p(xt|yt) = p(yt|xt,yt−1)p(xt|xt−1, yt−1)p(xt−1|yt−1),
(5)

and p(xt|yt) can thus be updated analytically:

p(xt|yt) = B(yt; B, h(xt))
αxt−1,xt,t−1∑N
j=1 αxt−1,j,t−1

p(xt−1|yt−1).

(6)
We can now derive the deterministic SMC estimator.

Suppose a set of weighted samples containing no duplicate
and representing p(xt−1|yt−1) is available at time (t − 1),

p(xt|yt) ≈
K∑

k=1

w
(k)
t I(xt − x

(k)
t ). (7)

Based on (6) and (7), p(xt|yt) can be approximated by:

pext(xt|yt) ∝
K∑

k=1

N∑
j=1

w
(k,i)
t I(xt−i)I(xt−1−x

(k)
t−1), (8)

where the weight update procedure is given by

w
(k,i)
t ∝ w

(k)
t−1B(yt; i)

α
(k)

x
(k)
t−1,i,t−1∑N

j=1 α
(k)

x
(k)
t−1,j,t−1

. (9)

A selection step is then performed to retain a fixed number
of samples.

Approximate MAP Estimator: By using these sufficient
statistics, we developed in [1] a modified Viterbi algorithm
to fit the unknown transition matrix scenario. In this approx-
imate MAP approach, the objective is to recursively maxi-
mize p(xt|yt) with respect to xt. With this goal, the Viterbi
algorithm uses

δt(i) = max
xt−1|xt=i

p(xt|yt) = p(yt|xt = i) max
xt−1|xt=i

max
xt−2|xt−1,xt=i

[p(xt−1|yt−1)p(xt|xt−1,yt−1)], (10)

that can recursively be computed if the transition matrix is
known by taking p(xt|xt−1,yt−1) = axt−1,xt out of the
inner max. The estimate of xt at time t is then given by
maxi δt(i). When the transition matrix is unknown, even
if the probability of any path can be analytically computed
as in (6), such a recursion cannot directly be used because
p(xt|xt−1, yt−1) depends on xt−2. However if the approx-
imation that p(xt−1|yt−1)p(xt|xt−1,yt−1) is maximized
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Fig. 1. Utilization with saturating nodes and Markovian
node activation.

when p(xt−1|yt−1) is maximized is done, an approxima-
tion δ̂t(i) of δt(i) can be computed recursively as:

δ̂t(i) = p(yt|xt = i) max
j

[
δ̂t−1(j)p(xt = i|x(j)

t−1, yt−1)
]

= B(yt; B, h(i)) max
j

[
δ̂t−1(j) ·

α
(j)
j,i,t−1∑N

k=1 α
(j)
j,k,t−1

]
, (11)

where x
(j)
t−1 corresponds to the retained path ending at xt−1 =

j and α
(j)
j,·,t−1 is the corresponding sufficient statistics (4).

3. OPTIMIZATION OF IEEE 802.11 DCF

In this section we propose a novel optimization algorithm
based on the estimators described in the previous section.
Our simulations in ns-2 shows that the effect of CWmax

greater that 1024 has no effect on the network performance
for xt ≤ 40. So in order to simplify the problem we im-
pose m to be fixed such as CWmax = 2mCWmin = 1024,
and CWmin

1 takes values from a set W . This set can be
fixed or it can be constructed, i.e, using the method in Sec-
tion 3.2. Then, assuming m is no longer a variable, a simple
formulation of the backoff window choice is given by

W ∗
t+1 = arg max

W∈W
Ep(xt+1|yt){

Ψu

(
S(xt+1,W,m) − S(xt+1,Wt,m)

)}
, (12)

where Ψu is a utility function of the difference in through-
put, and S(·) is given in (1). Ψu will typically be a non-
decreasing function and should be convex on the positive
part and concave on the negative part. We propose Ψu(∆S) =
(∆S)3 but any other sensible function could be used.

1We use the term CWmin and W interchangeably.

Note that our utility function in (12) makes use of the
distribution of the number of competing terminals if avail-
able. In [4] a similar optimization scheme was introduced
but a hard estimate of the number of terminals was used to
make a range estimation. To prevent frequent switching,
the authors used overlapping ranges. We believe that our
Bayesian criterion is more natural to make a soft decision.

3.1. Predictive Distribution Based on SMC Samples

As shown in our criterion (12), we need to have access to
the predictive distribution p(xt+1|yt) in order to perform
an optimal control of the protocol.

Given a set of samples and weights
{

x
(k)
t , w

(k)
t

}K

k=1
representing p(xt|yt) at time t, (12) is approximated as

ŴSMC
t+1 =

arg max
W∈W

K∑
k=1

N∑
i=1

Ψu(∆S(xt+1 = i,W ))p(xt+1 = i,x
(k)
t |yt)

= arg max
W∈W

K∑
k=1

N∑
i=1

Ψu(∆S(i,W ))
α

x
(k)
t ,i,t∑N

j=1 α
x
(k)
t ,j,t

w
(k)
t

= arg max
W∈W

K∑
k=1

w
(k)
t∑N

j=1 α
x
(k)
t ,j,t

N∑
i=1

Ψu(∆S(i, W ))α
x
(k)
t ,i,t

(13)

where ∆S(xt+1,W ) = S(xt+1,W,m) − S(xt+1,Wt,m).
For the case in which we only have access to an hard

estimate of the number of competing terminals, the backoff
window choice (12) is simply approximated by

WMAP
t+1 = arg max

W∈W
Ψu

(
S(x̂t+1|t,W,m)−

S(x̂t+1|t,Wt,m)
)
,

(14)

where x̂t+1|t = arg maxxt+1 p(xt+1|x̂t, yt) ≈ arg maxxt+1

p(xt+1|xt, yt) is an approximate MAP estimate of xt+1

with x̂t being the current MAP estimate of xt. For the EKF
algorithm, p(xt|yt, yt−1, ..., y1) is approximated by a Gaus-
sian p(xt|yt, yt−1, ..., y1) ≈ N (xt;h(xt), Pt). This would
involve complex numerical integrations, so we use the hard
estimate of the number of competing terminals as in (14).

3.2. Choice of Backoff Window Size Set W
Having discussed how to perform an optimal choice of the
backoff window within a given set W , we can now give
some insight on the choice of this set. It will be chosen such
that the optimal throughput can always be approached and
such that its cardinality remains low. Indeed a small number
of configurations will allow a more stable system and an
easier implementation. Here we assume that m is not fixed
and can also be chosen in the set of backoff windows.
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Our design criterion can thus be written as

∀i ∈ [1, · · · , N ],
| max
W∈N∗

S(i,W,m) − max
W∈W

S(i, W,m)| < ∆Smax,
(15)

where ∆Smax is the maximum throughput loss to optimal-
ity we allow. ∆Smax will typically be chosen small, for in-
stance 2.5%. Within this constraint, we would like to have
as few points in W as possible. Because of the regularity
of S(.), such a set can be constructed by performing the
following operations:

• Let imid = 1
• Choose the greatest integer jref such that Sopt(imid)−

S(imid,Wopt(jref ),m) < ∆Smax, where Wopt(k) =
arg maxW∈N∗ S(k, W,m) and
Sopt(k) = S(k,Wopt(k),m). Let jref be in W .

• Find the smallest integer imid such that Sopt(imid)−
S(imid,Wopt(jref ),m) > ∆Smax.

• If imid < N and jref < N , go back to step 2.
• If imid ≥ N and jref ≥ N , remove jref from W and

let N be in W .

4. SIMULATION RESULTS

We use the ns-2 network simulator version 2.27 to compare
our Bayesian approach with existing estimators. The pa-
rameters used in the simulation are classical for a 1 Mbps
WLAN. No packet fragmentation occur, and the nodes are
located close to each other to avoid capture or hidden termi-
nal problems. Only the basic access is used.

Fig. 1 shows the instantaneous utilization of the proto-
cols when saturating nodes arrive with an on-off exponential
process in continuous time with an average of 6 nodes. We
compare the effect of the estimation for B = 50, to keep
the estimation within the granularity of the change in the
number of terminals. We also compare with an optimized
version of the PDCF protocol [3] for the range of 1–10 ter-
minals (reset probability is 0.9). The approximate MAP al-
gorithm outperforms both the EKF and the modified PDCF
algorithm at all times, and all stay below the perfect estima-
tion, which is an indication of the benefits of the accurate
estimates in the IEEE 802.11 operation.

If we relax the saturation assumption, [2] shows that
the number of competing stations fluctuates heavily under
non-saturation conditions. This effect can be observed in
Fig. 2(b). In this scenario, the effect of a highly accurate and
fast estimate of the number of competing terminals is cru-
cial to the optimal operation of the protocol; for that reason
we select B = 10. Intuitively we can think of n terminals in
non-saturation regime as a process of x(t) saturating nodes
(those who have something to transmit in the allowed slots)
that fluctuates very fast. Fig. 2(a) show that our algorithm
performs extremely well in the non-saturation regime. We
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Fig. 2. Utilization with non-saturating nodes.

see that the accuracy and the speed of the estimation of the
number of competing terminals in a 802.11 network has a
significant impact on the network performance.

5. REFERENCES

[1] T Vercauteren, A Lopez Toledo, and X Wang, “Online
Bayesian estimation of hidden Markov models with un-
known transition matrix and applications to IEEE 802.11 net-
works,” in Proc. IEEE Int’l Conf. Acous., Speech, Sig. Proc.
(ICASSP’05), Philadelphia, PA, Apr. 2005.

[2] Giuseppe Bianchi and Ilenia Tinnirello, “Kalman fitler estima-
tion of the number of competing termnals in an IEEE 802.11
network,” in Proc. Infocom 2003, San Francisco, CA, Mar.
2003, vol. 2, pp. 844–852.

[3] C Wang and W Tang, “A probability-based algorithm to ad-
just contention window in IEEE 802.11 DCF,” in ICCCAS:
Communications, Circuits and Systems, 2004., 2004, vol. 1,
pp. 418 – 422.

[4] H Ma, X Li, H Li, P Zhang, S Luo, and C Yuan, “Dynamic
optimization of IEEE 802.11 CSMA/CA based on the num-
ber of competing stations,” in Proc. IEEE Int’l Conf. Comm.,
(ICC’04), June 2004.

[5] Giuseppe Bianchi, “Performance analysis of the IEEE 802.11
distributed coordination function,” IEEE J. Select. Areas Com-
mun., vol. 18, no. 3, pp. 535–547, Mar. 2000.

[6] A Doucet, N de Freitas, and N Gordon, Eds., Sequential
Monte Carlo Methods in Practice, Springer-Verlag, 2001.

V - 936


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


