
Efficient Multipath in Sensor Networks using
Diffusion and Network Coding

Alberto Lopez Toledo1 and Xiaodong Wang
Electrical Engineering Department, Columbia University, New York, NY 10027

Email: {alberto,wangx}@ee.columbia.edu

Abstract— In this paper we propose to employ the use of
network coding to achieve an adaptive equivalent solution to
the construction of disjoint multipath routes from a source
to a destination. It exploits both the low cost mesh-topology
construction, such as those obtained by diffusion algorithms, and
the capacity achieving capability of linear network coding. We
present a simple randomized network coding scheme that can be
efficiently employed in sensor networks, solving two of its main
problems: knowledge of the underlying network capacity and rate
control. Our solution easily adapts to the changing conditions of
the network and it can be used by the sinks to increase or decrease
capacity and reliability on demand. Keywords: Network coding,
sensor network, directed diffusion, multicast.

I. INTRODUCTION

A typical approach to increase reliability in sensor networks
is to exploit path diversity. The dense deployment of nodes in
a sensor network makes multipath routing a suitable and cheap
technique to cope with the frequent topological changes and
consequently unreliable communication services. Multipath
routing has been used to improve the robustness of data
delivery, and it has been shown to be effective in energy
saving, load balancing and increasing the network lifetime.
More importantly, the extra path diversity reduces the end-to-
end delay and the frequency of route discoveries and improves
the network security.

The key issue in multipath routing is the proper multipath
maintenance. The more constraints imposed on the structure
of the paths (e.g., totally disjoint paths), the more complex
and costly is to establish them and to maintain them. In most
existing schemes the practical objective is to guarantee that a
certain number of alternative routes to the destination exist,
either to transmit copies of the same data to gain robust-
ness or to transmit different data simultaneously to increase
throughput. The max-flow min-cut theorem establishes that the
maximum flow to the destination is equivalent to the number
of disjoint paths. Hence, for the unicast case, an alternative
to multipath construction is to use alternative methods that
guarantee a certain maxflow to the receiver without relying
heavily on specific path constructions.

In this paper we propose the use of a simple network
coding approach to enable capacity achieving communications
in a loosely controlled multipath topologies. We use simple
braided-based mesh schemes (e.g., directed diffusion [1]) that
are the easiest to construct, but at the same time are more likely

1Alberto Lopez Toledo is supported by the Rafael del Pino Foundation.

to obtain less disjoint paths. While in most cases the maxflow
of a mesh is difficult to calculate in a distributed manner,
we show a simple linear code construction that integrates
with the low cost mesh multipath construction and guarantees
the maxflow of the topology. Moreover our proposed scheme
permits the sources and the sink to easily determine the
maxflow of the topology and hence to estimate the equivalent
number of disjoint paths, allowing an adaptive adjustment of
the mesh construction algorithm to reach the required number
of disjoint paths.

II. DEFINITIONS

We consider the problem of communication in a network,
where a set of source nodes S transmit data to a set of
destinations T . The communication network consists of a
number of links that interconnect some nodes, and it can be
represented as a directed graph G = (V,E) where E is the set
of edges and V is the set of vertices or nodes. We represent
an edge with the tuple e = (u, v), and we say that the edge
is directed, i.e., it transmits information from its tail u to its
head v. The tail and head of an edge e = (u, v) are denoted
by tail(e) = u and head(e) = v respectively. Without loss of
generality we assume each edge e ∈ E has unit capacity, i.e.,
node u can send information through the edge (u, v) at a rate
of at most 1 bits per time unit. We can represent links with
different capacities as multiple edges connecting two nodes.
The capacity CG(s, t) of the network G from node s to node
t, as the maximum rate that information can be transmitted
from s to t.

We define the input-set ΓI(u) and the output-set ΓO(u) of a
node u as the set of edges that terminates and originates from
that node, respectively, i.e. ΓI(u) = {e ∈ E | head(e) = u}
and ΓO(u) = {e ∈ E | tail(e) = u}. We also define in-
degree δI(u) and out-degree δO(u) as the cardinalities of the
input and output sets, respectively, i.e., δI(u) = |ΓI(u)| and
δO(u) = |ΓO(u)|.

A path from node u to node v is a sequence of edges
(u,w1),(w1, w2) ... (wn, v) in G. A cycle is a path from one
node to itself. A network is called cyclic if it contains a cycle,
and acyclic if it does not contain any cycle. We say two paths
from u to v are disjoint if the paths do not share edges.

III. SENSOR REACHBACK PROBLEM

The reachback problem is fairly different from its multicast
counterpart. Assume we have an acyclic graph G = (V,E)

871-4244-0350-2/06/$20.00 ©2006 IEEE

where a set of senders S ⊆ V wants to transmit different
information to a single receiver t ∈ V . Note also that it cannot
be seen as the inverse of the multicast problem because in the
multicast problem the sender transmit the same information to
all the receivers.

It has been shown that the reachback problem can be
solved by routing, i.e., by finding a disjoint path from each
si to t. However, this is often difficult, particularly if the
topology is changing and the links are error-prone such as
in sensor networks. Moreover, the network topology is often
unknown for individual sensors. For this reason, sensors have
to find its route to the sink. As sensors are resource limited
common routing solutions such as distance-vector solutions
are difficult to apply. Instead, more data-centric approaches
such as directed diffusion [1] (described below) are used.

A. Directed Diffusion

Directed diffusion was introduced in [1] as a scalable
routing protocol for sensor networks. A subscriber, or data
sink, identifies data by a set of attributes. This interest is
periodically propagated hop by hop in the network. Every
node that receives an interest establish a gradient, a state
information pointing to the next-hop direction of other nodes
interested in the data. When a source node receives an interest
message, it starts forwarding the data through all the neighbors
from which it has received an interest. This initial flooding
is called ‘exploratory’ and it is done at a very low rate. Its
purpose is to find a suitable route to the sink. When this
‘exploratory’ data reaches the sink, the sink reinforces its
preferred neighbor according to certain metric such as latency,
hop count, throughput, etc., and ‘reinforces’ that neighbor in
the path to the source. The reinforcement of the neighbors
propagates hop by hop back to the source or sources, resulting
in a chain of reinforced gradients from all sources to all sinks.
The rest of the data is sent at its nominal rate through the
reinforced path. Nodes can also send negative reinforcements
when receiving data not relevant to them. Gradients are
managed as soft-state, thus both interests and exploratory data
are refreshed periodically.

An interesting feature of the diffusion protocol is that sinks
(and other nodes) can reinforce more than one path. Denote
h′ as the diffusion parameter, i.e., the number of neighbors
to which each node propagates the reinforcement. So, with
minimal changes in the operation of the protocol, braided-like
topologies can be constructed.

While this kind of mesh multipath construction can result in
robust multipath delivery, diffusion mechanisms do not have
control over the capacity of the underlying network, so they
usually exploit the multipath delivery by sending same infor-
mation per path. This means that without further knowledge,
sensors can only use the braided topologies constructed by
diffusion algorithms to increase reliability, but not to exploit
the increased throughput of the inherent multipath.

IV. NETWORK CODING

In their seminal work, Ahlswede et. al. showed in [2] that
the multicast cut-bound could not be achieved for the general

case by routing only. They showed, however, that the cut
bound could be achieved by encoding the data received in the
intermediate nodes. In such network coding approach, nodes
are allowed to perform coding on the received data instead of
the simple store-and-forward operation in the standard routing
schemes.

Theorem (network coding) Let G = (V,E) be a directed
graph, and let s and T ⊆ E be vertices in G. Then CG(s, T)
can be achieved by performing coding operations in the nodes.

Li et. al. [3] showed that the multicast capacity can be
achieved by performing only linear combination to the input
symbols (linear network coding). Koetter and Medard [4]
gave an algebraic interpretation of the linear network coding
and showed that multicast capacity can be obtained by time-
invariant schemes.

Let ge = [ge,1, ..., ge,h] denote the global encoding coeffi-
cient for edge e. The following theorem gives the necessary
conditions for the existence of a linear network code [5].

Theorem 1 (Conditions for network codes) Let G = (V,E)
be an acyclic directed graph in which a sender s transmits
a multicast session to a set of receivers T ⊆ V such that
CG(s, T) = h. A capacity-achieving linear network coding
assignment exists for G if and only if there is a set of global
encoding vectors ge that satisfy:

ge ∈ {span({ge′ , : head(e′) = tail(e)}), ∀e ∈ E, (1)

rank({ge, : tail(e) = t}) = h, ∀t ∈ T. (2)

Network coding is not only useful for increasing the
capacity of the multicast sessions. Robustness to network
failures and error correction are also important areas in which
network coding has been recently explored. Link or node
failures that change the network topology can cause loss of
large volumes of transmitted data, making efficient recovery
schemes essential. However, while network coding has some
great advantages, it is not a substitute of routing. Plain network
coding cannot be used, for example, in the case of a dense
sensor field because that would imply that all the nodes in
the field would perform the encoding operations. Hence we
need to limit the scope of the encoding operations via routing.
Moreover, we need to adapt the network coding capabilities
to the specific network requirements in terms of capacity,
robustness and reliability.

V. NETWORK CODING IN SENSOR NETWORKS

Network coding can be used to achieve the capacity of the
network if the topology and other network parameters such as
number of senders, receivers and the min-cut from each sender
to each receiver are known. In [6], [7], polynomial time algo-
rithms are developed for the construction of network codes, but
they are centralized algorithms and require knowledge about
the entire topology of the network. In [8], a decentralized
algorithm is proposed that requires minimal knowledge about
the topology. However, similar to other algorithms, it requires
the previous acquisition of h disjoint paths from senders to
receivers, or, at least, the previous knowledge of the min-cut

88

from the sources to each of the receivers. This information is
now known in a sensor network.

Ho et.al. introduced in [9] a randomized approach to
network coding, in which nodes independently and randomly
select linear mappings from its input edges to its output edges
over some field. They showed that the probability of decoding
can be made arbitrarily small by increasing the size of the field
over which the code is constructed. The algorithm is simple,
each node will forward in its output edges a random linear
combination of the symbols received on the input edges. When
the alphabet size is large enough the probability of picking
the same random combination is small and the probability of
successful decoding high.

Randomized network coding is regarded as a suitable imple-
mentation in practical networks because it can be completely
decentralized, it does not depend on the topology and further-
more it is very simple to implement. However, the application
of randomized network coding to a sensor network has three
main problems: first, if the maximum rate between the sender
and the receiver CG(s, t) is not known, the sender may send at
a rate above the capacity, in which case the receiver may not
be able to decode all the information sent by the source; or the
source may send at a rate below capacity, wasting resources.
Second, same as the existing algorithms in the literature,
because the route to the destination is not known, existing
randomized network coding forwards the random combination
of the input symbols through all the output links of a given
node. In a dense sensor network this implies using many nodes
that are not interested in the information, with the consequent
power waste. Finally, because the size of the alphabet depends
on the number of edges that are assigned random codes, if
this number is not known, the sources have to be conservative
when selecting the alphabet size, hence wasting resources.

A. Combining Network Coding with Directed Diffusion

Let first consider a simple situation with one sink t and only
one source node s, with CG(s, t) = h. When h is unknown,
there are some facts that are in order.

Theorem 2 (Acyclicness of directed diffusion) The topology
G = (V,E) resulting from applying the directed diffusion
protocol to a sensor field is acyclic.

Because directed diffusion constructs acyclic networks, we
can construct a network code over a directed diffusion topol-
ogy. However, because the resulting topology is not known,
the exact value of CG(s, t) is also unknown, so randomized
network coding cannot be used. The reason is that the sender
has no way to know the number of distinct symbols to send
through the outgoing edges.

Corollary 1. Let G = (V,E) be an acyclic directed graph in
which a sender s transmits to a receiver t. Assume CG(s, t) =
h. Then given a capacity achieving assignment of global
coding vectors, we have CG(s, t) ≤ ΓO(s).

Proof: It follows from rank({ge : tail(e) = t}) ≤ ΓO(s). �

Corollary 2. Let G = (V,E) be an acyclic directed in which
a sender s transmits to a receiver t. Let assume CG(s, t) =
h. Then a valid assignment of the global coding vectors is
ge′,i ∈ {εj} ∀e′ � head(e) = s.

Proof: We know that a network coding solution exist in which
all the edges contain linear independent global coding vectors.
In particular the unit vectors are linearly independent. �

The above results show that the sender may start assigning
the unit vectors on its outgoing edges and that if a capacity
achieving network code is used, CG(s, t) cannot be greater
than the number of incoming edges at the sink.

Theorem 3 (Rank at the sink) Let G = (V,E) be an acyclic
directed graph in which a sender s transmits to a receiver
t ∈ V . Let the network use the directed diffusion mechanism
to establish the paths from s to t, i.e., t broadcasts interest
through all its outgoing edges and s reinforces all the available
paths to the sink. If we use a randomized network code with
sufficiently large alphabet size, with the initial assignment
being as indicated in Corollary 2, then:

rank({ge, : tail(e) = t}) = CG(s, t), ∀s ∈ E. (3)

Proof: It follows Theorem 2 and Corollaries 1 and 2. �

The above results indicate that the global coding vector
assignment of a randomized network coding algorithm serves
indeed for the purpose of calculating the CG(s, t) at the
receiver if every node always assigns unused linearly indepen-
dent vectors to its outgoing edges. Even if the source is sending
at a rate above capacity, the sink will receive information at the
capacity rate. The receiver could then feedback the information
to the sender that would use the appropriate transmission rate.
Better, we can use the directed diffusion algorithm to take
advantage of the interest propagation phase as follows:

Algorithm 1 Interest propagation phase

1: In the interest propagation phase the sink t assign ge′,i =
εi,∀e′ � tail(e) = t, where εi is the i–th unit vector in
IδI(t).

2: For the rest of the nodes: forward a random linear com-
bination of the incoming vectors through the links from
where vectors where not received.

This forwarding of vectors is concurrent to the interest
propagation phase, so it does not require extra transmissions.
Algorithm 1 implements the randomized network coding algo-
rithm in the reverse direction, i.e., from the sink to the sources.
Each node in the network will receive a message from a link
with a vector from GF (q)δI(t), where GF (q) is the field used
by the sink for the network code. From Theorem 3 we know
that the rank of those vectors is CG(t, s).

Theorem 4 (Rank at the sender) Let G = (V,E) be an
acyclic directed graph in which a sender s transmits to a
receiver t ∈ V . Let the network use the directed diffusion
mechanism to establish the paths from s to t. Then, if the sink

89

uses Algorithm 1 in the interest propagation phase, then, the
vectors ge assigned by Algorithm 1 are such that:

rank({ge, : head(e) = s}) = CG(s, t), ∀s ∈ E (4)

Proof: By construction of the directed diffusion network,

the sink starts forwarding interest messages through all its
outgoing edges. Let G′ be the network resulting from the
interest propagation phase (i.e., from the sink to the sources).
By Theorem 3 we have that the set of vectors ge received
at the senders have rank CG′(t, s). Consider the network
G resulting from the senders reinforcing all the paths from
where an interest message is received. By symmetry we have
CG(s, t) = CG′(t, s), which is the rank that the sender
receives in the initial interest propagation. �

The previous theorem is an important result towards a
distributed operation of the protocol. In the absence of any
knowledge about the capacity of the graph, as it is in the case
of a sensor network in which a variable diffusion algorithm
as Algorithm 1 is used, the sink can start assigning to its
outgoing edges all the unit vectors εi of dimension h′, where
h′ is the diffusion parameter h′ ∈ {1, ...,ΓO(t)}. After the
initial interest propagation, all the senders si will have the
information CG(si, t) simply by observing the rank of the
vectors received. In fact, this is true for all the intermediate
nodes. A summary of the resulting algorithm is below.

Algorithm 2 Directed diffusion and network coding

1: Sink estimates an initial h′.
2: loop
3: Sink refreshes interests as in Algorithm 1, reinforcing

h′ paths.
4: Sources calculate h = CG(s, t) from the rank of the

coding vectors received from the sink.
5: Sources start their transmission using a randomized

network code through all the paths from where they
received a reinforcing message at a rate of h symbols per
time unit.

6: Sink monitors the network conditions and recalculates
h′ depending on the network requirements.

7: end loop

Consider for example the scenario in Figure 1 in which
Algorithm 1 is used in the interest propagation phase (on
the left). Initially the sink assigns to its outgoing edges
different vectors from R

δI(t), in this case R
2. For simplicity

we use vectors from the field of the real numbers. As the
interest is propagated, each intermediate node will forward
through the edges from which no interest is received a random
linear combination of the vectors received from the sink.
For example, node a receives the vector (0,1) and randomly
generates (0,7), forwarding it to nodes s1 and s3. Node c, on
the other hand, receives the vectors {(0,3),(2,0)} and generates
the vector (7,4) that is forwarded to node s2. Now observe the
rank of the vectors received in every node corresponds to the

t

ba

dcs1

s2

s3

(0,1) (1,0)

(0,7)

(0,7)

(2,0)
(2,0)

(0,3) (0,3)

(0,9)
(7,4)

(6,3)

t

ba

dcs1

s2

s3

Figure 1: Distribution of codes in the interest propagation phase.

t

ba

dcs1

s2

s3

(1,0,0)
(0,1,0)

(0,0,1)

(0,0,9)
(0,2,0)

(3,0,0)

(0,2,0)
(3,0,0)

(6,7,0) (0,8,1)

(4,8,0)

(a) When CG(s2, t) is not
known.

t

ba

dcs1

s2

s3

(1,0)
(1,1)

(0,1)

(0,9)
(2,2)

(3,0)

(2,2)
(3,0)

(4,7) (8,1)

(7,3)

(b) When CG(s2, t) is
known.

Figure 2: Randomized network coding in the reinforcement phase.

min-cut to the sink: CG(s1, t) = rank({(0, 7), (0, 3)}) = 1,
CG(s2, t) = rank({(0, 9), (7, 4), (2, 3)}) = 2 and CG(s3, t) =
rank({(0, 7)}) = 1. Note that the three senders receive a
set of vectors whose rank correspond to the min-cut of the
resulting network after all the paths are reinforced, knowing
the number of symbols they can transmit per time slot.

In the next phase of the directed diffusion algorithm, the
sources will reinforce the paths and use the regular random-
ized network coding algorithm, correctly using vectors from
GF (q)CG(s,t). In the absence of knowledge about CG(s, t), if
the source wants to achieve the full network capacity, it has
to use assign random code from GF (q)ΓO(s), i.e., it will send
ΓO(s) distinct symbols through its outgoing edges. However,
as Theorem 3 shows, the sink will receive vectors with rank
CG(s, t). If CG(s, t) < ΓO(s) the sender would be sending
at a rate greater than the capacity. On the other hand, if the
source starts assigning vectors from GF (q)CG(s,t), assuming
q is large enough, the sink would be able to decode all the
symbols, and, as we will see in Section VI-A, even when some
of the links fail.

To highlight the importance of the knowledge of CG(s, t)
when using random network coding consider the same sce-
nario as Figure 1 and assume source s2 does not know
CG(s2, t) (Figure 2(a)). In that case, to fully utilize the
network capacity, s2 sends three symbols through its outgoing
edges x1, x2, x3. The sink would not be able to decode the
symbols without other information. Figure 2(b) shows the
case in which s2 knows CG(s2, t) = 2, and assigns to

90

10 50 100 150 200 220
1.5

2

2.5

3

3.5

4

4.5

Number of nodes

M
ax

flo
w

h′ =2

h′ =3

h′ =4

h′ =5

h′ =6

h′ =7

h′ =8

h′ =9

Figure 3: Average maxflow as h
′ changes.

its outgoing edges linearly independent vectors in GF (q)2,
sending the following information through its outgoing edges:
x1, x1 + x2, x2.

B. Rate Adaptation

Our algorithm provides a way of probing the network by
reinforcing h′ paths in an adaptive manner. Upon reception of
the interest vectors, the sender have the exact knowledge of
the min-cut to the sink, and may decide to reinforce more or
less paths, knowing at each moment how many symbols it can
transmit at a given time by inspecting the rank of the received
coding vectors.

We simulated the operation of the directed diffusion algo-
rithm for different values of h′ using an ad-hoc event-based
simulator developed in MATLAB. Sensors are uniformly dis-
tributed in the field and neighbors are distance based. The
results are averaged over 1000 runs of the experiment. Fig. 3
shows the maxflow of the network for different h′ values.
Note that as the network grows the path diversity allows the
algorithm to get closer and closer to h′. Also, as h′ grows
the maxflow of the network approaches the real capacity of
the whole sensor field (an average of 4.2 in our experiments
when all the nodes participate). Note that the maxflow follows
h′, so the sink has deterministic control over the capacity, i.e.,
can change h′ according to the importance of the data and the
communication requirements with minimum changes to the
existing diffusion protocols. Such adaptive change in capacity
allows the sink to control the sensor network delivery as in
the case of event-driven data-centric protocols, where sinks
determine the communication requirement.

VI. SIMULATION RESULTS

A. Robustness and Reliability

The capability of constructing adaptively capacity-achieving
connections between a source and a destination allows not
only to meet the throughput requirements, but also, as a
benefit to the routing counterpart, to enhance the robustness
of the network. We performed our simulations using an ad-
hoc event-based simulator developed in MATLAB. Sensors are
uniformly distributed in the field. We constructed the basic
topology based on distance, i.e., each sensor decides that a

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

h′

M
ax

flo
w

Link error probability

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

(a) When link failure occur.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

h′

M
ax

flo
w

Node failure probability

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

(b) When node failure occur.

Figure 4: Average maxflow of a 50 nodes sensor network as h
′

increases.

sensor is its neighbor if it falls within a certain radius. We
typically used a radius of approximately 2% of the length of
the field. For each simulation, we randomly generated 1000
instances of the sensor field, and then ran our algorithm for
each one of those 1000 instances and averaged the results.
We used our algorithm in a unicast communication between a
source and a destination. We do not consider packet loss due
to wireless errors, but a more general failure of an edge or
a node. Note that while a routing-only scheme will attempt
to create h′ disjoint-paths, the network coding approach can
make use of extra edges for the combinations, hence increasing
the probability of success.

Figs. 4(a) and 4(b) present the scenario of link and node
failure respectively from the sink point of view, i.e., the
maxflow obtained under certain conditions for a given diffu-
sion parameter h′. This results can be used as a guideline for
the selection of the diffusion parameter h′ to obtain the desired
network maxflow. For example, considering only link failures,
a sink may decide not to increase the value of h′ as it will not
have any impact on maxflow but it will use more links and
hence will result in larger power consumption. Note that the
real benefit of the network coding approach in this scenario is

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

1.5

2

2.5

Link failure probability

M
ax

flo
w

h′ =1
h′ =2
h′ =3
h′ =4
h′ =5
h′ =8

Diffusion multipath

Idealized disjoint

Figure 5: Maxflow of diffusion and network coding vs. idealized
disjoint multipath for a sensor network of 20 nodes.

that this modification comes almost at no cost, as the interest
propagation for the directed diffusion approach and the global
network coding vector propagation are performed together, so
the code is automatically established as the diffusion protocol
updates the routing information. This cost is very low in
comparison to the establishment and maintenance of disjoint-
paths (an NP problem). Moreover the simple network coding
mixing guarantees that the underlying topology obtains the
network capacity without requiring complex routing schemes
to obtain the disjoint paths.

B. Comparison with Ideal Disjoint Multipath

We consider the performance of our proposed scheme with
an idealized and perfect disjoint multipath protocol that we
call idealized disjoint. Fig. 5 shows the maxflow for different
values of h′ and link failure, and it is compared with the
idealized disjoint protocol that would obtain the same maxflow
as our protocol for that h′. As expected the mesh topology
is able to absorb the failed links, while the network coding
approach guarantees the maxflow of the resulting topology.

C. Comparison with Directed Diffusion

In this simulation we compare the operation of our algo-
rithm with two versions of multipath multicast described in
[10], namely a meshed multipath (M-MPR) constructed using
directed diffusion in which each node sends different data to
each neighbor (selective forwarding), and a disjoint multipath
(D-MPR), also based on directed diffusion but in which
disjoint paths are constructed. We performed the simulations
in the ns-2 simulator version 2.27 [11]. We modified the
diffusion3 implementation to include the possibility of multiple
path selection and we developed the simple network coding
application of code assignment. Our simulations used 500
uniformly randomly distributed sensors over a 500 × 500
meters field. Antennas are omnidirectional with a coverage
of 40 m. Each source sends UDP data with 50 bytes packets
during 200 seconds.

Fig. 6 shows the normalized throughput received at the sink
averaged in 1000 simulations when the link failure probability

0.0001 0.1

1

Link error porbability

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

disjoint multipath
mesh multipath
mesh multipath w/ network coding

Figure 6: Bytes received at the sink vs. number of sources.

increases. As we can see, the throughput obtained by the
network coding mechanism is significantly higher than that of
the multipath directed diffusion. Note that the network coding
approach has exactly the same resource utilization as the (M-
MSR) approach, and as shown in [10], is more energy efficient
than its disjoint counterpart, as it requires less retransmissions.

VII. CONCLUSION

We have presented a practical scheme that achieves an
adaptive equivalent solution to the construction of disjoint
multipath routes from a source to a destination by the combi-
nation of low cost mesh-topology construction, such as those
obtained by diffusion algorithms, and the capacity-achieving
linear network coding. We have implemented our proposed
algorithm in MATLAB and in the ns-2 simulator and have
shown that it outperforms existing methods.

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 2–16, 2003.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[3] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[4] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782–795, Oct. 2003.

[5] Y. Wu, K. Jain, and S.-Y. Kung, “A unification of edmonds’ graph
theorem and ahlswede et al’s network coding theorem,” in Proc. 42nf
Annual Allerton Conf. Communication Control and Computing, Oct.
2004.

[6] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for
network information flow,” in Proc. 15th ACM Symp. Parallel Algorithms
Architectures, 2003.

[7] S. Jaggi, P. S. Chou, and K. Jain, “Low complexity algebraic multicast
network codes,” in Proc. IEEE Intl. Symp. Inform. Theory, July 2003.

[8] C. Fragouli and E. Soljanin, “Network coding and error correction,” in
Proc. IEEE Inform. Theory Workshop, Oct. 2004.

[9] T. Ho, M. Mdard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” in Proc. 41st Annual Allerton Conf. Communication
Control and Computing, Monticello, IL, Oct. 2003.

[10] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” SIGMO-
BILE Mob. Comput. Commun. Rev., vol. 5, no. 4, pp. 11–25, 2001.

[11] Network simulator 2. http://www.isi.edu/nsnam/ns.

92

