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ABSTRACT 
In this paper we present a novel system for monitoring a 

computer user’s posture and activities in front of the computer 
(e.g., reading, speaking on the phone, etc.) for self-reporting. In 
our system, a camera and a microphone are placed in front of a 
computer work area (e.g., on top of the computer screen). The 
system can be used as a component in an attentive interface, or 
for giving the user real time feedback on the goodness of his 
current posture, and generating summaries of postures and 
activities over a specified period of time (e.g., hours, days, 
months, etc.). All elements of the system are highly 
customizable: the user decides what “good” postures are, what 
alarms and interruptions are triggered, if any, and what activity 
and posture summaries are generated. We present novel 
algorithms for posture measurement (using geometric features 
of the user’s silhouette), and activity classification (using 
machine learning).  Finally, we present experiments that show 
the feasibility of our approach. 

Categories and Subject Descriptions 
I.4.9 [Image Processing and Computer Vision]: Applications; 
H.5.2 [User Interfaces]: Ergonomics  
General Terms 
Algorithms, Measurement, Human Factors 
Keywords 
Ergonomics, Computer Vision, posture, ergonomics. 

 

1. INTRODUCTION  
Many people spend long periods of time in front of their 

computer and often suffer back, shoulder, and neck pains. 
Ergonomics [32] for computer users has therefore gained 
importance, on one hand because every year companies loose 
millions of dollars due to injuries sustained at the workplace by 
“information workers,” and on the other hand because injuries 
and discomfort are so common. Problems occur because of 
many factors, such as environment (e.g., inadequate equipment 
or equipment arrangement), activities (e.g., typing for too long 
without a break, etc.), or bad user habits (e.g., inadequate 
posture, etc.). In fact, the importance of ergonomics in health 

and well-being is so great, that many guidelines exist for 
workers in many fields, even in the most unexpected 
occupations (e.g., [1]). 

It is well known in the medical field that depression affects 
gait, posture, and of course, productivity. An individual that is 
not productive because he is depressed may sit in unhealthy 
postures, focus on the wrong activities, or limit the range of 
activities that he performs. One of the problems, however, is 
that most of us are not consciously aware of how much time we 
spend on different activities, and of our body postures while we 
work. At the same time, it is widely recognized that user 
attention is a limited resource, so computing devices should 
negotiate rather than impose the volume and timing of their 
communications with the user [34]. It would be extremely 
useful, therefore, to have a system that helps the user increase 
his own awareness of his habits and activities, and that lets the 
user decide how that information might be used in other 
contexts such as interruption management.  

With this motivation in mind, we present a novel system for 
monitoring a computer user’s posture and activities in front of 
the computer. In our system, a camera is placed on top of the 
computer screen and the computer user is monitored by the 
system as he works. The system uses the camera to measure the 
user’s posture and determine his current activity (e.g., speaking 
on the phone, stretching, etc.). Feedback is given to the user, in 
real time, on the goodness of his upper body posture. In addition, 
input from the camera and a microphone are used to classify the 
worker’s activities and give him summaries of what he has been 
doing for a determined period of time. The system can be used 
in the context of attentive interfaces [34] and for interruption 
control (e.g., switch off my e-mail and/or phone if I am reading) 
[18][7][3].  

Our approach uses background subtraction to obtain 
silhouettes. From the silhouettes we extract geometric features 
to classify activities, and obtain vertical projections to separate 
head from torso and measure head and shoulder angles. We use 
input from a microphone to determine audio activity (someone 
speaking, silence, keyboard being used) to differentiate 
activities that are visually similar. 

Three important aspects of our approach are flexibility, 
privacy, and simplicity. First, the goal is to give the user total 
control in defining good or bad postures and deciding when 
alarms and interruptions are triggered, if at all, and what 
activities should be included in the summary. Second, the 
system is meant for self-reporting: that is, posture and activity 
monitoring are private and not meant as a form of surveillance. 
Third, our method is computationally efficient and could be 
easily implemented in mobile personal devices (e.g., a personal 
posture system).  
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1.1 Related Work 
Many commercial products exist to help computer users 

monitor their activities for the purpose of ergonomics (e.g., 
[37][38][39][40][41][42]), and studies have shown that 
ergonomic monitoring software can help improve computer 
worker productivity [16][17]. Some systems simply remind the 
user to take a Y-minute long break every X minutes (e.g., in 
[41] the user is forced to take a break by literally freezing the 
computer every X minutes according to the user’s settings). 
Other systems include animations to guide user exercises during 
the breaks [38][39] and in some cases, the user’s intensity and 
quantity of work is analyzed using data from input devices 
[39][37] (e.g., when a number of keystrokes or mouse 
movements have been performed [40]). Non-visual sensors have 
been used for posture detection [36], and keyboard monitoring 
[8], but we are not aware of any camera-based systems for 
ergonomics monitoring.  

Although posture classification has been studied widely in 
Computer Vision, we are not aware of other works for the 
specific application we have constructed. Most approaches 
focus on classifying postures for surveillance applications or for 
applications with full-body view (e.g., standing vs. sitting vs. 
crouching, etc. [10]). The authors of [27] use a camera to detect 
posture using a fast algorithm that utilizes edge information. 
The system in [4] classifies postures in a vehicle (e.g., occupied 
by adult, by child, empty, occupant in-position, occupant out-of-
position). The authors of [25] estimate 3D upper body posture 
using proposal maps, and the authors of [24] investigate 
“postural comfort zones” for hand gestures.  A probabilistic 
framework for edge matching is presented in [12]. Other 
approaches include [6][20][30][28][4][14][29][26][15], and [9]. 
A review of related techniques for body tracking is given in [21]. 
Activity recognition is an active research area in computer 
vision and many approaches have been developed [21][31], 
even using wearable sensors (e.g., distinguish walking, running, 
etc.) [33]. Our work differs from previous computer user 
activity recognition approaches [19] in that we focus on posture 
monitoring, and self-reporting (of activities and posture). Unlike 
the authors of [19], we do not use a face detector because the 
problem constraints (i.e., user directly in front of the monitor) 
make finding the face in this application relatively easily and 
face detection algorithms are usually computationally expensive 
and sensitive to orientation changes. The authors of [31] present 
a boosting technique for activity recognition and apply it to 
computer-user actions such as talking on the phone, yawning, 
rubbing eyes, and others. The actions in [31] are more detailed, 
but the method is more computationally expensive. Other 
projects to summarize activities include MyLifeBits [13], which 
keeps records of e-mails, applications used, and so on. Finally, 
we are not aware of any attentive interfaces [34][7][18] that use 
posture or camera-captured user activity information. In [26] we 
discuss issues such as privacy and extensions to the framework. 

1.2 Outline 
The rest of the paper is organized as follows. In section 2 we 
define the problem and give details of the system. Section 3 
describes self-reports and applications to interruption 
management. We present experiments in section 4 and conclude 
in section 5. 

2. POSTURE AND ACTIVITY  
2.1 Problem Definition 

Our goal is to have a system that monitors the user’s postures 
and activities in real-time. The results may be used for several 
purposes, including interruption management and self-reporting. 
In our system, posture is defined as the position of the user’s 
upper body as he sits in front of the computer. 
� Posture: since every user is different, the system cannot 

automatically determine what a good posture is using a 
single good-for-all measure. Therefore, the user must decide 
what are good (or comfortable) postures and give the system 
examples of those postures. As is done in practice, the user 
may consult a specialist (it is not uncommon for “ergonomic 
consultants” to evaluate one’s workspace and posture and 
suggest improvements) before deciding which postures 
should be considered positive and which should be 
considered negative.  
� Activities: each user should also determine which activities 

he is most interested in keeping track of. The particular 
positions in which activities are performed can vary widely 
from individual to individual. For example, one person may 
prefer to read documents when they are set on his desk, 
while another may prefer to hold them in his hands 
(variations for the same individual are also common). The 
system should produce a summary of the user’s activities of 
interest over a specified period of time. In particular, we are 
interested only in activities that can be visually 
discriminated by an external observer (e.g., the camera). The 
goal of the system, therefore, is not to determine, for 
example, what application the user is working with, but 
rather focus on higher level activities such as sitting in front 
of the keyboard, reading, writing on a board, and so on. 

Our goal is not to give absolute feedback on good or bad 
postures, activities of interest, or define when interruptions are 
suitable—it is entirely upto the user to define what his “good” 
postures are, his activities of interest, and when interruptions 
should take place. It is also not our goal to monitor activities for 
surveillance. The idea is for the user to utilize activity and 
posture information for his own benefit.  

2.2 System Setup 
The basic setup of our system consists of a microphone, and a 
camera on top of the computer monitor that captures a frontal 
view of the user (Figure 3). The algorithm proceeds as depicted 
in Figure 1.  

The system contains five basic components: (1) initialization; 
(2) training; (3) setting of alarm and activity profiles; (4) 
monitoring; and (5) summarization. We describe each of the 
stages below: 

• Initialization: an image of the background (without the user 
in the image) is stored when the application starts. This 
process must be repeated if the camera is moved or if there 
are significant lighting changes. The user initializes the 
system by pressing a button to capture the background. 

• Training: the user sits in front of the computer and clicks on a 
button to indicate he is sitting in correct and incorrect 
postures. He also gives the system examples of “normal” 
activities he may be performing in front of the screen. For 
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example, speaking on the telephone, reading a paper, typing, 
stretching, taking a break, and so on. There are no pre-defined 
categories and the training stage is flexible (user decides how 
many examples he wants to provide—although the number of 
examples affects the performance of the system). The user 
can re-train the system at any time. 

• Alarm, activity & interruption profiles: alarms can be set so 
that they activate only after certain periods of time or when 
certain postures occur. The user constructs a “summary and 
interruption profile” which determines what the summary 
should contain (e.g., I am only interested in summaries of 
good posture, or of X activities), and the time periods of the 
summaries (minutes, hours, days, months). The profile also 
includes information on when the user should or should not 
be interrupted.  

• Monitoring: user can adjust a set of thresholds to modify the 
sensitivity of the system to his particular motions, switch the 
system on or off when desired, and view an image of his 
posture in a small window on the screen, or an indicator bar. 
In addition, the user can set the system on “privacy mode” so 
that only silhouettes are saved and not the actual photos. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 1. Process overview. The user can 
retrain the system and modify his profiles at any  
time. 

2.3 Visual Processing  
The background image obtained at initialization is used to 

perform background subtraction every t milliseconds (this 
depends on particular hardware used). This yields an image to 
which a threshold th is applied in order to obtain a binary image 
corresponding to foreground objects. The next step is to perform 
morphological operations (erode, fill, and dilate) on the binary 
image to eliminate holes and reduce noise (see silhouettes in 
Figure 7). The process may produce more than one region, so 
we label regions using a connected component algorithm. Since 
we assume that the only moving object is the user, we process 
only the largest region obtained. Except in rare cases (e.g., very 
similar background and foreground pixels), the user will yield a 
single region, as long as lighting conditions are constant and an 

appropriate threshold is selected (see Figure 5 and Figure 6). 
Once the largest region has been selected, the system extracts 
the following features: 

1. For the region, extract bounding box width, bounding 
box length, bounding box x and y location, center of 
mass, perimeter, area, angle of main axis, length of 
primary axis, length of secondary axis, Feret’s diameter, 
and eccentricity. 

2. Draw n lines that originate at the center of mass, 
separated by equal angle increments (e.g., for an angle of 
45º we obtain 8 lines). For each line, find the external 
boundaries of the region (see lines in Figure 3). These 
points define a polygon used for activity classification.  

All of the extracted features are concatenated to obtain an n-
dimensional feature vector fv={f1, f2, …, fn} for each activity. 
For instance, if we use 16 lines from the center of mass, we 
obtain 29 features (16 line lengths plus 13 features described).  

Figure 2. Algorithm outline. 
2.4 Training and Classification 

The user trains the system (Figure 1) by showing examples of 
good and bad postures and by showing examples of his common 
activities. During training, the user simply clicks a button on the 
interface to indicate that a given posture is “good” or “bad”. For 
activities, the user labels examples of each of the activities (e.g., 
on the phone, reading, etc.). This process yields several sets of 
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training examples, one for each class (e.g., on the phone, 
stretching, sitting only, etc.). The feature vectors are then used 
by a Machine Learning algorithm (e.g., Nearest Neighbor) to 
learn an n-class classifier (e.g., reading, on the phone, etc.). 

In the monitoring stage, we extract the same features and use 
the classifier that was learned to determine which activity is 
being performed by the user. The classification results are used 
for the summary, or for interruption management. Then for the 
sitting activity we measure posture as described next. 

 

Figure 3. The endpoints of the lines define a 
polygon used for activity classification. 

2.5 Posture Measurement 
In Figure 4 the first posture (top left) can be considered a 

“correct” posture (according to the user) since he is sitting 
straight while he looks at the screen. The other postures deviate 
from the “good posture” by a measurable quantity, in particular, 
by the angle of the head, and the angles of the shoulders. We 
compute this as follows: 

1. Obtain vertical projection profile for the extracted 
region (area to the left of the silhouette in Figure 5). 

2. Find the deepest valley of the vertical profile and use the 
location of the valley to separate the head from the torso 
in the image of the extracted region (horizontal line in 
Figure 5). 

3. Fit a diamond to the head (Figure 5, right; see [2]). 
4. Using the line that divides the head and the torso, search 

for shoulder edge pixels below in perpendicular 
direction. Once a number of edge pixels is found, fit a 
line to each of the shoulder edges using linear regression 
(see lines and diamond in right, Figure 5). 

 
Figure 4. Different user postures. 

The angle of the head and the angles of the shoulders are used 
to measure posture. 

2.6 Audio Processing 
We use a microphone to detect when there is voice, when 

there is silence, or when there is typing on the keyboard. We 
implement an audio classifier for these three classes using 
simple features such as volume, mean pitch, pitch standard 
deviation, and pitch intensity (using the method described in 
[22]). Since there are pauses when a person speaks, a voice 
segment will often include silence gaps. Therefore, we use 
constraints on the amount of time a voice is heard (e.g., a phone 

conversation must last at least several seconds). The results are 
combined with the visual activity classification results to 
disambiguate activities that are visually similar.  

Many complex methods exist to classify audio signals, but it 
is not necessary to apply them here since the accuracy 
constraints are low (we do not need millisecond accuracy). 
Keyboard activity can also be detected using software, but since 
in our framework the audio signal is processed to detect speech 
anyway, it is reasonable to distinguish the sounds of the 
keyboard from other sounds.  

Figure 5. Extraction of head, and shoulder 
angles. 

3. INTERRUPTIONS, ATTENTIVE 
INTERFACES, & SELF-REPORTS 

In the author’s experience, one of the biggest problems with 
most of the ergonomic monitoring systems available is that they 
interrupt the user without considering his current activity, often 
causing annoyance rather than relief. One of the goals of our 
system, therefore, is to give the user unobtrusive feedback. This 
is achieved by showing, on screen, small indicators of his 
posture in real time. A small icon on the bottom of the screen 
can show the user his head and body angles, providing 
immediate feedback on his posture (e.g., is his head straight? are 
his shoulders straight?). Another possibility is to use an 
indicator bar: when the bar is in the green area the user’s posture 
is OK (according to his “good posture” examples). If the bar is 
on the red areas it indicates that the user is not in good posture 
(e.g., leaning right or left). 

As explained in earlier sections, the user sets up his activity 
and interruption profiles. Therefore, it would be possible to 
connect the output of the system with other applications (e.g, e-
mail client, phone, etc.) for interruption management and to use 
the system in the context of attentive interfaces. Gaze is an 
important indicator of attention and several methods exist (see 
[21] for a review) which could be implemented in our system. 
However, they would make the approach computationally 
expensive and gaze may not be needed for distinguishing most 
high-level activities.    

One of the main purposes of the system is increasing the 
user’s awareness of his own postures and work habits. Since it 
can be set to record activities continuously, activity and posture 
summaries can be generated for any period of time (e.g., a day, 
a week, the last hour, etc.), only for postures or activities the 
user is interested in (according to his profile). Even if only the 
silhouettes are recorded, it is interesting to look back at the 
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results by simply browsing through the images particularly 
because they give the user visual feedback of his posture. One 
interesting issue, therefore, is how to best present the 
information collected (e.g., a sped up animation of his posture 
over a period of time, a table, etc.). 

As with all personal data, it is important to consider privacy 
issues. One way to help the user feel more comfortable is to give 
him full control of what the application does. For instance, not 
saving any images and showing only real-time information, 
saving only silhouettes, saving only posture information, and so 
on. Another way is to ensure that the data is secure by 
encrypting it and saving it in a separate personal store (e.g., a 
portable posture measuring device).   

4. EXPERIMENTS 
We have implemented a prototype system in Java using 

ImageJ [2] and Weka [35]. The current implementation, with a 
standard USB webcam (320x240) runs at 15 frames per second.  

4.1 Experiment One  
In the first experiment we randomly selected 8 “sitting in 

front of the computer” postures (by one user) and compared the 
posture angles by manually drawing the corresponding lines on 
the image and computing the difference with the lines obtained 
automatically. As Table 1 shows, the average error is about 6.5 
degrees. In Figure 5 the lines on the top image of are drawn 
manually, the horizontal line shows the automatic separation of 
head and torso, and the diamond on the bottom right is obtained 
automatically, as are the shoulder lines (bottom right image 
Figure 5).  

Table 1. Comparison of automatic (A) and manual (M) 
head and shoulder angles. 

Head angle (degrees) Shoulder angle (degrees) 

A M Error A M Error 

8.60 8 0.60 8.03 2 6.03 

30.96 22 8.96 15.48 10 5.48 

-6.88 8 14.88 -5.73 -10 4.27 

13.18 12 1.18 32.10 12 20.10 

34.39 12 22.39 19.49 13 6.49 

9.17 8 1.17 6.31 4 2.31 

-0.57 2 2.57 0 -2 2 

-19.49 -20 0.51 12.04 8 4.04 

Average 6.53  6.34 

We found similar performance for different users, and in 
general we found that head-body separation is not problematic 
when the user’s hands are lowered. Difficulties arise when the 
hands are lifted or when the user performs other activities such 
as speaking on the telephone (see Figure 6(g)). However, head-
torso separation is only of interest in the sitting case when none 
of the other activities are being performed. Nonetheless, skin 
detection could be used to deal with more difficult cases (e.g., 
long hair). 

The current angle measures give a very general indication of 
the user’s posture, and additional measures could be used. For 
example, the size of the fitted diamond could give a rough 
estimate of the 3D orientation of the head and additionally lines 

could be fitted to the sections of arms that are visible (below the 
shoulder). Adding more features, however, raises the question of 
how to convey the information to the user in a simple, effective 
way (e.g., 3D animation?). 

4.2 Experiment Two 
For this experiment one person sat in front of the computer 

and performed the following activities: sit, read, write, speak on 
the phone, stretch, and others. The process described in section 
2 was applied, but in this experiment we only used the lengths 
of each of the lines (Figure 3; experiment 3 uses all the features).  

We obtained 100 samples  (20 for read, 20 for sit, and 15 for 
each of the other classes). The results of automatic classification 
(using 10-fold cross-validation) are summarized in Table 2. 
Although the training set is small, the results are promising. For 
the classifier with highest accuracy (IB1), the class with highest 
precision is “reading”. The “resting” class corresponds to the 
activity in which the user holds his hands on the back of his 
head (like stretching). Not surprisingly, this class yields the 
highest recall as the silhouette is most different from the rest. As 
expected, the most difficult class is the “phone” class as it is 
similar to the sitting class. 

In general, as expected, we found that using more lines to 
represent the polygon gives higher accuracy. The average 
accuracy increased by about 4% when doubling the number of 
vertices, with the best results shown in Table 2—we used 32 
lines in all experiments.  

Table 2. Results (%) of automatic classification, using 
1-nearest neighbor (IB1), 3-nearest neighbor (IB-3), 
and Naïve-Bayes classifiers (NB). Precision (P) and 
Recall (R) values are shown. 

IB1 IB3 NB Postures 
P R P R P R 

Sit 78 90 55 80 64 70 
Read 83 75 75 45 71 75 
Write 74 93 77 87 92 80 
Phone 71 80 60 80 50 40 
Resting 79 100 71 100 100 100 
Others 75 20 100 70 77 87 
Accuracy 77% 66% 75% 

Some representative examples for this experiment are shown 
in Figure 6. The system succeeded in cases (a) through (d), and 
failed in the other cases. Case (e) is interesting because it shows 
one of the limitations of using only the lines: including 
additional features (e.g., silhouette bounding box) eliminates 
this error. Note that the system does not fail in (c) because a line 
is projected along the arm. Case (f) is more difficult and shows 
the limitations of a silhouette since information within the 
silhouette is not used. The errors in cases (g) and (h) could be 
easily eliminated incorporating the results of the audio analysis. 

Results with other users were similar in terms of overall 
performance, but we found interesting variations. For example, 
the algorithm did well on the phone class (and reading) with 
some users, but very poorly with others. This is logical since 
different people have different habits and some people’s activity 
silhouettes are more easily distinguishable from others (e.g., my 
“reading” vs. “phone” silhouette may be very different to each 
other, but someone else’s same activities may look very similar). 
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(a) (b) 

(c) (d) 

 (e)  (f) 

 (g)  (h) 
Figure 6. Classification of different activities. 

4.3 Experiment Three 
In the third experiment four subjects performed the following 

activities: speak on the phone, stretch, read, converse with a 

colleague standing next to the desk, and sit (e.g., as in typing—
see silhouettes in Figure 7). We obtained a total of 64 examples 
and constructed a binary classifier (sitting only and others) and a 
5-class classifier (for each of the five types of activities). The 
results of automatic classification (using 10-fold cross-
validation) are summarized in Tables 3 (binary classifier) and 4 
(five-class classifier). As expected, performance of the binary 
classifier is, overall, slightly higher than for the n-class classifier. 
The performance of other algorithms such as NN3 and Naïve 
Bayes is comparable to the results presented. One disadvantage 
of Nearest Neighbor approaches is the slow speed at 
classification time. Thus if the number of training examples is 
large, NN approaches should be avoided.  

Table 3. Results of automatic binary classification (in 
% values) for data of four people, using 1-nearest 
neighbor (NN1), multilayer perceptron (MLP), and SVM 
classifiers. Precision (P) and Recall (R) values are 
shown. 

 NN1 MLP SVM 

Activity P R P R P R 

Sit 63.3 86.4 72.0 81.8 80.0 72.7 

Others 91.2 73.8 89.7 83.3 86.4 90.5 

Accuracy 78.1 % 82.8 % 84.4 % 

Classification using 66% of the samples for training and the 
rest for testing, for the two and five class problems (using NN1), 
gives 90.1% accuracy (correct classifications) in both cases. The 
errors are misclassifications between sit and phone. 

Table 4. Results of automatic classification (in % 
values), using 1-nearest neighbor (NN1), multilayer 
perceptron (MLP), and SVM. Precision (P) and Recall 
(R) values are shown. 

 NN1 MLP SVM 

Activity P R
  

P R
  

P R
  

Sit 63.3 86.4 78.3 81.8 58.8 90.9 

Conversation 90.0 100 90.0 100 90.0 100 

Read 83.3 45.5 66.7 54.5 100 36.4 

Rest 100 100 100 100 100 100 

Phone call 75.0 50.0 75.0 75.0 66.7 33.3 

Accuracy 76.6% 81.3% 73.4% 

As noted earlier, the performance may vary from individual 
to individual. The results of classifying activities from different 
individuals, however, gives us insight into the robustness of the 
approach to variations. A single user’s activity silhouettes may 
vary slightly depending on how close he sits to the camera, the 
clothing he is wearing (e.g., a heavy jacket may have some 
impact on the silhouette) or simply his position. Thus, the 
approach must be flexible enough to recognize such variations, 
but robust enough to make distinctions between activities (and 
postures).  

4.4 Experiment Four 
In the fourth experiment, we tested an audio classifier built 

using data from one person. The training set consisted of 30 
seconds of keyboard input, 30 seconds of silence, and one 
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minute of voice (speaking on the phone). We extracted the 
features described in section 2.6, namely volume, mean pitch, 
pitch standard deviation, and pitch intensity, as implemented in 
[22]. We used the MAD framework in Matlab to extract pitch 
using autocorrelation using frames of length 1024 (32 kHz 
sampling rate) and one second segments. 

Using 10-fold cross-validation we obtained, for a 1-nearerst 
neighbor classifier, 95% accuracy (keyboard precision 93% and 
recall 89%; voice precision 94% and recall 95%; and 100% 
precision and recall for silence). Although we did not combine 
the results of the audio and visual classifiers, it is clear that 
combining the results would have a positive impact on 
performance. 

 

 

 

  

 

 
Figure 7. Example silhouettes obtained from 
experiment 3 for various activities by several 
individuals (from top to bottom: converse with a 
colleague, speak on the phone, read, stretch, and 
sit).  

4.5 Discussion 
The experiments show reasonable results for the activities 

chosen using very small training sets. In the current version of 
the software, the user decides in advance which activities he is 
interested in. Another way to use the data, however, is to 
perform automatic clustering of the activities and postures seen 
so far by the system up to a certain time, and displaying the 
results to the user so he can select the postures and activities that 
he is interested in. This approach may work better in practice as 
the user can “discover” his natural postures instead of posing to 
collect examples. 

As with all learning-based techniques, two important issues 
are the number of training examples and the quality of the 
training set. If the system collects just one image per second, 
that yields 3,600 images per hour, or around 28,800 images in 
an 8 hour period. With today’s storage capabilities, that is not a 
lot of space for images of size 320x240, particularly if only the 
silhouettes are saved in a highly compressed format. Clustering 
the images and showing them to the user for labeling could 
work extremely well, but a higher burden would be placed on 
the user and it would be necessary to build an interface to 
effectively and efficiently view and modify the clusters if 
needed.  

5. CONCLUSIONS & FUTURE WORK 
We have presented a novel system for monitoring a computer 

user’s upper body posture, and activities in front of the 
computer (e.g., reading, speaking on the phone, etc.) for self-
reporting. Three important aspects of our approach are 
flexibility, privacy, and simplicity. The system allows the user 
to decide what his good and bad postures are, as well as to select 
which activities should be monitored. The approach is based on 
silhouettes and it is therefore computationally efficient and easy 
to implement on inexpensive hardware.   

Our experiments show promising results.  However, accuracy 
could be improved by using more features, and further user 
testing is necessary. Some extensions to the framework include 
estimating 3D pose, incorporating additional monitoring 
functionalities (e.g., keyboard use), and using more cameras and 
other types of sensors. It would also be interesting to infer the 
user’s mental state using posture, using approaches similar to 
those in [7], and perhaps even using the silhouettes for user 
identification (using more features). 
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