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Abstract. In this paper we review the major approaches to multimodal hu-
man computer interaction from a computer vision perspective. In particular, we 
focus on body, gesture, gaze, and affective interaction (facial expression recog-
nition, and emotion in audio). We discuss user and task modeling, and multi-
modal fusion, highlighting challenges, open issues, and emerging applications 
for Multimodal Human Computer Interaction (MMHCI) research. 

1   Introduction 
Multimodal Human computer interaction (MMHCI) lies at the crossroads of 

several research areas including computer vision, psychology, artificial intelligence, 
and many others. As computers become integrated into everyday objects (ubiquitous 
and pervasive computing), effective natural human-computer interaction becomes 
critical: in many applications, users need to be able to interact naturally with com-
puters the way face-to-face human-human interaction takes place. We communicate 
through speech and use body language (posture, gaze [48], hand motions) to express 
emotion, mood, attitude, and attention [41]. 

In human-human communication, interpreting the mix of audio-visual signals is 
essential in understanding communication. Researchers in many fields recognize this, 
and thanks to advances in the development of unimodal techniques (in speech and 
audio processing, computer vision, etc.), and in hardware technologies (inexpensive 
cameras and sensors), there has been a significant growth in MMHCI research. Unlike 
in traditional HCI applications (a single user facing a computer and interacting with it 
via a mouse or a keyboard), in new applications (e.g., intelligent homes [43], remote 
collaboration, arts, etc.), interactions are not always explicit commands, and often 
involve multiple users. 

Although much progress has been achieved in MMHCI, most researchers still 
treat each modality (e.g., vision, speech) separately, and integrate the results at the 
application stage. One reason for this is that the roles of multiple modalities and their 
interplay remain to be quantified and scientifically understood. Additionally, many 
open issues remain in processing each modality individually.  

In this paper we highlight the main vision problems that in our view should be 
solved for successful MMHCI applications, and give an overview of the research ar-
eas we consider essential for MMHCI. We group vision techniques according to the 
human body (Figure 1). Large-scale body movement, gesture (e.g., hands), and gaze 
analysis are used for tasks such as emotion recognition in affective interaction, and 
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for a variety of applications. We discuss affective computer interaction, issues in 
multi-modal fusion, modeling, and data collection, and a variety of emerging MMHCI 
applications. Since MMHCI is a very dynamic and broad research area we do not 
intend to present a complete survey. The main contribution of this paper, therefore, is 
to consolidate some of the main issues and approaches, and to highlight some of the 
techniques and applications developed recently within the context of MMHCI.  

1.1. Related Surveys  

Extensive surveys have been previously published in several areas such as face 
detection [88][26], face recognition [91], facial expression analysis [17][54], vocal 
emotion [46][95], gesture recognition [38][78][57], human motion analysis 
[27][83][84][22][1][44], and eye tracking [12]. A review of vision-based HCI is pre-
sented in [62] with a focus on head tracking, face and facial expression recognition, 
eye tracking, and gesture recognition. Adaptive and intelligent HCI is discussed in 
[14] with a review of computer vision for human motion analysis, and a discussion of 
techniques for lower arm movement detection, face processing, and gaze analysis. 
Multimodal interfaces are discussed in [49][50][51][52][69]. Real-time vision for HCI 
(gestures, object tracking, hand posture, gaze) is discussed in [33]. Here, we discuss 
work not included in previous surveys, expand the discussion to areas not covered 
previously (e.g., in [33][14][62][50]), and discuss new applications in emerging areas 
while highlighting the main research issues.  

2.   Overview of Multimodal Interaction 
The term multimodal has been used in many contexts and across several disci-

plines. For our interests, a multimodal HCI system is simply one that responds to in-
puts in more than one modality or communication channel (e.g., speech, gesture, writ-
ing, and others). We use a human-centered approach in our definition: by modality we 
mean mode of communication according to human senses or type of computer input 
devices. In terms of human senses the categories are sight, touch, hearing, smell, and 
taste. In terms of computer input devices we have modalities that are equivalent to 
human senses: cameras (sight), haptic sensors (touch), microphones (hearing), olfac-
tory (smell), and even taste [36]. In addition, however, there are input devices that do 
not map directly to human senses: keyboard, mouse, writing tablet, motion input (e.g., 
the device itself is moved for interaction), and many others.  

In our definition, a system that uses any combination of modalities in the catego-
ries above is multimodal. For our purposes, however, interest is exclusively on sys-
tems that include vision (cameras) as a modality1. A system that responds only to fa-
cial expressions and hand gestures, for example, is not multimodal, even if integration 
of both inputs (simultaneous or not) is used (using the same argument, a system with 
multiple keys is not multimodal, but a system with mouse a keyboard input is). The 
issue of where integration of modalities takes place, if at all, is of great importance 
and is discussed throughout the paper.  

                                                            
1 Others have studied multimodal interaction using multiple devices such as mouse and keyboard, keyboard 
and pen, and so on. 
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As depicted in Figure 1, we place input modalities in two major groups: based 
on human senses (vision, audio, haptic, olfactory and touch), and others (mouse, key-
board, etc.). The visual modality includes any form of interaction that can be inter-
preted visually, and the audio modality any form that is audible (including multi-
language input). We only discuss vision in detail, but as many new applications show 
(see Section 6), other modalities have gained importance for interaction (e.g., haptic 
[4]).  

As depicted in Figure 1, multimodal techniques can be used to construct a vari-
ety of interfaces. Of particular interest for our goals are perceptual and attentive inter-
faces. Perceptual interfaces [80] as defined in [81], are highly interactive, multimodal 
interfaces that enable rich, natural, and efficient interaction with computers. Percep-
tual interfaces seek to leverage sensing (input) and rendering (output) technologies in 
order to provide interactions not feasible with standard interfaces and common I/O 
devices such as the keyboard, the mouse and the monitor [81]. Attentive interfaces, on 
the other hand, are context-aware interfaces that rely on a person’s attention as the 
primary input [71] — the goal of these interfaces [47] is to use gathered information 
to estimate the best time and approach for communicating with the user.  

Figure 1. Overview of multimodal interaction using a human-centered approach. 

Vision plays a fundamental role in several types of interfaces. As argued in [71], 
attention is epitomized by eye contact (even though other measures, such as cursor 
movement can also be indicative). Perceptual interfaces aim at natural interaction, 
making vision an essential component. The key point is that vision plays a major role 
in human-computer interfaces that aim at natural interaction. As we will see in Sec-
tion 6, vision in multimodal interaction is applied in a variety of applications and in-
terface types. 

Although there have been many advances in MMHCI, as our discussions will 
show, the majority of research approaches focus on one mode independently and fuse 
the results at the highest level possible (in the application). Accordingly, in the next 
section we survey Computer Vision techniques for MMHCI and in the following sec-
tions we discuss fusion, interaction, and applications.  
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3.   Core Vision Techniques 
We classify vision techniques for MMHCI using a human-centered approach 

and divide them according to how humans may interact with the system: (1) large-
scale body movements, (2) gestures, and (3) gaze. We make a distinction between 
command (actions can be used to explicitly execute commands: select menus, etc.) 
and non-command interfaces (actions or events used to indirectly tune the system to 
the user’s needs) [45][7].  

In general, vision-based human motion analysis systems used for MMHCI can 
be thought of as having mainly 4 stages: (1) motion segmentation, (2) object classifi-
cation, (3) tracking, and (4) interpretation. While some approaches use geometric 
primitives to model different components (e.g., cylinders for limbs, head, and torso 
for body movements, or for hand and fingers in gesture recognition), others use fea-
ture representations based on appearance. In the first approach, external markers are 
often used to estimate body posture and relevant parameters. While markers can be 
accurate, they place restrictions on clothing and require calibration, so they are not 
desirable in many applications. Appearance based methods, on the other hand, do not 
require markers, but require training (e.g., with machine learning, probabilistic ap-
proaches, etc.). Methods that do not require markers place fewer constraints on the 
user and are more desirable, as are those that do not use geometric primitives (which 
are computationally expensive and often not suitable for real-time processing).  

Next, we discuss some specific techniques for body, gesture, and gaze. The mo-
tion analysis steps are similar, so there is some inevitable overlap in the discussions. 
Some of the issues for gesture recognition, for instance, apply to body movements and 
gaze detection. 

3.1. Large-Scale Body Movements 

Tracking of large-scale body movements (head, arms, torso, and legs) is neces-
sary to interpret pose and motion in many MMHCI applications Since extensive sur-
veys have been published [83][84][22][1][44], we discuss the topic briefly.  

The authors of [87] identify three important issues in articulated motion analy-
sis: representation (joint angles or motion of all the sub-parts), computational para-
digms (deterministic or probabilistic), and computation reduction. They propose a 
dynamic Markov network that uses Mean Field Monte Carlo algorithms so that a set 
of low dimensional particle filters interact with each other to solve a high dimensional 
problem collaboratively. 

Body posture analysis is important in many MMHCI applications. In [77], the 
authors use a stereo and thermal infrared video system to estimate driver posture for 
deployment of smart air bags. The authors of [64] propose a method for recovering 
articulated body pose without initialization and tracking (using learning). The authors 
of [3] use pose and velocity vectors to recognize body parts and detect different ac-
tivities, while the authors of [5] use temporal templates. 

In some emerging MMHCI applications, group and non-command actions play 
an important role. The authors of [40] present an approach to segment a meeting ac-
cording to actions such as monologue, presentation, white-board, discussion, and note 
taking. HMMs are used with a combination of audiovisual features. Visual features 
are extracted from head and hand/forearm blobs: the head blob is represented by the 
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vertical position of its centroid, and hand blobs are represented by eccentricity and 
angle with respect to the horizontal. Audio features include energy, pitch, and speak-
ing rate, among others. The authors of [24] use only computer vision, but make a dis-
tinction between body movements, events, and behaviors, within a rule-based system 
framework. 

Important issues for large-scale body tracking include whether the approach uses 
2D or 3D, desired accuracy, speed, occlusion and other constraints. Some of the is-
sues pertaining to gesture recognition, discussed next, can also apply to body tracking.  

3.2. Gesture Recognition 

Psycholinguistic studies for human-to-human communication [41] describe ges-
tures as the critical link between our conceptualizing capacities and our linguistic 
abilities. Humans use a very wide variety of gestures ranging from simple actions of 
using the hand to point at objects to the more complex actions that express feelings 
and allow communication with others. Gestures should therefore play an essential role 
in MMHCI [32][86][19]. A major motivation for these research efforts is the potential 
of using hand gestures in various applications aiming at natural interaction between 
the human and the computer-controlled interface. These applications range from vir-
tual environments [31], to smart surveillance [78] and remote collaboration [19]. 

There are several important issues that should be considered when designing a 
gesture recognition system [57]. The first phase of a recognition task is choosing a 
mathematical model that may consider both the spatial and the temporal characteris-
tics of the hand and hand gestures. The approach used for modeling plays a crucial 
role in the nature and performance of gesture interpretation. Once the model is de-
tected, an analysis stage is required for computing the model parameters from the 
features that are extracted from single or multiple input streams. These parameters 
represent some description of the hand pose or trajectory and depend on the modeling 
approach used. Among the important problems involved in the analysis are that of 
hand localization [94], hand tracking [89], and the selection of suitable features [32]. 
After the parameters are computed, the gestures represented by them need to be clas-
sified and interpreted based on the accepted model and based on some grammar rules 
that reflect the internal syntax of gestural commands. The grammar may also encode 
the interaction of gestures with other communication modes such as speech, gaze, or 
facial expressions. As an alternative, some authors have explored using combinations 
of simple 2D motion based detectors for gesture recognition [29]. 

In any case, to fully exploit the potential of gestures for an MMHCI application, 
the class of possible recognized gestures should be as broad as possible and ideally 
any gesture preformed by the user should be unambiguously interpretable by the in-
terface. However, most of the gesture-based HCI systems allow only symbolic com-
mands based on hand posture or 3D pointing. This is due to the complexity associated 
with gesture analysis and the desire to build real-time interfaces. Also, most of the 
systems accommodate only single-hand gestures. Yet, human gestures, especially 
communicative, naturally employ actions of both hands. However, if the two-hand 
gestures are to be allowed, several ambiguous situations may appear (e.g., occlusion 
of hands, intentional vs. unintentional, etc.) and the processing time will likely in-
crease. Another important aspect that is increasingly considered is the use of other 
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modalities (e.g., speech) to augment the MMHCI system [51][72]. The use of such 
multimodal approaches can reduce the complexity and increase the naturalness of the 
interface for MMHCI [50].  

3.3. Gaze Detection 

Gaze, defined as the direction to which the eyes are pointing in space, is a strong 
indicator of attention, and it has been studied extensively since as early as 1879 in 
psychology, and more recently in neuroscience and in computing applications [12]. 
While early eye tracking research focused only on systems for in-lab experiments, 
many commercial and experimental systems are available today for a wide range of 
applications. 

Eye tracking systems can be grouped into wearable or non-wearable, and infra-
red-based or appearance-based. In infrared-based systems, a light shining on the sub-
ject whose gaze is to be tracked creates a “red-eye effect:” the difference in reflection 
between the cornea and the pupil is used to determine the direction of sight. In ap-
pearance-based systems, computer vision techniques are used to find the eyes in the 
image and then determine their orientation. While wearable systems are the most ac-
curate (approximate error rates under 1.4° vs. errors under 1.7° for non-wearable in-
frared), they are also the most intrusive. Infrared systems are more accurate than ap-
pearance-based, but there are concerns over the safety of prolonged exposure to infra-
red lights. In addition, most non-wearable systems require (often cumbersome) cali-
bration for each individual.  

Appearance-based systems use both eyes to predict gaze direction, so the resolu-
tion of the image of each eye is often small, which makes them less accurate. In [82], 
the authors propose using a single high-resolution image of one eye to improve accu-
racy. Infrared-based systems usually use only one camera. The authors of [66] have 
proposed using multiple cameras to improve accuracy. 

One trend has been to improve non-wearable systems for use in MMHCI and 
other applications where the user is stationary (e.g., [74][66]). For example, the au-
thors of [74] monitor driver visual attention using a single, non-wearable camera 
placed on a car’s dashboard to track face features and for gaze detection.  

There have also been advances in wearable eye trackers for novel applications. 
In [90], eye tracking data is combined with video from the user’s perspective, head 
directions, and hand motions to learn words from natural interactions with users; the 
authors of [58] use a wearable eye tracker to understand hand-eye coordination in 
natural tasks, and the authors of [13] use a wearable eye tracker to detect eye contact 
and record video for blogging. 

The main issues in developing gaze tracking systems are intrusiveness, speed, 
robustness, and accuracy. The type of hardware and algorithms necessary, however, 
depend highly on the level of analysis desired. Gaze analysis can be performed at 
three different levels [7]: (a) highly detailed low-level micro-events, (b) low-level 
intentional events, and (c) coarse-level goal-based events. Micro-events include mi-
cro-saccades, jitter, nystagmus, and brief fixations, which are studied for their physio-
logical and psychological relevance by vision scientists and psychologists. Low-level 
intentional events are the smallest coherent units of movement that the user is aware 
of during visual activity, which include sustained fixations and revisits. Although 
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most of the work on HCI has focused on coarse-level goal-based events (e.g., using 
gaze as a pointer [73]), it is easy to foresee the importance of analysis at lower levels, 
particularly to infer the user’s cognitive state in affective interfaces (e.g., [25]). 
Within this context, an important issue often overlooked is how to interpret eye-
tracking data (see [67] for discussion on eye tracking data clustering). 

4.   Affective Human-computer Interaction 
There is a vast body of literature on affective computing and emotion recogni-

tion [2][55][61]. Affective states are intricately linked to other functions such as atten-
tion, perception, memory, decision-making, and learning [15]. This suggests that it 
may be beneficial for computers to recognize the user's emotions and other related 
cognitive states and expressions.  

Researchers use mainly two different methods to analyze emotions. One ap-
proach is to classify emotions into discrete categories such as joy, fear, love, surprise, 
sadness, etc., using different modalities as inputs to emotion recognition models. The 
problem is that the stimuli may contain blended emotions and the choice of these 
categories may be too restrictive, or culturally dependent. Another way is to have 
multiple dimensions or scales to describe emotions. Two common scales are valence 
and arousal. Valence describes the pleasantness of the stimuli, with positive or pleas-
ant (e.g, happiness) on one end, and negative or unpleasant (e.g., disgust) on the 
other. The other dimension is arousal or activation. For example, sadness has low 
arousal, whereas surprise has a high arousal level. The different emotional labels 
could be plotted at various positions on a two-dimensional plane spanned by these 
two axes to construct a 2D emotion model [35][23].  

Facial expressions and vocal emotions are particularly important in this context, 
so we discuss them in more detail below. 

 

4.1 Facial Expression Recognition  

Most facial expression recognition research (see [54] and [17] for two compre-
hensive reviews) has been inspired by the work of Ekman [15] on coding facial ex-
pressions based on the basic movements of facial features called action units (AUs). 
In this scheme, expressions are classified into a predetermined set of categories. Some 
methods follow a “feature-based” approach, where one tries to detect and track spe-
cific features such as the corners of the mouth, eyebrows, etc. Other methods use a 
“region-based” approach in which facial motions are measured in certain regions on 
the face such as the eye/eyebrow and the mouth. In addition, we can distinguish two 
types of classification schemes: dynamic and static. Static classifiers (e.g., Bayesian 
Networks) classify each frame in a video to one of the facial expression categories 
based on the results of a particular video frame. Dynamic classifiers (e.g., HMM) use 
several video frames and perform classification by analyzing the temporal patterns of 
the regions analyzed or features extracted. They are very sensitive to appearance 
changes in the facial expressions of different individuals so they are more suited for 
person-dependent experiments [10]. Static classifiers, on the other hand, are easier to 
train and in general need less training data but when used on a continuous video se-
quence they can be unreliable especially for frames that are not at the peak of an ex-
pression.  
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4.2 Emotion in Audio 

The vocal aspect of a communicative message carries various kinds of informa-
tion. If we disregard the manner in which a message is spoken and consider only the 
textual content, we are likely to miss the important aspects of the utterance and we 
might even completely misunderstand the meaning of the message. Nevertheless, in 
contrast to spoken language processing, which has recently witnessed significant ad-
vances, the processing of emotional speech has not been widely explored. 

Starting in the 1930s, quantitative studies of vocal emotions have had a longer 
history than quantitative studies of facial expressions. Traditional as well as most re-
cent studies on emotional contents in speech (see [46], [95], and [68]) use “prosodic” 
information which includes the pitch, duration, and intensity of the utterance. Recent 
studies seem to use the “Ekman six” basic emotions, although others in the past have 
used many more categories. The reasons for using these basic categories are often not 
justified since it is not clear whether there exist “universal” emotional characteristics 
in the voice for these six categories [11]. 

The most surprising issue regarding the multimodal affect recognition problem 
is that although recent advances in video and audio processing could make the multi-
modal analysis of human affective state tractable, there are only a few research efforts 
[30][70][92] that have tried to implement a multimodal affective analyzer.  

 
 
 

5.   Modeling, Fusion, and Data Collection 

5.1 User, context, and task modeling  

Multimodal interface design [63] is important because the principles and tech-
niques used in traditional GUI-based interaction do not necessarily apply in MMHCI 
systems.  Issues to consider, as identified in [63] include design of inputs and outputs, 
adaptability, consistency, and error handling, among others.  In addition, one must 
consider dependency of a person's behavior on his/her personality, cultural, and social 
vicinity, current mood, and the context in which the observed behavioral cues are 
encountered.  

Many design decisions dictate the underlying techniques used in the interface. 
For example, adaptability can be addressed using machine learning: rather than using 
a priori rules to interpret human behavior, we can potentially learn application-, user-, 
and context-dependent rules by watching the user's behavior in the sensed context 
[59]. Probabilistic graphical models have an important advantage here: well known 
algorithms exist to adapt the models, and it is possible to use prior knowledge when 
learning new models. For example, a prior model of emotional expression recognition 
trained based on a certain user can be used as a starting point for learning a model for 
another user, or for the same user in a different context. Although context sensing and 
the time needed to learn appropriate rules are significant problems in their own right, 
many benefits could come from such adaptive MMHCI systems.  
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5.2 Fusion 

A typical issue of multimodal data processing is that multisensory data is typi-
cally processed separately and only combined at the end. Yet, people convey multi-
modal (e.g., audio and visual) communicative signals in a complementary and redun-
dant manner (as shown experimentally by Chen [11]). Therefore, in order to accom-
plish a human-like multimodal analysis of multiple input signals acquired by different 
sensors, the signals cannot be considered mutually independently and cannot be com-
bined in a context-free manner at the end of the intended analysis but, on the contrary, 
the input data should be processed in a joint feature space and according to a context-
dependent model. In practice, however, besides the problems of context sensing and 
developing context-dependent models for combining multisensory information, one 
should cope with the size of the required joint feature space. Problems include large 
dimensionality, differing feature formats, and time-alignment. A potential way to 
achieve multisensory data fusion is to develop context-dependent versions of a suit-
able method such as the Bayesian inference method proposed by Pan et al. [53]. 

In spite of its importance, the problem of fusing multiple modalities is often 
largely ignored. For example, the studies in facial expression recognition and vocal 
affect recognition have been done largely independent of each other. Most works in 
facial expression recognition use still photographs or video sequences without speech. 
Similarly, works on vocal emotion detection often use only audio information. A le-
gitimate question that should be considered in MMHCI, is how much information 
does the face, as compared to speech, and body movement, contribute to natural inter-
action. Most experimenters suggest that the face is more accurately judged, produces 
higher agreement, or correlates better with judgments based on full audiovisual input 
than on voice input [42]. 

A multimodal system should be able to deal with imperfect data and generate its 
conclusion so that the certainty associated with it varies in accordance to the input 
data. A way of achieving this is to consider the time-instance versus time-scale di-
mension of human nonverbal communicative signals [55]. By considering previously 
observed data (time scale) with respect to the current data carried by functioning ob-
servation channels (time instance), a statistical prediction and its probability might be 
derived about both the information that has been lost due to malfunction-
ing/inaccuracy of a particular sensor and the currently displayed action/reaction. 
Probabilistic graphical models, such as Hidden Markov Models (including their hier-
archical variants), Bayesian networks, and Dynamic Bayesian networks are very well 
suited for fusing such different sources of information. These models can handle 
noisy features, temporal information, and missing values of features all by probabilis-
tic inference. Hierarchical HMM-based systems [10] have been shown to work well 
for facial expression recognition. Dynamic Bayesian Networks and HMM variants 
[21] have been shown to fuse various sources of information in recognizing user in-
tent, office activity recognition, and event detection in video using both audio and 
visual information [20]. This suggests that probabilistic graphical models are a prom-
ising approach to fusing realistic (noisy) audio and video for context-dependent detec-
tion of behavioral events such as affective states. 

Despite important advances, further research is still required to investigate fu-
sion models able to efficiently use the complementary cues provided by multiple mo-
dalities. 
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5.3. Data Collection and Testing  

Collecting MMHCI data and obtaining the ground truth for it is a challenging 
task. Labeling is time-consuming, error prone, and expensive. In developing multi-
modal techniques for emotion recognition, for example, one approach consists of ask-
ing actors to read material aloud while simultaneously portraying particular emotions 
chosen by the investigators. Another approach is to use emotional speech from real 
conversations or to induce emotions from speakers using various methods (e.g., show-
ing photos or videos to induce reactions). Using actor portrayals ensures control of the 
verbal material and the encoder’s intention, but raises the question about the similarity 
between posed and naturally occurring expressions. Using real emotional speech, on 
the other hand, ensures high validity, but renders the control of verbal material and 
encoder intention more difficult. Induction methods are effective in inducing moods, 
but it is harder to induce intense emotional states in controlled laboratory settings. 

In general, collection of data for an MMHCI application is challenging because 
there is wide variability in the set of possible inputs (consider the number of possible 
gestures), often only a small set of training examples is available, and the data is often 
noisy. Therefore, it is very beneficial to construct methods that use scarcely available 
labeled data and abundant unlabeled data. 

Probabilistic graphical models are ideal candidates for tasks in which labeled 
data is scarce, but abundant unlabeled data is available. Efficient and convergent 
probabilistic graphical model algorithms exist for handling missing and unlabeled 
data. Cohen et al. [9] showed that unlabeled data can be used together with labeled 
data for MMHCI applications using Bayesian networks. However, they have shown 
that care must be taken when attempting such schemes. In the purely supervised case 
(only labeled data), adding more labeled data always improves the performance of the 
classifier. Adding unlabeled data, however, can be detrimental to the performance. 
Such detrimental effects occur when the assumed classifier's model does not match 
the data’s distribution.  

To conclude, further research is necessary to achieve maximum utilization of 
unlabeled data for MMHCI problems since it is clear that such methods could provide 
great benefit. 

6.   Applications 
Throughout the paper we have discussed techniques applied in a wide variety of 

application scenarios, including video conferencing and remote collaboration, intelli-
gent homes, and driver monitoring.  

As many of these applications show, the model of user interface in which one 
person sits in front of a computer is quickly changing. In some cases, the actions or 
events to be recognized are not explicit commands. In smart conference room applica-
tions, multimodal analysis has been applied mostly for video indexing [40] (see [60] 
for a social analysis application). Although such approaches are not meant to be used 
in real-time, they are useful in investigating how multiple modalities can be fused in 
interpreting communication. It is easy to foresee applications in which “smart meeting 
rooms” actually react to multimodal actions in the same way that intelligent homes 
should [43].  
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Perhaps one of the most exciting application areas of MMHCI is art. Vision 
techniques can be used to allow audience participation [39] and influence a perform-
ance. In [85], the authors use multiple modalities (video, audio, pressure sensors) to 
output different “emotional states” for Ada, an intelligent space that responds to mul-
timodal input from its visitors. In [37], a wearable camera pointing at the wearer’s 
mouth interprets mouth gestures to generate MIDI sounds (so a musician can play 
other instruments while generating sounds by moving his mouth). In [56], limb 
movements are tracked to generate music. MMHCI can also be used in museums to 
augment exhibitions [76].  

Robotics is yet another interesting area for MMHCI. The authors of [18] give a 
comprehensive review of socially active robots and discuss the role of “human-
oriented perception” (speech, gesture, and gaze).  

People with disabilities can benefit greatly from MMHCI technologies [34]. The 
authors of [75] propose a component-based smart wheel chair system and discuss 
other approaches that integrate various types of sensors (not only vision). In [12], 
computer vision is used to interpret facial gestures for wheel chair navigation. In [6], 
the authors present two techniques (head tilt and gesture with audio feedback) to con-
trol a mobile device. The approach could be beneficial for people with disabilities, but 
it points to another interesting area: use of MMHCI for mobile devices that have lim-
ited input/output resources. Finally, [65] introduces a system for presenting digital 
pictures non-visually (multimodal output). Other important application areas include 
gaming [92], and education, “safety-critical applications” (e.g., medicine, military, 
etc. [8]) among others. 

7.   Conclusion 
We have highlighted major vision approaches for multimodal human-computer 

interaction. We discussed techniques for large-scale body movement, gesture recogni-
tion, and gaze detection. We discussed facial expression recognition, emotion analysis 
from audio, user and task modeling, multimodal fusion, and a variety of emerging 
applications.  

One of the major conclusions of this survey is that most researchers process each 
channel (visual, audio) independently, and multimodal fusion is still in its infancy. On 
one hand, the whole question of how much information is conveyed by “separate” 
channels may inevitably be misleading. There is no evidence that individuals in actual 
social interaction selectively attend to another person's face, body, gesture, or speech, 
or that the information conveyed by these channels is simply additive. The central 
mechanisms directing behavior cut across channels, so that, for example, certain as-
pects of face, body, and speech are more spontaneous and others are more closely 
monitored and controlled. It might well be that observers selectively attend not to a 
particular channel but to a particular type of information (e.g., cues to emotion, decep-
tion, or cognitive activity), which may be available within several channels. No inves-
tigator has yet explored this possibility or the possibility that different individuals 
may typically attend to different types of information.  

Another important issue is the affective aspect of communication that should be 
considered when designing an MMHCI system. Emotion modulates almost all modes 
of human communication—facial expression, gestures, posture, tone of voice, choice 
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of words, respiration, skin temperature and clamminess, etc. Emotions can signifi-
cantly change the message: often it is not what was said that is most important, but 
how it was said. As noted by Picard [61] affect recognition is most likely to be accu-
rate when it combines multiple modalities, information about the user's context, situa-
tion, goal, and preferences. A combination of low-level features, high-level reasoning, 
and natural language processing is likely to provide the best emotion inference in the 
context of MMHCI. Considering all these aspects, Pentland [59] believes that multi-
modal context-sensitive human-computer interaction is likely to become the single 
most widespread research topic of the artificial intelligence research community. Ad-
vances in this area could change not only how professionals practice computing, but 
also how mass consumers interact with technology. 
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