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ABSTRACT 
In this paper we present a novel system for monitoring a 

computer user’s posture and activities in front of the computer 
(e.g., reading, speaking on the phone, etc.) for self-reporting. In 
our system, a camera and a microphone are placed in front of a 
computer work area (e.g., on top of the computer screen). The 
system monitors the computer user’s postures and summarizes 
his or her activities. The system gives the user real time 
feedback on the goodness of his current posture, triggers alarms 
if the postures are not good postures, and generates summaries 
of postures and activities over a specified period of time (e.g., 
hours, days, months, etc.). All elements of the system are highly 
customizable: the user decides what “good” postures are, what 
alarms are triggered, if any, and what activity and posture 
summaries are generated. We present novel algorithms for 
posture measurement (using geometric features of the user’s 
silhouette), and activity classification (using machine learning).  
Finally, we present experiments that show the feasibility of our 
approach, and discuss privacy issues and applications of the 
techniques presented (health monitoring, productivity analysis, 
and others). 

Categories and Subject Descriptions 
I.4.9 [Image Processing and Computer Vision]: Applications; 
H.5.2 [User Interfaces]: Ergonomics  
General Terms 
Algorithms, Measurement, Human Factors 
Keywords 
Ergonomics, Computer Vision, posture, ergonomics. 

 

1. INTRODUCTION  
Recently there has been a strong interest in recording one’s 

personal activities for future retrieval using cameras, 
microphones, and other sensors. Some initiatives have focused 
on wearable or portable devices, and others on using specialized 
rooms (e.g., smart meeting rooms).  

 

   Since computer users spend long periods of time in front of a 
computer, there have also been some initiatives to keep track of 
what users do on the computer. The MyLifeBits project [14], for 
example, keeps records of e-mails, applications used, and so on. 
It would certainly be useful to know, however, not only what 
applications are being used, but also what the user is doing in 
his workspace [19] (e.g., reading, speaking on the phone, etc.). 
Such information can be used for self-reporting and self-
monitoring: on one hand, it can help the user manage his time 
more accurately, and on the other hand it can help him monitor 
his own performance or progress.  

An important area that has not been explored in this context, 
however, is that of Ergonomics [32]. Although Ergonomics (“an 
applied science concerned with designing and arranging things 
people use so that the people and things interact most efficiently 
and safely” [45]) is applicable in many scenarios, it has gained 
importance for computer users because injuries due to prolonged 
computer usage are not uncommon. In fact, every year 
companies loose millions of dollars due to injuries sustained at 
the workplace by “information workers.” Such injuries can 
occur because of many factors, such as the environment (e.g., 
inadequate equipment or equipment arrangement), the activities 
performed (e.g., typing for too long without a break, etc.), or 
simply bad user habits (e.g., inadequate posture, etc.).  

Posture and productivity are tightly linked. It is well known in 
the medical field that depression affects gait, posture, and of 
course, productivity. An individual that is not productive may sit 
in unhealthy postures, focus on the wrong activities, or limit the 
range of activities that he performs. The importance of the 
impact of Ergonomics in productivity (including posture) is so 
great, that many guidelines exist for workers in many fields, 
even in the most unexpected occupations (e.g., [1]). 
Furthermore, studies have shown that ergonomic monitoring 
software can help improve computer worker productivity [18].  

There is no doubt that it would be useful to have a system that 
allows the user to self-report his activities and monitor his own 
posture in front of the computer. In this context, the goal of our 
work goes beyond recording for retrieval, to monitoring the 
user’s activities and providing unobtrusive, real-time feedback 
to help him (or her) improve his work habits. 

We present a novel posture alarm and activity summarization 
system. In our system, a camera is placed on top of the computer 
screen and the computer user is monitored by the system as he 
works. The system uses the camera to measure the user’s posture 
and determine his current activity (e.g., speaking on the phone, 
stretching, etc.). Feedback is given to the user, in real time, on 
the goodness of his upper body posture. In addition, input from 
the camera and a microphone are used to classify the worker’s 
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activities and give him summaries of what he has been doing for 
a determined period of time.   

The proposed system performs the following functions: 

• Posture indicator and alarm: the system monitors the 
user’s posture, and using an indicator on the screen, shows 
the user, in real time, how good (or bad) his posture is. The 
user may set alarms that alert him when he has been sitting 
in a particular (e.g., unhealthy) posture for a long time (as 
defined by the user). 

• Posture summary: the system produces, for a user-
determined period of time, a summary of the user’s 
postures. 

• Activity summary: the system produces, for a user-
determined period of time, a summary of activities (e.g., 
typing, reading, etc.) performed in front of the desktop.  

It is important to emphasize two aspects of the system: (1) 
flexibility, and (2) privacy. First, the goal is to give the user total 
control in defining good or bad postures and deciding when 
alarms are triggered, if at all, and what activities should be 
included in the summary. Second, the system is meant for self-
reporting: that is, posture and activity monitoring are private and 
not meant as a form of surveillance (this is discussed further in 
subsequent sections).  

Our approach uses background subtraction to extract 
silhouettes. From the silhouettes we obtain vertical projections 
to separate head from torso, and extract geometric features to 
classify activities. Posture is measured by obtaining head and 
shoulder angles. We use input from a microphone to determine 
when someone is speaking, when there is silence, or when the 
keyboard is being used. Using the audio we can differentiate 
activities that are visually similar. Although many posture 
algorithms have been developed, this is the first camera-based 
system we are aware of for posture monitoring.    

1.1 Related Work 
Many commercial products exist to help computer users 

monitor their activities for the purpose of Ergonomics (e.g., 
[36][37][38][39][40][41]), and studies (e.g, [18]) have shown 
that ergonomic monitoring software can help improve computer 
worker productivity. Some of the systems monitor keyboard and 
mouse use, while others simply remind the user to take a Y-
minute long break every X minutes. The system in [40], for 
example, forces the user to take a break by literally freezing the 
computer every X minutes according to the user’s settings. The 
system in [36] monitors keyboard and mouse use and suggests 
when the user should take micro-breaks. The Stretch Break 
system [37] also reminds users to take breaks, but in addition it 
shows animations so that users can do stretch exercises guided 
by the computer. RSI Guard [38] monitors mouse and keyboard 
use, and utilizes animations to encourage stretching, after 
analyzing the user’s intensity and quantity of work using data 
from the two input devices. Ergotimer [39] suggests breaks 
when a time limit is reached or when a number of keystrokes or 
mouse movements have been performed. We are not aware of 
any camera-based systems for ergonomics monitoring. Other 
systems (e.g., [35]) use sensors for posture detection, but no 
cameras (monitoring “bad” keyboard using sensors [8]; 
“postural comfort zone” for hand gestures in [24]). 

Although posture classification has been studied widely in the 
Computer Vision community, we are not aware of other works 
for the specific application we have constructed. Most 
approaches focus on classifying postures for surveillance 
applications or for applications with full-body view (e.g., 
standing vs. sitting vs. crouching, etc.). The authors of [27] use 
a camera system to detect posture using a fast algorithm that 
utilizes edge information. The system in [4], classifies postures 
in a vehicle (e.g., occupied by adult, by child, empty, occupant 
in-position, occupant out-of-position). The authors of [25] 
estimate 3D upper body posture using proposal maps. The 
system in [11] classifies postures such as standing, sitting, 
laying and crouching.  A probabilistic framework for edge 
matching is used by [13]. Other approaches include 
[7],[20],[31],[28],[4],[15],[30],[26],[16], and [9]. A review of 
related techniques for body tracking is given in [22]. 

Wearable cameras and sensors have been used to recognize 
activities [33] (e.g., walking, running, etc.). The system in [19] 
uses a camera to classify video scenes according to user tasks. 
Our work is similar to [19], whose authors only classify a 
computer user’s activities. However, our system focuses on 
posture monitoring, and the generation of self-reports (for 
activities and posture). Unlike the authors of [19], we do not use 
a face detector for activity classification. One reason for this is 
that due to the natural problem constraints (i.e., user directly in 
front of the monitor), finding the face in this application is not 
very challenging. In addition, although many techniques have 
been developed for face detection, in general they are more 
computationally expensive and sensitive to orientation changes 
(e.,g, non-frontal faces) than the techniques we present.  

1.2 Outline 
The rest of the paper is organized as follows. In section 2 we 
define the problem we are trying to solve and give an overview 
of the system. In section 3 we describe our technique for activity 
detection and posture monitoring. Section 4 describes real-time 
feedback and summaries in the application. In section 5 we 
present experiments, and discuss applications and other issues in 
section 6. We conclude in section 7. 

2. SYSTEM OVERVIEW 
2.1 Problem Definition 

The problem we are trying to solve is two-fold. On one hand, 
the idea is to have a system that alerts the user when his posture 
is not suitable. By posture we mean the position of his upper 
body as he sits in front of the computer. On the other hand, the 
goal is for the system to produce a summary of the user’s 
activities in his workspace. 
� Posture: since every user is different, the system cannot 

automatically determine what a good posture is using a 
single good-for-all measure. Therefore, the user must 
decide what are good (or comfortable) postures and give 
the system examples of those postures. As is done in 
practice, the user may consult a specialist (it is not 
uncommon for “ergonomic consultants” to evaluate one’s 
workspace and posture and suggest improvements) before 
deciding which postures should be considered positive 
and which should be considered negative. The goal is for 
the system to give the user unobtrusive, real time feedback 
based on his posture preferences, and produce a summary 
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of his postures for a specified time period. Alarms are set 
by the user so they are unobtrusive. 

� Activities: each user should also determine which 
activities he is most interested in keeping track of. The 
particular positions in which activities are performed can 
vary widely from individual to individual. For example, 
one person may prefer to read documents when they are 
set on his desk, while another may prefer to hold them in 
his hands (variations for the same individual are also 
common). The system should produce a summary of the 
user’s activities of interest over a specified period of time. 
In particular, we are interested only in activities that can 
be visually discriminated by an external observer (e.g., the 
camera). The goal of the system, therefore, is not to 
determine, for example, what application the user is 
working with, but rather focus on higher level activities 
such as sitting in front of the keyboard, reading, writing 
on a board, and so on. 

Our goal is not to give absolute feedback on good or bad 
postures or activities of interest—it is entirely upto the user to 
define what his “good” postures are and his activities of interest. 
It is also not our goal to monitor activities for surveillance. The 
idea is for the user to utilize activity and posture information for 
his own benefit. We recognize, however, that privacy issues 
must be addressed, and discuss these (as well as “group” activity 
monitoring) in later sections. 

2.2 System Setup 
The basic setup of our system consists of a microphone, and a 

camera on top of the computer monitor that captures a frontal 
view of the user (Figure 1). 

Figure 1. Basic system setup. The camera is 
placed on top of the computer screen or on 
another location facing the user. A microphone is 
also placed near the screen to capture voice 
activity. 

 
The algorithm proceeds as depicted in Figure 2. The system 

contains five basic components: (1) initialization; (2) training; 
(3) setting of alarm and activity profiles; (4) monitoring; and (5) 
summarization. We describe each of the stages below: 

• Initialization: an image of the background (without the user 
in the image) is stored. This process must be repeated if the 
camera is moved or if there are significant lighting changes1. 
The user initializes the system by pressing a button to capture 
the background. 

                                                                 
1  In the current version we do not compensate for lighting 

changes, but this can be easily improved if the changes are 
gradual (e.g., if the desk is near a window lighting changes 
can occur because of changes in weather or time of day).  

• Training: the user sits in a comfortable position with correct 
posture. Then the user clicks on a button to indicate that it is 
his standard correct posture (or postures). He may also give 
the system negative examples of postures that are not desired, 
and of “normal” activities he may be performing in front of 
the screen. For example, speaking on the telephone, reading a 
paper, typing, stretching, taking a break, and so on. There are 
no pre-defined categories and the training stage is flexible 
(user decides how many examples he wants to provide—
although the number of examples affects the performance of 
the system). The user can re-train the system at any time. 

• Alarm & activity profiles: alarms can be set so that they 
activate only after certain periods of time or when certain 
postures occur. The user constructs a “summary profile” 
which determines what the summary should contain (e.g., I 
am only interested in summaries of good posture, or of X 
activities), and the time periods of the summaries (minutes, 
hours, days, months). 

• Monitoring: user can adjust a set of thresholds to modify the 
sensitivity of the system to his particular motions, switch the 
monitor on or off when desired, and view an image of his 
posture in a small window on the screen, an indicator bar, or 
other indicators of good or bad posture. In addition, the user 
can set the system on “privacy mode” so that only silhouettes 
of his image are saved and not the actual photos. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 2. Process overview. The user can 
retrain the system and modify his profiles at any  
time. 
 

The system is highly flexible. For example, a researcher 
initializes the system by showing examples of his activities. He 
also sets up an “alarm profile” that will trigger when particular 
activities occur for determined periods of time. For example, he 
can set the profile so that an alarm is triggered if he is typing for 
more than t minutes (e.g., 60 minutes), or if he is on the phone 
for too long. One of the criterion, therefore, is the time spent on 
each activity, so this way an “activity profile” is created. He can 
also adjust the system at any time by giving more positive or 
negative examples. 

Initialize 

Train 

Posture alarm Posture summary

Activity summary 

Set alarm & activity profiles 

Monitor 

User 
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2.3 Visual Processing Overview 
The system is based on a background subtraction algorithm 

(see overview in Figure 3). The background image obtained at 
initialization is used to perform background subtraction every t 
milliseconds (this depends on particular hardware used). This 
yields an image to which a threshold th is applied in order to 
obtain a binary image corresponding to foreground objects.  

Shadows can sometimes be problematic, particularly if the 
user sits close to the background (e.g., a wall) because the user’s 
movement may cause lighting changes in the scene. In order to 
increase robustness, we use a rule-based skin detector [21]. 
Pixels that correspond to skin and are different from background 
pixels according to a second (lower) threshold th2 are also 
included in the binary image. We experimentally found that 
adding this constraint improves the separation of the user from 
the background, and it does not affect the detection of other 
motion areas (e.g., body covered by clothing). Figure 6 shows 
the results without the skin filter. The images in Figure 12 show 
the results using the skin filter—notice the improvement around 
the eyes (see actual silhouettes in Figure 13). 

 
Figure 3. Algorithm outline. 

 
The next step is to perform morphological operations (erode, 

fill, and dilate) on the binary image to eliminate holes and 
reduce noise (see region in Figure 6 before the skin filter and 

morphological operations; see actual silhouettes in Figure 13). 
The process may produce more than one region, so we label 
regions using a connected component algorithm. Since we 
assume that, for the most part, the only moving object will be 
the user, we proceed to process only the largest region obtained, 
which corresponds roughly to the silhouette of the user. Except 
in rare cases (e.g., very similar background and foreground 
pixels), the user will yield a single region, as long as lighting 
conditions are constant and an appropriate threshold is selected 
(see Figure 11 and Figure 12).  

Next we extract the region’s bounding box and the following 
region features: bounding box width, bounding box length, 
bounding box x and y location, center of mass of region, 
perimeter of region, region area, angle of primary axis of region, 
length of primary axis of region, length of secondary axis of 
region, Feret’s diameter (the greatest distance possible between 
any two points along the boundary of the region), and region 
eccentricity. The features are used by a learning algorithm 
during training, and by a classifier during monitoring for activity 
classification. If the current activity is determined to be “sitting 
in front of the computer”, we extract additional visual features to 
measure posture (section 3). 

2.4 Audio Processing 
We use a microphone to detect when there is voice, when 

there is silence, or when there is typing on the keyboard. For this 
task we implement an audio classifier for these three classes 
using simple features such as volume, mean pitch, pitch standard 
deviation, and pitch intensity (using the method described in 
[23]). 

 Since there are pauses when a person speaks, a voice segment 
will often include silence gaps. Therefore, we use constraints on 
the amount of time a voice is heard (e.g., a phone conversation 
must last at least several seconds). The results are combined 
with the visual activity classification results to disambiguate 
activities that are visually similar.  

Many complex methods exist in to classify audio signals, but 
it may not be necessary to apply them here since the accuracy 
constraints are low (we do not need millisecond accuracy). 
Keyboard activity can also be detected using software, but since 
in our framework the audio signal is processed anyway, it is 
reasonable to distinguish the sounds of the keyboard from other 
sounds. In the next section we describe the features used for this 
task.  

3. ACTIVITY CLASSIFICATION AND 
POSTURE MEASUREMENT  
3.1 Feature Extraction 

Once the largest region has been selected, as described in the 
previous section, the system extracts several features as follows:  

1. For the region, extract bounding box width, bounding 
box length, bounding box x and y location, center of 
mass, perimeter, area, angle of main axis, length of 
primary axis, length of secondary axis, Feret’s diameter, 
and eccentricity. 

2. Draw n lines that originate at the center of mass, 
separated by equal angle increments (e.g., for an angle of 
45º we obtain 8 lines). 

Background subtraction 

Morphological operations 

Region labeling 

Feature extraction 

Activity classification 

Summary? Alarm? No 

No

Store Indicate 
on screen 

Sitting? 
Yes 

Measure posture 

User profile 
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3. For each line, find the external boundaries of the region 
(see lines in Figure 4). These points define a polygon 
used for activity classification (in our experiments in 
section 5 we use the length of each line to represent the 
polygon). 

In addition, from the audio signal we extract volume, mean 
pitch, pitch standard deviation, and pitch intensity, using the 
method described in [23]. 

 
Figure 4. Features extracted from largest 
foreground region. 

 
The features are used for classifying activities as described in 

the next section. 

3.2 Training and Classification 
The user trains the system (Figure 2) by showing examples of 

good and bad postures and by showing examples of his common 
activities. This is done because only the user can really 
determine what he considers good (or comfortable) postures, 
using either recommended ergonomic guidelines or his own 
preferences. The types of activities that each person performs at 
his desk might also vary, so the user can also decide which 
activities to include. During training, the user simply clicks a 
button on the interface to indicate that a given posture is “good” 
or “bad”. For activities, the user labels examples of each of the 
activities (e.g., on the phone, reading, etc.). 

For each example we obtain the largest region and extract the 
features just described: bounding box width, bounding box 
length, bounding box x and y location, center of mass of region, 
perimeter of region, region area, angle of main region axis, 
length of primary region axis, length of secondary region axis, 
Feret’s diameter (the greatest distance possible between any two 
points along the boundary of a region), and eccentricity. We 
then concatenate these features with the length of each of the 
lines originating in the center of mass and obtain, for each 
example, an n-dimensional feature vector fv={f1, f2, …, fn}. For 
instance, if we use 16 lines from the center of mass, we obtain 
29 features (16 line lengths plus the 13 features described). 
There is some redundancy in this measure since the polygon 
vertices are sufficient to distinguish some of the activities.  

This process yields several sets of training examples, one for 
each class (e.g., on the phone, stretching, sitting only, etc.). The 
feature vectors are then used by a machine learning algorithm 
(e.g., Nearest Neighbor) to learn an n-class classifier (e.g., 
reading, on the phone, sitting only, etc.). 

In addition, our system uses input from the microphone to 
reinforce the classification results for activities that involve 
voice, namely typing, speaking on the phone and speaking to 
someone nearby. In the first case, it is expected that the user will 
give the system examples where he is holding the phone. 
Adding the voice constraint helps differentiate postures similar 
to those when the phone is used (in Figure 10 the second 

posture from top to bottom is similar to the posture when 
holding a phone). The audio component is very simple: there 
will only be significant audio input in a limited number of cases: 
(1) background voices or noise; (2) loudspeaker announcements; 
(3) person on the phone; or (4) person speaking with a colleague 
near his desk; (5) keyboard input. Clearly, for cases one and two 
the energy level is low compared to the energy level of cases 
three and four. We use volume, mean pitch, pitch standard 
deviation, and pitch intensity. The feature vector fa containing 
these values is used by a learning algorithm to build a classifier, 
currently for silence, voice, and keyboard activity (see [29] for a 
discussion on real-time pitch extraction).  

In the monitoring stage, we perform the same audio-visual 
processing to extract the same features and use the classifier that 
was learned to determine which activity is being performed by 
the user. The classification results are used for the summary 
(section 4.2). Then for the sitting only posture we compute a 
measure based on geometric features (e.g., head, shoulder 
angles) to provide real-time feedback to the user (next section). 

3.3 Posture Measurement 
In our system we are only interested in real-time feedback 

when the user is in the sitting only position (not performing 
other activities such as using the phone). In Figure 5 the first 
two postures (top left) can be considered  “correct” postures 
(according to the user) since he is sitting straight while he looks 
at the screen. In the rest of the images, the user is in different 
types of postures. These postures deviate from the “good 
postures” by a measurable quantity, in particular, by the angle of 
the head, and the angle of the shoulders. 

 
Figure 5. Different postures by the user. 

 
In order to give the user real-time feedback about his sitting 

only posture, we extract an additional set of features as follows: 
1. Obtain vertical projection profile for the extracted 

region (blue area on left in Figure 11). 
2. Find the deepest valley of the vertical profile and use the 

location of the valley to separate the head from the torso 
in the image of the extracted region (horizontal green 
lines in Figure 11). 

3. Fit a diamond to the head (Figure 6, right; see [2]). 
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4. Using the line that divides the head and the torso, search 
for shoulder edge pixels below in perpendicular 
direction. Once a number of edge pixels is found, fit a 
line to each of the shoulder edges using linear regression 
(see lines and diamond in right, Figure 6). 

  
Figure 6. Foreground object (left) and automatic 
posture measurement (lower right). 

Figure 7 shows an example of the angles extracted from two 
images. As the figure shows, for the “good posture” (top), the 
angle of the head inclination (yellow) is close to 90°. The three 
angles (head, shoulder 1, shoulder 2) are used to determine the 
goodness of the posture. 

 

 
Figure 7. Features extracted in each frame. 
 

4. SELF-REPORTS 
4.1 Real-Time Feedback 

The interface may show the user his own image and the 
angles (as shown in Figure 8) in real time. A small icon on the 
bottom of the screen shows the user the main features of his 
posture, thus he can get immediate feedback on his posture (e.g., 
is his head straight? are his shoulders straight?).  

 
 
 
 
 

Figure 8. Real time interface. 
In most cases, however, the user may just want to see a simple 

indicator that tells him how good his posture is. For this purpose, 
we implement several alternatives. An example is shown in 
Figure 9. When the bar is in the green area it indicates the user’s 
posture is OK (according to his “good posture” examples). If the 
black bar is on the red areas it indicates that the user is not in 
good posture (e.g., leaning right or left). 

Figure 9. Posture monitor in real-time using 
simple indicator. 

Note that feedback in the first case (Figure 8) does not require 
any type of classification since it simply shows the user’s 
current head, shoulder, and torso angles. For the second case 
(Figure 9) we simply measure the similarity between the training 
examples and current posture.  

4.2 Activity And Posture Summaries 
Since the system is meant to run continuously, the user is able 

to obtain automatically generated summaries for any time period, 
as depicted in Figure 10 (e.g., a day, a week, the last hour, etc.). 
As explained earlier, however, the user first sets up a summary 
profile so that the system can show a summary that is relevant 
for his purposes. The summary profile contains a list of postures 
or activities that the user wants to include in the summary. 

A summary, therefore, can be generated for activities and/or 
postures. Activities summarized may include reading, speaking 
on the phone, speaking to someone, filing documents or looking 
for something near the desk.  

 

40% of the time. 

 

20% of the time. 

 

25% of the time. 

 

15% of the time. 

Figure 10. Sample posture summary for a 
determined time-period (e.g., a day, a week, etc.). 

 

Screen work 
area 

Indicator 

Screen work 
area 

Indicator 
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5. EXPERIMENTS 
We have implemented a first prototype system in Java using 

ImageJ [2] and Weka [34]. The current implementation, with a 
standard webcam (320x240) runs at 15 frames per second.  

We performed four sets of experiments to evaluate our system. 
In the first experiment we evaluated the head and shoulder angle 
extraction for posture monitoring. In the second experiment we 
evaluated activity classification using a subset of the visual 
features (only polygon line lengths). In the third experiment we 
evaluated activity classification using all of the visual features. 
Finally, we evaluated the audio classification component.  

5.1 Experiment One  
In the first experiment we compared the head and shoulder 

angles obtained automatically with their manual counterparts. 
For the experiment we randomly selected 8 “sitting in front of 
the computer”2 postures and compared the angles. The angles 
were compared by manually drawing the corresponding lines on 
the image and computing the difference with the lines obtained 
automatically. As Table 1 shows, the average error is about 6.5 
degrees in both cases. Figure 11 shows several of the images in 
this experiment. The lines on the top images are drawn manually, 
and the areas in blue correspond to the horizontal and vertical 
projections. The green line shows the automatic separation of 
head and torso, and the red line vertices define the polygon used 
for activity classification. The diamond (light green inside head) 
over the head silhouette is also obtained automatically, as are 
the red shoulder lines (see top left image in Figure 11).  
Table 1. Comparison of automatic (A) and manual (M) 
head and shoulder angles. 

Head angle (degrees) Shoulder angle 
(degrees) 

A M Error A M Error 
8.60 8 0.60 8.03 2 6.03 

30.96 22 8.96 15.48 10 5.48 

-6.88 8 14.88 -5.73 -10 4.27 

13.18 12 1.18 32.10 12 20.10 

34.39 12 22.39 19.49 13 6.49 

9.17 8 1.17 6.31 4 2.31 

-0.57 2 2.57 0 -2 2 

-19.49 -20 0.51 12.04 8 4.04 

Average 6.53  6.34 

In general, and as the images suggest, we found that head-
body separation is not problematic when the user sits in front of 
the computer with his hands down. Difficulties arise when the 
hands are lifted or when the user performs other activities such 
as speaking on the telephone (see Figure 12(h)). However, head-
torso separation is only of interest in the sitting case when none 
of the other activities are being performed. We did not consider 
users with long hair, which could be problematic using this 

                                                                 
2 As mentioned earlier, we only measure the angles when the 

activity is sitting only (e.g., not writing on a board, etc.) 

technique. Using the results of the skin detector, however, 
would allow us to treat such cases. 

Although in this experiment we did not use multiple (positive, 
negative) examples, the idea, as described in section 2.2 is to use 
the angle measurements to determine how good or bad the 
posture is with respect to the examples given by the user.  

 

 

 

 
Figure 11. Extraction of head, and shoulder 
angles. 

5.2 Experiment Two 
For the second experiment we recorded a set of activities and 

extracted a feature vector for each activity. The second author 
participated in this experiment (four persons participated in 
experiment 3, described below). The author sat in front of the 
computer and performed the following activities: sit, read, write, 
speak on the phone, stretch, and others. As the person sat in 
front of the computer performing each activity, several video 
frames were obtained for each category (e.g., if the user is 
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reading for x minutes, y sample frames are extracted for that 
particular activity). The process described in section 3.1 was 
applied, but in this experiment we only used the lengths of each 
of the polygon lines (experiment 3 uses all the features).  

In this process we obtained 100 samples  (20 for read, 20 for 
sit, and 15 for each of the other classes). The results of 
automatic classification (using 10-fold cross-validation) are 
summarized in Table 2. Although the training set is small, the 
results are promising. For the classifier with highest accuracy 
(IB1), the class with highest precision is “reading”. The 
“resting” class corresponds to the activity in which the user 
holds his hands on the back of his head (like stretching). Not 
surprisingly, this class yields the highest recall as the silhouette 
is most different from the rest. As expected, the most difficult 
class is the “phone” class as it is similar to the sitting class. 
Table 2. Results (%) of automatic classification, using 
1-nearest neighbor (IB1), 3-nearest neighbor (IB-3), 
and Naïve-Bayes classifiers (NB). Precision (P) and 
Recall (R) values are shown. 

IB1 IB3 NB Postures 
P R P R P R 

Sit 78 90 55 80 64 70 
Read 83 75 75 45 71 75 
Write 74 93 77 87 92 80 
Phone 71 80 60 80 50 40 
Resting 79 100 71 100 100 100 
Others 75 20 100 70 77 87 
Accuracy 77% 66% 75% 

 
Some examples for experiment two are shown in Figure 12 

(using 32 lines originating in the center of mass). The system 
succeeded in cases (a) through (g) and failed in cases (h) 
through (l). The errors in cases (h) and (i) could be easily 
eliminated incorporating the results of the audio analysis from 
the microphone. Case (j) is interesting because it shows one of 
the limitations of using only the vertices: including additional 
features (e.g., silhouette bounding box) would improve 
performance in this case. Case (k) is more difficult and shows 
the limitation of using only the silhouette. An alternative here 
would be to detect lines within the silhouette. But if the user is 
reading a paper document, at least in this case it would be hard 
to do the correct classification (difficult to separate document 
from body). Finally, in case (l) the system determined the user 
was on the phone. As with cases (h) and (i), the use of audio 
would improve the performance. 

 

(a) (b) 

(c) (d) 

(e) (f)

(g) (h)

(i) (j)

(k) (l) 
Figure 12. Classification of different activities. 
 

5.3 Experiment Three 
In the third experiment we asked four subjects to perform the 

following tasks while sitting in front of the computer: speak on 
the phone, stretch, read, converse with a colleague standing next 
to the desk, and sit (e.g., as in typing—see silhouettes in Figure 
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13). We obtained a total of 64 examples and constructed a 
binary classifier (sitting only and others) and a 5-class classifier 
(for each of the five types of activities). The results of automatic 
classification (using 10-fold cross-validation) are summarized in 
Tables 3 (binary classifier) and 4 (five-class classifier).  
Table 3. Results of automatic binary classification (in 
% values) for data of four people, using 1-nearest 
neighbor (IB1), multilayer perceptron (MLP), and SVM 
classifiers. Precision (P) and Recall (R) values are 
shown. 

 IB1 MLP SVM 

Activity P R P R P R 

Sit 63.3 86.4 72.0 81.8 80.0 72.7 

Others 91.2 73.8 89.7 83.3 86.4 90.5 

Accuracy 78.1 % 82.8 % 84.4 % 

 
Table 4. Results of automatic classification (in % 
values), using 1-nearest neighbor (IB1), multilayer 
perceptron (MLP), and SVM. Precision (P) and Recall 
(R) values are shown. 

 IB1 MLP SVM 

Activity P R
  

P R
  

P R
  

Sit 63.3 86.4 78.3 81.8 58.8 90.9 

Conversation 90.0 100 90.0 100 90.0 100 

Read 83.3 45.5 66.7 54.5 100 36.4 

Rest 100 100 100 100 100 100 

Phone call 75.0 50.0 75.0 75.0 66.7 33.3 

Accuracy 76.6% 81.3% 73.4% 

 
As expected, performance of the binary classifier is, overall, 

slightly higher than for the n-class classifier.  

5.4 Experiment Four 
In the fourth experiment, we tested an audio classifier built 

using training by one of the authors. The training set consisted 
of 30 seconds of keyboard input, 30 seconds of silence, and one 
minute of voice (speaking on the phone). We extracted the 
features described in section 2.4, namely volume, mean pitch, 
pitch standard deviation, and pitch intensity, as implemented in 
[23]. We used the MAD framework in Matlab to extract and 
pitch using autocorrelation [10]. Pitch was obtained using 
frames of length 1024 (32 kHz sampling rate) and one second 
segments. 

 Using 10-fold cross-validation we obtained, for a 1-nearerst 
neighbor classifier, 95% accuracy (keyboard precision 93% and 
recall 89%; voice precision 94% and recall 95%; and 100% 
precision and recall for silence). 

Although we did not combine the results of the audio and 
visual classifiers, it is clear that combing the results could have 
an important impact on performance. 

 

 

  

 

 
 

 
Figure 13. Example silhouettes obtained from 
experiment 3 for various activities by several 
individuals (from top to bottom: converse with a 
colleague, speak on the phone, read, stretch, and 
sit).  

  

6. APPLICATIONS 
As mentioned earlier, the goal of the system is self-reporting. 
In other words, the information provided by the system is in 
principle only to be used by the user himself. This decision 
depends on the particular deployment, however, as group data 
(maintaining individual privacy) can also be very useful (e.g., 
get an estimate of productivity of a group of workers; 
determine posture problems in a group are due to 
uncomfortable chairs, etc.). 
The system can be used for the following purposes: 

• Ergonomics: the posture detection and alarm system can 
help reduce fatigue and work-related injuries. 

• Time-management: the activity summaries can help the user 
manage his time in a better way. 

• Productivity measurement: the data collected by the system 
can be used to measure worker productivity (e.g., 
approximate times spent on different tasks) 

• Worker well-being: the data could be used by the user to 
discover changes or patterns in his affective state. Long 
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periods of inactivity or fixed posture can be interpreted as 
periods of high stress or depression. 

Next we discuss in detail the two major applications: (1) 
health monitoring; (2) productivity analysis. 

6.1 Health Monitoring 
The user sets up a “user profile” for the alarms and summary. 

In particular, he sets parameters that determine when an alarm is 
triggered and what the summary contains (see summary example 
in Figure 10). For example, the user might want to see a 
summary after 6 months and show it to his doctor, who can use 
the summary to explain why the user might be having shoulder 
or back pains. He can specify if the summary should contain the 
time spent on each posture, and which postures are important for 
the summary (e.g., he might be interested in only one or two 
postures). 

The health monitoring application can be used by anyone, but 
it is of particular interest to information workers that spend 
several hours per day in front of the computer. This includes 
secretaries, researchers, data entry operators, and many others.  

6.2 Productivity Analysis 
The purpose of the productivity analysis application is to let 

the user monitor his own productivity while working in front of 
the computer. The user, as described in Figure 2, trains the 
system to indicate different activities. Examples include: typing, 
reading, stretching, talking to someone, filing, speaking on the 
phone, etc. 

The “summary profile” is customized by the user to fit his 
own needs, which will vary depending on his preferences and 
particular occupation. For instance, if the worker is a 
salesperson, then speaking on the phone for a long time might 
be considered positive. In such case, the “productivity analysis” 
done by the person, based on the summary, will determine that 
his productivity is high if he spent a long time on the phone. 

The user can view a summary of his activities at any time. 
Thus, this will help him quickly determine how much time he is 
spending on different activities and adjust his work for the rest 
of the day, week, or month to compensate. For example, if the 
researcher notices he has not been doing any reading in the last 
two days, he may set time apart for reading papers. 

We note that the posture analysis system can also be used for 
productivity analysis: if the summary shows that the user spends 
a long time in a similar posture (or postures), it may indicate 
fatigue or low productivity. 

6.3 Privacy 
Privacy is an important issue in any application that monitors 

users. The idea in our system is to give the user full control over 
the application. In particular, privacy in the system is maintained 
through different functionalities: 
� The user may chose to not save any of the information. 

Thus, the summaries are discarded after they are viewed, 
and no information is saved. 

� The user may chose to save only anonymous pictures of his 
activities. In this case, the system only saves the silhouette 
(e.g., bottom of Figure 6). This is important because his 
facial expressions may be considered very private (the user 
may also choose to mask only the faces) 

� The audio component does not record the audio or the 
conversations, it only records activity, thus respecting user 
privacy. 

� The system may store all of the information in encrypted 
form to prevent others from viewing it. 

6.4 Extensions 
The following extensions can be made to the framework. 

Using similar techniques it is possible to also monitor: 

• Hand positions and hand postures. Summaries can be 
generated and an alarm system can be implemented as 
above. 

• Legs and feet: the same as above. Additional cameras are 
required, but lighting will likely be a problem, so infrared 
cameras may be more appropriate. 

• Integration with other sensors: it is possible to integrate the 
framework with other types of sensors (e.g., chair sensors, 
etc.) 

• Integration with information from other input 
devices/software (e.g., monitor mouse and keyboard usage, 
web page, word processor, etc.) 

• 3D pose estimation: the visual analysis algorithms could be 
improved to estimate the 3D position of the upper body and 
give a more accurate measure of position. Alternatively, 
side views could also be used to improve robustness. 

 
Additional processing can also be performed to improve 

performance and extend the framework. For example, vision-
based eye tracking could be used to determine where the person 
is looking (see [22] for a brief review). This information could 
be used for activity classification and to complement the posture 
measurement. The system could also be used for building 
attentive interfaces [5], or for interruption management [3]. The 
current version only processes one frame at a time, but using 
several frames might lead to better performance.   

An important aspect we have not addressed yet is how users 
will actually react to the system’s summaries and alarms. One of 
the problems with mouse and keyboard monitoring software is 
that they blindly interrupt the user at undesirable times, thus 
perhaps causing more frustration than helping the user improve 
his work habits. We tried to address this by providing 
unobtrusive real time feedback, but user studies are necessary to 
determine how effective this method is. The issue, then, is not 
only performance, but how and when alarms are used. 

7. CONCLUSIONS & FUTURE WORK 
We have presented a novel system for monitoring a computer 

user’s posture (i.e., body position in front of the computer) and 
activities (e.g., reading, speaking on the phone, etc.) for self-
reporting. In our system, a camera and a microphone are placed 
in front of a computer work area (e.g., on top of the computer 
screen). The system monitors the computer user’s postures and 
summarizes his or her activities. The system gives the user real 
time feedback on the goodness of his current posture, triggers 
alarms if the postures are not good postures, and generates 
summaries of postures and activities over a specified period of 
time (e.g., hours, days, months, etc.). The algorithms measure 
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the computer user’s posture using geometric features, and use 
machine learning for activity classification.  

Our first prototype of the system shows promising results.  
However, more work is needed in increasing performance and 
user testing. In particular, future work includes using more 
sophisticated detection algorithms for estimating 3D pose, 
incorporating additional monitoring functionalities (e.g., 
keyboard use), and using more cameras and sensors. 
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