The Road Ahead for Transistors: Where Do Carbon Nanotubes Fit In?

August 12, 2013
Speaker: Dr. Aaron Franklin (IBM T.J. Watson Research Center)


Single-walled carbon nanotubes (CNTs) are among the most researched materials in the world. One of the foremost potential applications for CNTs is as the channel for next-generation transistors. While some of the CNT field-effect transistor (CNTFET) research community gave way to the rise of another carbon allotrope graphene in the mid-2000s, progress in the CNTFET field did not stop. In fact, in recent years the benefits of CNTFETs for nanoelectronics have become more evident and accessible; from the recent validation that a sub-10 nm CNT channel outperforms the best silicon competition to demonstrations of CNTFET circuits, including those on flexible and/or transparent substrates, with operating voltages as low as 0.4 V. In this talk, recent advancements in the nanotube transistor field will be reviewed, showing why CNTFETs are worth considering. Then, the material- and device-related challenges to realizing a nanotube-driven high-performance technology will be covered. By discussing the remaining obstacles and presenting recent progress toward addressing them, it is hoped that those in attendance may develop new ideas to contribute to overcoming these hurdles. Important considerations for next generation transistors of all types will also be reviewed, revealing how different the road ahead is from the past. Overall, this talk should provide a reasonable overview of the solid-state transistor field, where it has been, where it may go, and why more people should be along for the ride.

Speaker Biography

Aaron Franklin received his Ph.D. from Purdue University in 2008 and his B.S.E. degree from Arizona State University in 2004, both in electrical engineering. Since 2009, he has been a Research Staff Member at IBM's T. J. Watson Research Center working in the area of low-dimensional nanoelectronics. His research focuses on the integration of nanomaterials into electronic devices, including high-performance transistors, thin-film transistors, supercapacitors, and photovoltaic cells. His Ph.D. research at Purdue was funded by a National Science Foundation Graduate Research Fellowship. In the fields of nanomaterials and nanoelectronics, Aaron has more than 30 peer-reviewed journal publications and 18 patents (5 issued so far). Before beginning his graduate studies, Aaron worked as a Component Design Engineer for Intel Corporation.

500 W. 120th St., Mudd 1310, New York, NY 10027    212-854-3105               
©2014 Columbia University