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The visual search problem
• Massive search pools

– ~20 hours of video/minute added to YouTube20 hours of video/minute added to YouTube
– ~5,000 new tagged photos/minute added to Flickr,…

• Complex representations and distancesComplex representations and distances
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Retrieval on a budget
Goal: Specify resources available → 

algorithm focuses search accordingly.algorithm focuses search accordingly.

Accuracy of 
retrieved resultsCost of search retrieved results

Accuracy of Cost of annotation y
learned models
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Retrieval on a budget

• Retrieving similar instances with a search 
time budget
– Novel hash functions for learned metrics and 

arbitrary kernel functionsarbitrary kernel functions

Retrieving informative instances with a• Retrieving informative instances with a 
search time or annotation cost budget
– Novel hash functions for hyperplane queries– Novel hash functions for hyperplane queries
– Budgeted batch-mode active selection
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Locality Sensitive Hashing (LSH)
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[Indyk and Motwani 1998, Charikar 2002]
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LSH functions for dot products
The probability that a random hyperplane separates two 
unit vectors depends on the angle between them:

Corresponding hash function:

High dot product:  
unlikely to split

Lower dot product: 
likely to split

[Goemans and Williamson 1995, Charikar 2004]
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Learning how to compare images

• Exploit (dis)similarity p ( ) y
constraints to 
construct more 

f l di tdissimilar useful distance 
function

• Number of existing 
techniques for 
metric learning

similar
metric learning
[Weinberger et al. 2004, 
Hertz et al. 2004, Frome,
et al. 2007, Varma & Ray 
2007, Kumar et al. 2007]
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Learning how to compare images
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Our idea: Semi-supervised hash functions

h(   ) = h(   ) h(   ) ≠ h(   )

Less likely to split pairs like those 
with similarity constraint

More likely to split pairs like those 
with dissimilarity constraint

( ) ( )

y with dissimilarity constraint 

[Jain, Kulis, & Grauman, CVPR 2008]
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Semi-supervised hash functions
• Given learned Mahalanobis metric,

W t t i d h h f ti• We generate parameterized hash functions            
for                                    :

Satisfies the locality-sensitivity condition:Satisfies the locality-sensitivity condition:

[Jain, Kulis, & Grauman, CVPR 2008]



Semi-supervised hash functions
Query time: 
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• Flickr datasetFlickr dataset
• Categorize scene based 

on nearest exemplars
• Base metric: Ling &slower search                 faster search • Base metric: Ling & 

Soatto’s Proximity 
Distribution Kernel (PDK)

[Kulis, Jain, & Grauman, PAMI 2009]



Semi-supervised hash functions
Query time: 
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• Flickr dataset

Error drops with 
learned metric

Flickr dataset
• Categorize scene based 

on nearest exemplars
• Base metric: Ling &slower search                 faster search • Base metric: Ling & 

Soatto’s Proximity 
Distribution Kernel (PDK)

[Kulis, Jain, & Grauman, PAMI 2009]



Searching with kernel functions

Kernels encompass many useful similarity 
measures, many for structured input data., y p
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Hash functions for kernels?

?
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Our idea: Kernelized LSH (KLSH)
Main idea:
• Draw on Central Limit Theorem to (implicitly)• Draw on Central Limit Theorem to (implicitly) 

generate random Gaussian hyperplanes in the 
kernel-induced feature space.kernel induced feature space.

• Show that products with those hyperplanes
require only kernel and sparse set of data objectsrequire only kernel and sparse set of data objects.

[Kulis & Grauman, ICCV 2009] Kristen Grauman, UT-Austin



Result: Kernelized LSH (KLSH)
80 Million Tiny Images dataset

• Gist descriptor + Gaussian RBF kernel
• KLSH searches less than 1% of the database to 

find a query’s approximate near neighbors.
Kristen Grauman, UT-Austin



Retrieval on a budget

• Retrieving similar instances with a search 
time budget
– Novel hash functions for learned metrics and 

arbitrary kernel functionsarbitrary kernel functions

Retrieving informative instances with a• Retrieving informative instances with a 
search time or annotation cost budget
– Novel hash functions for hyperplane queries– Novel hash functions for hyperplane queries
– Budgeted batch-mode active selection
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Active selection: retrieving 
informative instancesinformative instances

Annotator
Current 
Model

Labeled 
data

Unlabeled 
data

Active Selection

We have demands on both search time and 
t tiannotation resources.
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SVM margin criterion
for active selectionfor active selection

Select point nearest toSelect point nearest to 
hyperplane decision 
boundary for labeling.

?
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[Tong & Koller, 2000; Schohn & Cohn, 
2000; Campbell et al. 2000]; p ]

Problem: With massive unlabeled pool, cannot 
afford exhaustive linear scan to make selection.
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Sub-linear time active selection
Goal: Map hyperplane query directly to its nearest 
points.points.
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[Jain, Vijayanarasimhan & Grauman, NIPS 2010]



Hashing a hyperplane query
To retrieve those points for which is small, 
want probable collision for perpendicular vectors:want probable collision for perpendicular vectors:

1
x

Most likely to collide
w

Most likely to collide

Assuming normalized data U lik l t llidAssuming normalized data. Unlikely to collide

[Jain, Vijayanarasimhan & Grauman, NIPS 2010]



Hashing a hyperplane query
To achieve this, we define asymmetric two-bit hash: 

Let:

,,
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Hashing a hyperplane query
To achieve this, we define asymmetric two-bit hash: 

Let:

Then define:

Likely to collide Unlikely to collide
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Hashing a hyperplane query
To achieve this, we define asymmetric two-bit hash: 

Let:

Then define:

We prove necessary LSH bounds, e.g.:

See [Jain, Vijayanarasimhan & Grauman, NIPS 2010].



Data flow: Hashing a hyperplane query

• Hash all unlabeled data into table.Hash all unlabeled data into table.

• Active selection loop:

– Hash current hyperplane as query.

– Retrieve unlabeled data points with which it collides.

– Request labels for them.

Update hyperplane– Update hyperplane.
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Results: Hashing a hyperplane query

• Tiny-1M
1 Milli i f– 1 Million images from 
1000s of categories

• CIFAR-10
– 60,000 images in 10 

categories 
N• Newsgroups
– 20,000 documents in 

20 categories20 categories
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Results: Hashing a hyperplane query

CIFAR: FrogsNewsgroups

AAccuracy
improvements 
as more dataas more data 
labeled

Time spent 
searching for 
selection (log 

l )scale)
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Results: Hashing a hyperplane query

Learning Learning 
“airplane” “automobile”

Selected for labeling in 
fi t 10 it ti

Efficient active selection with pool of 

first 10 iterations

1 Million unlabeled examples!
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Active selection: retrieving 
informative instances

Annotator

informative instances

Current 
Model

$$

Unlabeled 
data

Labeled 
data$

$
$

$$ $ Active Selection

How can we actively leverage many y g y
annotators at once?
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Our idea:
Budgeted batch active selectionBudgeted batch active selection

$T 
Current 
Model Budget Current 

Model

$$

Unlabeled 
data

Labeled 
data

$
$$

$

$
$

$

$$ $ Budgeted Batch
Active SelectionActive Selection

Select a batch of examples such that together they most 
improve classifier objective and meet the annotation budgetimprove classifier objective and meet the annotation budget.

[Vijayanarasimhan et al. CVPR 2010]



Our idea:
Budgeted batch active selectionBudgeted batch active selection

Selected examples
and optimistic labels

Misclassification 
riskrisk

Improved 
risk andrisk and 
margin 

(predicted)

$
$$

Budgeted Batch

$

Current training Classifier after addition 
Margin

Budgeted Batch
Active Selection

g
set and classifierof selected examples

[Vijayanarasimhan et al. CVPR 2010]



Results: Budgeted batch active selection

Hollywood Activities: All 8 classes

Annotation cost = video length, segmentation time.

SIVAL Object: All 25 classesj
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Example selection at a single batch iteration: 
Positive action class = Stand up

Myopic active batch OursRandom

Positive action class Stand up

Sit down
hAnswer phone Answer phone

Sit down

Stand up
Sit down

Stand upKristen Grauman, UT‐Austin



Results: Budgeted batch active selection
Optimizing a budgeted choice is crucial when 
candidate annotations vary in cost.y

Comparison to state-of-the-art batch-mode active p
learning approach for choosing fixed-size batches 
[Hoi et al. 2009]. Kristen Grauman, UT-Austin



Summary: Retrieval on a budget
• To perform well with limited resources, we need 

search and learning algorithms thatsearch and learning algorithms that
– Offer guarantees on error ↔ search speed tradeoffs
– Target human supervision to use it most wisely

• Algorithms presented provideg p p
– New families of locality-sensitive hash functions
– Large-scale active learning strategies to select points 

in sub-linear time and/or in batches.
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