Weak Attributes for Large-Scale Image Retrieval Felix X. Yu Rongrong Ji Ming-Hen Tsai Guangnan Ye Shih-Fu Chang Columbia University

sailing +person +sunset

1.2 Related Works							
Method	Query	Retrieval Model	Result				
Individual Classifiers Classifier Scores	Sailing +person +sunset	Scores of Sailing +Person +Sunset					
MARR Classifier Scores		Night × Indoor × Sea √ Sailboat √ Sunset √ 					

- and then sum up the scores for multi-attribute queries.
- Queries): Model dependency of query attributes.

- dependency model.
- space.

Weak Attributes are a collection of mid-level representations, easily acquired with very little or no human labor.

Discriminative Attribute (A is similar to B); Relative Attribute (A is more natural than B); Topic Models (pLSA LDA);

(thousands) weak attributes.

e Weight ve Weight ected	 We propose weak attributes that unify various kinds of mid-level image representations which can be easily acquired with no or little human labor.
	• We apply weak attributes to image retrieval, by modeling dependency of query attributes on weak attributes under the framework of structural learning.
ailboat(0.8)	• To achieve efficiency and avoid overfitting, we propose a novel semi-supervised graphical model to select a subset of weak attributes adaptively for each query. This makes the proposed method applicable to large and general datasets.
ery?	• We compile the largest multi-attribute image retrieval dataset to date, named a-TRECVID, including 126 fully labeled query attributes and 6.000 weak attributes of 0.26 million images

$$\max_{Y \subset \mathcal{Y}} \mathbf{w}^T \psi(Q, Y), \quad \mathbf{w}^T \psi(Q, Y) = \sum_{q_i \in Q} \sum_{x_j \in X_Q} w_{ij} \sum_{y_k \in Y} \phi(x_j, y_k).$$

5. Experiments (more experiments in Technical Report [4])

Weak attributes used: query attribute classifiers, discriminative attributes, classemes[3], random image distances, latent variables.

5.2 a-Yahoo (cross-dataset, train on a-PASCAL and test on a-Yahoo)

5.3 a-TRECVID

- Compiled from TRECVID 2011 Semantic Indexing Competition.
- 126 labeled attributes, 6,000 weak attributes, 0.26 million images.
- Data/code: http://www.ee.columbia.edu/dvmm/a-TRECVID/

5.4 Contributions (weights) of different types of weak attributes

	Query Att Classifier	"Classemes"	Disriminative Att	Others
a-PASCAL	10.49%(64)	25.87%(2659)	48.73%(1350)	14.91%(927)
a-Yahoo	3.23%(64)	74.30%(2659)	17.23%(1350)	5.24%(927)
a-TRECVID	20.09%(126)	70.83%(2659)	3.84%(2000)	5.24%(1215)

Reference

- [1] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. A search engine for large collections of images with faces. In ECCV, 2008.
- [2] B. Siddiquie, R. Feris, and L. Davis. Image ranking and retrieval based on multi-attribute queries. In CVPR, 2011.
- [3] L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV, 2010.
- [4] F. Yu, R. Ji, M.-H. Tsai, G. Ye, and S.-F. Chang. Experiments of image retrieval using weak attributes. Columbia University Computer Science Department Technical Report # CUCS 005-12, 2012.