TRECVID 2005 Workshop

Columbia University High-Level Feature Detection: Parts-based Concept Detectors

Dong-Qing Zhang, <u>Shih-Fu Chang</u>, Winston Hsu, Lexin Xie, Eric Zavesky

Digital Video and Multimedia Lab Columbia University

(In collaboration with IBM Research in ARDA VACE II Project)

data source and design principle

- Multi-lingual multi-channel video data
 - 277 videos, 3 languages (ARB, CHN, and ENG)
 - 7 channels, 10+ different programs
 - Poor or missing ASR/MT transcripts
- A very broad concept space over diverse content
 - object, site, people, program, etc
 - TV05 (10), LSCOM-Lite (39), LSCOM (449)
- Concept detection in such a huge space is challenging
 - Need a principled approach
 - Take advantage of the extremely valuable annotation set
 - Data-driven learning based approach offers potential for scalability

Insights from Samples: Object - flag

- Unique object appearance and structure
 - Some even fool the annotator
- Variations in scale, view, appearance, number
- Noisy labels
- Sometimes contextual, spatial cues are helpful for detection
 - Speaker, stage, sky, crowd

 Again visual appearance and spatial structures very useful

- Visual appearances capture the after effects of some events – smoke, fire
- Sufficient cues for detecting occurrences of events
- Other events (e.g., people running) need object tracking and recognition

Motivation for Spatio-Appearance Models

- Many visual concepts characterized by
 - Unique spatial structures and visual appearances of the objects and sites

- joint occurrences of accompanying entities with spatial constraints
- Motivate the deeper analysis of spatioappearance models

Spatio-Features: How to sample local features?

Block-based features: • visual appearances of fixed blocks + block locations ______ • suitable for concepts with fixed spatial patterns Support Vector

Machine (SVM)

Adaptive Sampling: Object Parts

Part-based model:

- Model appearance at salient points
- Model part relations
- Robust against occlusion, background, location change

 Parts-based object detection paradigm also related to Human Vision System (HVS)

Our TRECVID 2005 Objectives

- Explore the potential strengths of parts-based models in
 - detecting spatio-dominant concepts
 - fusing with traditional fixed features models
 - detecting other interesting patterns such as *Near-Duplicates* in broadcast news

How do we extract and represent parts?

Representation and Learning

Learning Object Model

- Challenge : Finding the correspondence of parts and computing matching probability are NP-complete
- Solution :
 - Apply and develop advanced machine learning techniques Loopy Belief Propagation (LBP), and Gibbs Sampling plus Belief Optimization (GS+BO)

(demo)

Role of RARG Model: Explain object generation process

• Generative Process : From object model to image

Extension to Multi-view Object Detection

Challenge of multi-view object/scene detection

- Objects under different views have different structures
- Part appearances are more diverse

Structure variation could be handled by Random ARG model (each view covered by a sub-graph)

Adding Discriminative Model for Multi-view Concept Detection

Previous : Part appeara

Part appearance modeling by Gaussian distribution

Now : Part appearance modeling by Support Vector Machine

- Use SVM plus non-linear kernels to model diverse part appearance in multiple views
- principle similar to boosting

Evaluation in TRECVID 2005

Parts-based detector performance in TRECVID 2005

- Parts-based detector consistently improves by more than 10% for all concepts
- It performs best for spatio-dominant concepts such as "US flag".
- It complements nicely with the discriminant classifiers using fixed features.

S.F. Chang, Columbia U.

DIGITAL VIDEO . MULTIMEDIA LA

Columbia University in the City of New York

Other Applications of Parts-Based Model: Detecting Image Near Duplicates (IND)

- But difficult to detect due to diverse variations
- Problem Complexity

```
Similarity matching < IND detection < object recognition
```

Parts-based Stochastic Attribute Relational Graph Learning

Near Duplicate Benchmark Set

(available for download at Columbia Web Site)

S.F. Chang, Columbia U.

Columbia University In the City of New York

Examples of Near Duplicate Search in TRECVID 05

Application: Concept Search

- Map text queries to concept detection
- Use humandefined keywords from concept definitions

•

•

- Measure semantic distance between query and concept
- Use detection and reliability for subshot documents

Concept Search

"Find shots of hoats "

Automatic - help queries with related concepts

Method	AP
Story Text	.169
CBIR	.002
Concept	.115
Fused	.195

"Find shots of a road with one or more cars."

Method	AP
Story Text	.053
CBIR	.009
Concept	.090
Fused	.095

Manual / Interactive

Manual keyword selection allows more relationships to be found.

Columbia Video Search Engine System Overview

http://www.ee.columbia.edu/cuvidsearch

User Level Search Objects

- Query topic class mining
- Cue-X reranking
- Interactive activity log

Multi-modal Search Tools

- combined text-concept search
- story-based browsing
- near-duplicate browsing

Content Exploitation

- multi-modal feature extraction
- story segmentation
- semantic concept detection

Demo in the poster session

Search User Interface

Conclusions

Parts-based models are intuitive and general

- Effective for concepts with strong spatioappearance cues
- Complementary with fixed feature classifiers (e.g., SVM)
- Semi-supervised: the same image-level annotations sufficient, no need for part-level labels
- Parts models also useful for detecting near duplicates in multi-source news
 - Valuable for interactive search

