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ABSTRACT

Statistical and Geometric Methods for Passive-blind Image

Forensics

Tian Tsong Ng

Passive-blind image forensics (PBIF) refers to passive ways for evaluating image

authenticity and detecting fake images. This dissertation proposes a physics-based

approach for PBIF, with our definition of image authenticity derived from the im-

age generative process comprising the 3D scene and the image acquisition device.

We propose one statistical method and two geometric methods for capturing the

image authenticity properties and addressing three separate problems in PBIF, i.e.,

detecting spliced images, distinguishing photographic images from photorealistic

computer graphics, and estimating camera response function (CRF) from a single

image. For image splicing detection, we show a statistical method for capturing

the optical low-pass property of cameras. Through analysis on a proposed model

of image splicing, we can explain the bicoherence response to image splicing better

than the conventional quadratic phase coupling theory. Furthermore, we propose

incorporating image-content-related features to improve the performance of image

splicing detection. For distinguishing photographic images from photorealistic com-

puter graphics, we propose a geometric method for capturing the properties of the

object geometry, the object surface reflectance, and the CRF. The resulting ge-

ometry feature not only provides an intuitive understanding on how photographic

images are different from photorealistic computer graphics, it also classifies the two

types of images better than the wavelet characteristic feature and the features de-

rived from modeling general computer graphics. For the work on CRF estimation,



we propose a geometric method based on geometric invariants for estimating CRF

from a single-color-channel image. We provide an extensive analysis of the method

and also propose a generalized gamma curve CRF model.
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Chapter 1

Introduction

1.1 Motivations

In February 1982, an altered image of the Great Pyramids in Giza appeared on

the front cover of the National Geographic magazine (see Figure 1.1). One of two

pyramids in the image was repositioned and moved closer to the other so that they

both fitted well into the vertical front cover. This was one of the earliest incidents

that signified the degree of manipulation enabled by image editing software, and

had an impact that caused ‘The earth moved in the world of photography’ [82], as

it challenged our conventional belief of ‘seeing is believing’. Since then, as the world

is getting more digital, image manipulation has become easier and more versatile

than ever, with the advances in computers and image editing tools such as Adobe

Photoshop. Nowadays, image alteration in the mainstream media has become com-

mon. In 1989, The Wall Street Journal estimated that 10% of all color photographs

published in United States were digitally altered or retouched [2]. Three recent and

well-known altered images are shown in Figure 1.2. Apart from the mainstream

media, the Internet hosts an enormous number of images, where many of them

have no provenance information or certainty of authenticity. For example, a website
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Cover of National Geographic, Feb 1982

image source: http://commfaculty.fullerton.edu/

lester/writings/geo.html

Figure 1.1: The front cover of the Feb 1982 National Geographic, showing two
pyramids where one had been repositioned in order to fit the vertical cover frame.

www.worth1000.com, as of December 2006, hosts as many as 273,500 photorealistic

images created using Adobe Photoshop. Therefore, it is crucial to develop a scien-

tific and automatic way for assessing image authenticity, which is the theme of this

dissertation - passive-blind image forensics (PBIF). Such image forensic techniques

have a wide range of applications in news reporting, journalism, legal services, in-

telligence services, forensics investigation, insurance claim investigation, financial

systems, and e-commerce. The importance for PBIF will continue to grow in the

years to come, as the world enters the third wave of globalization [29] with the rise of

the individual-centric media, typified by the culture of blogging and media sharing.

The individual-centric media will generate an unprecedented number of newsworthy

images, where their authenticity needs to be ascertained.

www.worth1000.com
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Image source: http://news.bbc.co.uk/2/hi/

middle_east/5254838.stm

Image source: http://www.washingtonpost.com/

wp-srv/photo/essays/vanRiper/030409.htm
Image source: http://www.snopes.com/

photos/politics/kerry2.asp

(b) Altered Image (2004)(a) Altered Image (2003) (c) Altered Image (2006)

Figure 1.2: Three examples of the well-known altered images appeared in the main-
stream media and the Internet: (a) A composite of two original images appearing
in Los Angeles Times in 2003, (b) A composite of two original images of John Kerry
and Jane Fonda circulated in the Internet in 2004, (c) A 2006 Reuters image with
the smoke being thickened and darkened using image editing software.

1.2 Problem Formulation and Scope

In contrast to an authentic image captured by a camera, a fake or tampered image

is one that bears falsehood in event, place, or time. The goal of passive-blind image

forensics is to detect fake images or more generally evaluate the authenticity of an

image. The two major methods for creating fake images are 2D image compositing

and 3D computer graphics rendering (see Fig. 1.3). In this dissertation, we iden-

tify the detection of the 2D composite images as image forgery detection and the

detection of 3D computer graphic synthesized images as image source identification.

Another recent thread of development in image synthesis is image-based render-

ing [86], where a novel-view image is synthesized from a set photographic images, or

a photorealistic image is obtained when a computer graphic object is given the ap-

pearance of a real object which is extracted from photographs of multiple views and

lightings. In essence, images synthesized by image-based rendering are the hybrid

of photographic images and computer graphics rendering. Since such tampering

methods are usually complex, non-professional attackers will not be able to access

such tools. Therefore, we focus on detection of 2D composite images and computer
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3D Computer

Graphics 

Rendering

3D Geometry Model

Illumination

Surface Reflectance Model

Photorealistics Computer Graphics

Image source: Corbis

Image source: Corbis

Image source: http://www.snopes.com/

photos/politics/kerry2.asp

2D Composite Image

Authentic Image 1

Authentic Image 2

(a) 2D Image Compositing (b) 3D Computer Graphics Rendering

Figure 1.3: Two typical ways of creating fake images: (a) 2D image compositing,
(b) 3D computer graphics rendering.

graphics images in this thesis. Besides image-based rendering, there is also another

class of image synthesis techniques used for filling in the removed regions within

an images, by texture synthesis [16] or image inpainting [5, 6, 75]. However, these

techniques are often restricted either to the synthesis of regular textures or filling in

small-area regions. The consideration of such tampering techniques is also beyond

the scope of this thesis.

For image source identification, one can define image sources at different levels of

specificity. At the coarse level, one can in general collectively define camera images

as having a single source and 3D computer graphic images as having a different

source. At the intermediate level, one can define images captured by different models

of camera, generated by different models of printers or scanners, or rendering by

different 3D computer graphic rendering techniques respectively as having different

sources. Whereas at the finest level, one can define images as captured by different

cameras (even different units of the same model), or generated by different printer

or scanners. Capability for distinguishing image sources of finer specificity are useful

for image forgery detection as the image fragments forming a composite image are

likely to have different fine sources (e.g., from different models of camera).
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Image Forgery
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Detection Helps
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Legend

Addressed in

Dissertation 

Counter-attack for

Image Forgery

Detection

Counter-attack for

Image Source

Identification

Figure 1.4: The relationship between the different PBIF areas of research according
to our formulation. The works presented in this dissertation address a research
problem in the areas highlighted in a yellow-shaded box.

Figure 1.4 shows the relationship between the different areas of research in PBIF

according to our formulation. Apart from the main areas of image forgery detec-

tion and image source identification, the other auxiliary PBIF areas of research are

image operation detection and counter-attack measure design. As composite image

creation often involves post-processing such as image smoothing and noise addition,

image operation detection indirectly helps image forgery detection. As fake image

creators could attack a PBIF system by specifically processing the fake images such

that they escape detection, a critical issue in PBIF is to come up with an effec-

tive counter-attack measure to make a PBIF system robust to the forger’s attack.

The works presented in this dissertation address a problem in the areas of research

highlighted in a yellow-shaded box in Figure 1.4.
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1.3 Approach

1.3.1 Image Authenticity

An image is authentic if it represents a witness to an actual event, place, or time.

Image authenticity is a central idea for addressing the PBIF problems. A definition

of image authenticity should enable us to distinguish an authentic image from the

fake images, such as the 2D composite images and the 3D computer graphics images.

We define image authenticity as the characteristics of an image generative process,

for which we divide into the 3D scene process and the imaging device process, as

shown in Fig. 1.5. We name the image authenticity quality associated to the 3D

scene process as the scene authenticity and that of the imaging device process as

the imaging-process authenticity. Scene authenticity is governed by the physics

of light transport in a 3D scence, while imaging-process authenticity is governed

by the characteristics of the sequence of operations within an imaging device (the

operations explained in Subsec. 2.2.2). The work presented in this dissertation

captures the specific authenticity properties shown in the yellow-shaded boxes in

Fig. 1.5.

1.3.2 Methods

We approach the PBIF problems through statistical methods and geometric meth-

ods. For a statistical method, an image is treated as a random signal, from which

image-authenticity related statistical quantities can be extracted. Whereas for a

geometric method, an image is treated as a graph of its intensity function as shown

in Fig. 1.6 (see Chapter 2). Such a graph qualifies as a submanifold embedded in the

Eculidean space, from which image-authenticity related geometric quantities can be

extracted (see Chapter 3 and Chapter 4).
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Camera

Figure 1.5: The schematic image generative process, divided into the 3D scene
process and the imaging device process, which respectively characterize the scene
authenticity and the imaging-process authenticity. The imaging device process fol-
lows the model given in Tsin, Ramesh and Kanade [96]. Note that, the camera
response function is the overall response of a camera, which represents the collective
effect of all the processes within a camera.
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View 1 View 2

A Grayscale Image

A Graph of the Image
A Graph of the Image

Figure 1.6: A grayscale image can also be analyzed as a graph in a 3D space. Two
different perspective views of a grayscale image graph are shown in this figure.

1.4 Thesis overview

In this dissertation, we present three works which exemplify the statistical and the

geometric approaches. In Chapter 2, we present a statistical method for image

splicing detection, which is a fundamental problem in image forgery detection. The

statistical method uses bicoherence, a third-order normalized moment spectral, to

characterize the camera optical low-pass property, which is part of the imaging-

process authenticity. In this work, we provide a theoretical analysis which connects

the magnitude and the phase response of the image bicoherence to the camera

optical low-pass property. This theoretical results justify the use of the bicoherence

magnitude and phase features for image splicing detection. As an image originally

contains a significant level of bicoherence energy, it makes the detection of the

splicing response in bicoherence difficult. To overcome this baseline noise problem,

we extract image content features from image edges and the structure component of

an image (without the fine image texture). In this work, we created the Columbia

Image Splicing Detection Evaluation Dataset [66] which consists of 933 authentic

and 912 spliced grayscale image blocks of size 128×128 pixels. This dataset is open

for research purposes.

In Chapter 3, we present a geometric method for distinguishing photographic im-
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ages and photorealistic computer graphics images, which is a problem of coarse-level

image source identification. The geometric method captures the differences between

the photographic image generative process and the photorealistic computer graphics

generative process, in terms of the scene object geometry, the scene object reflectance

property, and the camera response function. The first two properties belong to the

scene authenticity, while the third one belongs to the imaging-process authenticity.

The geometric method captures these properties with a set of differential-geometric

quantities. Apart from these quantities, we also capture the difference between

these two types of images using local fractal dimension and local patch statistics.

In this work, we also created the Columbia Photographic Images and Photorealis-

tic Computer Graphics Dataset [69] which consists of two sets of 800 photographic

images, one set of 800 photorealistic computer graphics images, and one set of 800

images obtained by recapturing the photorealistic computer graphics images using

a camera. This dataset is also open for research purposes. Besides the dataset,

we also deployed an online demo system [68] for classifying photographic images

and computer graphics images, demonstrating our geometric method, as well as the

wavelet method [55] and the cartoon method [39] in the prior work. The online

demo system is accessible from www.ee.columbia.edu/trustfoto.

In Chapter 4, we present a geometric method for estimating camera response

function (CRF) from a single image. The nonlinear CRF is one of the design criteria

for a model of camera, in order to mimic the nonlinearities in film and the response

of the human visual system, so that the output images are visually pleasing [34].

Therefore, CRF can be considered as a signature for a model of camera. Our

geometric method can be applied for distinguishing different models of camera,

which belongs to an intermediate-level image source identification problem. We

propose a set of geometry invariants which are functions of CRF and invariant to

www.ee.columbia.edu/trustfoto
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the locally planar geometry of image irradiance. Through the geometry invariants,

CRF can be estimated, regardless of the locally planar geometry. Apart from CRF

estimation on a single image, our method exploit the availability of multiple images

from the same model of camera to provide a better estimation accuracy and stability.

In addition, we propose a generalized gamma curve CRF model (GGCM), which

empirically fits the real-world CRF’s from DoRF dataset [34] well.

In Chapter 5, we describe other related works in PBIF, which are more loosely

related to the works described in this dissertation. We divide the work in PBIF into

four major areas according to Fig. 1.4:

1. Image forgery detection (Is this image authentic? ).

2. Image source identification (From what device the image is produced? )

3. Image operation detection (What post-processing has this image undergone? )

4. Counter-attack measure design (How to handle a security attack? )

Finally, we present the conclusions and the future work of this dissertation in Chap-

ter 6.

This dissertation contains Appendix A through I. Appendix A and Appendix B

provides the proof for the two propositions regarding the effect of image splicing

on the magnitude and phase responses of bicoherence in Chapter 2. Appendix C

provides the mathematical derivation for the gradient operator on a manifold. Ap-

pendix D describes the implementation details of our online demo system for clas-

sifying photographic images and computer graphic images. Appendix E through I

provides the proof for the propositions and the CRF properties described in Chap-

ter 4.
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Chapter 2

A Statistical Method for Image Splicing Detection

2.1 Introduction

We define image splicing as a cut and paste of an image fragment onto another

image without further post-processing. Image splicing is the most basic step in the

process of creating a 2D composite image, which is shown in Fig. 2.1 (a) with an

illustrative example shown in Fig. 2.1 (b). Although post-processing is often applied

to blend the spliced object better to the image background and remove the artifacts

from the rough region selection, a spliced image without post-processing can be

very realistic for non-experts as shown in Fig. 2.2. Although we only consider image

splicing in this work, there are specific works in passive-blind image forensics for

detecting certain post-processing operations of an image as a tell-tale sign of image

2D or 3D

Region Selection

Object Model

Extraction

Geometric or 

Other

Transformation

Splicing Post-Processing

e.g. Resizing e.g. Paste on 

an Image
e.g. Smoothing

e.g. Extract the 3D

Object Model

e.g.  Select a Region

in an Image

Extract a selected 

region in an Image
Rotate, resize, and 

change color

Composite with

another image

Smooth the

composite image

(a) Process Flow for Creating Image Forgery (b) An illustrative example for creating a composite image.

Figure 2.1: (a) The typical image forgery creation process. (b) An illustrative
example for creating a composite image.
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Figure 2.2: Two examples of spliced images without post-processing where each
takes only 10-15 minutes to produce.

compositing [4, 79].

This work is one of the earliest on detecting composite images. The main results

of our work are published in [67, 71]. In this work, we propose a statistical method

for detecting image splicing by capturing the camera optical low-pass effect on an

image. The optical low-pass property is part of the imaging-process authenticity

quality of an image. We hypothesize that image splicing introduces sharp edges to

the image, which produce a unique magnitude response and phase entropy in the

bicoherence measurement computed from the image. We propose a theory to explain

the bicoherence response to the abrupt edges and hence, in this image splicing case,

offer an alternative to the quadratic phase coupling theory, which is commonly

associated with the application of bicoherence.

As natural images originally contain a significant and variable amount of bicoher-

ence energy due to image edges [42], bicoherence-based features are sensitive to the

image content, and thus bicoherenece features alone are not a robust indicator of the

image splicing operation. To overcome this problem, we propose a content-related

image abstraction framework that removes such content sensitivity. We abstract an

image as its structure component using an image structure-texture decomposition

technique [98]. The abstracted image retains the image structure but is devoid of
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the splicing artifact. With the new features, the classification accuracy improves by

9%.

2.2 Related Works

2.2.1 Audio Forgery Detection

In [18], Farid addressed the problem of detecting spliced human speech. They

showed that authentic human speech signal is originally weak in the higher-order

statistical correlation of its Fourier harmonics and splicing can introduce such a sta-

tistical correlation in the signal. They explained the effect of splicing by considering

splicing as a non-linear operation, where the quadratic component of the operation

induces a higher-order statistical correlation of the Fourier harmonics in the signal.

This statistical correlation is called quadratic phase coupling. This statistical corre-

lation can be measured from the magnitude and the phase responses of the signal’s

bicoherence [41]. In the experiment, they tested the bicoherence technique on 20

authentic human speech sequences, one computer generated speech sequence, and

one sequence obtained by splicing human speech sequences in the multi-resolution

Laplacian pyramid domain. They showed that the spliced sequence can be separated

from others.

2.2.2 Image Splicing Detection

There are works [10, 30] that consider the artifacts from image splicing and those

from steganography (information hiding) to be similar and apply steganalysis tech-

niques for detecting image splicing. In [30], splicing artifacts are considered non-

stationary in a signal and Hilbert-Huang transform is used to extract the non-

stationary characteristics of a signal. They also include features from moments of
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the wavelet characteristic functions. With the combined features of 110 dimensions,

their method achieves a classification accuracy of 80.15% on the splicing benchmark

dataset we released in [66]. In comparison, the accuracy we achieved in [71] over

the same dataset was 71%. In [10], a spliced image is modeled as having sharp

transitions at the splicing interface as proposed in our work. They apply phase

congruency to detect the sharp edge transitions. Similarly, they include features

from moments of the wavelet characteristic functions. With the combined features

of 120D, their method achieves an improved classification accuracy of 82.32% on

our splicing dataset.

2.3 Bicoherence

In this section, we define the statistical quantity, bicoherence, which is the base

feature used in our splicing detection method presented in this chapter. We will

denote the spatial variable and the frequency variable respectively as x and ω. A

1D spatial domain signal is represented by a lower-case letter, such as a(x), and

its Fourier transform is represented by the corresponding upper-case letter, such as

A(ω). We reserve the letter a for an authentic signal, d as a bipolar signal, and s for

a spliced signal. The bicoherence of a signal a(x) with a Fourier transform A(ω) is

denoted by BA(ω1, ω2). For complex algebra, we denote the magnitude of a complex

variable z as |z|, its phase as φ(z), and its complex conjugate as z∗.

Definition 1 (Bicoherence). Bicoherence [41] of a 1D signal f(x) is defined as

a third-order moment spectral normalized by its Cauchy-Schwartz upper bound as

below:

BF (ω1, ω2) =
E [F (ω1)F (ω2)F

∗(ω1 + ω2)]√
E

[|F (ω1)F (ω2)|2
]
E

[|F (ω1 + ω2)|2
] (2.1)
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Figure 2.3: 1D slices are extracted from a 2D image. A 1D slice is broken into
overlapping segments for estimating bicoherence with Equ. 2.2.

where |BF (ω1, ω2)| ∈ [0, 1] and E(·) is the expected value of a random variable.

In practice, for a 1D signal f(x), bicoherence is often estimated by sample av-

eraging over the overlapping finite-length segments sampled from the signal using

Equ. 2.2:

BF (ω1, ω2) =
1
N

∑
i (Fi(ω1)Fi(ω2)F

∗
i (ω1 + ω2))√

1
N

∑
i

(|Fi(ω1)Fi(ω2)|2
)

1
N

∑
i

(|Fi(ω1 + ω2)|2
) (2.2)

In Equ. 2.2, a signal is decomposed into N overlapping segments, where a segment

is denoted by Fi(ω), with i = 1, . . . , N . Fig. 2.3 shows how overlapping segments

are obtained from a 1D slice of an image.

Unlike the power spectrum (i.e., a second-order moment spectral), bicoherence

is a complex function and captures the phase information of a signal. Bicoherence

has a unique property that its magnitude will achieve the maximal value 1 and

its phase will become 0 at a quadratically phase coupled frequency pair (ω1, ω2).

Quadratic phase coupling (QPC) happens when there exists significant harmonics

at the frequencies ω1, ω2, and ω1 +ω2, with their respective phase being φ1, φ2, and
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φ1 + φ2. QPC phenomena can be found in many measured signals in nature, such

as electroencephalogram (EEG) signals [87], human speech signals [17], ocean wave

interaction signals [41] and so on. QPC can be induced when a signal undergoes

a quadratic-linear operation, which is the lower-order component of a non-linear

process. We illustrate the effect of a quadratic-linear operation using a simple 1D

signal with two frequency harmonics [18, 73]:

r(x) = a1 cos(ω1x + φ1) + a2 cos(ω2x + φ2) (2.3)

When a linear-quadratic operation with a constant α is applied on r(x), we obtain:

r(x) + αr(x)2 = a1 cos(ω1x + φ1) + a2 cos(ω2x + φ2) (2.4)

+a1a2 cos((ω1 + ω2)x + (φ1 + φ2))

+
1

2
αa2

1 cos(2ω1x + 2φ1) +
1

2
αa2

2 cos(2ω2x + 2φ2)

+a1a2 cos((ω1 − ω2)x + (φ1 − φ2)) +
1

2
αa2

1 +
1

2
αa2

2

Note that the phase of the harmonics at ω1, ω2 and ω1 + ω2 are respectively φ1, φ2

and φ1 + φ2.

The work in [18] considers the splicing operation as being non-linear and hence

capable of inducing QPC through the quadratic-linear component of the non-linear

image splicing. Such an explanation is offered for the bicoherence capability in

splicing detection. However, the quadratic-linear operation as illustrated above

is a point-wise function, while the splicing operation is not. Therefore, such a

justification through QPC is incomplete.
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Figure 2.4: (a) The model for an authentic and a spliced signal. (b) The bi-mode
residue signal from the difference of an authentic signal and a spliced signal.

2.4 Bicoherence Theory for Splicing Detection

We propose an alternative theory to explain the capability of bicoherence in detect-

ing splicing, in terms of its magnitude response and its phase entropy. We consider

the splicing operation as an addition of a bipolar signal to the source signal, and

hence make a connection to the camera optical low-pass property. The theory pre-

dicts that image splicing induces a concentration of the bicoherence phase at ±90◦,

instead of the 0◦ from the QPC theory (as described above). We validate this

prediction on a real-world splicing benchmark dataset.

2.4.1 Splicing Model

When an image fragment is pasted onto another image without post-processing,

it is likely to produce both non-smooth and sharp transitions of image intensity

at the splicing interface. Such an edge transition is not natural to an authentic

image as cameras often have an optical low-pass property for the purpose of anti-

aliasing. Fig 2.4 (a) shows the abstract 1D model for the authentic and the spliced
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(a) A single dominant

 bipolar signal.

(b) A sequence of 

bipolar signals.

Figure 2.5: A bi-mode residue signal can be approximated as (a) a single dominant
bipolar signal. (b) a sequence of bipolar signals.

signal. A bi-mode residue signal is obtained when taking the difference of the two

signals. Note thats the bi-mode residue is observed even when the authentic signal

is non-smooth. Therefore, the sharp edge transition is responsible for the bi-mode

residue. Fig 2.4 (b) shows the authentic and the spliced edge transition in a real

image example. Note that the x-axis of the two plots are at the same scale and by

comparison the authentic edge transition is much slower than the spliced one. Due

to this observation, we can model a spliced signal as an authentic signal with an

additive bi-mode signal, which can be approximated by a single dominant bipolar

signal (see Fig. 2.5 (a)) or a sequence of bipolar signals (see Fig. 2.5 (b)).

A bipolar signal can be defined as below:

Definition 2 (Bipolar Signal Model). A bipolar signal d(x) consists of two Dirac

delta functions with different polarity and has a Fourier transform D(ω):

d(x) = k (δ(x− x◦)− δ(x− x◦ −4)) ⇔ D(ω) = k
(
e−jx◦ω − e−j(x◦+4)ω

)
(2.5)

where δ(·) represents a Dirac delta function, 4 is the separation between the two
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Dirac delta functions, x◦ represents the location of the bipolar signal, and k ∈ R
is the magnitude of a bipolar signal. The polarity of a bipolar is determined by the

sign of k.

To simplify our analysis hereforth, we only model splicing with a single additive

bipolar signal:

Definition 3 (Spliced Signal Model). A spliced signal s(x) is modeled as

s(x) = a(x) + d(x) ⇔ S(ω) = A(ω) + D(ω) (2.6)

where a(x) is an authentic signal.

In practice, we compute bicoherence through sample averaging of the overlap-

ping finite-length segments sampled from the original 1D signal as in Equ. 2.2. In

our analysis, we assume that there can only be at most one bipolar signal for an

overlapping segment and the bipolar signals found in the overlapping segments of

a signal are the same; that is having the same polarity k and delta separation 4.

Note that, although the location of the bipolar signal, x◦, may not be the same for

different sequences, x◦ has no significance in the computation of Equ. 2.2, as the

term with x◦ will be canceled out during the computation. As we assume that there

can only be at most one bipolar signal for an overlapping segment, we can model

the appearance of a bipolar signal in an overlapping segment using a Bernoulli prob-

ability model with the probability of seeing a bipolar signal in an overlapped signal

being pd.

Note that our above assumption is true for the simplest case of a single splicing

interface. By fixing k and 4, a bipolar signal becomes deterministic, as far the com-

putation of Equ. 2.2 is concerned. Below, we analyze the phase and the magnitude
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of the bicoherence for a bipolar signal.

Property 1 (Phase of Bipolar Signal Bicoherence). Let BD(ω1, ω2) be the bicoher-

ence of a bipolar signal, then the phase of the bipolar signal bicoherence, φ (BD(ω1, ω2))

= ±90◦, where the plus and minus sign of φ (BD(ω1, ω2)) depends on the sign of

BD(ω1, ω2).

Proof. D(ω) can be written in two forms:

D(ω) = ke−jx◦ω(1− e−j4ω) (2.7)

and

D(ω) = ke−jx◦ωe−j 1
2
4ω(ej 1

2
4ω − e−j 1

2
4ω) = ke−jx◦ωe−j 1

2
4ω sin(

1

2
4ω) (2.8)

The phase of the bipolar signal bicoherence BD(ω1, ω2) is determined by the

bicoherence numerator, which can be expressed in the form of both Equ. 2.9 (derived

from Equ. 2.7) and Equ. 2.10 (derived from Equ. 2.8):

E [D(ω1)D(ω2)D
∗(ω1 + ω2)]

= 2jpdk
3 (sin(4ω1) + sin(4ω2)− sin(4(ω1 + ω2))) (2.9)

= 8jpdk
3 sin(

1

2
4ω1) sin(

1

2
4ω1) sin(

1

2
4(ω1 + ω2)) (2.10)

where pd is the probability of seeing a bipolar signal in an overlapped signal segment
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Figure 2.6: A 3D plot for the numerator of the bipolar signal bicoherence for the
case of k = 1 and 4 = 1. Note that the vertical axis is imaginary and therefore the
resulting phase histogram has values concentrated at ±90◦

used for estimating bicoherence. Then, the phase of a bipolar signal:

φ(BD(ω1, ω2)) = φ(E [D(ω1)D(ω2)D
∗(ω1 + ω2)])

= sgn(8jpdk
3 sin(

1

2
4ω1) sin(

1

2
4ω1) sin(

1

2
4(ω1 + ω2)))φ(j)

= ±90◦ (2.11)

where the plus and minus sign of φ (BD(ω1, ω2)) is determined by

sgn(8jpdk
3 sin(

1

2
4ω1) sin(

1

2
4ω1) sin(

1

2
4(ω1 + ω2)))

with sgn(·) being the sign operator.

Fig. 2.6 shows an example of D(ω1)D(ω2)D
∗(ω1 + ω2) and its resulting phase

histogram concentrates at ±90◦. Note that the phase histogram is symmetric due

to the following property:

Property 2 (Symmetry of Biocherence Phase Histogram). For a real-valued signal

f(x), the phase histogram of BF (ω1, ω2) is symmetric.

Proof. For a real-valued signal f(x), its Fourier transform is conjugate symmetric,
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i.e., F (ω) = F ∗(−ω), where |F (ω)| = |F (−ω)| and φ(F (ω)) = −φ(F (−ω)). Then,

B∗
F (−ω1,−ω2) =

E∗ [F (−ω1)F (−ω2)F
∗(−ω1 − ω2)]√

E
[|F (−ω1)F (−ω2)|2

]
E

[|F (−ω1 − ω2)|2
] (2.12)

=
E∗ [F ∗(ω1)F

∗(ω2)F (ω1 + ω2)]√
E

[|F ∗(ω1)F ∗(ω2)|2
]
E

[|F ∗(ω1 + ω2)|2
] (2.13)

=
E [F (ω1)F (ω2)F

∗(ω1 + ω2)]√
E

[|F (ω1)F (ω2)|2
]
E

[|F (ω1 + ω2)|2
] = BF (ω1, ω2)(2.14)

which implies that BF (ω1, ω2) is also conjugate symmetric. As for every φ(BF (ω1, ω2)),

there is φ(BF (−ω1,−ω2)) = −φ(BF (ω1, ω2)), therefore the bicoherence phase his-

togram is symmetric.

Below we provide the magnitude property of the bipolar bicoherence:

Property 3 (Magnitude of Bipolar Signal Bicoherence). The magnitude of the

bipolar signal bicoherence achieves the maximal value of 1 for every (ω1, ω2). As

a result, the mean of the bicoherence magnitude over all (ω1, ω2) also achieves the

maximal value of 1.

Proof. We can write D(ω1)D(ω2) = c(ω1, ω2)D(ω1 + ω2) where

c(ω1, ω2) =
k

(
1− e−j4ω1 − e−j4ω2 + e−j4(ω1+ω2)

)

(1− e−j4(ω1+ω2))
(2.15)

Note that c(ω1, ω2) is a deterministic when k and 4 are deterministic. If pd is the

probability of seeing a bipolar signal in the overlapping signal segments, then we
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have:

|BD(ω1, ω2)| =
|E [D(ω1)D(ω2)D

∗(ω1 + ω2)]|√
E

[|D(ω1)D(ω2)|2
]
E

[|D(ω1 + ω2)|2
] (2.16)

=
|pdD(ω1)D(ω2)D

∗(ω1 + ω2)|√
pd |D(ω1)D(ω2)|2 pd |D(ω1 + ω2)|2

(2.17)

=
|c(ω1, ω2)|√
|c(ω1, ω2)|2

= 1 (2.18)

Property 1 and Property 3 describes the effect of a bipolar signal on the magni-

tude response and the phase entropy for bicoherence. In the following analysis, we

will show that the same effect propagates to a spliced signal through a bipolar signal

perturbation. Note that, in contrast to the QPC theory which predicts a 0◦ phase

concentration, Proposition 1 predicts a phase concentration of ±90◦ for a spliced

signal.

Proposition 1 (Bipolar Effect on the Phase of the Spliced Signal Bicoherence). A

bipolar signal inducees a ±90◦ phase concentration on a spliced signal. The strength

of the effect depends on the magnitude of k with respect to the authentic signal

energy, and pd, the probability of seeing a bipolar signal in an overlapped signal

segment used for estimating bicoherence.

The proof for Proposition 1 is given in Appendix A.

Proposition 2 (Bipolar Effect on the Magnitude of the Spliced Signal Bicoherence).

An additive bipolar signal induces an increase in the magnitude of the spliced signal

bicoherence. The strength of the effect depends on the magnitude of k with respect

to the authentic signal energy, and pd, the probability of seeing a bipolar signal in

an overlapped signal segment used for estimating bicoherence.
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Figure 2.7: Example images from the Columbia Image Splicing Detection Evaluation
Dataset.

The proof for Proposition 1 is given in Appendix B.

2.5 Theory Validation

2.5.1 Columbia Image Splicing Detection Evaluation Dataset

To validate the proposed theory on real-world spliced images, we created the Columbia

Image Splicing Detection Evaluation Dataset [66] which consists of 933 authentic

and 912 spliced grayscale image blocks of size 128×128 pixels. We focus on splic-

ing detection for such a small-size 128×128-pixel image block instead of the entire

image so that localization of splicing interfaces is possible within a given large-size

image. The image block are created from images in the CalPhotos [8] image set

and also using a few images we acquired using a digital camera. The original im-

ages are of sizes ranging from 1800×1000 pixels to 800×600 pixels and are stored

in JPEG format. There are five categories of image blocks in the splicing dataset

(see Fig. 2.7); they are image blocks of a homogenous textured pattern (denoted as

textured), a homogenous smooth pattern (smooth), and three other categories with

an object boundary respectively separating a smooth region from another smooth

region (smooth-smooth), a textured region from a smooth region (textured-smooth),
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and textured region from another textured region (textured-textured). For the im-

age blocks with an object boundary, the boundary can be either an authentic object

boundary or a splicing interface. The procedure for creating the smooth-smooth, the

textured-smooth, and the textured-textured image blocks is as follows using Adobe

Photoshop:

1. To create a spliced image, we cut an object from an original images along its

boundary and then paste the cut-out onto another original image. We repeat

this cut-and-paste process for multiple image pairs.

2. To generate the image blocks, we crop the 128×128-pixel image block from

the spliced images such that the spliced image block contains a portion of the

splicing boundary, or from the authentic images such that the authentic image

block contains a portion of the object boundary.

3. The image blocks are saved in an uncompressed BMP format.

We also created spliced image blocks for the textured and smooth categories by

copying a vertical or horizontal strip of 20-pixel wide from one location to another

location within the same image block.

2.5.2 Computation of Bicoherence Features

To validate the theory, we compute the phase histogram, the phase entropy and the

magnitude response of the bicoherence of the image blocks. Given a 128×128-pixel

image block in the dataset, we compute bicoherence individually on the horizontal

and the vertical slices, each being a 128-pixel long 1D signal. The same computa-

tional procedure has been employed in [19]. For each slice, bicoherence is estimated

from three 64-pixel long overlapping segments where the overlap is 32-pixel long (see
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Fig. 2.3). When computing the discrete Fourier transform, the segments are multi-

plied with a Hanning window and extended to a length of 128 pixels by zero-padding,

in order to reduce frequency leakage and obtain a better frequency resolution. We

also experimented with a shorter 32-pixel long overlapping segments, which gives us

very similar experimental results as those presented in this chapter.

The bicoherence phase histogram p(φi), i = 1, . . . , 24 for each slice is obtained

by uniformly binning of the bicoherence phase (from −180◦ to 180◦) into 24 bins

(bin width = 15◦). The phase histogram is then normalized so that it sums to 1.

The overall phase histogram for an image block is obtained by averaging the phase

histogram of the 1D slices.

The magnitude response rm and the phase entropy rp of bicoherence is estimated

as below:

rm =
1

|Ω|
∑

(ω1,ω2)∈Ω

B(ω1, ω2), rp =
∑

i

p(φi) log(p(φi)) (2.19)

rm represents the averaged magnitude over all (ω1, ω2) and rp is the negative entropy

of the bicoherence phase, where a higher rp represents a higher concentration of the

bicoherence phase (i.e., less uniformly distributed). The overall magnitude response

Rm and the overall phase entropy Rp of an image block is obtained by:

Rm =

√(
1

128

∑128
i=1 rvi

m

)2
+

(
1

128

∑128
i=1 rhi

m

)2
, Rp =

√(
1

128

∑128
i=1 rvi

p

)2
+

(
1

128

∑128
i=1 rhi

p

)2

(2.20)

where rvi
m and rhi

m are respectively the bicoherence magnitude response of the vertical

and the horizontal slices, indexed by i, while rvi
p and rhi

p are those for the phase.
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Figure 2.8: The distribution of (a) the magnitude response Rm and (b) the phase
entropy Rp for bicoherence computed on the Columbia Image Splicing Detection
Evaluation Dataset.

2.5.3 Experiments

We computed the bicoherence magnitude response Rm and the bicoherence phase

entropy Rp for the image blocks in our splicing dataset. The distributions of the

Rm and Rp for the authentic image blocks and the spliced image blocks are shown

in Fig. 2.8. For both Rm and Rp, the distributions for the authentic and the spliced

image block are verified to be different by a Kolmogorov-Smirnov test with a 5%

significance level. Note that both Rm and Rp for the spliced image blocks are higher

than those of the authentic image blocks in terms of distribution. A higher Rp

represents a higher concentration of the bicoherence phase. These empirical results

match the prediction of Proposition 1 and Proposition 2.

Fig. 2.9 (a) shows the averaged phase histogram for the spliced and the authen-

tic image blocks. Note that the spliced block phase histogram is higher than the

authentic one at ±90◦ but lower at 0◦. This observation is more clearly shown in

Fig. 2.9 (b) by the difference of the two histograms, which matches the prediction

of Proposition 1.

We perform a baseline classification of the authentic and the spliced image blocks
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Figure 2.9: (a) The average bicoherence phase histogram for the authentic image
blocks and the spliced image blocks in the Columbia Image Splicing Detection Eval-
uation Dataset. (b) The difference histogram obtained by subtracting the authentic
image block phase histogram from that of the spliced image blocks.

with Rm and Rp using a Support Vector Machine (SVM) classifier of the LIB-

SVM [37] implementation. We use the Radial Basis Function (RBF) kernel for the

SVM and model selection (for the regularization parameter C and the kernel pa-

rameter γ) is done by a grid search [37] in the joint parameter space, (C, γ). The

classification accuracy for the binary classes, obtained by a five-fold cross-validation

procedure, is 63.6%, which is about 13% better than random guessing. The spe-

cific information about ±90◦ phase concentration does not help much, as the phase

concentration response has already been captured by Rp. The poor classification

performance using the bicoherence features can be explained by an observation

given in [42]. In [42], it is observed that natural-scene images originally contain

a significant amount of energy in higher-order statistics including bicoherence, due

to image edges. As the original amount of the image-edge related bicoherence en-

ergy is variable, it makes the increase in the bicoherence magnitude due to image

splicing less detectable. Although the work in [42] does not provide information

about the bicoherence phase of natural-scene images, we conjecture that the edge
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Figure 2.10: The distribution of the edge pixel ratio feature for the authentic and
the spliced image blocks in our dataset.

structure in natural-scene images induces ±90◦ phase concentration to a certain

extent. The conjecture is based on the observation that the averaged bicoherence

phase histogram for the authentic image blocks shown in Fig. 2.9 (a) exhibits a

±90◦ phase concentration. Therefore, the bicoherence phase feature encounters the

same problems as the bicoherence magnitude feature does. In the next subsection,

we propose new image features to improve the classification performance.

2.6 Improvement on Splicing Detection

As it is observed in [42] that the original amount of bicoherence energy is related

to image edge or more generally image content, so we can improve the classifica-

tion performance of the bicoherence features by importing image-content-related

features. We propose two image-content-related features, which are the edge pixel

ratio feature Er, and the image structure bicoherence features (Um, Up).

2.6.1 Edge Pixel Ratio Feature

The edge pixel ratio feature Er is the proportion of image pixels being edge pixels,

for instance those detected by the Canny edge detection algorithm [32]. This feature
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Figure 2.11: The distribution of (a) the bicoherence magnitude response and (b) the
bicoherence phase entropy for image blocks of the textured-textured, the textured-
smooth, and the smooth-smooth categories in our dataset.

qualitatively measures the textured-ness of an image, as shown in Fig. 2.10, where

image blocks of the textured-textured category has the higher edge pixel ratio in

terms of the distribution, followed by those in the textured-smooth category and

then those in the smooth-smooth category. Note that, the distribution of these cat-

egories for both the authentic and the spliced classes are quite similar. In Fig. 2.11,

we observe that the distribution of the bicoherence magnitude response and the

bicoherence phase entropy for image blocks of the textured-textured, the textured-

smooth, and the smooth-smooth categories are quite different. The authentic and

the spliced image blocks of the smooth-smooth category are the most distinguish-

able, followed by those in the textured-smooth category and the textured-textured

category. Therefore, with edge pixel ratio as an additional feature, such a difference

may be learnt by a classifier.
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2.6.2 Image Structure Bicoherence Features

The image structure bicoherence features refers to the bicoherence magnitude re-

sponse Um and the bicoherence phase entropy Up for the structure component of

an image. The structure component (named as a cartoon component in [98]) of

an image is obtained by an image structure-texture decomposition algorithm pro-

posed in [98]. In the algorithm, an image f(x, y) is modeled by a linear model,

f(x, y) = u(x, y) + v(x, y), where u(x, y) represents the structure component or a

simplification of an image, and v(x, y) represents the texture component. u(x, y) is

modeled by a function of bounded variation (BV), where sharp edges are permit-

ted, while the texture component of an image is modeled by an oscillatory function.

Therefore, the edge structure is better preserved in u(x, y) compared to a linear

low-pass image. The decomposition is achieved in the total variation minimization

framework [84]:

inf
u

E(u) =

∫
|∇u|dxdy + λ‖v‖∗ (2.21)

where λ is the tuning parameter, ‖·‖∗ is a norm inducing a Banach space that allows

for oscillating functions. Note that the first term in Equ. 2.21 is a regularizing term,

while the second is a fidelity term. The minimizer can be obtained by solving the

associated Euler-Lagrange equations, which is a set of partial differential equations

(PDE). The solution of the PDE is obtained through a finite difference scheme

that is given in [98]. Examples of the structure-texture decomposition are shown in

Fig. 2.12, note the extracted texture.

The structure component is only useful for our case if it represents only the image

content, but with few or no splicing artifacts, as far as the bicoherence responses

are concerned. In other words, we expect most of the splicing artifacts (in terms of

sharp edge transitions) will manifest in the texture component. Fig. 2.13 shows the
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Figure 2.12: Examples for the structure-texture decomposition.

distribution of the bicoherence magnitude response Um and the bicoherence phase

entropy Up for the structure component of the authentic and the spliced image

blocks. Although the response distributions for the authentic and the spliced blocks

are not exactly the same, they are more similar to each other than the distributions

Rm and Rp which are illustrated in Fig 2.8. As a result, we can use Um and Up as a

neutral content reference for Rm and Rp respectively, in order to make the increase

in Rm and Rp due to image splicing more prominent.

As an alternative to the structure component, we may compute the bicoherence

features from the texture component, which we suspect carries more artifacts from

splicing. However, our experiments did not show the effectiveness of this approach.

The probable reason is that the effect of the splicing artifacts are less prominent in

the noise-like texture component of an image, as far as the bicoherence features are

concerned.

2.7 Classification Experiment

We evaluate the performance of the proposed edge pixel ratio feature Er, and the

image structure bicoherence features (Um, Up) by adding them as additional fea-
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Table 2.1: SVM Classification Accuracy for Different Feature Combinations
Features Accuracy Features Accuracy

(Rm, Rp) 63.6% (Rm, Rp) + Er 69.6%
(Rm, Rp) + (Um, Up) 67.9% (Rm, Rp) + Er + (Um, Up) 72.4%

tures to the basic bicoherence features (Rm, Rp), for SVM classification experiments

described in Sec. 2.5.3. The averaged binary-class classification accuracy and the

classifier ROC curve for different feature combinations are respectively shown in

Table 2.1 and Fig. 2.14.

2.8 Discussions

Although the classification accuracy of 72.4% with all the features offers an im-

provement of about 9% on the basic bicoherence features, this accuracy is still

considered low for an application concerning image splicing detection. Some recent

works [10, 30] have proposed steganalysis-inspired techniques and achieved a better

classification accuracy of about 80% (with a different cross-validation setting and

data partitioning than our own) on our image splicing dataset, which is encourag-

ing. This dataset is mainly constructed using images from the CalPhotos dataset [8]

contributed by many different photographers. These images may not represent the

diverse images that we encounter today, therefore, further experiments on a more

diverse image dataset is needed. In addition, our experiment only demonstrates the

splicing detection accuracy on the 128×128-pixel image blocks, further experiment

on the full-size images would offer a more realistic evaluation of image splicing de-

tection. Last but not least, the detection of post-processing operations needs to be

considered with image splicing detection under a single framework.
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Chapter 3

A Geometric Method for Photographic and

Computer Graphics Images Classification

3.1 Introduction

As model-based computer graphic rendering technology is making great strides, dis-

tinguishing photographic image from photorealistic computer graphics is becoming

more challenging. A 3D graphic company Autodesk Alias designs an online quiz

at www.fakeorfoto.com for challenging users’ visual judgement in distinguishing

photographic images (PIM) and photorealistic computer graphics (PRCG). Some of

the images from www.fakeorfoto.com are shown in Fig. 3.1, note the level of pho-

torealism of the PRCG. Furthermore, there are also experimental evidences that, to

the naked eye, computer graphic images of certain scenes are visually indistinguish-

able from photographic images [63].

With high photorealism, PRCG naturally qualifies themselves as potential sus-

pects for forged images. Forged images can be used for fraud, make-belief, and

dishonest setup, and the goal of image forensics is to detect these forgery images.

In this work, we propose a set of physics-motivated features for distinguishing PIM

and PRCG images, for which the main results have been published in [68, 70]. The

www.fakeorfoto.com
www.fakeorfoto.com
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PIM

PRCG

Image source: www.fakeorfoto.com

Figure 3.1: Examples of photo and PRCG from www.fakeorfoto.com.

physics-motivated features are obtained by studying the respective physical image

generative process for PIM and PRCG, and they capture both the scene authentic-

ity and the imaging-process authenticity properties. As a result, we can partially

explain the actual differences between PIM and PRCG.

To capture the physical differences in the image generative processes, we pro-

pose an image description framework inspired by Mandelbrot. Mandelbrot [57]

introduced the idea of fractals as a geometric description of a mathematical object

with a fractional dimension to generalize the classical geometry which is limited

to integer dimensions. He also pointed out that, unlike the ideal fractal which is

a mathematical concept, the geometry of real-world objects are often best charac-

terized by having different dimensions over different range of scales. This insight

inspires our image description framework in scale space: at the finest scale, we de-

scribe the intensity function of an image as a fractal, while at an intermediate scale

as a 2D topological surface with a smooth structure, which is best described in the

language of differential geometry. Additionally, we also model the local geometry of

the image intensity function in a “non-parametric” manner by local image patches.

www.fakeorfoto.com
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Another recent thread of development in image synthesis is image-based render-

ing [86], where a novel-view image is synthesized from a set of photographic images,

or a photorealistic image is obtained when a computer graphic object is given the

appearance of a real object which is extracted from photographs of multiple views

and lightings. These types of images are commonly found in movies with amazing

special visual effects, such as ‘The Lord of the Rings’ (2001), ‘Superman Returns’

(2006) and so on. In essence, images synthesized from image-based rendering are

the hybrid of photographic images and computer graphics, hence it is an ambiguous

case for our method and beyond the scope of our consideration.

3.2 Related Works

Despite the fact that classification of photographic images and computer graphics

has been applied for improving the image and video retrieval performance [3, 39, 89],

classification of photographic images (PIM) and photorealistic computer graphics

(PRCG) is a new problem. The work in [55] takes advantage of the wavelet-based

natural image statistics, and extracts the first four order statistics of the in-subband

coefficients and those of the cross-subband coefficient prediction errors as features

for classifying PIM and PRCG. Promising results, with a PIM detection rate of 67%

at a 1% false alarm rate, have been achieved. However, due to the lack of a physical

model for PIM and PRCG, the results have not led to an insight into the question:

How is PIM actually different from PRCG?. In [101], an efficient PIM and PRCG

classifier is proposed based the characteristic functions of wavelet histograms. With

an experiment on a dataset consisting of 4546 online PIM, 3844 online PRCG and

the images from our Columbia Photographic Images and Photorealistic Computer

Graphics Dataset (see Sec. 3.10), they found that their technique outperforms that
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of [55].

3.3 Image Generation Process

In general, the image intensity function I : (x, y) ∈ R2 7→ R arises from a complex

interaction of the object geometry, the surface reflectance properties, the illumina-

tion and the camera view point. In addition, as photographic or scanned images

are captured by an image acquisition device such as a camera or a scanner, they

also bear the characteristics of the device (see Fig. 1.5). For example, a digital

photographic image in general has undergone the optical lens transformation, the

gamma correction, the white-balancing and the color-processing while being tinted

with quantization noise and sensor fixed pattern noise [96].

However, PRCG is produced by a graphics rendering pipeline [1], a different pro-

cess than that of the PIM. In general, a graphics rendering pipeline can be divided

into three conceptual stages: application, geometry and rasterizer. At the appli-

cation stage, mainly implemented in software, the developer designs/composes the

objects/scene to be rendered. The objects are represented by the rendering primi-

tives such as points, lines and triangles. The geometry stage, mainly implemented

in hardware, consists of rendering operations on the rendering primitives. The ras-

terizer stage is responsible for converting the rendered primitives into pixels which

can be displayed on a screen. During this conversion, the camera effects, such as the

depth-of-field (DoF) effect or the gamma correction, may or may not be simulated.

The main differences between the PIM and PRCG image generation processes are

as follows:

1. Object Model Difference: The surface of real-world objects, except for

man-made objects, are rarely smooth or of simple geometry. Mandelbrot [57]
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has showed the abundance of fractals in nature and also related the forma-

tion of fractal surfaces to basic physical processes such as erosion, aggregation

and fluid turbulence. However, computer graphics 3D objects are often repre-

sented by polygonal models. Although polygonal models can be arbitararily

fine-grained, it comes with a higher cost of memory and computational load.

Furthermore, such a polygonal model is not a natural representation for fractal

surfaces [76]. A coarse-grained polygonal model may be used at the percep-

tually insignificant area in an image for saving computational resources.

2. Surface Model Difference [1]: The physical light field captured by a cam-

era is a result of the physical light transport from an illumination source,

reflected to an image acquisition device by a scene object (see Fig. 1.5). The

most general surface reflectance function is 12D, with the parameters being

the incoming and the outgoing angle, position, time, and wave length [72].

Precise modeling of a surface reflectance property using the 12D function will

make the simulation of light transport computationally expensive, if not in-

feasible. Therefore, a simplified model based on the assumption of isotropy,

spectral independence and parametric representation is often used in computer

graphics rendering.

3. Acquisition Difference: PIMs carry the characteristics of the imaging pro-

cess, while PRCG may undergo different types of post-processing after the

rasterizer stage. There is no standard set of post-processing techniques, but a

few possible ones are the simulation of the camera effect, such as the depth of

field, gamma correction, addition of noise, and retouching.
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Figure 3.2: The geometry-based image description framework.

3.4 Geometry-based Image Description Framework

To exploit the differences between PIM and PRCG, we propose a two-scale image

description framework, inspired by Mandelbrot [57] (see Fig. 3.2). At the finest

scale, the image intensity function is related to the fine-grained details of a 3D

object’s surface properties. The finest-scale geometry can be characterized by the

local fractal dimension (Section 3.6) and also by the “non-parametric” local patches

(Section 3.8). At an intermediate scale, when the fine-grained details give way

to a smoother and differentiable structure, the geometry can be best described

in the language of differential geometry, where we compute the surface gradient

(Subsection 3.7.1), the second fundamental form (Subsection 3.7.2) and the Beltrami

flow vectors (Subsection 3.7.3).

The transition of an image to an intermediate scale is done in the linear Gaussian

scale-space (Section 3.5), where a scale-space image is infinitely differentiable.

3.4.1 Notation for This Chapter

In this chapter, a single-channel (grayscale) intensity function is represented as

I(x, y), while a joint-RGB-color function is represented as IRGB(x, y) = (IR(x, y),

IG(x, y), IB(x, y)). Their corresponding scale-space function are respectively de-
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noted as L(x, y) and LRGB(x, y) = (LR(x, y), LG(x, y), LB(x, y)). We denote the

first-order partial derivative of a function f(x, y) as fx and fy, a similar convention

for the higher-order partial derivative is applied. When needs arise, a partial deriva-

tion operator ∂
∂x

may be represented as ∂x to simplify notation. We will reserve the

character g for the Riemannian metric of a manifold, r for image irradiance, and s

for the scale parameter in scale space, M for a manifold or a submanifold.

3.5 Linear Gaussian Scale-space

In this section, we will give a brief introduction of the linear Gaussian scale-space in

which we compute the local fractal dimension and the differential-geometric quan-

tities. The linear Gaussian scale-space L : Ω ⊆ R2 × R+ 7→ R of a 2D image

I : Ω ⊆ R2 7→ R is given by:

L(x, y; s) =

∫∫

Ω

I(ξ, η)φ(x− ξ, y − η; s)dξdη = φ(x, y; s) ∗ I(x, y) (3.1)

where L(x, y; 0) = I(x, y), s is a non-negative real number called the scale parameter,

∗ is the convolution operator and φ : R2 7→ R is the Gaussian kernel function:

φ(x, y; s) =
1

2πs
e−

x2+y2

2s (3.2)

Even though an image, I(x, y) may not be differentiable initially, the corre-

sponding linear scale-space function, L(x, y; s), s > 0 is infinitely differentiable with

respect to (x, y) as long as I(x, y) is bounded. As differential-geometric quantities

are the composition of derivative terms, the differentiability property ensures that

the computed differential-geometric quantities are well-defined. The partial deriva-

tive of a scale-space can be obtained by convolving the original image, I(x, y), with



42

the partial derivatives of the Gaussian kernel function φ(x, y; s):

Lxnym(x, y; s) = ∂xn∂ym(φ(x, y; s) ∗ I(x, y)) (3.3)

= (∂xn∂ymφ(x, y; s)) ∗ I(x, y) (3.4)

3.6 Fractal Geometry

The Object Model Difference mentioned in Section 3.3 implies that the 3D com-

puter graphic model’s surface properties deviate from the real-world object’s surface

properties, which are associated with the physical formation process such as ero-

sion. This deviation will directly result in a deviation of the local fractal dimension

measured from the image intensity function, under certain assumptions [76]. Based

on this, we conjecture that the deviation of the surface property would result in a

different distribution for the local fractal dimension of PRCG.

In this section, we briefly introduce fractal geometry and the techniques for

computing fractal dimension. A fractal is defined as a set of mathematical objects

with a fractal dimension (technically known as the Hausdorff Besicovitch dimension)

strictly greater than the topological dimension of the object but not greater than

the dimension of the Eculidean space where the object lives. For example, a fractal

coastline lives on a 2D surface, and, being a line, has a topological dimension of one,

then its fractal dimension would be 1 < D ≤ 2.

For a real world object, to directly estimate the fractal dimension from the math-

ematical definition of the Hausdorff Besicovitch dimension is difficult. A fractal is

self-similar across scales, so fractal dimension is often estimated as a factor of self-

similarity. A commonly used random fractal model for images is called fractional

Brownian motion (fBm) [57, 76]. With the fBm model, one method for estimating
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the fractal dimension is by measuring the self-similarity factor of a quadratic dif-

ferential invariant in scale-space. We select this estimation technique in order to

keep our approach consistent in the sense that both the fractal geometry and the

differential-geometric quantities are computed in the linear scale-space. We herein

describe the estimation procedure. We first compute the L1-norm of the second-

order quadratic differential invariant:

‖I(2)(s)‖ =
∑

all (x, y)

|I(2)(x, y; s)| where I(2) = L2
xx + 2L2

xy + L2
yy (3.5)

at multiple scales from s = 22 pixels to s = 28 pixels with an exponential increment.

Then, we perform a least square linear regression on the log ‖I(2)(s)‖-log(s) plot

and measure the slope of the line. With the estimated slope, the fractal dimension

is obtained by D = 1
2
−slope. Fig. 3.3 shows two examples of fractal dimension

estimation using the log ‖I(2)(s)‖-log(s) plot. Note that a higher fractal dimension

for the tree image block indicates a perceptually rougher image function and a more

rapid decrease of the quadratic differential invariant. For feature extraction, we

compute the fractal dimension for each of the non-overlapping 64×64-pixel local

blocks, independently for the R, G and B color channels of an image. As a result,

each local block produces a 3D fractal dimension vector across the color channels.

For each image, we obtain a distribution of data points in the 3D space.

3.7 Differential Geometry

This section introduces three differential-geometric quantities: the surface gradient,

the second fundamental form and the Beltrami flow vector, computed in scale space

with scale s = 1 pixel. The scale s = 1 pixel is empirically found to produce good
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Figure 3.3: Log-log plot for estimating the fractal dimension of a 64×64-pixel block
from the tree (Left) and road (Right) region

classification performance.

Having a fixed scale, we will represent a scale-space function as L(x, y), without

explicitly specifying the scale parameter s. As functions in scale-space are infinitely

differentiable, so are the single-channel intensity function L(x, y) and the joint-RGB

color intensity function LRGB(x, y) = (LR(x, y), LG(x, y), LB(x, y)). As a result, the

graph of L(x, y) and LRGB are smooth and respectively defined as:

F I : (x, y) ⊂ R2 7→ (x, y, L(x, y)) ⊂ R3 (3.6)

FRGB : (x, y) ⊂ R2 7→ (x, y, LR(x, y), LG(x, y), LB(x, y)) ⊂ R5 (3.7)

The graph of a smooth function qualifies as a submanifold [45] in Eculidean space,

which naturally induces a Riemannian metric on the submanifold. A Riemannian

metric g on a submanifold M is a symmetric and positive-definite 2-tensor field

defined on the tangent plane TpM at each point p on M [45]. Just like an inner

product (also a 2-tensor) in a Euclidean space which allows us to define lengths of

vectors and angles between them, a Riemannian metric allows us to define length

and angles on the tangent plane of a manifold. With g defined, the geometry of
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the manifold can be measured implicitly, without referring to the ambient space.

Therefore, g is an important element for describing the geometry of a manifold.

For a general graph function F (x, y) (e.g., F : R2 7→ R3), g can be described by a

symmetric and positive-definite matrix:

g =



〈Fx, Fx〉 〈Fx, Fy〉
〈Fy, Fx〉 〈Fy, Fy〉


 (3.8)

where 〈·, ·〉 represents the standard inner product in Euclidean space. Hence, for

F I(x, y) and FRGB(x, y), their Riemannian metrics gI and gRGB are respectively

given by:

gI =




1 + L2
x LxLy

LxLy 1 + L2
y


 (3.9)

gRGB =




1 + (LR
x )2 + (LG

x )2 + (LB
x )2 LR

x LR
y + LG

x LG
y + LB

x LB
y

LR
x LR

y + LG
x LG

y + LB
x LB

y 1 + (LR
y )2 + (LG

y )2 + (LB
y )2


 (3.10)

The g matrix can be denoted as (gij), where gij is an element of g. Then, with g,

the ‘inner product’ or the first fundamental form on the tangent vectors at a point

p can be written as:

〈V, W 〉g =
∑
ij

gijV
iW j (3.11)

where V =
∑

i V
iei and W =

∑
i W

iei are tangent vectors at a point, with {ei}
being the tangent plane basis.
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3.7.1 Gradient on Surface

The Acquisition Difference, as mentioned in Section 3.3, can detect PRCG that

have not undergone gamma correction as PIM generally do. One reason for missing

gamma correction is that popular rendering platforms such as Silicon Graphics use

hardware for gamma correction to enhance the contrast of the displayed images,

therefore gamma correction on the images is not necessary. Additionally, gamma

correction may be performed using the post-processing software such as Adobe Pho-

toshop where the transformation is mainly subjected to the user’s taste. In this

section, we will show that the surface gradient of the image intensity function can

be used to distinguish PIM and PRCG.

The image intensity function captured by cameras, unless specifically set, has

mostly been transformed by a camera response function (CRF), for the purpose of

displaying gamma correction as well as for dynamic range compression. A CRF

transforms image irradiance from the real-world scene to image intensity I(x, y),

which is the output of a camera. The typical concave shape of CRF, as shown

in Fig. 3.4, is given by the averaged curve from the DoRF database [34] with 201

real-world CRF’s.

One main characteristic of the CRF in Fig. 3.4 is that image irradiance of low

values would be stretched and those of high values would be compressed during the

non-linear transformation. This effect can be illustrated visually in Fig. 3.5. Let the

image intensity function be I(x, y) = f(r(x, y)) ' L(x, y) where f : R 7→ R is the

camera response function and r : (x, y) ⊂ R2 7→ R is the image irradiance function.

Below we will represent the image intensity function with its corresponding scale-
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space function L(x, y). By the chain rule, we have:

Lx =
∂L

∂x
=

df

dr

∂r

∂x
, Ly =

∂L

∂y
=

df

dr

∂r

∂y
(3.12)

Note that the modulation factor, df
dr

is the derivative of the camera transfer

function, which is larger (smaller) than 1 when r is small (large). Therefore, after the

transformation, the Euclidean gradient |∇L| = √
L2

x + L2
y of a transformed image is

higher (lower) at the low (high) intensity than before. Namely, the modulation term

df
dr

in Equ. (3.12) reveals a key difference between PIM and PRCG, when PRCG

images are not subjected to such modulation on their gradient values. If the PRCG

intensity functions have not undergone such transformation, it can be distinguished

from PIM by the gradient distribution.

The analysis above assumes that the image irradiance function r is continuous.

There is a non-trivial issue involved in its implementation, when it comes to discrete-

sampled images. Consider approximating the gradient at two neighboring pixels at

locations x and x + ∆x, Equ. (3.12) becomes:

∆Lx

∆x
=

∆(f ◦ r)x

∆rx

∆rx

∆x
(3.13)

where ∆Lx represents L(x+∆x, y)−L(x, y), and similar representation is applied for

∆rx and ∆(f ◦r)x in Fig. 3.4. Note that, the modulation factor in this case becomes

the slope of the chord on the camera response function connecting r(x + ∆x) to

r(x). Therefore, the modulation factor will only be similar to that of the continuous

case, when |r(x + ∆x) − r(x)| is small, otherwise the slope of the chord would be

approaching 1 and modulation effect becomes weak. Where |r(x + ∆x) − r(x)| is

small, |∆rx

∆x
| would be small too. As a result, due to the discrete image representation,
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the modulation effect shown in Equ. (3.13) would be more prominent at points with

low gradient values. This idea is illustrated in Fig. 3.6 (a). Although our analysis is

based on a simple derivative estimation model in Equ. 3.13, the analysis result holds

qualitatively in general even when we use a more complicated method to estimate

the image derivatives, because a large irradiance value gap between two adjacent

pixels could not capture the detailed CRF shape between the irradiance values.

With this property, if we are to compare the distributions of the gradient of PIM

with that of PRCG, we should place more weight on the low gradient region than

on the high gradient region. Fig. 3.6 (a) shows a sample distribution of gradient

values of an image, which typically contains long tail. To emphasize the low-gradient

region, we employ a tail-compressing transform S as shown in Fig. 3.6 (b):

S(|∇L|; α) =

√
|∇L|2

α−2 + |∇L|2 = |grad(αL)|, where |∇L| =
√

L2
x + L2

y (3.14)

Fig. 3.6 (b) shows that the S transform is almost linear for small values and that

it compresses high values. The width of the linear range can be controlled by the
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constant, α. Interestingly, Equ. (3.14) is the surface gradient of the scaled image

intensity function |grad(αL)| computed from the Riemannian metric for the graph

of a single channel intensity function (see Appendix C for derivation).

Fig. 3.7 shows the distribution of the mean of surface gradient |grad(αL)|,
α = 0.25 (selected such that the linear range of the S transform covers the low

and the intermediate value for Euclidean gradient), for three intensity ranges, i.e.,

[0, 1
3
), [1

3
, 2

3
) and [2

3
, 1], of the blue-color channel (the same holds for the red and green

channels). These distributions are computed empirically from our actual dataset of

PIM and PRCG. Notice that for the low intensity region, the mean of surface gradi-

ent for the PIM is higher than that of the PRCG and the opposite is observed for the

high intensity region, while the distributions of the two are completely overlapped

at the medium intensity range. This perfectly matches our prediction about the

effect of the transfer function as described earlier in Equ. (3.12).

For feature extraction, we compute the surface gradient and obtain (|grad(αLR)|,
|grad(αLG)|, |grad(αLB)|), α = 0.25 for the three color channels at every pixel of

an image. As CRF in PIM modulates the gradient differently at different intensity

values, we combine the intensity values (LR, LG, LB) with the above surface gradient

vector at every pixel, and form a vector field (LR, LG, LB, |grad(αLR)|, |grad(αLG)|,
|grad(αLB)|) on the FRGB submanifold. In Sec. 3.9, we will show how features are

extracted for classification by computing the rotational moments of the 6D vectors.

3.7.2 The Second Fundamental Form

Referring to the Object Model Difference as mentioned in Section 3.3, the ac-

curacy of the 3D polygonal model of computer graphics is dependent on the granu-

larity of the polygonal representation. A coarse-grained polygonal model can result
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in observable sharp structures, such as sharp edges and sharp corners, in the image

intensity function of computer graphics. Fig. 3.8(a) gives an intuitive illustration of

this point; when a concave line is approximated by a polygonal line, the curvature

at the junctures of the polygon segments is always greater than that of the concave

line. Fig. 3.8(b) shows an example of the sharp edge structure in the magnified

view of a PRCG image. This structural difference between PIM and PRCG can be

observed from the local quadratic geometry computed on the image intensity func-

tion. Quadratic geometry can be considered as a second-order approximation of the

intensity function surface at a point. The typical shapes of quadratic geometry are

shown in Fig. 3.9(a).

In differential geometry, the quadratic geometry at each point (x, y) of an image

intensity function graph F I(x, y) is related to the second fundamental form. Note

that, F I(x, y) is a submanifold of co-dimension one, which is also known as a hyper-

surface. The co-dimension of a submanifold is defined as difference between the

dimension of the ambient space and that of the submanifold. In [44], the second

fundamental form at a point p of a hyper-surface M is defined on the tangent plane

TpM as below:

Πp(V ) = 〈AV, V 〉g = 〈V, AV 〉g, where V ∈ TpM (3.15)

which can also be written as the form of a quadratic function as in Equ 3.16 when

the tangent vector V is represented in orthonormal basis.

Πp(V ) = V T AV (3.16)

For the definition in Equ. 3.15, A is the Weingarten map or the shape operator of
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M , which is a self-adjoint linear transformation on TpM (i.e., 〈AV, V 〉g = 〈V,AV 〉g).
From Equ 3.16, matrix A can be thought as the Hessian of the local surface, when it

is locally represented as a graph over its tangent plane. Therefore, A determines the

local quadratic geometry of M , which can be characterized by the two eigenvalues of

A, γ1 and γ2, with γ1 > γ2. The eigenvalues are called the local principal curvatures

of M .

For F I(x, y) = (x, y, L(x, y)), the unit normal vector n(x, y) is given by:

n(x, y) =
(−Lx,−Ly, 1)√

1 + L2
x + L2

y

(3.17)

Then, A is given by:

A =



〈F I

xx, n〉 〈F I
xy, n〉

〈F I
xy, n〉 〈F I

yy, n〉







g11 g12

g21 g22




−1

=
1

(1 + L2
x + L2

y)
3
2




Lxx Lxy

Lxy Lyy







L2
y + 1 −LxLy

−LxLy L2
x + 1




=
1

(1 + L2
x + L2

y)
3
2




Lxx(L
2
y + 1)− LxyLxLy Lxy(L

2
x + 1)− LxxLxLy

Lxy(L
2
y + 1)− LyyLxLy Lyy(L

2
x + 1)− LxyLxLy




=




a11 a12

a21 a22


 (3.18)

With A given by Equ. 3.18, its first and its second eigenvalues can be computed

as:

{γ1, γ2} =
−(a11 + a22)±

√
(a11 − a22)2 − 4a21a12

2
, γ1 > γ2 (3.19)
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In a 2D plot of the first and the second eigenvalues, every point represents a

local quadratic geometry shape, as shown in Fig. 3.9(b) (The meaning of the circles,

ellipses and so on is given in Fig. 3.9(a)). Note that, large eigenvalues correspond

to the ‘sharp’ structures such as sharp ellipses or sharp circles. Given an image, the

presence of the large eigenvalues can be measured by the skewness of the distribution

of the eigenvalues in each image (Skewness may not be the best measure, but it

serves our purpose for illustration); the larger the skewness is, the more large values

are there. We compute the skewness of the eigenvalues separately for the images

in our dataset and the distribution of the skewness is shown in Fig. 3.10. We can

see that the CG image set tends to have a larger skewness, while the shape of

the distributions for the two photographic sets (Google and Personal) are quite

consistent. This observation indicates that PRCG has more sharp structures than

PIM.

For feature extraction, we compute the two eigenvalues of the quadratic form

for the three-color channels independently. As the geometry of the edge region

and the non-edge regions are different in terms of the generative process, (e.g., low-

gradient region is mainly due to smooth surface while high-gradient region is mainly

due to texture, occlusion, change of the surface reflectance property or shadow),

we therefore try to capture the correlation between image gradient and the local

quadratic geometry with a combined vector (|∇LR|, |∇LG|, |∇LB|, γ1
R, γ1

G, γ1
B, γ2

R,

γ2
G, γ2

B) at every pixel, and hence it forms a vector field on the FRGB submanifold.

In Sec. 3.9, we will show how features are extracted for classification by computing

the rotational moments of the 9D vectors.



55

xy

z

x
y

z

Plane

2nd eigenvalue

1st eigenvalue

Elliptic paraboloid
Hyperbolic 

paraboloid

xy

z

Parabolic cylinder

(a) (b)

Figure 3.9: (a) The typical shapes of the quadratic geometry (b) The shapes of the
quadratic geometry in a 2D eigenvalue plot. Colors are for visual aid

cg

google

personal

1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

Skewness

N
o

rm
a

li
ze

d
 h

is
to

g
ra

m

1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

Skewness

N
o

rm
a

li
ze

d
 h

is
to

g
ra

m

1st Eigenvalue (mag) 2nd Eigenvalue (mag)

H
ig

h
 G

ra
d

ie
n

t 
R

a
n

g
e

Figure 3.10: Distribution of the skewness of the 1st and 2nd eigenvalues of the
second fundamental form for the blue color channel



56

3.7.3 The Beltrami Flow Vector

In Section 3.3, we discussed the Surface Model Difference between PIM and

PRCG. The object reflectance property function in PRCG is often simplified such

that its response to different color channels or spectral components are indepen-

dent. This assumption is not true for real-world objects in general, therefore this

simplification may result in a deviation of the cross-color-channels relationship of

PRCG with respect to that of PIM. Such joint-color-channel correlation has been

used by some techniques in image restoration to improve the subjective image qual-

ity. Therefore, we consider the Beltrami flow [91], which is an effective joint-color-

channel image restoration technique. Beltrami flow is based on the idea of minimiz-

ing the local surface area, which has been employed for restoring degraded or noisy

images where artifacts or noise are considered as singularities on the image intensity

function. Minimization of the surface area reduces the magnitude of the singularity.

For the graph of a joint-RGB image intensity function

FRGB(x, y) = (x, y, LR(x, y), LG(x, y), LB(x, y))

Beltrami flow [91] is defined as a flow partial differential equation (PDE):

Li
t = 4gL

i (3.20)

where i ∈ R,G, B. In Equ. 3.20, 4g is the Beltrami operator, and 4gL
i is the

Beltrami flow vector. From the flow PDE, the graph manifold FRGB changes con-

tinously according to the Beltrami flow vector 4gL
i, which is defined as:

4gL
i =

1√
|g|(∂x(

√
|g|(gxxLi

x + gxyLi
y)) + ∂y(

√
|g|(gyxLi

x + gyyLi
y))) (3.21)
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In Equ. 3.21, |g| is determinant of matrix g which can be written as:

|g| = gxxgxy − g2
xy = 1 +

∑
j

|∇(Lj)|2 +
1

2

∑

l,k

|∇(Ll)×∇(Lk)|2, l, j, k = R, G,B

(3.22)

and gij is the elements of g−1, which is given by:

g−1 =
1

gxxgxy − g2
xy




gyy −gxy

−gyx gxx


 (3.23)

In Equ. 3.22 ∇(Ll) and ∇(Lk) are both 2D vectors, but they will be extended

to vectors in R3 before computing the vector cross-product terms ∇(Ll) × ∇(Lk).

Note that the vector cross-product terms in Equ. 3.22 capture the correlation of

the gradients in the R, G and B color channels. We can visualize the 3D joint

distribution of the Beltrami flow vectors from the 2D plots of 4gL
R-4gL

G and

4gL
R-4gL

B. For the 2D plots of 4gL
R-4gL

G and 4gL
R-4gL

B, we notice that

the distribution of the PIM is more aligned to the y = x line of the plots, while the

PRCG tends to have misaligned points or outliers. This observation can be seen in

Fig. 3.11, showing the 2D plots of a PRCG together with those of its recaptured

counterpart. Note that the PRCG and its recaptured counterpart have the same

content, and latter is a PIM (acquired by a camera). We visually inspected 100

CG images and 100 Google images, and noticed that about 20% of the CG images

have this misalignment as compared to less than 5% of the Google images. Such

misalignment could be due to the spectral independence assumption for the surface

reflectance function.

For feature extraction, we follow the same strategy as the second fundamental

form and try to capture the correlation between the Euclidean gradient and the
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Figure 3.11: Comparing the joint distribution of the Beltrami flow components of a
computer graphics image and that of its recaptured counterpart, the lines correspond
to y = x

Beltrami flow vector. As such, we compute (|∇LR|, |∇LG|, |∇LB|, 4gL
R, 4gL

G,

4gL
B) at every pixel, which forms a vector field on the FRGB submanifold. In

Sec. 3.9, we will show how features are extracted for classification by computing the

rotational moments of the 6D vectors.

3.7.4 Normalization of Differential Geometry Features

The differential-geometric quantities are not invariant to image scaling. In this

subsection, we propose a normalization scheme to reduce their sensitivities to image

scaling.

When we compute the differential-geometric quantities, we are essentially com-

puting the derivatives of various orders in scale-space at a fixed scale s = 1 pixel.

We like to make sure that the geometric quantities are as invariant as possible when

we resize an image. To understand the effect of these operations on the scale-space
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computation, consider a simple example. For f1(x) = cos(ωx), the scale-space first

derivative (the conclusion can be easily generalized to the higher-order derivatives)

is given by:

L1x(x; s) = −ωe−
ω2s
2 sin(ωx) (3.24)

Let’s resize f1(x) by a factor k and obtain fk(x) = cos(kωx); the corresponding

scale-space first derivative would be:

Lkx(x; s) = −kωe−
k2ω2s

2 sin(kωx) (3.25)

As f1(x) = fk(
x
k
), we compare L1x(x; s) in Equ. (3.24) with Lkx(

x
k
; s) =−kωe−

k2ω2s
2 sin(ωx)

in order to understand the effect of image resizing. The difference between L1x(x; s)

and Lkx(
x
k
; s) is on the preceding factor k and the exponential factor. The first fac-

tor represents a systematic effect and is independent of the original signal, whereas

the exponential factor, being a function of ω, is content dependent. We propose a

way to minimize the effect of image resizing by removing the systematic effect of the

first factor. Note that this observation is also applicable to the general differential-

geometric quantities which are composed of scale-space derivatives. If we compute

a differential-geometric quantity at every pixel of an image and obtain the distribu-

tion of this quantity for each image, the mentioned first factor will manifest itself in

the standard deviation of the distribution. Therefore, we propose a simple divisive

normalization scheme, that divides the differential geometry quantity of an image

by its standard deviation. To prove the effectiveness of such a normalization, we

compute the Kullback-Leibler (KL) distance [11] between the distribution of the

scale-space first derivative of an image and that of the half-sized version of the same

image. Indeed, we find that the KL distance is reduced to about one-third after
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normalization.

Apart from image scaling, image rotation is also a common image operation. All

of our features are rotation-invariant, except for the Beltrami flow vector, and the

local patch statistics feature which we will describe next.

3.8 Local Patch Statistics

Natural image statistics [92] represents the statistical regularities inherent in nat-

ural images (defined as images commonly encountered by human). Natural image

statistics can be applied as an image prior for applications such as image com-

pression, image recognition and image restoration. The important image statistics

are the power law of the natural-image power spectrum [22], the wavelet high-

kurtotic marginal distribution, and the higher-order cross-subband correlation of

the wavelets coefficients [88]. The wavelet features proposed in [55] are derived from

these wavelet-based natural image statistics.

In addition to the transform-domain image statistics, an image-space natural

image statistic was proposed [43]: The authors studied the high-dimensional dis-

tribution of 3×3 high-contrast local patches which mainly correspond to the edge

structures. They found that the distribution is highly structured and concentrates

on a 2D manifold in an 8D Euclidean space. By using this method, they managed to

uncover the statistical difference between the optical (camera) images and the range

(laser scan) images. Just like the PIM and the PRCG, these two groups of images

correspond to two distinct physical image generation processes. There is further ev-

idence [83] that local patches can actually capture image styles, where painting, line

drawing, computer graphics, photographs and even images of different resolutions

can be considered as having different styles. The local patch model has been suc-
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cessfully applied to demonstrate image style translation [83], super-resolution [24],

and other applications. This motivates us to employ local patch statistics.

Now, we describe the procedure for extracting the local patch statistic features.

We extract (see Fig. 3.12(a) & (b)) the grayscale patch and the joint-spatial-color

patch independently at the edge points in two types of image regions: the high

contrast region, and the low but non-zero contrast region. The two regions are ob-

tained by thresholding the D-norm defined below. Note that the joint-spatial-color

patch is approximately oriented to the image gradient direction which is the direc-

tion of maximum intensity variation. Each sampled patch, represented as a vector

x = [x1, x2, . . . , x9], is mean-subtracted and contrast-normalized as in Equ. (3.26):

y =
x− x

‖x− x‖D

(3.26)

where x = 1
9

∑9
i=1 xi and ‖ · ‖D is called D-norm. D-norm is defined as ‖x‖D =

√∑
i∼j(xi − xj)2 with xi and xj representing the patch elements and i ∼ j denoting

the 4-connected neighbors relationship of two pixels in a patch. The D-norm can

also be expressed as the square root of a quadratic form ‖x‖D =
√

xT Dx where D

is symmetric semi-positive definite matrix [43].

As the patch x is contrast-normalized by the D-norm, the normalized patch

is constrained by a quadratic relationship, yT Dy = 1, which implies that the data

points are living on the surface of an ellipsoid in 9D Euclidean space. To facilitate the

handling of the data points in a high-dimensional space, the elliptic constraint can be

transformed into a spherical constraint by a linear transformation v = My, where M

is a 8×9 matrix and the resulting v is constrained by vTv = ‖v‖2 = 1, which implies

that v is located on 7-sphere in a 8D Euclidean space, as illustrated in Fig. 3.12(c)

in a 3D example. In this process, v is reduced from 9D to 8D by taking advantage
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Figure 3.12: The grayscale patch (a) and the joint-spatial-color patch (b) are sam-
pled at the edge points in an image. (c) Point masses on S7, a 7D sphere.

of the fact that y is zero-mean. For the each of the four patch types (grayscale/low-

contrast, grayscale/high-contrast, joint-spatial-color/low-contrast, and joint-spatial-

color/high-contrast), we extract 3000 patches and separately construct a distribution

on a 7-sphere in the 8D Euclidean space.

3.9 Description of Joint Distribution by Rigid Body Mo-

ments

We have described several distributions of features such as the 8D local patch feature

and the differential geometry quantities computed for every pixel in an image. Here

we propose to extract the statistics of these distributions in order to reduce the

dimensionality and develop a classification model for distinguishing PIM and PRCG.

There are many ways to describe this high-dimensional distribution. If the data

points lie on the surface of a sphere like the case of the local patch feature, one way

would be to uniformly quantize the surface of the sphere into 17520 bins (or other

suitable bin count) to form a 1D histogram [43]. This method needs a large number

of image patches in order to have a stable histogram if the distribution is relatively
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spread out. In the other extreme, a non-parametric density estimation method,

such as the Parzen kernel based method, can be used but the computation cost

would be intensive when it comes to computing the distance between two estimated

density functions. Besides that, Gaussian mixture model (GMM) clustering can

also be used, but the standard GMM algorithm does not take advantage of the

(non-Euclidean) spherical data space.

Due to the above considerations and the concern about the computational cost,

we develop a framework based on the rigid body moments, which is capable of

handling a high-dimensional distribution and is especially suitable for a spherical

distribution. Let’s first describe the process of computing the rotational rigid-body

moments for the local patch distribution in the form of a discrete set of point

masses on a 7-sphere [62]. For a distribution of N discrete masses, mi, i = 1, ..., N ,

respectively located at vi = [vi1...viM ], the element of the inertia matrix is given by

(3.27),

Ijk =
N∑
i

mi(‖vi‖2δjk − vijvik) j, k = 1, . . . ,M (3.27)

where the Kronecker delta δij is defined as 0 when i 6= j, 1 when i = j. For an

example of a 3D Euclidean space of x-y-z Cartesian coordinates, the inertia matrix

would be:

I =
N∑
i

mi




y2
i + x2

i −xiyi −xizi

−xiyi z2
i + x2

i −yizi

−xizi −yizi x2
i + y2

i




(3.28)

Notice that the inertia matrix is symmetric. The diagonal and the off-diagonal

components are respectively called the moments of inertia and the products of in-

ertia. For an n-dimensional space, the inertia matrix has n moments of inertia and

1
2
n(n− 1) unique products of inertia.
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For the distribution on the 7-sphere with N data points, we assign the mass for

each data point as 1
N

. We extract only the moment of inertia, as the number of the

unique products of inertia is large. From another perspective, we can consider the

elements of the inertia matrix as the second-order statistics of the distribution, and

therefore it does not capture the complete information of distribution. Besides the

moments of inertia, we also compute the center of mass (a form of the first-order

statistics) as well as the mean and the variance of the distance of the data points

from the center of mass.

However, the feature vectors for the fractal dimension, the surface gradient, the

second fundamental form and the Beltrami flow vector are not confined to a unit

sphere. In this case, the inertia quantities can be affected by two factors: the dis-

tribution of points in the spherical direction and that in the radial direction. We

decouple the two factors and model their effects separately: we model the distribu-

tion of the normalized unit-length data vectors (which lie on a unit sphere) using

the center of mass as well as the moments and the products of inertia, and model

the magnitude of the data vectors using the first four moments of the distribution,

i.e., mean, variance, skewness and kurtosis.

Fig. 3.13 shows the feature distribution of the four local patch types, after having

been linearly projected to a 2D space by Fisher discriminant analysis. The ellipses in

the figure depict the mean and the covariance of a single-class feature distribution;

a more separable pair of ellipses indicates that the two corresponding distributions

are more separable. We observe that the joint-spatial-color patch provides a better

discrimination between the PIM and PRCG. Fig. 3.14 shows the same 2D linear

projection of the fractal, the surface gradient, the 2nd fundamental form and the

Beltrami flow vector feature distribution. Notice that fractal dimension feature is

the weakest discriminant for PIM and PRCG and differential-geometric features are
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Figure 3.14: 2D projection of the fractal, the surface gradient, the 2nd funda-
mental form and the Beltrami flow vector features (from left to right) for the
(Google+personal image sets) (red) and the CG image set (blue)

strong discriminant features.

3.10 Columbia Photographic Images and Photorealistic Com-

puter Graphics Dataset

To ensure that our experimental dataset exemplifies the problem of image forgery

detection, our dataset collection effort adheres to the following principles: (1) Im-

ages of diverse but natural-scene-only content: we exclude the PRCG of fantasy or
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personal Google CG recaptured CG

Figure 3.15: Examples from our image sets. Note the photorealism of all images.

abstract category and this restriction ensures a content matching between the PIM

and the PRCG image sets, (2) Computer graphics of high photorealism: we subjec-

tively filter the computer graphics from the web to ensure a high photorealism, (3)

Images of reliable ground truth: we specifically collect a set of PIM from the per-

sonal collections which are known to be authentic. As a comparison, a very different

approach in terms of the dataset is adopted in [55], where a very large number of

online images, i.e., 32,000 PIM and 4,800 PRCG, are used and the selection criteria

is not given. Adhering to the above principles, we collected the below-described

four image sets (see Fig. 3.15). A detailed description of the dataset can be found

in [69].

1. 800 PRCG (CG): These images are categorized by content into architecture,

game, nature, object and life, see Fig. 3.16(a). The PRCG are mainly collected

from various 3D artists (more than 100) and about 40 3D-graphics websites,

such as www.softimage.com, www.3ddart.org, www.3d-ring.com and so on.

The rendering software used are such as 3ds MAX, Softimage-XSI, Maya,

Terragen and so on. The geometry modelling tools used include AutoCAD,

Rhinoceros, Softimage-3D and so on. High-end rendering techniques used

www.softimage.com
www.3ddart.org
www.3d-ring.com
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(a) Computer Graphics

Architecture (295) Game (41) Nature (181)

Object (220) Life (50) Hybrid (13)

Indoor-light (40) Indoor-dark (38) Outdoor-rain (63) Outdoor-night (26)

Outdoor-day (76) Outdoor-dusk (29) Natural-obj (62) Artificial-obj (66)

(b) Author’s Personal

Figure 3.16: (a) Subcategories within CG and (b) Subcategories within personal
image set, the number is the image count.
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include global illumination with ray tracing or radiosity, simulation of the

camera depth-of-field effect, soft-shadow, caustics effect and so on.

2. 800 PIM images (personal): 400 of them are from the personal collection of

Philip Greenspun, they are mainly travel images with content such as indoor,

outdoor, people, objects, building and so on. The other 400 are acquired

by the authors using the professional single-len-reflex (SLR) Canon 10D and

Nikon D70. It has content diversity in terms of indoor or outdoor scenes,

natural or artificial objects, and lighting conditions of day time, dusk or night

time. See Fig. 3.16(b).

3. 800 PIM from Google Image Search (Google): These images are the search

results based on keywords that matches the content types of images seen in

the computer graphics category described above. The keywords are such as

architecture, people, scenery, indoor, forest, statue and so on.

4. 800 photographed PRCG (recaptured CG): These are the photograph of the

screen display of the mentioned 800 computer graphics. Computer graphics

are displayed on a 17-inch (gamma linearized) LCD monitor screen with a

display resolution of 1280×1024 and photographed by a Canon G3 digital

camera. The acquisition is conducted in a dark room in order to reduce the

reflections from the ambient scene.

The rationale of collecting two different sets of PIM is the following: Google has a

diverse image content and involves more types of cameras, photographer styles and

lighting conditions but the ground truth may not be reliable, whereas personal is

reliable in terms of the ground truth but it is limited in the camera and photogra-

pher style factors. On the other hand, we produce the recaptured CG image set by
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recapturing the PRCG using a camera, so that we can evaluate how well recapturing

PRCG will escape the PRCG detector, as a form of attack on the PRCG detector.

This dataset is open to the research community with the name the Columbia Pho-

tographic Images and Photorealistic Computer Graphics Dataset and available at

http://www.ee.columbia.edu/trustfoto.

Different image sets have different average resolution. To prevent the classifier

from learning the resulting content-scale difference, we resize the personal and re-

captured CG sets, such that the mean of the averaged dimension, 1
2
(height + width)

of the image sets matches that of the Google and the CG sets, at about 650 pixels.

3.11 Experiments

We evaluate the capability of our geometry-based features (henceforth the geometry

feature) by classification experiments on our image sets. We compare the 192D ge-

ometry feature against the 216D wavelet feature [55] and the 108D feature obtained

from modelling the characteristics of the general (i.e., including both photorealistic

and non-photorealistic) computer graphics [39] (henceforth the cartoon feature). For

a fair comparison, we compute the wavelet feature on the entire image (for a better

performance), rather than just on the central 256×256-pixel region of an image, as

described in [55]. The cartoon feature consists of the average color saturation, the

ratio of image pixels with brightness greater than a threshold, the Hue-Saturation-

Value (HSV) color histogram, the edge orientation and strength histogram, the

compression ratio and the pattern spectrum.

The classification experiment is based on the Support Vector Machine (SVM)

classifier of the LIBSVM [37] implementation. We use the radial basis function

(RBF) kernel for the SVM and model selection (for the regularization and the kernel

http://www.ee.columbia.edu/trustfoto
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Figure 3.17: Receiver operating characteristic (ROC) curve for two classification
experiments

Table 3.1: Classifier Test Accuracy
Set Test images (count) Wavelets Geometry
A recaptured CG (800) 97.2% 96.6%
B photos of artificial objects (142) 94.0% 96.2%
C CG of nature scenes (181) 57.5% 49.2%
D CG of living objects (50) 64.0% 74.0%
E CG with DOF simulation (21) 85.7% 90.5%

parameters) is done by a grid search [37] in the joint parameter space. The classifica-

tion performance we report hereon is based on a five-fold cross-validation procedure.

We train a classifier of the PIM (Google+personal) versus the PRCG (CG), based

on the geometry, wavelet and cartoon features respectively. The receiver operating

characteristics (ROC) curve of the classifiers are shown in Fig. 3.17(a). The results

show that the geometry features outperform the wavelet features while the conven-

tional cartoon features perform the poorest. The overall classification accuracy is

83.5% for the geometry feature, 80.3% for the wavelet feature and 71.0% for the

cartoon feature (These numbers are different with 99% statistical significance).

To understand the strengths and the weaknesses of each approach on different
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Test set B Test set C

Test set D Test set E

Figure 3.18: Examples of the test image sets in Table 3.1

images, we further test the classifier with images of some interesting and visually

confusing categories. Results are shown in Table 3.1. Example images of the test

sets are shown in Fig. 3.18. The test accuracy reported is based on the classifier

trained with the entire test category held out (i.e., no image of the test category

is in the training set). We specifically conduct this experiment in order to study

whether a good classifier can be learnt from images of different content categories.

Notice that the geometry feature classifier outperforms that of the wavelet feature

in three out of the five categories. The poor performance (for both wavelet and

geometry features) on test set C indicates that the nature-scene PRCG have unique

characteristics which cannot be learnt from the non-nature-scene ones. This could

be due to the fact that nature-scene PRCG are mainly generated by the specialized

rendering software such as Terragen and the nature-scene content often occupies the

entire image. In contrast, PRCG with living objects (test set D) have a background

which bears the characteristics which can be learnt from other PRCG. The results

for the PIM of artificial objects (e.g., wax figures and decorative fruit) of test set B
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indicates that the artificiality of the real-world objects does not affect the classifiers.

For test set E, the camera DoF effect is a global effect and our classifiers are based

on local features, therefore simulating the DoF effect on PRCG does not prevent

correct classifications.

In Table 3.1, almost all of the recaptured CG (test set A) are classified as PIM,

for both sets of feature. Therefore, if we consider recapturing computer graphics

as a form of attack to our computer graphic detector, it would be very effective.

However, we can form a counter-attack measure by incorporating the recaptured

CG into the computer graphics category during the classifier learning process. By

doing so, the resulting classifiers have a ROC curve as shown in Fig. 3.17(b). Note

that the classifier is trained by having a pair of the computer graphics and its

recaptured counterpart either entirely in the training set or the test set, it is to

prevent the classifier from overfitting to the content similarity of the pairs. Results

in Fig. 3.17(b) shows that this strategy renders the recapturing attack ineffective.

The set of geometry features can be decomposed into five sub-groups of features

according to different physical motivations. These five sub-groups of features are

the surface gradient features (g), the second fundamental form features (s), the

beltrami flow features (b), the local patch statistic features (p), and the local fractal

dimension features (f). We would like to evaluate the classification performance of

each feature sub-group and their combinations. Fig. 3.19 (a) shows the classification

accuracy of the feature sub-group combinations excluding the local fractal dimension

feature sub-group, where the results are ordered according to their classification

accuracy from high to low, whereas Fig. 3.19 (b) shows those with the local fractal

dimension feature sub-group included. Note that the local fractal dimension feature

sub-group has the lowest classification accuracy at 59.9%, which is consistent with

that observed in Fig. 3.14. Furthermore, its role is most insignificant in the complete
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Figure 3.19: Classification performance of feature combinations (a) without and
(b) with local fractal dimension features. Legend: g = surface gradient features, b
= beltrami flow features, s = second fundamental form features, p = local patch
statistics features.

combination of all feature sub-groups, as can be seen from the small classification

accuracy difference between 83.5% for the (g,b,s,p,f) combination and 83.3% of the

(g,b,s,p) combination, as compared to other feature sub-groups. The weaknesses of

the local fractal dimension features are probably due to the fact we do not segment

the image into smooth regions and textured regions before computing the statistics of

the local fractal dimension. Such pre-segmentation may help improving the features

as the fractal dimension of the smooth regions are mainly not interesting. The

experimental verification of this suggestion will be considered in the future work.

From Fig. 3.19, it seems that good performance (82%) can be achieved even if we

use two features only (s and p). g and b does not add much on top of these two.

We also analyze the computational complexity of the features by performing

feature extraction on 100 images in Matlab 7.0. Their per-image feature-extraction

time in seconds are 9.3s (wavelet), 5.2s (surface gradient), 8.7s (2nd fundamental

form), 6.5s (Beltrami flow vector), 3.0s (local patch), 128.1s (fractal). Except for

the fractal feature, the other features are quite computationally efficient.
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(a) Web demo input page (b) Web demo result page

Figure 3.20: The screen capture of the web demo user interface.

3.12 An Online Demo System

We deployed an implementation of the geometry features as an online demo system

(accessible from www.ee.columbia.edu/trustfoto) since October 2005 [68]. The

goals of the online demo system are to give the web users a more concrete idea on the

problem of classifying photographic images and computer graphics, and invite web

users to help testing the three classifiers that we deployed, i.e., the geometry clas-

sifier (based on the geometry features), the wavelet classifier (based on the wavelet

features), and the cartoon classifier (based on the cartoon features). The imple-

mentation details for the online classification system is described in Appendix D.

Fig. 3.20 shows the input interface and the result page of the online system.

On the input page, web users are required to input the URL of an online image or

upload an image from the local computer, provide their judgement or knowledge

on the image type together with the judged confidence level, and also select the

type of classifier output they wish to see. For the image type, the web users can

select unknown, photographic, photorealistic computer graphics, non-photorealistic

graphics, painting, hybrid, or others (see Fig. 3.21).

www.ee.columbia.edu/trustfoto
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(a) Photograph (Photo) (b) Photorealistic CG (PRCG) (c) Non-photorealistic CG 

(NPRCG)

(d) Painting or Drawing 

(Painting)
(e) Hybrid (Hybrid) (f ) Others (Others)

Figure 3.21: The image type for the user labels. The keyword for the image type is
given in the bracket.

3.13 Discussion

Our approach for PIM and PRCG classification arises from asking a fundamental

question of how we should describe images such that PIM and PRCG can be better

distinguished. We adopt a geometry-based image description using fractal geometry

and differential geometry. Additionally, we sample local patches of the image inten-

sity function to form a patch distribution. The geometry-based approach enables

us to uncover distinctive physical characteristics of the PIM and PRCG, such as

the CRF of PIM and the sharp structures in PRCG, which has not been possible

by using any of the previous techniques. We extract the geometry features using

the method of rigid body moments, which can capture the characteristics of a high-

dimensional joint distribution. The SVM classifier based on the geometry feature

outperforms those in prior work. We also analyze the characteristics of recaptured

computer graphics and demonstrate that we can make the recapturing attack in-

effective. Furthermore, we identify a subset of PRCG with nature scenes, which

remains challenging to classify and demands more focused research.

As a future work, we will consider a more fundamental and detailed modelling
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of the 3D scene authenticity using the computer graphics and computer vision tech-

niques. Scene authenticity is an important element for passive-blind image forensics.

In our experiment, we have not considered the stratification in computer graphics

rendering which can be based on the purpose of the rendering, the types of rendering

techniques, and the amount resources used for rendering. For such an experiment,

we will need to further collect computer graphics with known sources and with de-

tailed rendering description. This study will not only benefit image forensics, but

will also help in evaluating the photorealism for various types of computer graphics,

for which the results would be of interest to the computer graphics community.



77

Chapter 4

A Geometric Method for Camera Response

Function Estimation using a Single Image

4.1 Introduction

In this chapter, we present a geometric method for estimating camera response

function (CRF) from a single image. The geometric method can be applied for

distinguishing different models of camera, which belongs to an intermediate-level

image source identification problem. This geometric method is inspired by the

observation described in 3.7.1 that image gradient contains information about CRF.

A camera response function (CRF) maps image irradiance (light energy incident

on an image sensor) to image intensity (output of a camera). In practice, the

mapping is a collective effect of various camera internal operations and noise [96].

The capability to estimate the CRF is important, as various photometric computer

vision algorithms, such as shape from shading, photometric stereo and so on require

scene radiance measurement, which is well represented by image irradiance if the

effect of the lens distortion is negligible. If a CRF can be estimated, image intensity

can be transformed to image irradiance. Furthermore, a CRF can be thought as a

natural watermark for an image, which can be used to assess the authenticity of an
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image [38].

CRF’s can be estimated from three types of inputs: a set of same-scene images

with different but known exposures [14, 58, 64], a single RGB color image [49], or

a grayscale image converted from a RGB color image [50]. Estimating the CRF

from a single image is an under-constraint problem and an assumption on image

irradiance is necessary, e.g., the distribution of the image irradiance value at a local

edge region is assumed to be uniform in [50]. Unfortunately, for all previous single-

image CRF estimation methods, there is no principled mechanism to identify image

regions which are consistent with the assumptions, as verifying the assumptions in

the unknown image irradiance is non-trivial.

This work contains three main contributions: we propose a new theoretical-based

method for estimating CRF from a single grayscale image or color channel, it is the

first work showing experiments on single color-channel images, and we propose a

new CRF model.

In this work, we propose a theoretic-based CRF estimation method using geom-

etry invariants (GI), which provides a constraint equation to identify the potential

locally planar irradiance points (LPIP) needed for CRF estimation. The term ‘ge-

ometry invariants’ refers to the geometric quantities which are invariant to the ge-

ometry variations for a locally planar region on an irradiance image. In the existing

literature, the term ‘photometric invariants’ was used to refer to the similar types

of geometric quantities on an image [33].

Our method relies on the existence of the locally planar region in image irradi-

ance, which often can be found on the ramp edges in an image. Our method consists

of three main computational steps: computing image derivatives, detecting LPIP,

and CRF estimation, as shown in Fig. 4.1. In Fig. 4.1, we also show the imple-

mentation issues related to the computational steps. Our proposed implementation
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Figure 4.1: The computational steps for our CRF estimation method and their
related implementation issues.

is guided by the analysis of GI and hence addresses the issues in a principled way.

Our method shows consistent performance over 5 models of camera (from 4 different

manufacturers) as compared to three in [49] and two in [50]. Apart from CRF esti-

mation on a single color-channel image, our method can exploit the availability of

multiple images from the same camera to provide a better estimation accuracy and

stability. In addition, we propose a generalized gamma curve CRF model (GGCM),

which empirically fits the real-world CRF’s from DoRF dataset [34] well. Similar

to all prior works on CRF modeling, in this paper we assume a spatially uniform

CRF over the image, though a spatially-varying CRF may emerge in the future

generation of capturing devices.

In this paper, we describe the prior work on CRF estimation in Sec. 4.2. In

Sec. 4.3, we present the theoretical aspect of our CRF estimation algorithm, which

introduces GI and GGCM. In Sec. 4.6, we describe the implementation aspect of our

algorithm, which covers issues such as derivative computation, detection ambiguity,

and curve-fitting. Finally, we show our experiments in Sec. 4.7 and conclude with

Sec. 4.9. Proofs of the mathematical properties and propositions are included in

Appendix E-I.
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4.2 Prior Works on CRF Estimation

CRF’s can be manually estimated by photographing a Macbeth chart with known-

reflectance patches, under uniform illumination. CRF’s recovered using a Macbeth

chart are considered reliable and often accepted as a ground truth for evaluating

other CRF estimation techniques [34, 49, 50].

On the other hand, automatic CRF estimation methods relies on assumptions

defined in the irradiance domain. As CRF transformation of image irradiance results

in a deviation of the assumptions, CRF can be estimated as a function f which

best restores the assumptions. For methods that estimate CRF using multiple

same-scene images [14, 58, 64], the exposure ratio among the images provides a

relationship between the irradiance images and the CRF is estimated by a function

f that restores this relationship from the intensity image sequence.

In an earlier work [19], a CRF estimation method for a single-channel image

is proposed by assuming that non-linear transformation of image irradiance by a

gamma curve, f(r) = rγ, introduces correlated harmonics, which can be measured

by the magnitude of biocoherence (third-order moment spectra). However, the

method is limited to the use of the gamma curve CRF model, which is known

to be insufficient for real-world CRF’s. In [49], a CRF estimation method using

a single RGB-color image by assuming linearly blended edge pixels (between two

homogenous regions with distinct irradiance values). When the linear blending

assumption holds across the RGB color channels, it can be shown that the image

irradiance values at the edge and the adjacent homogenous regions will be colinear in

the RGB color space. Additionally, the assumption that the image irradiance values

in an image edge region form a uniform distribution was employed to estimate CRF

from a grayscale image [50]. However, the method is only demonstrated on grayscale
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images converted from RGB color images instead of single-color channel images [50].

4.3 Theoretical Aspects of the Algorithm

In this paper, we use r(x, y) and R(x, y) respectively for image irradiance and image

intensity. CRF is denoted either by R = f(r), or r = g(R). The 1st-order derivatives

∂R
∂x

and df(r)
dr

are respectively denoted as Rx and f ′(r), with similar convention for

higher-order derivatives.

4.3.1 Geometry Invariants

Given R(x, y) = f(r(x, y)), we take the 1st-order partial derivatives of R(x, y) and

by the chain rule we obtain:

DR(x, y) =

(
Rx Ry

)
= f ′(r)

(
rx ry

)
(4.1)

Note that Rx is the product of two factors; the first factor f ′(r) is purely related

to the CRF while the second factor rx is purely related to the geometry of image

irradiance. GI can be derived if the second factor, the effect of image geometry, can

be removed. Hence, the resulting GI is only dependent on the CRF f and not the

geometry of image irradiance.

It is non-trivial to eliminate the geometry effect of an arbitrary function r(x, y).

However, a function can be locally approximated by its Taylor expansion, which

decomposes the local geometry into polynomials of different orders. The 1st and

2nd-order polynomials are respectively planes and quadratic functions. We can

define the 1st-order GI (G1) as quantities that are invariant to the class of planar
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surfaces:

{r(x, y) : r(x, y) = ax + by + c, a, b, c ∈ R} (4.2)

For planes, we have rxx = rxy = ryy = 0, and the 2nd-order partial derivatives of

R = f(r) are given by Eq. 4.3

D2R(x, y) =




Rxx Rxy

Ryx Ryy


 = f ′′(r)




r2
x rxry

rxry r2
y


 (4.3)

Then, by taking the ratio of Eq. 4.3 over Eq. 4.1, we obtain G1:

Rxx

R2
x

=
Ryy

R2
y

=
Rxy

RxRy

=
f ′′(f−1(R))

(f ′(f−1(R)))2
= G1(R) (4.4)

Note that, G1, as a function over R, depends only on the derivatives of f , and

not the 1st-order geometry of image irradiance (namely, the geometry parameters,

a, b, and c in Eq. 4.2). Such a strict dependence on f will be explored in this

paper to estimate f . We will refer to the first two equality relations in Eq. 4.4

as derivative equality constraints in the rest of the paper, as they imply certain

important geometric properties.

4.3.2 General Properties of G1

In this section, we present two general properties of G1, related to the CRF estima-

tion algorithm. Further properties will be described in the later sections.

Property 4 (Affine Transformation Invariance). The functional G1 is preserved, as

the 3-D graph of a planar irradiance S = [x, y, r = ax + by + c]T undergoes affine
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transformation:

If AS + B → S ′ then G1(f(r)) → G1(f(r′)) (4.5)

where A is a 3×3 linear transformation matrix, with |A| 6= 0, B is a 3×1 translation

vector, and S ′ = [x′, y′, r′]T .

Note that, despite the value change from r to r′, the underlying function G1

remains the same in Eq 4.5. The affine transformation maps a plane to another

plane, but as G1 is independent of the plane geometry, so it does not change under the

transformation. An affine transformation includes rotation, scaling, and translation

and is usually imposed on image irradiance when it undergoes white-balancing and

contrast adjustment [105]. Therefore, with Property 4, G1 is a natural instrument

for CRF estimation.

A special case of affine transformation is the rotation of the graph S = [x, y, r]T

in the (x, y) plane at a point p where r(p) = rp. In this case, we have rp = r′p and

the value of G1 is preserved:

R2×2




x

y


 →




x′

y′


 ⇒ G1(f(rp)) = G1(f(r′p)) (4.6)

where R2×2 is a 2×2 rotation matrix. As rotation of image irradiance is equivalent

to rotation of the local coordinate frame, then Property 4 also implies that the value

of G1 is preserved under local coordinate frame rotation.

Property 5 (Integral Solution to CRF). The partial differential equation (PDE) in
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Figure 4.2: The gauge coordinates for computing G1.

Eq. 4.4 can be solved by an integral function of G1:

f−1(R) =

∫
exp

(
−

∫
G1(R)dR

)
dR (4.7)

Despite the above analytical solution for a CRF, its feasibility is in practice de-

terred by detection ambiguity (Subsec. 4.3.3) and the solution will be approximated

by a computational method described later.

4.3.3 Detection of Locally Planar Irradiance Points

We have shown that the derivative equality constraint of Eq.4.4 is satisfied for every

LPIP. Therefore, we may use this constraint to detect candidate points for LPIP in

an image. We will also show later that a more general type of surface with linear

isophotes also satisfies the equality constraint. We call such inability to uniquely

detect LPIP detection ambiguity, which will be addressed in Subsec. 4.4.

Property 4 implies in theory that there is not a preferred Cartesian coordinate

frame for computing G1 because rotation in the local coordinate frame does not

change the value of G1. In practice, it is not a good idea to simply compute the

G1 on the original (x, y) coordinate frame of an image. The reason is that, for
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Figure 4.3: (a) Points detected by E(R) < 10. (b) A magnified view showing the
selected points being classifying into LPIP (blue) and non-LPIP (red), where LPIP
is often surrounded by non-LPIP. (c) A local intensity profile of an LPIP

example, when an isophote (i.e., constant intensity curve) coincides with the x-axis,

a singularity occurs for G1(R) = Rxx

R2
x

, as Rx = 0 along an isophote. For computation,

we introduce two first-order gauge coordinate frames, which are locally dictated by

the intrinsic property of the image function: (ut, ug) and (ut, ug)-coordinate frames

(see Fig. 4.2). The variables ut and ug represent the local tangential and gradient

directions of an image function, where the (ut, ug)-frame is rotated 45◦ counter-

clockwise from (ut, ug)-frame. Note that the (ut, ug)-frame stays the farthest possible

from the isophote and computing G1 on the (ut, ug)-frame circumvents the above-

mentioned singularity problem.

In practice, imposing a strict equality constraint, as in Eq.4.4, is unrealistic in

the presence of derivative computation error due to image noise, quantization, and

spatial discretization of an image. Therefore, an error function in Eq. 4.8 is used

to choose the candidate points for LPIP. To simplify notation, we hereforth denote
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Rut
as Rt, Rug

as Rg.

E(R) =

∣∣∣∣
Rtt

R2
t

− Rgg

R2
g

∣∣∣∣ +

∣∣∣∣
Rtt

R2
t

− Rtg

RtRg

∣∣∣∣ +

∣∣∣∣
Rgg

R2
g

− Rtg

RtRg

∣∣∣∣ (4.8)

Our detection method using the above error function is able to detect LPIP

points with small spatial support. In computer vision, an image edge profile is often

modeled by a one-dimensional ramp, step or peak [99]. It is reasonable to find

LPIP on a ramp edge profile, especially at the ramp center, and this hypothesis is

empirically validated on an image shown in Fig. 4.3. Fig. 4.3 (a) shows the points

detected by E(R) < 10. Note that, most of the points lie on image edges. In Fig. 4.3

(b), we further classify the detected points (using a method described later) into the

LPIP set and the non-LPIP set (formally defined in Subsec. 4.4). Note that, LPIP’s

are mainly found at the middle of the edges and this supports the above-mentioned

hypothesis.

For work in [50], the ramp edge profile in irradiance implies a uniform distribution

of edge pixel value, which is used as an assumption for CRF estimation method. In

constrast to our method, theirs requires a larger support from the ramp profile for

constructing a reliable histogram and lacks a principled technique to detect ramp

edges in the irradiance domain.

Finally, to compute the geometry invariant quantities
Rtt

R2
t

,
Rgg

R2
g
, and

Rtg

RtRg
on the

(ut, ug)-coordinate frame, it seems that we have to first find the gradient direction

at each local point, and then rotate the local coordinate frames separately according

to their gradient direction. Fortunately, their exists a computationally efficient way

of computing them. As these geometry invariant quantities are expressed on the

gauge coordinates, they become geometric quantities on the image function R and

would have nothing to do with the coordinate frame on which they are computed.
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Therefore, these geometry invariant quantities have a general expression for which

the computation can be done on any coordinate frame. For instance, on the original

(x, y) coordinate frame, the geometry invariant quantities are given by:

Rgg

R2
g

=
R2

x(∆R− 2Rxy) + R2
y(∆R + 2Rxy) + 2RxRy∆R

(R2
x + R2

y)
2

(4.9)

Rtt

R2
t

=
R2

x(∆R + 2Rxy) + R2
y(∆R− 2Rxy)− 2RxRy∆R

(R2
x + R2

y)
2

(4.10)

Rgt

RgRt

=
(R2

x + R2
y)∆R + 4RxRyRxy

(R2
x + R2

y)
2

(4.11)

where ∆R = Rxx + Ryy and ∆R = Rxx −Ryy.

Note that with the above expressions, the geometry invariant quantities can be

efficiently computed.

4.3.4 Geometric Significance of Equality Constraint

The derivative equality constraint specified in Eq.4.4 has an intuitive geometric

interpretation. We first introduce three geometric quantities [23] called the isophote

curvature (κ), the normalized 2nd-derivative in the gradient direction (λ), and the

flow line curvature (µ), all expressed in the (ut, ug)-frame, as shown in Eq. 4.12.

κ = −Rtt

Rg

, λ =
Rgg

Rg

and µ = −Rtg

Rg

(4.12)

The basic interpretation of a curve’s curvature is the local curve deviation from

a tangent line. The isophote curvature κ is the local curve deviation in the isophote

direction, where κ = 0 indicates a linear isophote. The flow line curvature µ is the
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local change in the gradient vector field along the isophote, where µ = 0 indicates

same-shape isophotes along the gradient direction (see Fig. 4.4 (b)). Then, κ = µ =

0 if and only if a local region is composed of linear isophotes (as exemplified in Fig.

4).

Proposition 3 (Decomposition of G1). The G1 can be decomposed as below:

Rtt

R2
t

=
λ− κ− 2µ

Rg

,
Rgg

R2
g

=
λ− κ + 2µ

Rg

and
Rtg

RtRg

=
λ + κ

Rg

(4.13)

Proposition 3 associates G1 with three geometrically meaningful quantities. The

decomposition immediately leads to Proposition 4 which puts an equivalence re-

lationship between the equality constraint and the vanishing of the isophote and

flowline curvature. This indicates a local geometric structure of a one-parameter

function with a linear isophote, which resembles the local image intensity profile

shown in Fig. 4.3 (c).

Proposition 4 (Geo. Significance of Equality Constraint). The equality constraint

in Eq.4.4 implies the vanishing of the isophote curvature κ and the flow line curva-

ture µ: {
Rtt

R2
t

=
Rgg

R2
g

=
Rtg

RtRg

}
⇐⇒ {κ = µ = 0} (4.14)

and locally, R = R(ug), i.e., an arbitrary function depends only on ug in the gradient

axis, with the linear isophote coincides with the tangent axis.

Proposition 4 indicates detection ambiguity by showing that the constraint equa-

tion detects points in a general region with linear isophotes, for which the LPIP set

is only a subset. In other words, the constraint detects points on both regions of

f(ax+by+c) and f(h(ax+by+c)), where h is an arbitrary function. This fact is illus-

trated in Fig. 4.4. Both r(x, y) = ax+by+c and r(x, y) = h(ax+by+c) have linear
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Figure 4.4: The CRF transformation preserves the shape of an isophote. A LPIP
point with linear isophotes (as shown in the top row) in the irradiance domain
retains the linear isophotes in the intensity domain and hence satisfies the equality
constraint. It is possible that there exists a non-LPIP with a linear isophote (as
shown in the bottom row) that satisfies the equality constraint. This results in a
detection ambiguity in the point selection criterion using the equality constraint.

isophotes. Since the CRF transformation preserves the shape of an isophote, both

the corresponding R(x, y) = f(ax+by+c) (a LPIP) and R(x, y) = f(h(ax+by+c))

(a non-LPIP) have linear isophotes and satisfy the equality constraint. This results

in a detection ambiguity in the point selection criterion using the equality constraint.

Though non-LPIP points satisfy the derivative equality constraint, they do not sat-

isfy the assumption for G1. In order to improve the LPIP selection, we propose

a model-based inferencing method (Subsec. 4.4) to further detect LPIP from the

candidate set found by the error function (Eq. 4.8).

4.3.5 CRF Estimation Model

Detection ambiguity motivates model-based CRF estimation method; a restricted

function space imposed by a CRF model makes CRF estimation more reliable in

the presence of noise. We describe the potential CRF models in this subsection.

Details of the estimation criteria and procedure presented in Sec. 4.5. Property 6
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lead us to a suitable CRF model for our method.

Property 6 (Relationship with Gamma Curves). For the CRF f , from a family of

gamma curves, R = f(r) = rγ, G1 has a simple relationship with the parameter γ:

G1(R) =

(
γ − 1

γR

)
and γ =

1

1− G1(R)R
.
= Q(R) (4.15)

From Property 6, if we adopt gamma curves f as CRF models, it is not advisable

to search for the best f (and equivalently the best γ) by fitting the expression for

G1(R) in Eq. 4.15, because the expression has a singularity at R = 0, which will

dominate the curve-fitting cost function. Fortunately, Eq. 4.15 suggests that when

G1(R) is transformed to Q(R), Q(R) is equal to γ, a constant function independent of

R, which is also bounded for convex gamma curves, γ ∈ [0, 1]. Therefore, Property 6

gives us a compatible pair of CRF models and the expression for estimating the CRF.

4.3.5.1 Generalized Gamma Curve Model

Gamma curves are limited in representing real-world CRF’s. Therefore, we pro-

pose a generalized gamma curve model (GGCM) that has a good fit to real-world

CRF’s (verified on DoRF database [34] with 201 real-world CRF’s) for curve-fitting.

GGCM provides two representations of CRF with f : r 7→ R (called GGCM f) and

g : R 7→ r (called GGCM g), as shown in Eq. 4.16.

f(r) = rP (r,α̃) and g(R) = R1/P (R,α̃) (4.16)

where α̃ = [α1, . . . , αn], P (x, α̃) =
∑n

i=0 αix
i is a n-th order polynomial, with n + 1

parameters. The GGCM f and the GGCM g model do not form an inverse pair, but

both models can be used to represent a camera curve. Note that, GGCM is reduced
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Table 4.1: Mean RMSE (×10−2) of the proposed CRF model
Number of model parameters

Model 1 2 3 4
GGCM f 5.18 2.34 1.16 0.60
GGCM g 8.17 1.46 0.97 0.49

EMOR [34] 4.00 1.73 0.63 0.25
polynomial [64] 7.37 3.29 1.71 1.06

to the gamma curve model when the polynomial is reduced to a constant term.

Additionally, the CRF is commonly represented by a function f with f(0) = 0 and

f(1) = 1. It is reasonable to normalize r to [0, 1] because r can only be recovered

with precision up to a linear scaling and an offset of the actual image irradiance.

Various CRF models has been proposed for CRF estimation. One of the earliest

models, f(r) = α + βrγ, is borrowed from the photographic emulsion response

function [58], essentially a gamma curve after normalization. A general polynomial

CRF model is then proposed in [64]. Recently, an empirical EMOR model [34] is

obtained from performing principle component analysis (PCA) on 201 real-world

CRF’s. As the empirical model lacks the differentiable property of an analytic

model, it is not suitable for our method. We evaluate GGCM by performing a least

squares fit of the model to the 201 real-world CRF’s in the DoRF database. The

goodness of fit for each CRF is measured by RMSE and is shown in Table 4.11.

Note that GGCM performs slightly worse than the empirical EMOR [34] model but

outperforms the polynomial CRF model [64], which is a commonly used analytic

CRF model.

1The mean RMSE for the EMOR and the polynomial CRF model are extracted from [34].
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Figure 4.5: The typical Q-R histogram of LISO from single gamma-curve simulation
images with γ = 0.2, 0.4 and 0.6 for (a) without LPIP inference and (b) with LPIP
inference. The red curve on the left is the marginal Q distribution. The red line in
each graph indicates the ground truth value of γ

4.4 Addressing Detection Ambiguity Issues

Due to detection ambiguity as mentioned in Subsec. 4.3.4, the equality constraint

detects locally linear isophote points (LISO), for which LPIP is a subset. As our

algorithm requires LPIP for CRF estimation, in this section we present a data-

driven approach to infer how likely an LISO to be an LPIP, by exploring the common

characteristics of LPIP in terms of their derivative quantities and their spatial layout

shown in Fig. 4.3.

To study the effect of detection ambiguity, we generate a set of simulation images

by transforming a set of more than 10 irradiance images (extracted from RAW

format images which are the direct output from an image sensor) with gamma

curves f(r) = rγ for γ = 0.2, 0.4 and 0.6. We observe that more than 92% of the

real-world digital camera CRF’s in DoRF database lie in between r0.2 and r0.6. We
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define the local isophote (LISO) regions set SLISO as:

SLISO = {(x, y) : E(R(x, y)) < ε} (4.17)

where E(R) was defined in Eq. 4.8 and ε is a threshold that can be empirically

determined. A soft mapping may also be used in the above to define SLISO proba-

bilistically without using a fixed threshold. Here we choose a simple definition and

focus on the Bayesian framework of point selection.

Fig. 4.5 (a) shows a typical distribution of the detected LISO points in Q-R

space. Note that from Property 6, the Q function corresponding to gamma curves

is a constant. From the marginal Q distribution on the left, we see that as γ increases

from 0.2 to 0.6, the Q distribution density consistently shifts to a higher value, as

predicted by the theory. However, the mode of the distribution does not coincide

exactly with the ground truth value of γ and this is an effect of detection ambiguity,

which we will rectify through a LPIP inference.

The goal of the LPIP inference is to identify the LPIP from the non-LPIP. For the

LPIP inference, we will perform an independent-feature Bayesian learning using the

above-mentioned set of simulated images. In order to ensure the generalizability of

the Bayesian learning from the simulated set to the real-world images, we ensure that

the simulated images have diverse content (i.e., diverse edge profiles) and multiple

gamma curves with γ being 0.2, 0.4, and 0.6 so that the learned statistics are not

biased towards the specifics of the data and CRFs used in the simulated pool.

For the LPIP inference, we define two groups of features. The first group consists

geometric quantities related to the selection of LISO and the computation of the

geometric invariant related quantity Q (defined in Eq. 4.15). The geometric quan-

tities are the E(R) value (as defined in Eq. 4.8), the gradient value, and the value
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of the normalized 2nd-derivative in the gradient direction (λ defined in Eq. 4.12).

These features capture the geometric difference between LPIP and non-LPIP. The

second group consists of the moment features that capture the specific spatial layout

of LPIP points in the binary LISO map b(x, y), where b(x, y) = 1 if (x, y) ∈ SLISO,

and b(x, y) = 0 otherwise. Specifically, we compute the 1st to 3rd moment quan-

tities on b(x, y), i.e., the total mass m0 =
∑

W5×5
b(x, y), the centriod m1, and the

radius of gyration m2 (Eq. 4.19), in 5×5 local windows W5×5.




mx
1 mx

2

my
1 my

2


 =

1

m0

∑

(x,y)∈W5×5




x x2

y y2


 b(x, y) (4.18)

m1 =
√

(mx
1)

2 + (my
1)

2 and m2 =
√

mx
2 + my

2 (4.19)

For the class-dependent feature distributions, we define the LPIP set SLPIP , and

the non-LPIP set Snon−LPIP on the simulation images as below:

SLPIP = {(x, y) : |Q(x, y)− γ| ≤ 0.1, (x, y) ∈ SLISO} (4.20)

Snon−LPIP = {(x, y) : |Q(x, y)− γ| > 0.1, (x, y) ∈ SLISO} (4.21)

The former condition chooses the points that satisfy the derivative equality con-

straint (thus in SLISO) and their Q value are close to the ground-truth value of γ.

Only LPIP points meet these conditions simultaneously. The latter condition speci-

fies points in the LISO set but having Q values distant from the ground-truth γ, thus

corresponding to the non-LPIP points. Fig. 4.6 shows the class-dependent feature

distribution for SLPIP and Snon−LPIP . Note that, SLPIP dominates the low E(R)
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Figure 4.6: The class-dependent feature distributions.

value, as expected by the theory. For the normalized 2nd-derivative feature λ, the

high and low values are dominated by Snon−LPIP , and this is related to the spatial

structure of Snon−LPIP and the higher computational error for these 2nd-derivative

values. For the gradient feature, Snon−LPIP dominates the low value, as regions

with low gradient (i.e., flatter) have a lower intensity contrast and therefore tend to

suffer more from the quantization noise. On the other hand, the distribution of the

moment features derived from the spatial layout of LPIP points can be explained

by the spatial structure of SLPIP as shown in Fig. 4.3 (b).

For LPIP inference, we adopt a Bayesian approach with enforcement of an inde-

pendence assumption on features fi:

P (f̃ |c) =
N∏

i=1

P (fi|c) where f̃ = [f1, . . . , fN ] (4.22)

where c ∈ {SLPIP ,Snon−LPIP}. Feature independence is crucial so that the inference

does not capture the specificity of the gamma curves from the geometric features.
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For example, the geometry invariants represent a specific relationship between the

first and the second derivatives, which are part of the feature set. The a-posterior

probability of an LISO being an LPIP is given by:

P (c|f̃) =
P (f̃ |c)P (c)

P (f̃)
=

P (f̃ |c)P (c)∑
c P (f̃ |c)P (c)

(4.23)

where P (c) is the ratio of points belonging to the class c.

Fig. 4.5 (b) shows the distribution of LISO in Q-R space, after incorporating the

LPIP posterior as a weight. It is obvious from the marginal distribution Q that the

mode of the distributions coincides very closely to the ground-truth gamma value

γ, a sign of overcoming the effect of detection ambiguity. To further validate the

effectiveness of LPIP inference point selection, we measure the local flatness of an

irradiance image using a simple flatness metric, mf = (r2
xx+r2

yy)
0.5, where for a plane

mf = 0. Fig. 4.7 shows that mf decreases (i.e., more flat) as the LPIP posterior

increases, and hence verifies the effectiveness of the proposed Bayesian method in

selecting the true LPIP points.
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4.5 CRF Estimation

4.5.1 Objective Function for CRF Estimation

Eq. 4.4 expresses G1 as a functional of f . Given r = g(R) and g = f−1, we can

also express G1 in terms of g as in Eq. 4.24. In this paper, we estimate CRF using

g(R) = R(1/(α0+α1R)), whose Q(R) is given by Eq. 4.25.

f ′′(r)
f ′(r)2

= −g′′(R)

g′(R)
and Q(R) =

g′(R)

1 + g′′(R)R
(4.24)

Q(R) =
(α0 + α1R)2(α1 ln(R)− α0 + α1R)

T
(4.25)

T = α2
0 + α0α1R (α0(ln(R) + 1)− 2(1− ln(R))) +

(α1R)2(1− 4α0 − 2α1R + (ln(R)− 2)(α1R + ln(R)))
(4.26)

We fit Q(R) to the computed data {(Qn, Rn)}N
n=1 over N detected LISO points by

minimizing the objective function in Eq. 4.27. Note that the best CRF parameter α̃∗

is estimated by a weighted least-square criterion, where the weight is the conditional

histogram of Q given R. The LPIP posterior in Eq. 4.23 are also incorporated. The

conditional weight prevents the optimization from being dominated by the data on

some specific R, which happen to be found abundant on an image.

α̃∗ = arg min
α̃

∑

j,k

P (Qj|Rk) |Qj −Q(Rk, α̃)|2 (4.27)
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where α̃ = (α0, α1), Qj and Rk are respectively the discrete samples on Q and R

(representing the histogram bin centers), P (Qj|Rk) = P (Qj, Rk)/P (Rk), and

P (Qj, Rk) =
N∑

n=1

p(SLPIP |f̃n)1[Qj ,Rk]{(Qn, Rn)} (4.28)

where [Qj, Rk] is the bin corresponding to the bin center (Qj, Rk), and the indicator

function, 1A{a} = 1 if a ∈ A. In Eq. 4.28, f̃n are the features extracted from the

point associated with (Qj, Rk).

4.5.2 Joint Estimation for Multiple-channel Images

Apart from single-channel images, the proposed method can also be applied to RGB

images. Joint estimation of the RGB CRF’s can be performed by constraining the

similarity between the RGB CRF’s, as in Eq. 4.29 with α̃ = {α̃r, α̃g, α̃b}. In practice,

the RGB CRF’s of a camera are quite similar. Note that, in Eq. 4.29, {Rk} is the

set of discrete values for image intensity R ∈ [0, 1].

α̃∗ = arg min
α̃

{∑

j,k,c

P (Qj|Rk) |Qj −Q(Rk, α̃c)|2

+
∑
c1>c2

(
1

K

K∑

k=1

(g(Rk, α̃c1)− g(Rk, α̃c2))
2

) 1
2



 (4.29)

Furthermore, if we have M single-channel images with the same CRF, we can average

up their conditional histograms to increase the data coverage on R (R-coverage), as

in Eq. 4.30, and then form an objective function as in Eq. 4.27.

P (Qj|Rk) =
1

M

M∑
m=1

Pm(Qj|Rk) (4.30)
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where M is the number of single-channel images which share a common CRF.

4.6 Implementation Aspects of the Algorithm

4.6.1 Computation of Image Derivative

There is a large amount of literature covering techniques for computing image deriva-

tives, which includes finite difference, Gaussian scale-space derivatives, and many

more. These methods in general work well for common applications like edge de-

tection.

However, our differential method involves computation of derivative ratios from

digital images which requires specialized techniques to ensure the computational ac-

curacy and robustness to image noise. There are prior works that involve computing

derivative ratios from digital images, such as the works on curve invariants [102]

and edge curvatures [99], which use a local polynomial fitting method [59, 99] for

computing derivatives that achieves high accuracy in derivative estimation. This

method presets the derivative kernel size, and hence has limited adaptability to the

wide range of scales in an image. In a similar spirit, we use cubic smoothing B-

spline [13] with C2 continuity for computing image derivatives in our work. B-spline

is a function consists of local piecewise polynomials with a global continuity prop-

erty. Cubic smoothing B-spline is obtained by simultaneously minimizing a data

fitting energy and an L2 norm on the second-order partial derivatives (producing

smoothing effort).

Compared to local polynomial fitting, we find that cubic smoothing B-spline is

more adaptive in terms of image scales and therefore produces considerably more ac-

curate image derivatives. This observation is shown using an experiment conducted

on two synthetic images shown in Fig. 4.8, where the increasing-frequency sine func-
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Figure 4.8: (a) The synthetic increasing-frequency sine function image, (b) the
synthetic parabolic disk image. The red-color axis x indicates the line along which
the derivative profiles in Fig. 4.9 and Fig. 4.10 are extracted.

tion image (Fig. 4.8 (a)) contains a sine function with a gradually increasing fine

image scales, while the parabolic disk image represents a coarse image scale (Fig. 4.8

(b)). Fig. 4.9 and Fig. 4.10 show the derivative computation results respectively for

the increasing-frequency sine function image and the parabolic disk image. Note

that the local polynomial fitting with a large kernel size works well on coarse image

scales, but not on the fine image scales. Whereas the reverse is true for the local

polynomial fitting with a small kernel size. However, the smoothing cubic B-spline

works well on both scales; in particular, it produces a more accurate estimation for

the second-order derivatives.

4.6.2 Error Metric Calibration

Although Q(R) is compatible with GGCM for CRF estimation through curve-fitting,

the space of Q(R) is not ‘flat’, i.e., its metric is dependent on the CRF curve pa-

rameter. For example, RMSE between r0.1 and r0.2 is 0.0465, and that between

r0.5 and r0.6 is 0.0771, almost twice of the former, while their Q(R) RMSE are the
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Figure 4.9: The derivation computation results for the synthetic increasing-
frequency sine function image in Fig. 4.8 (a). The results shown are the profiles
extracted along the red-color axis x in Fig. 4.8 (a). From the top row to the bottom
row are the estimation results of the function R, its first-order derivative Rx, and its
second-order derivative Rxx. From the left-most column to the right-most column
are the estimation results computed by the smoothing cubic B-spline, local 3rd-order
polynomial fitting with a 17×17 kernel, and the local 3rd-order polynomial fitting
with a 7×7 kernel.
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Figure 4.10: The derivation computation results for the synthetic parabolic disk
function image in Fig. 4.8 (b). The results shown are the profiles extracted along
the red-color axis x in Fig. 4.8 (b). From the top row to the bottom row are the
estimation results of the function R, its first-order derivative Rx, and its second-
order derivative Rxx. From the left-most column to the right-most column are
the estimation results computed by the smoothing cubic B-spline, local 3rd-order
polynomial fitting with a 17×17 kernel, and the local 3rd-order polynomial fitting
with a 7×7 kernel.
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same. Note that, for gamma curves, RMSE between two Q(R) is simply |γ1−γ2|. In

a non-flat space, curve-fitting performance biases towards certain CRF’s. Interest-

ingly, the error metric calibration can be formulated as a problem of reparametrizing

a space curve with its arc length, which leads to Proposition 5. Such calibration

can be done to achieve a linear relationship between the error metric in the Q(R)

space and the error metric in the CRF space (i.e., the RMSE of CRFs). With such

a linear relationship, the optimal solution that minimizes the Q(R) space error is

equivalent to the solution that minimizes the CRF error.

Proposition 5 (Error Metric Calibration). The error metric in the Q(R) space can

be calibrated with respect to gamma curves, f(r) = rγ, by a transform on Q:

Q =

√
3√

3− 1

(
1−

√
1

2Q + 1

)
(4.31)

Thils calibrated metric can then be used to replace that in Eq. 4.27 to improve

the estimation accuracy.

4.6.3 Up-weighting Boundary Condition Data

For a differential-based method, data at the center region of R ∈ [0, 1] contains

information about the center segment of the curve with an unknown additive con-

stant. The end-point data serves as the boundary condition and resolves the additive

constant. Therefore, the range of data coverage in R is important to our CRF esti-

mation method, which is also true for other single-image CRF estimation methods

in the prior work [49, 50].

To emphasize the importance of the data corresponding to the boundary con-

dition, we weight the objective function in Eq. 4.27 by a quadratic function W as
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different cameras and different CRF estimation strategies E1 to E4 and Ergb.

Table 4.2: Overall RMSE (×10−2) for CRF Estimation
Stat. E1 Ergb E2 E3 E4

Mean 2.91 2.66 2.13 1.90 1.76
2nd Mom 3.43 2.95 2.41 2.10 1.94

below:

α̃∗ = arg min
α̃

∑

j,k

W (Rk)P (Qj|Rk) |Qj −Q1(Rk, α̃)|2 (4.32)

where W (Rk) = 4(Rk − 0.5)2 + 1. We observe empirically that up-weighting the

boundary condition data leads to a more accurate CRF estimation.

4.7 Experiments

We test our CRF estimation method using 20 uncompressed RGB-color images

(i.e., 60 single-channel images cropped to the size of 1500×2000 pixels without

filtering or subsampling) from five camera models, i.e., Canon G3, Canon RebelXT,

Nikon D70, Kodak DC290, Sony DSCV1, for a total of 100 RGB-images from four
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major manufacturers. We select images with at least 80% range coverage in R

(R-coverage). The importance of R-coverage for CRF estimation is explained in

Subsec. 4.6.3.

We estimate the ground-truth CRF for the cameras using a Macbeth chart (using

multiple images with different exposures). For each camera, the ground-truth CRF’s

are indeed similar over RGB channels, with the averaged inter-color-channel CRF

difference measured in RMSE being 0.0161. We test our methods using single-

color-channel images (denoted as E1), RGB images (denoted as Ergb), and also

combinations of 2 to 4 single-color-channel images from the same camera (denoted

by E2 to E4). The discrepancy between the estimated and the ground-truth CRF is

measured by RMSE. The mean RMSE (measuring accuracy) and the 2nd-moment

of RMSE (measuring stability) for the five cameras over RGB color channels and

all images of a camera is shown in Fig. 4.11. The overall RMSE mean and RMSE

2nd-moment (over all cameras) are shown in Table 4.2. Note that, both estimation

accuracy and stability improve as more images are available, which verifies the

importance of R-coverage as combining conditional histograms strictly increases R-

coverage.

Fig. 4.11 shows that the estimated CRF’s for Canon RebelXT have the least

accuracy and stability. As shown in Fig. 4.12 and Fig. 4.13, the estimated CRF’s

for Canon RebelXT deviate slightly from the knee of the groundtruth curve. Note

that, the knee of the Canon RebelXT CRF is very close to linear, and it will be

pointed in Sec. 4.8 that our method does not perform well on linear CRF. Fig. 4.12

and Fig. 4.13 respectively show the estimated blue-color channel CRF’s for the five

models of camera with E1, and E4. The estimation results for other color channels

are similar.

Among all, the CRF of Canon RebelXT and Nikon D70 have the largest differ-
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Figure 4.12: Estimated blue-color channel CRF’s for the five models of camera
using a single color-channel image (E1). The thick blue line represents the ground-
truth CRF. The CRF of Canon RebelXT and Nikon D70 are most different and the
estimated CRF for Canon RebelXT and Nikon D70 are shown in the lower right
subplot.



107

0 0.5 1
0

0.5

1
Canon G3

0 0.5 1
0

0.5

1
Canon RebelXT

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1
Nikon D70

Canon RebelXT

Nikon D70

0 0.5 1
0

0.5

1
Kodak DC290

0 0.5 1
0

0.5

1
Sony DCSV1

Figure 4.13: Estimated blue-color channel CRF’s for the five models of camera using
four blue-color-channel images (E4). The thick blue line represents the ground-
truth CRF. The CRF of Canon RebelXT and Nikon D70 are most different and the
estimated CRF for Canon RebelXT and Nikon D70 are shown in the lower right
subplot.
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Figure 4.14: Estimated blue-color channel CRF’s of Canon RebelXT and Nikon D70
for E1, Ergb, E2, E3 and E4. The thick blue line represents the ground-truth CRF.

(a) Nikon D70, RMSE = 0.027, R-coverage = 94% 
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Figure 4.15: Curve-fitting in Q×R space with data of (a) high R-coverage, (b) Low
R-coverage. The thick blue line represents the ground-truth Q(R) curve.

ence with a RMSE of 0.0781 (averaged over RGB). For a side-by-side comparision,

the estimated blue-color channel CRF’s for Canon RebelXT and Nikon D70 with

Ergb and E1 to E4 are shown in Fig. 4.14. Note that, a slight confusion of the

estimated CRF’s of the two cameras is observed for E1, which is gradually cleared

for Ergb, E2, E3, and E4.

Two examples of curve-fitting respectively on data of high and low R-coverage

are shown in Fig. 4.15. Note the importance of the end-point data in R ∈ [0, 1]
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which can be seen as the boundary condition for accurate CRF estimation. As

experiments in [50] are only conducted on two cameras (different from ours) and

the test grayscale images of the digital camera are converted from RGB images

(instead of using single-color-channel images), rigorous performance comparison is

not possible.

4.8 Limitation of the Proposed Method

The proposed CRF estimation method is based on the geometry of the local regions

in an intensity image which correspond to the locally planar regions in the corre-

sponding irradiance image. Through CRF transformation, the non-linear shape of

the CRF is reflected on the transformed planar regions, and this makes CRF esti-

mation possible through the geometry of the transformed planar regions. Due to

this basic principle, the proposed method has two fundamental weaknesses:

1. As the proposed method is based on the transformed planar regions, it is

fundamentally incapable of determining whether the CRF of a given image is

of a convex shape (e.g., R = r2) or a concave shape (e.g., R = r0.2), when there

exists both locally convex regions and locally concave regions that satisfy the

equality constraint (Eq. 4.4) on the image. However, this limitation is not

a serious one; for common scene images, an image transformation through

a convex CRF would produce an image which is visually different from that

transformed by a concave CRF. The statistics of the local geometry of an

intensity image can be used to distinguish a convex CRF from a concave one.

As most of the CRF for digital cameras are concave, our work begins with

an assumption that the CRF shape is concave. A complete CRF estimation

algorithm should begin with determining the convexity of the underlying CRF,
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which we leave for future work.

2. As a linearly transformed planar region remain planar, the proposed method

is incapable of estimating a linear transformation. In practice, the proposed

method performs worse when a CRF or a portion of a CRF is close to linear

transformation, which is evident in the estimated CRF’s for Canon RebelXT

as shown in Fig. 4.12 and Fig. 4.13.

Apart from the two fundamental weaknesses, the learning step in the local point

selection process results in a preferred range of local geometry on an intensity image,

which is used for CRF estimation. We have used gamma transformed images with

gamma parameters 0.2, 0.4 and 0.6 as training images. By imposing the feature

independence constraint, we attempt to avoid overfitting to the training gamma

curves, so that the inference can be generalized to CRF’s of more complex shapes,

as long as they are within the range of the training gamma curves. However, the

inference could not generalize well to CRF’s beyond the range of gamma curve.

Fig. 4.16 (a) shows the distribution of (R,Q) points computed from an irradiance

image (i.e., a gamma transformed image with γ = 1), weighted by the LPIP inference

learned from gamma images of γ = 0.2, 0.4, and 0.6. Note that, the marginal

distribution of Q peaks at Q = 0.7 but not on Q = 1. However, we could overcome

this problem by enlarging the range of the training CRF by including images with

γ = 1. Afterwards, the peak of the marginal Q distribution shifts to Q = 1, as

shown Fig. 4.16 (b).

In Fig. 4.16 (b), we also see that the peak at Q = 1 is much less prominent,

as compared to those shown in Fig. 4.5. This indicates that estimation for CRF’s

close to linear is increasingly difficult (as pointed out in the second fundamental

weakness). In this work, our training set contains images with gamma parameters
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(a) Training with gamma images of γ = 0,2, 0.4, and 0.6

(b) Training with gamma images of γ = 0,2, 0.4, 0.6, and 1.0

Figure 4.16: The distribution of (R, Q) points computed from an irradiance image
(i.e., a gamma transformed image with γ = 1). The distribution is represented
by a 2D R-Q histogram obtained from counting the point weight assigned through
the LPIP inference. Figure (a) shows the result of the LPIP inference trained using
gamma images of γ = 0.2, 0.4, and 0.6. Figure (b) shows that from the same training
set but with images of γ = 1.0 included.

0.2, 0.4 and 0.6 because most of the digital camera CRF’s in the DoRF databse [34]

are within this range.

Furthermore, the technique does not work as well for under/over-exposed images

and those with fine texture (examples in Fig. 4.17). The former leads to low R-

coverage and the latter leads to an inaccurate B-spline model used in computing

derivatives, as smoothing adversely affects the excessively fine-scale structures.

4.9 Discussion

In this paper, we presented a geometry invariant-based method for estimating CRF.

In contrast to the single-image CRF estimation methods in prior work, which lack a

principled technique to select data consistent to inherent assumptions, our method
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(a) Under-exposed (b) With fine texture

Figure 4.17: Example images that the CRF estimation algorithm perform less well.

provides a theoretical approach and geometrically meaningful criteria for selecting

the potential locally planar irradiance points. Comparing to the prior work [50],

our results have been shown to be robust over more extensive data and our method

is flexible in that we can increase its estimation accuracy and stability when more

than one image is available. The geometry invariance theory is novel and may be

of wide interest. Techniques in our implementation such as smoothing B-spline

for computing image derivatives and the procedure for calibrating the error metric

may be useful for other applications. Currently, the algorithm is for the 1st-order

geometry invariants, the next step would be to develop an algorithm for the 2nd-

order geometry invariants.
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Chapter 5

Other Related Works

5.1 Active Image Authentication: Digital Signatures and

Watermarking

The conventional image authentication techniques belong to the active approaches

such as digital watermarking and digital signatures [12]. These active techniques

rely on prior information such as the pre-added watermark or the pre-extracted

content signature.

In the last decade, digital watermarking has been proposed as an active technique

for image authentication. The main idea of digital watermarking is to imperceptibly

embed a digital watermark onto an image for monitoring image manipulation. Frag-

ile watermarks [26, 103, 104, 106] are sensitive to any minor image modification,

while semi-fragile digital watermarks [25, 46, 48, 60] and the content-based digital

signatures [7, 9, 47, 61, 85] could accommodate the content preserving operations

such as compression and resizing. Unfortunately, the tolerance for the acceptable

operations comes at a cost of missing some malicious attacks, apart from the secu-

rity issue where there is no absolute security for the watermarking secret key. This

explains why Friedman’s trustworthy digital camera idea [28] for extracting a digital
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signature inside a camera, failed to take off.

5.2 Passive Image Authentication: Passive-blind Image Foren-

sics (PBIF)

However, for PBIF, no prior information is needed, as indicated by the image foren-

sics process shown in Fig. 2.1. The current research in PBIF can be divided into

four main areas of research:

1. Image forgery detection (Is this image authentic? ).

2. Image source identification (From what device the image is produced? )

3. Image operation detection (What post-processing this image has undergone? )

4. Counter-attack measure design (How to handle security attack? )

Except for the specific works related to ours, which are reviewed in the respective

chapters, the other works that are more loosely related to ours are reviewed in this

chapter.

5.2.1 Image Forgery Detection

There are various works on image forgery detection that are based on the imaging-

process authenticity (see Fig. 1.5). For a digital camera, the scene radiance goes

through the camera lens before being captured by an array of imaging sensors.

The camera lens often has the optical low-pass effect for anti-aliasing. The imaging

sensors are spatially allocated for measuring three types of colored light. To produce

a three-color image, the missing color needs to be interpolated by demosaicing. In

order to ensure that a white point in the image scene is rendered as white in the final
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image, the color is adjusted through white-balancing. The image may go through

enhancements such as the contrast, sharpness, and saturation adjustment. Finally,

gamma correction is applied for dynamic range compression and pleasing visual

effects.

In [38, 51], the camera response function is estimated to check the consistency

between two fragments in an image. Demosaicing results in an interpolation pattern

on an image and this pattern can be disrupted when creating image forgery. The

work in [81] has used the demosaicing pattern to detect image forgery. On the other

hand, the work in [53] uses the estimated fixed pattern noise, a camera signature,

to check whether a given image of the same camera has the same noise pattern.

A different noise pattern indicates a potential image forgery. However, one can

also use the scene authenticity such as scene lighting characteristics for detecting

image forgery. The work in [40] estimates point light source direction from the object

contours in a single image and examine their consistency for detecting image forgery.

The work in [56] shows that lighting consistency can be examined based on spherical

harmonics invariant without explicitly estimating the lighting under the assumption

of known object geometry. They show an example for checking lighting consistency

on a spliced object with two differently illumination parts, without knowing the

reflectance property of the object.

5.2.2 Image Source Identification

In [21], Farid and Lyu has used natural image statistics (NIS) in the wavelet do-

main for the forensic verification purpose. They show experiments for distinguishing

authentic images from a few other types of images, i.e. stego images (images con-

taining hidden messages), computer graphics, and print-and-scan images. In an

ongoing work, we are investigating a number of other NIS, such as NIS in the power



116

spectrum domain, NIS in the spatial local image patch, and NIS in higher-order

statistics, primarily for distinguishing photographic images and computer graph-

ics [65]. To distinguish images captured by different cameras based on their phys-

ical device characteristics, one can use camera response function [49, 50] and fixed

pattern noise [53]. The former allows one to distinguish different models of camera

and the latter different cameras.

5.2.3 Image Operation Detection

Image post-processing clues raise suspicion for image forgery and help image forgery

detection. In [21], higher-order wavelets statistics are used for detecting image print-

and-scan and steganography. Avcibas et al. has used an image quality measure for

identifying brightness adjustment, contrast adjustment and so on [4]. In [93], image

operations, such as resampling, JPEG compression, and adding of noise, are modeled

as linear operators and estimated by linear image deconvolution. Double JPEG

compression has been given special attention in the PBIF literature. In [52, 79],

it is observed that double JPEG compression results in a periodic pattern in the

JPEG DCT coefficient histogram. Based on this observation, an automatic system

that performs image forensics is developed [36]. In [31], it is also found that the

distribution of the first digit of the JPEG DCT coefficients can be used to distinguish

a singly JPEG compressed image from a doubly compressed one. In [20], the JPEG

quantization tables for cameras and image editing software are shown to be different

and may serve as a useful forensics clue. As in the case for an image, double

MPEG compression artifacts are also observed when a video sequence is modified

and MPEG re-encoded [100]. Finally, there are also works on detecting duplicated

image fragments due to the copy and paste operation [27, 54, 78].
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5.2.4 Counter-attack Measure Design

As it is the goal for a forger to fool the forensic system, a forger can gather infor-

mation on the forensic system and post-process the forgery so that it escapes the

forensic system. Such an action is identified as a forensic system attack in Fig. 2.1.

Studying the potential forger’s attack on a forensic method is necessary before one

can design a counter-attack strategy. Apart from the counter-attack measure pro-

posed for the recaptured attack described in Sec. 3.11, the current work is very

limited in this aspect. Indeed, there are many possible types of attacks on a forensic

system. Below, we will discuss three major types, i.e., oracle attack, recapturing

attack, and post-processing attack.

Once a forgery creator has an unlimited access to a forgery detector, an oracle

attack can be launched. The forger can incrementally modify the forgery guided by

the detection results until it passes the detector with a minimal visual quality loss. In

order to make the task of estimating the detection boundary more difficult, the work

in [94] proposes a method of converting a parametric decision boundary into a fractal

(non-parametric) one, so that an accurate estimation of the boundary requires a

much larger number of sample points on the decision boundary. In [97], the oracle

attack issue is addressed by modifying the temporal behavior of the detector such

that the duration for returning a decision is lengthened when observing a sequence

of similar-content input images, which is the hallmark of an oracle attack. The

delay strategy can be designed so that the total time needed for an oracle attack to

succeed is painfully long.

Apart from the protocol level attack, forgers could apply various post-processing

operations to mask image forgery artifacts. This problem can be addressed by the

post-processing detection techniques mentioned before. Furthermore, heavy post-
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processing is often needed to mask the forgery artifacts.

A more sophisticated post-processing approach would be to simulate the device

signature so that the forgery has a consistent device signature. However, such an

attack is difficult to implement in practice as the simulated device signature has to

be strong enough to mask the inconsistency in the first device signature, and thus

results in a tremendous image quality loss.

An attacker can also produce a seemingly authentic image or video by recap-

turing the sound and sight produced from an image or a video. For example, an

image can be printed out and recaptured by a camera. However, such an attack

is difficult in practice, as to produce a good quality recaptured duplicate, a subtle

and complicated setup for rendering the realistic sound and sight is needed, which

not always feasible. For example, a printed image may contain the perceivable half-

toning artifacts and its 2D flatness may lacks certain 3D visual effects. Furthermore,

recapturing does not remove all the inconsistencies in an image or a video, which is

particularly obvious in the scene inconsistencies.
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Chapter 6

Conclusions

6.1 Summary

This dissertation is dedicated to the research in passive-blind image forensics (PBIF).

We identify two main research areas in PBIF as image forgery detection and im-

age source identification, which are directly related to the goal of detecting image

manipulation. Other auxiliary research areas are image operation detection, and

counter-attack measure design. To approach problems in PBIF, we define two image

authenticity properties, i.e., the scene authenticity and the imaging-process authen-

ticity, based on the image formation process starting from the 3D scene at one end

to the image acquisition device at the other end. In this dissertation, we present

three works for addressing problems in PBIF by capturing the image authenticity

properties:

1. We present a statistical method based on bicoherence to capture the optical

low-pass property in an image for addressing the image splicing detection

problem. We provide a model for image splicing which explains the capability

of bicoherence in detecting image splicing. We also propose an additional

set of image content-related features to improve the image splicing detection
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Figure 6.1: The two main approaches for PBIF: the statistical approach and the
physics-based approach.

performance, as compared to that only using the baseline bicoherence features.

2. We present a geometry method based on differential-geometric quantities to

capture the properties of object geometry, object surface reflectance, and cam-

era response function (CRF) in images for distinguishing photographic images

and photorealistic computer graphics. In contrast to the statistical method in

the prior works, the geometry method reveals the physical differences between

photographic images and photorealistic computer graphics.

3. We present a geometry method based on geometry invariants to estimate CRF

from a single color-channel image. The geometry method offers a novel and

principled way for selecting local regions for estimating the CRF from a single

greyscale/color-channel image. This method has been shown to be robust over

a large, diverse set of test images.



121

6.2 Future Work

PBIF provides an alternative to the active image authentication techniques, such

as digital watermarking and digital signatures, for detecting image manipulation.

PBIF is a new area of research and poses a lot of challenging research problems.

Below are some suggestions for the future work:

1. Fusion of the Statistical Approach and the Physics-based Approach:

In general, PBIF can be addressed by two main approaches: the statistical

approach and the physics-based approach. Fig. 6.1 shows the techniques and

the required domain knowledge for the two approaches. Methods that follow

the statistical approach are such as those using natural image statistics [21],

modeling tampering artifacts [4, 93] or based on steganalysis-inspired tech-

niques [10, 30], while methods for the physics-based approach are such as

those based on the 3D scene properties [40, 56, 70] and the image acquisition

device properties [38, 53, 80]. Our works belong to the physics-based approach

in the sense that our definition of image authenticity is based on the physical

image formation process. The two approaches are complementary and could

be combined for inventing new and powerful PBIF methods. Very few current

works have considered such a fusion.

2. 3D Scene Consistency: Despite the few recent prior work having been

proposed [40, 56], checking the consistency in the 3D scene remains one of the

most difficult areas in PBIF. The difficulties lie in the fact that extracting 3D

scene information, such as scene geometry, illumination and surface reflectance

property, from a single image is often ill-posed and has no unique solution.

However, progress in the area of computer vision have seen novel techniques for

3D scene information extraction being proposed. For instance, the work in [74]
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proposed a technique to extract the scene illumination for the image of human

eyes. With this technique, we may be able to extract the scene illumination

from the eyes of two human subjects in the same image, as illustrated in

Fig. 6.2.

3. Real-world Tampering: Current works in PBIF seldom demonstrate their

capability in detecting image manipulation in real-world cases, where images

are often processed over multiple stages with a strategic manner so that the

image forgery artifacts become highly imperceivable. This shortcoming is

understandable as PBIF research is still at its infancy. In order to bring the

innovation in PBIF closer to solving the real-world problems, the future work

in PBIF needs to put emphasis in their capability for handling sophisticated

image manipulation techniques and multi-stage image manipulation.

4. Multimodal Forensics: Current works in passive-blind forensics are mainly

limited to the image modality. Works that consider other modalities [18, 100]

such as the audio and video modality are very limited. The current image

forensics techniques can be extended to other modalities and enable a wider

application.

5. Multi-image Forensics: Current works in PBIF limit themselves by per-

forming forensic analysis on a single image. Such limitation is indeed artificial.

For example, as shown in Fig. 6.3, we can develop techniques to verify the au-

thenticity of the Great Pyramids image shown in Figure 1.1 using other images

of the pyramids found using Google Image Search. As a related work, a pa-

per on Photo Tourism [90] has demonstrated the possibility of using multiple

unregistered images of the same scene to recover the 3D scene geometry. We

may name such PBIF technique using multiple images as image correlation.
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Extracted from [Nishino, Nayar 04]

Image source: http://www.snopes.com/

photos/politics/kerry2.asp

Consistent Eye Images?
Extracted from [Nishino, Nayar 04]

Extracted from [Nishino, Nayar 04]

Extracted from [Nishino, Nayar 04]

Figure 6.2: An illustrative example of checking the consistency of the scene illumi-
nation extracted from the eye image of two different human subjects in the same
image.

Image correlation is in fact one of the intuitive ways for human to perform

PBIF in such a scenario. Image correlation will enable us to solve a wider

range of PBIF problems, offer new solutions to the existing PBIF problems,

and offer ways to increase the reliability of the current PBIF solutions.

6. Camera Evolution: An issue for the physics-based approach is that the

assumed camera model is based on today’s technology, which may evolve as

technology advances. Future work will need to take such technology evolution

into account.
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lester/writings/geo.html

Figure 6.3: An illustrative example of performing PBIF using more than a single
image.
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Appendix

A Proof for the Bipolar Effect on the Phase of the Spliced

Signal Bicoherence Proposition (Proposition 1)

The Fourier transform of a spliced signal is given by:

S(ω) = A(ω) + D(ω) (A.1)

hence

S(ω1)S(ω2)S
∗(ω1+ω2) = A(ω1)A(ω2)A

∗(ω1+ω2)+Cad(ω1, ω2)+D(ω1)D(ω2)D
∗(ω1+ω2)

(A.2)

where

Cad(ω1, ω2) = A∗(ω1 + ω2)(A(ω1)D(ω2) + D(ω1)A(ω2) + D(ω1)D(ω2))

+ D∗(ω1 + ω2)(A(ω1)A(ω2) + A(ω1)D(ω2) + D(ω1)A(ω2)) (A.3)

As Cad(ω1, ω2) consists of cross terms from A(ω) and D(ω), we assume that it

does not have a systematic effect on S(ω1)S(ω2)S
∗(ω1 + ω2). Then, we can group

A(ω1)A(ω2)A
∗(ω1 + ω2) + Cad(ω1, ω2) as TA(ω1, ω2). If the probability of seeing

bipolar signal in an overlapping segment is pd ∈ [0, 1], then the numerator of the
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spliced signal bicoherence BS(ω1, ω2) is given by:

E [S(ω1)S(ω2)S
∗(ω1 + ω2)] = E [TA(ω1, ω2)] + E [D(ω1)D(ω2)D

∗(ω1 + ω2)]

= TA(ω1, ω2) + pd8jk
3 sin(

1

2
4ω1) sin(

1

2
4ω1) sin(

1

2
4(ω1 + ω2)) (A.4)

where we represent E [TA(ω1, ω2)] as TA(ω1, ω2). Then, the phase of BS(ω1, ω2) is

given by:

φ(BS(ω1, ω2)) = φ(E [S(ω1)S(ω2)S
∗(ω1 + ω2)]) (A.5)

= tan−1

(
tan(φ(TA(ω1, ω2))) +

(
pdk

3

|TA(ω1, ω2)|

)
8Tsin

cos(φ(TA(ω1, ω2)))

)
(A.6)

where Tsin = sin(1
2
4ω1) sin(1

2
4ω1) sin(1

2
4(ω1 + ω2)). Note that when |pdk

3| → 0,

φ(BS(ω1, ω2)) → φ(BA(ω1, ω2)), whereas when
∣∣∣ pdk3

T A(ω1,ω2)

∣∣∣ → ∞, φ(BS(ω1, ω2)) →
±90◦ and the effect of bipolar signals increases with pd. Therefore, by continuity,

the effect of an additive bipolar signal is that it induces ±90◦ phase concentration

on the resulting spliced signal bicoherence and its strength increases with |k| and

pd.

B Proof for the Bipolar Effect on the Magnitude of the

Spliced Signal Bicoherence Proposition (Proposition 2)

From definition 3, a spliced signal is modeled as:

s(x) = a(x) + d(x) ⇔ S(ω) = A(ω) + D(ω) (B.7)

To simplify analysis, we first assume that every overlapping signal segment has

a bipolar signal, i.e., probability of seeing a bipolar signal in a overlapping segment
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pd is 1. Then,

|BS(ω1, ω2)|

= |E[(A(ω1)+D(ω1))(A(ω2)+D(ω2))(A∗(ω1+ω2)+D∗(ω1+ω2))]|√
E[|(A(ω1)+D(ω1))(A(ω2)+D(ω2))|2]E[|A∗(ω1+ω2)+D∗(ω1+ω2)|2]

≥ E[||A(ω1)|−|D(ω1)|| ||A(ω2)|−|D(ω2)|| ||A∗(ω1+ω2)|−|D∗(ω1+ω2)||]√
E[((|A(ω1)|+|D(ω1)|)(|A(ω2)|+|D(ω2)|))2]E[(|A∗(ω1+ω2)|+|D∗(ω1+ω2)|)2]

= E[|D(ω1)| ||A(ω1)|−1| |D(ω2)| ||A(ω2)|−1| |D∗(ω1+ω2)| ||A∗(ω1+ω2)|−1|]√
E[(|D(ω1)|(|A(ω1)|+1)|D(ω2)|(|A(ω2)|+1))2]E[(|D∗(ω1+ω2)|(|A∗(ω1+ω2)|+1))2]

= L(ω1, ω2) (B.8)

where L(ω1, ω2) is the lower bound for |BS(ω1, ω2)|. Applying Markov inequality,

we obtain:

P

( |A(ω)|
|D(ω)| ≥ ε

)
≤ E[|A(ω)|]

|D(ω)|ε (B.9)

=
E[|A(ω)|]

8|k3 sin(1
2
4ω1) sin(1

2
4ω1) sin(1

2
4(ω1 + ω2))|ε

(B.10)

For any ε > 0, as |k| → ∞, E[|A(ω)|]
|k3| → 0, if we assume that a(x) is an energy signal.

Being an energy signal, its energy is finite, and hence, E[|A(ω)|] ≤ E[|A(ω)|2] ≤ ∞.

Therefore, as |k| → ∞, |A(ω)|
|D(ω)| → 0 in probability and hence

L(ω1, ω2) → |D(ω1)||D(ω2)||D∗(ω1 + ω2)|√
(|D(ω1)||D(ω2)|)2|D∗(ω1 + ω2)|2

= 1 in probability

As L(ω1, ω2) ≤ |BS(ω1, ω2)| ≤ 1, |BS(ω1, ω2)| also approaches 1 in probability,

as L(ω1, ω2) approaches 1 in probability when |k| → ∞. The analysis above is the

limit case when pd → 1. By continuity, |BS(ω1, ω2)| increases in probability when

pd and |k| increases.
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C Derivation for Gradient on Surface

For any smooth real-valued function f on a Riemannian manifold (M, g), the gra-

dient of f , denoted as gradf at a point p satisfies:

〈gradf, V 〉g = df(V ) (C.11)

where df is a differential of f and V ∈ TpM . Then, gradf can be written as below

in smooth coordinates (u1, · · · , um) with dim(M) = m:

gradf =
∑
ij

gij ∂f

∂ui

∂

∂uj
(C.12)

where ∂
∂uj represents the basis vectors for TpM . Hence, the magnitude of gradf on

TpM is given by:

|gradf |2 = 〈gradf, gradf〉g =
∑
ijpq

gijg
pj ∂f

∂up
gqj ∂f

∂uq
=

∑
pq

gpq ∂f

∂up

∂f

∂uq
(C.13)

For a graph manifold F (x, y) = (x, y, L(x, y)), we have:

g−1 = (gij) =
1

1 + L2
x + L2

y




1 + L2
y −LxLy

−LxLy 1 + L2
x


 (C.14)
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Then, with a real-valued function f(x, y) = L(x, y), we obtain:

|gradL|2 = gxx(L2
x) + 2gxyLxLy + gyy(Ly)

2

=
(1 + L2

y)L
2
x − 2LxLy(LxLy) + (1 + L2

x)L
2
y

1 + L2
x + L2

y

=
L2

x + L2
y

1 + L2
x + L2

y

=
|∇L|2

1 + |∇L|2 (C.15)

where |∇L|2 = L2
x + L2

y, the Euclidean gradient magnitude square. If f(x, y) =

αL(x, y), i.e., a scaled function of L, we have:

|grad(αL)|2 =
α2|∇L|2

1 + α2|∇L|2 =
|∇L|2

α−2 + |∇L|2 (C.16)

D Online Demo System Implementation

In designing the online classification system, we face the following challenges:

1. Processing speed: For user-friendliness, the system should not take too long

(e.g., a few minutes) for processing a submitted image. The submitted images

can be of various size and the processing time in general depends on the image

size. Therefore, reducing the processed image size (e.g., by resizing or central-

region cropping) is a strategy for improving the processing speed.

2. Classification accuracy: For the usefulness of the system, the classification

should have a reasonably good classification accuracy as compared to random

guessing. However, as reduction in the processed image size may degrade

the classification accuracy, the criteria of processing speed and classification

accuracy are in a tradeoff relationship. Therefore, we need to find a strategy
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personal Google CG non-photorealistic CG

Figure D.1: Example images from the four categories of the online classifier training
dataset.

to improve the classification accuracy for the case of reduced-size images.

3. The diversity of the input images: It is not too surprising that an online system

would encounter input images of diverse types, which includes PRCG, non-

photorealistic CG, CG-and-PIM-hybrid images, painting or drawing and so on.

However, most of the experiments presented in the related paper [39, 55, 70]

do not consider such a wide spectrum of images. In order to obtain a well-

performing classifier, we need to include images of wide diversity into the

training dataset.

D.1 Dataset with Non-photorealistic Computer Graphics

In [70], the experiments are performed on the Columbia Photographic Images and

Photorealistic Computer Graphics Dataset [69] which includes only photorealistic

computer graphics. One of the challenges in system design is the potential wide

diversity of the input images and that non-photorealistic CG images are actually

very common on the Internet. In order to improve the classification performance, we

have to include another set of 800 non-photorealistic computer graphics (NPRCG)

into the online classifier training dataset. The NPRCG includes cartoon, drawing,

2D graphics, images of presentation slide, logo images and so on. These images are
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collected from the Google Image Search. As a result, our training image set consists

of four categories as shown in Figure D.1. Note that in training the classifiers used

for this online system, the recaptured CG category in the Columbia Photographic

Images and Photorealistic Computer Graphics Dataset is excluded as the recaptured

CG category mainly caters for the recapturing attack experiment.

D.2 Image Downsizing

For addressing the system design challenge of processing speed, we downsize the

input images such that the longer dimension of the downsized image is of 360 pixels

(the entire content of an image is retained, so is the aspect ratio). As the algorithm

for extracting the features is proportional to the image size, the reduction of com-

putational load due to image downsizing is substantial (about more than two times

in average) as the average size of the web images is around 700× 500 pixels.

In a prior work [55], computational efficiency is obtained by cropping out the

smaller-size central area from the images. In order to evaluate the two strategies of

reducing image size, we train support vector machines (SVM) of the LIBSVM [37]

implementation using the dataset mentioned in Section D.1 for separate cases where

the images are downsized, central-cropped and with the original size. In this case,

the Personal and Google categories form a class, while the PRCG and NPRCG cate-

gories form the opposite class. We use the radial basis function (RBF) kernel for the

SVM and model selection (for the regularization and the kernel parameters) is done

by a grid search [37] in the joint parameter space. The classification performance

we report hereupon is based on a five-fold cross-validation procedure.

Table D.1 shows the SVM classification accuracy corresponding to the two dif-

ferent image size reduction strategies, i.e., downsizing and central cropping, while

comparing to the SVM performance when there is no reduction of image size. Note
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Table D.1: SVM Classification Accuracy for Different Image Size Reduction Strate-
gies

Classifier Original size Downsizing Central Cropping
Geometry 83.8% 78.2% 79.9%
Wavelets 81.2% 77.3% 72.8%
Cartoon 76.1% 73.1% 75.9%

that central cropping results in a slightly better classification accuracy for the ge-

ometry (+1.7%) and the cartoon (+2.8%) classifier, but causes a serious drop of

performance for the wavelet (−4.5%) classifier. In this case, it is inconclusive on

which image reduction strategy is better, but the degradation of the classifier per-

formance due to image downsizing is more uniform over all the classifiers.

D.3 Classifier Fusion

The image downsizing results in an average of 4.2% decrease (over the three clas-

sifiers) in the classification accuracy when comparing to the case of no image size

reduction. To counter the performance decrease, we consider fusing the SVM clas-

sification outputs from the geometry, the wavelet and the cartoon classifiers. The

effort of fusing a set of base classifiers is only justified when the fusion classifier

outperforms the best among the base classifiers. According to an analysis [35], this

only happens when the individual base classifiers are reasonably accurate, individ-

ual performances are comparable, and their errors are uncorrelated. Although these

conditions may be not satisfied in practice, fusion of classifiers often leads to a better

classification performance and three fundamental reasons for the good performance

are proposed [15]. Firstly, in the case of a small dataset, different classifiers may

provide different but equally good hypothesis. Fusion of these hypothesis reduces

the risk of choosing the wrong hypothesis. Secondly, for learning algorithms which

could only achieve local optima, fusion of hypothesis corresponding to the multiple
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local optima may be a better approximation to the target function. Thirdly, for

the case where the target function is not in the hypothesis space of the individual

base classifiers, the fused classifier may have an enhanced hypothesis space which

includes the target function.

We evaluate three fusion strategies, the normalized ensemble fusion [95], the

score concatenation fusion, the majority vote fusion. The normalized ensemble

fusion procedure consists of three steps:

1. Normalization of the distance of the data points to the SVM deci-

sion boundary: The paper suggests three types of normalization schemes,

i.e., rank normalization, range normalization and Gaussian normalization, for

producing normalized scores.

2. Combination of the normalized scores: The paper suggests functions

such as minimum, maximum, average, product, inverse entropy and inverse

variance for combining the normalized scores.

3. Finding the optimal fusion strategy: The optimal fusion strategy is ob-

tained by searching over all the normalization schemes and the combination

functions.

The features obtained from the normalized ensemble fusion are then used for training

the final fusion SVM.

Before performing the score concatenation fusion and the majority vote fusion,

the binary SVM output is mapped into posterior probability by fitting the empirical

posterior histogram of the distance of the data points to the decision boundary using
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Table D.2: Downsized Image Classification Accuracy for Different Fusion Strategies
Normalized ensemble Score concatenation Majority vote Best base classi-

fier (geometry)
79.7% 80.0% 77.4% 78.2%

a parametric sigmoid function [77]:

P (y = 1|f) =
1

1 + exp(Af + B)
(D.17)

where f is the distance from the decision boundary and (A,B) are the sigmoid

model parameters. The score concatenation fusion concatenates the posterior prob-

ability of all the base classifiers and the concatenated features are used for training

the final SVM. The majority vote fusion selects the final decision by a majority

vote from the base classifiers. In our evaluation, we compute the classification accu-

racy for the three above-mentioned fusion strategies, using the dataset of downsized

images. The classification accuracy is as shown in Table D.2. Note the accuracy

reported here is for classifying downsized images. From the results, we see the use

of classifier fusion indeed improves the accuracy in classifying downsized images by

about 1.8%, as compared to the best performing base (geometry) classifier.

Note that the normalized ensemble fusion and the score concatenation fusion

perform equally well on the dataset, while the the majority vote fusion result seems

to be just about the average of the classification accuracies of the three base clas-

sifiers. Due to the simplicity of the score concatenation fusion as compared to the

normalized ensemble fusion, we choose to use the score concatenation fusion method.
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D.4 Exploiting Dataset Heterogeneity

The increase of the classification accuracy for the score concatenation fusion is

only 1.8%, which is quite minor. To further improve the classification accuracy for

downsized images, we aim to find a better way to generate a set of base classifiers

by exploiting the diversity and heterogeneity within the dataset. As we can see

that while the PRCG and the NPRCG image categories form a single class (CG),

they are actually two very different types of images. Similarly, the Personal and

the Google image categories are different in the sense that the Personal category

consists of the typical camera images from a few high-end cameras with diverse

content while the Google category contains images from diverse models of camera

potentially having undergone various types of additional post-processing.

From the dataset, we can generate nine (i.e., 32) sets of two-class data by ex-

haustively combining the elements of the power set of the two classes, as shown in

Figure D.2. We train a SVM base classifier for each of the two-class data subset

combinations. The binary outputs of the SVM base classifiers are mapped to pos-

terior probability by fitting a sigmoid function, as given in Equation D.17. Then,

the posterior probability for all base classifiers are combined through the score con-

catenation fusion for training the final fusion SVM classifier.

The accuracy of the fusion classifiers for the dataset of original size images and

downsized images are shown in Table D.3. The above approach is conceptually

similar to a common machine learning technique, called bagging, in which different

subsets of data are used to train multiple classifiers to be combined later. Each

individual classifier has the potential to capture the differences between classes con-

tained in each unique subset of data. The difference of our implementation from the

conventional bagging is that in our case subsets of data are obtained according to the
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Table D.3: Classification Accuracy After Considering Dataset Heterogeneity
Original image Downsized images

84.0% 82.0%

Google Personal

Google

+

Personal

PRCG NPRCG

PRCG

+

NPRCG

Photographic

Image

Computer

Graphic

Image

Figure D.2: Nine combinations of the data subsets.

data subtypes, rather than sampling of the whole set. Note that for the downsized

images, the gain in classification accuracy after considering dataset heterogeneity

is 2%, while there is very little gain for the original size images (84.0% compared

to best performing geometry classifier with a classification accuracy of 83.8%). To

explain the observation, we conjecture that image downsizing has made the base

classifiers less stable and decreased the correlation of error between the base classi-

fiers. Therefore, according the analysis mentioned before, there is a greater chance

for classifier fusion to be effective in the case of downsized images.

In summary, we address the system design challenges by reducing the processed

image size, including an additional set of non-photorealistic computer graphic images

into the training dataset, and exploiting the heterogeneity within the dataset. By

adopting this strategy, the per-image processing time is reduced by more than two

times, the classification accuracy degrades only by 2.0% as compared to the case with

no image downsizing, and the system can now handle non-photorealistic computer

graphic images.
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E Proof of the Integral Solution to CRF Property (Prop-

erty 5)

The partial differential equation (PDE) in Eq. 4.4

G1(R) =
f ′′(f−1(R))

(f ′(f−1(R)))2
(E.18)

can be rewritten as:

G1(R) =
d

dR

(
ln f ′(f−1(R))

)
(E.19)

Then, we can solve for the function f−1 as below:

ln f ′(f−1(R)) =

∫
G1(R)dR (E.20)

f ′(f−1(R)) = exp

(∫
G1(R)dR

)
(E.21)

Let r = f−1(R), then, we have:

f ′(f−1(R)) =
dR

dr
= exp

(∫
G1(R)dR

)
(E.22)

dr

dR
= exp

(
−

∫
G1(R)dR

)
(E.23)

f−1(R) =

∫
exp

(
−

∫
G1(R)dR

)
dR (E.24)
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F Proof of the Decomposition of G1 Proposition (Proposi-

tion 3)

In a general 2D (u1, u2)-Cartesian coordinate frame, let’s denote Ru1 and Ru2 , the

1st-order partial derivatives of a function R(u1, u2), respectively as R1 and R2, and

we follow the similar notation for the 2nd-order partial derivatives.

The vector (R1, R2) forms a 1-tensor, which transforms to new vector (R′
1, R

′
2)

under a rotation, according to the tensorial transformation law:




R′
1

R′
2


 =




cos(α) sin(α)

− sin(α) cos(α)







R1

R2


 = T




R1

R2


 (F.25)

where T is a 2×2 rotation matrix and α is the rotation angle. The above transfor-

mation equation can be more concisely written as below where the repeated index

are summed over all possible substitutions:

R′
i = TijRj →





R′
1 = T11R1 + T12R2

R′
2 = T21R1 + T22R2

(F.26)

On the other hand, the Hessian is a 2-tensor, which transforms according to the

tensorial rule below under a rotation:

R′
ij = TikTjlRkl (F.27)

With the above two transformation rules, we can easily express the geometry

invariant quantities in (ut, ug) coordinates with the derivative quantities in (ut, ug)

coordinates (these two coordinate frames are shown in Fig. 4.2). In this case, the

rotation from the (ut, ug)-coordinate frame to the (ut, ug)-coordinate frame is given
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by the rotation matrix:

T =




cos(π
4
) sin(π

4
)

− sin(π
4
) cos(π

4
)


 =

1√
2




1 1

−1 1


 (F.28)

The expressions in Proposition 3 is given as below. Note that, the first-order

derivative in the tangential direction, Rt = 0.

Rtt

R2
t

=
TtkTtlRkl

(TtjRj)2
(F.29)

=
TttTttRtt + 2TttTtgRtg + TtgTtgRgg

(TttRt + TtgRg)2
(F.30)

=
1
2
Rtt + Rtg + 1

2
Rgg

1
2
R2

g

(F.31)

=
λ− κ− 2µ

Rg

(F.32)

Rgg

R2
g

=
TgkTglRkl

(TgjRj)2
(F.33)

=
TgtTgtRtt − 2TgtTggRtg + TggTggRgg

(TgtRt + TggRg)2
(F.34)

=
1
2
Rtt −Rtg + 1

2
Rgg

1
2
R2

g

(F.35)

=
λ− κ + 2µ

Rg

(F.36)
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Rtg

RtRg

=
TtkTglRkl

TtiRiTgjRj

(F.37)

=
TttTgtRtt − 2TttTggRtg + TtgTggRgg

(TttRt + TtgRg)(TgtRt + TggRg)
(F.38)

=
−1

2
Rtt + 1

2
Rgg

1
2
R2

g

(F.39)

=
λ + κ

Rg

(F.40)

G Proof of the Geometric Significance of Equality Con-

straint Proposition (Proposition 4)

(
Rtt

R2
t

=
Rgg

R2
g

=
Rtg

RtRg

)
(G.41)

⇐⇒
(

Rtt

R2
t

− Rgg

R2
g

= 0

)
&

(
Rtt

R2
t

− Rtg

RtRg

= 0

)
(G.42)

⇐⇒ (µ = 0) & (µ + κ = 0) (G.43)

⇐⇒ (κ = µ = 0) (G.44)

Futhermore,

(κ = µ = 0) ⇐⇒ (Rtt = Rtg = 0) (G.45)

Rtg = 0 implies that the function R(ut, ug) is in the form of either a(ut) or b(ug),

where a(ut) and b(ug) are respectively a single parameter function of ut and ug.

Then, with Rtt = 0, it implies that R(ut, ug) must take the form of b(ug).
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H Proof of the Error Metric Calibration Proposition (Propo-

sition 5)

The purpose of calibrating the error metric for Q(R) is so that the calibrated error

metric would be linear to the error metric in the CRF space. The calibration is

desirable as it makes the optimization in the Q(R) space equivalent to an optimiza-

tion in the CRF space, when using the common least square optimization criterion.

The calibration of error metric for Q(R) can be formulated as reparametrization of

a one-dimensional curve in a n-dimensional space.

Assume that the image irradiance value r ∈ [0, 1] is uniformly sampled at N

points and a sample point is denoted as ri. For gamma curve, the relationship

between image intensity Ri and image irradiance ri is given by:

Ri(γ) = f(ri) = rγ
i (H.46)

In the CRF space, the error metric is measured by the root mean squared error

(RMSE):

RMSE(f1, f2) =

(
1

N

N∑
i=1

(f1(ri)− f2(ri))
2

)0.5

(H.47)

From Property 6, Q(R) = γ for a gamma curve f(r) = rγ. Then, the RMSE error

metric between two Q(R) functions, Q1(R) and Q2(R) (respectively corresponds to

gamma curves f1 = rγ
1 and f2 = rγ

2 ), is given by:

RMSE(Q1, Q2) =

(
1

N

N∑
i=1

(Q1(Ri)−Q2(Ri))
2

)0.5

(H.48)

= |γ1 − γ2| (H.49)
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Note that the set of values {Ri} can be considered as a point [R1, R2, . . . , RN ]

in an N -dimensional space. As the parameter γ changes, it will trace out a one-

dimensional curve in the N -dimensional space. For a differential change for γ, the

differential change for Ri is given by:

dRi = rγ
i ln(ri)dγ (H.50)

Then, we can define the differential change for the arc length dS of the 1D space

curve as the RMSE given in Eq. H.47, which is rewritten as below:

dS =

(
1

N

N∑
i=1

dR2
i

) 1
2

=

(
1

N

N∑
i=1

(rγ
i ln(ri)dγ)2

) 1
2

(H.51)

When we let the uniform sampling grid on r ∈ [0, 1] to become infinitely fine, we

are sending the number of sampling points N on r to infinity. Then, the differential

change for the arc length dS becomes:

dS = lim
N→∞

(
1

N

N∑
i=1

dR2
i

) 1
2

=

(∫ 1

0

(rγ ln(r))2 dr

) 1
2

dγ (H.52)

Note that the differential change for the arc length dS represents the error metric

in the CRF space, and the differential change dQ = |dγ| represents the error metric

in the Q(R) space (Once we choose a proper direction to trace the space curve, we

have |dγ| = dγ, where the sign is no longer an issue). We can see that

dS

dQ
=

(∫ 1

0

(rγ ln(r))2 dr

) 1
2

(H.53)

is a function of γ, therefore the same differential distances from two different Q(R)
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functions in the Q(R) space may correspond to two different differential distances in

the CRF space. In the differential geometry context, we say that the Q(R) space is

not flat. A drawback of such non-flatness is that when we perform curve-fitting using

the least-square optimization criterion in the Q(R) space, the same optimization

cost measured at two functions Qa(R) and Qb(R) may corresponds to two different

error measurements in the CRF space. This is a bad news because what we are

eventually interested is to minimize the error in the CRF space. We can remove the

non-flatness by reparametrizing the space curve with its arc length, so that after the

reparametrization we have dS
dQ

= constant, where a transformation of Q(R) to Q(R)

is resulted by the arc length reparametrization. For the reparametrization, we need

to compute the arc length by solving the integration in Eq. H.52, which gives us:

S = −
√

2

2γ + 1
+ C (H.54)

where C is a constant. As we have Q(R) = γ for the gamma curves, we can

transform the Q(R) linearly according to Eq. H.54 as if it is γ:

Q(R) = β(Q) = k

√
2

2Q(R) + 1
+ C (H.55)

where k and C are constant. By doing so, we achieve our goal for Q(R) error

metric calibration (equivalently, the flattening of the space curve metric) such that

dS
dQ

= constant.

To determine the constants k and C, we import boundary conditions: β(0) = 0

and β(1) = 1. This condition is on the assumption that the gamma curve are convex,

i.e., γ ∈ [0, 1]. With these boundary conditions, we finally obtain the expression
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given in Proposition 5:

Q =

√
3√

3− 1

(
1−

√
1

2Q + 1

)
(H.56)

I The General Expression for Geometry Invariant Compu-

tation

The isophote curvature (κ), the normalized 2nd-derivative in the gradient direction

(λ), and the flow line curvature (µ) given in Eq. I.57 are geometric quantities of the

image intensity function R and have nothing to do with the coordinate frames on

which they are computed.

κ = −Rtt

Rg

, λ =
Rgg

Rg

and µ = −Rtg

Rg

(I.57)

Therefore, these quantities can be expressed in a general expression for which com-

putation can be done on any coordinate frame as below [23]. The expressions below

are all given in the manifest index notation for which the repeated index are summed

over all possible substitutions.

κ =
RiεijRjkεklRl

(RmRm)
3
2

(I.58)

µ =
RiεijRjkδklRl

(RmRm)
3
2

(I.59)

λ =
RiδijRjkδklRl

(RmRm)
3
2

(I.60)
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where δij is the symmetric Kronecker tensor, and εij is the anti-symmetric Levi-

Civita tensor, as defined below:

δij =





1 if i = j

0 otherwise
(I.61)

εij =





1 if (i, j) is even

−1 if (i, j) is odd

0 otherwise

(I.62)

For the definition of εij, an index sequence (i, j) is called even if an even number

of pairwise swapping of indexes is needed to restore it back to an ordered sequence.

An odd index sequence is similarly defined. For expressions in Eq. I.58, Eq. I.59,

and Eq. I.60, the indexes can be replaced by the coordinate index. For instance,

with the original (x, y)-coordinate frame, κ, µ, and λ can be written as:

κ =
2RxRyRxy −R2

xRyy −R2
yRxx

(R2
x + R2

y)
3
2

(I.63)

µ =
(R2

x −R2
y)Rxy + RxRy(Ryy −Rxx)

(R2
x + R2

y)
3
2

(I.64)

λ =
R2

xRxx + 2RxRyRxyR
2
yRyy

(R2
x + R2

y)
3
2

(I.65)

Finally, by substituting Eq. I.63, Eq. I.64, and Eq. I.65 into the expression in

Eq. 4.13, we obtain:

Rgg

R2
g

=
R2

x(∆R− 2Rxy) + R2
y(∆R + 2Rxy) + 2RxRy∆R

(R2
x + R2

y)
2

(I.66)
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Rtt

R2
t

=
R2

x(∆R + 2Rxy) + R2
y(∆R− 2Rxy)− 2RxRy∆R

(R2
x + R2

y)
2

(I.67)

Rgt

RgRt

=
(R2

x + R2
y)∆R + 4RxRyRxy

(R2
x + R2

y)
2

(I.68)

where ∆R = Rxx + Ryy and ∆R = Rxx −Ryy.
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