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ABSTRACT

Image Tampering Detection For Forensics Applications

Jessie Yu-Feng Hsu

The rapid growth of image editing softwares has given rise to large amounts

of doctored images circulating in our daily lives, generating a great demand for

automatic forgery detection algorithms in order to determine the authenticity of a

candidate image in a timely fashion. A good forgery detection algorithm should be

passive and blind, requiring no extra prior knowledge of the image content or any

embedded watermarks. By analyzing the abnormal behaviors of doctored images

from authentic images, one can design forgery detectors based on a collection of

cues in the image formation process.

In this thesis, we first present a fully automatic consistency checking algorithm

for detecting arbitrarily-shaped splicing areas in a digital image. We specifically

study the Camera Response Function (CRF), a fundamental property in cameras

mapping input irradiance to output image intensity. A test image is first automat-

ically segmented into distinct areas. One CRF is estimated from each area using

geometric invariants from Locally Planar Irradiance Points (LPIPs). To classify a

boundary segment between two areas as authentic or spliced, CRF-based cross fit-

ting and local image features are computed and fed to statistical classifiers. Such

segment-level scores are further fused to infer the image-level authenticity decision.

Tests on two benchmark data sets reach performance levels of 70% precision and

70% recall, showing promising potential for real-world applications. Moreover, we

examine individual features and discover the key factor in splicing detection. Our

experiments show that the anomaly introduced around splicing boundaries plays the



major role in successful detection. Such finding is important for designing effective

and efficient solutions to image splicing detection.

As for the second focus of this thesis, we move beyond single forgery detector and

propose a universal framework to integrate outputs from multiple detectors. Multi-

ple cue fusion provides promises for improving the detection robustness, however has

never been systematically studied before. By fusing multiple cues, the tampering

detection process does not rely entirely on a single detector and hence can be robust

in face of missing or unreliable detectors. We propose a statistical fusion framework

based on Discriminative Random Fields (DRF) to integrate multiple cues suitable

for forgery detection, such as double quantization artifacts and camera response

function inconsistency. The detection results using individual cues are used as ob-

servations from which the DRF model parameters and the most likely node labels

are inferred indicating whether a local block belongs to the tampered foreground

or the authentic background. Such inference results also provide information about

localization of the suspect spliced regions. The proposed framework is effective and

general - outperforming individual detectors over systematic evaluation and easily

extensible to other detectors using different cues.

Both the consistency checking and multiple cue fusion frameworks are highly flex-

ible, ready to accommodate other cues. The contribution of this thesis is therefore

not limited to workable, powerful algorithms for forgery detection, but more impor-

tantly generalizable strategies in the design of potential forgery detection modules

that might arise in the future.
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1

Chapter 1

Introduction

With the ease of digital image manipulation, image forgery has become a common

concern. The fast development of commercial image editing softwares such as Adobe

Photoshop dramatically increases the amount of doctored photographs circulated

everyday. This phenomenon leads to serious consequences, reducing trustworthiness

and creating false beliefs in many real-world application. For example, Fig 1.1a

shows a doctored photograph of celebrities Cher and Brad Pitt, falsely implying

their simultaneous presence at the same location [1]. Fig. 1.1b is another doctored

photograph widely circulated at the time of the U.S. Presidential Election in 2004,

expressing the strong anti-Vietnam-war stance of the then-candidate John Kerry. 1

Fig. 1.1c shows a copied-and-pasted British soldier pointing his machine gun at Iraqi

people. It was published on the front page of L.A. Times in 2003, causing the public

image of the British Army to be brutal, merciless [3]. Besides splicing, doctored

images can be generated with other operations. Fig. 1.1d shows a photograph

of O. J. Simpson on the TIME magazine cover in 1992 with Simpson’s skin color

deliberately darkened [4]. This was done to enhance an unfair subjective perception.

1It was later discovered that this photograph was from two distinct ones: one of John Kerry
speaking in a 1971 rally and the other of the famous anti-war activist, actress Jane Fonda, speaking
at a 1972 rally [2].
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(a) (b)

(c) (d)

Figure 1.1: Examples of doctored photographs (a) celebrities Cher and Brad Pitt
spliced side-by-side [1] (b) ex-U.S. presidential election candidate John Kerry spliced
side-by-side with actress Jane Fonda [2] (c) doctored image of British soldier pointing
machine gun at Iraqi people [3] (d) O. J. Simpson’s photograph with skin color
darkened [4].

Traditional image forensics has been done with human inspection. Such ap-

proaches can achieve accurate detection and high quality analysis, but they typi-

cally require significant amount of time and extensive human labor. The number of

doctored photographs circulated each day has far exceeded the amount that human

inspection can handle, therefore bringing automated content integrity verification

into picture. Besides fast verification processes, automated algorithms also comple-

ment human inspection for manipulations that cannot be perceptibly detected by

the human eye.

Applications of digital tampering detection can be easily found today. One ob-

vious example is the publishing business, e.g., newspapers and magazines. Comput-
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erized solutions make it possible to verify the authenticity of photographs prior to

publishing. The need of automation and high throughput is obvious given the timely

nature of news articles and the amount of photographs that have to be processed

everyday. A second scenario is criminal justice, for which photographs are often pre-

sented as court evidence. For this, authenticity verification of every single piece of

evidence needs to be solid. Besides expediting the verification process, computerized

algorithms can also avoid potential malicious human intervention, thus creating a

more objective investigation process. Finally, the finance industry can benefit from

forensics techniques too, as they have to process and analyze numerous transaction

documents everyday. Financial fraud involves huge monetary loss or gain, therefore

there is very little tolerance for miss detection. Such institutions require forensics

tools that are both fast and reliable.

Note the objective of digital forensics tools is not to replace human inspection

completely. Whether digital detection is to be entirely trusted or only to serve as

a preliminary analysis depends on each specific scenario and application instance.

When fast verification is crucial and slightly imperfect decisions are tolerable (e.g.,

publishing business), digital detection would suffice. However in criminal justice or

financial fraud, the response time can be longer but the required accuracy is high.

For such cases, it is desirable to use digital forensics tools as the first line of defense

in spotting suspicious cases and let the experienced human experts make the further

inspection and final decision.

On the technical side, several problems can be defined at different levels (refer to

Fig. 1.2): image level binary decision, tampering operation identification, suspicious

area localization and manipulation explanation. We discuss these topics in the

following subsections. Note the list is by no means an exhaustive one. There are

many new ways in which images may be tampered with. However, the top-down
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framework of problem formulation involving multiple levels of decision is general. In

this thesis, we will present a comprehensive study utilizing novel ideas arising from

different levels.

• This image is doctored: image level binary authenticity decision

• It has been spliced: tampering operation identification

• It exhibits lighting inconsistency: manipulation explanation

• The actress is the spliced foreground: suspicious area localization

(classification)

(identification)

(explanation)

(localization)

Figure 1.2: Technical problems in image forensics.

1.1 Image Level Binary Authenticity Decision

At the image level, a critical question frequently asked is whether an image is au-

thentic (hence trustworthy) or doctored (and cannot be trusted). A lot of times

such global decisions suffice and no extra detailed information is necessary. For ex-

ample, this may be appropriate for the aforementioned publishing application. Once

the authenticity of a candidate image is determined, information such as the type of

tampering, quality of tampering or specific tampered areas may not be important.

Criminal investigation, on the contrary, requires more detailed analysis. Hidden

details are crucial to revealing important traces and recovery of original scenes.

It is worth noting that the definition of image authenticity depends on actual

application scenarios. In this thesis, we use the terms authentic images and natural
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images interchangeably. For instance, in [5], natural images refer to photographic

images of natural scenes and in [6], natural images are defined as those distinct

from range images. In this thesis, an authentic image is defined as an image

captured by a single camera in a single process . Following this definition, a

composite image from multiple captures of the same camera is not authentic. Nei-

ther is a composite image from multiple captures at the same time and location

but by different cameras. An image containing computer graphics rendered con-

tent also falls out of the authentic image category. One type of images remaining

questionable are those containing computer graphics content but recaptured by a

camera. Whether such images are categorized as authentic remains an ambiguous

issue which will be resolved by consideration of practical applications.

There are two approaches to the problem of global binary authenticity decision:

(1) working with image level analysis directly or (2) first performing localized anal-

ysis and then combining them to an image level decision (bottom-up). The former

can be approached as a binary statistical classification problem based on a collection

of image features. Its underlying hypothesis is that authentic and doctored images

reside in different subspaces and therefore can be separated. The prior study on the

statistical properties of natural images, such as the class of distributions of wavelet

coefficients [5, 6], produces a sound foundation for many works in this direction.

Some commonly used features include correlations between wavelet coefficients in

different bands [7] and higher order statistics such as bicoherence [8]. In [9], physics

based geometry related features are proposed to distinguish natural images from

computer graphics rendered images.

The bottom-up approach, on the other hand, infers image-level decisions based

on individual specialized or localized detectors. The set of components in the overall

machinery can be divided according to functionality or locality. For example, an
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image can be determined as doctored if it has gone through a plurality of tampering

operation identifiers and at least one of them reported strong suspicion of likely

manipulation. The same principle can be applied to localized detectors. After each

detector inspects a small area within the image, their scores can be fused to obtain

an overall decision at the image level. The fusion method ranges from straightfor-

ward sum-of-scores or max-of-scores to more sophisticated statistical optimization

processes. Often we choose the most appropriate set of individual detectors and

fusion schemes based on the actual application requirements and the computational

resources at hand.

1.2 Tampering Operation Identification

Beyond image level binary decisions, image forensics is also concerned with many

technical questions. One interesting task is to identify which specific tampering

operations have been utilized in the manipulation of the candidate image. This

provides deeper understanding of the doctored image than just a plain binary deci-

sion. Identification of a specific manipulation used also allows flexible interpretation

of acceptable operations in practical applications. For example, knowing that an

image has gone through a skin tone adjustment helps the analysts decide an image

is acceptable in consumer applications but not journalistic publishing.

Each specific detector is often designed based on artifacts generated from the

targeted operations, hence may not be generalizable to different types of manipu-

lations. Examples of tampering operations include the simplest form of copy-and-

paste (splicing), edge smoothing/matting after splicing (using either 2D filtering or

alpha blending), color adjustment, deletion and duplication in scientific images [10],

inpainting [11].... etc.
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One typical tampering operation that has been studied by many researchers is

splicing, for which many solutions have been proposed [1, 8, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21]. For images of natural scenes, most works rely on the inconsistency

among different parts within spliced images. In addition, in [8], splicing is detected

via image level statistical analysis and in [21] quantization artifacts specific to the

JPEG compression format are used. For tampering in scientific images, one well-

known case of fraud has been created with various Photoshop operations on the

microscopic image output of a DNA separating gel. Such fraud is detected by

revealing an abnormally clean area after image segmentation [10]. As mentioned

above, the objective of these detectors is to achieve the best accuracy for the targeted

operation, rather than generality as a whole.

It shall be noted again that the manipulation detectors can be used to form a

myriad of detection tools, which can be used to collectively infer whether an image

has been tampered with.

1.3 Manipulation Explanation

Instead of just declaring identification of specific operations, some works also try to

provide explanations about the evidences leading to the detection decisions. The

explanation is usually related to the cue and the technique used in the tampering

identifier. Such explanation provides more insight behind the results, thus making

the detection outcomes more convincing and effective in practice, as in the case of

criminal investigation.

Since there are multiple ways of conducting the same operation, there are equally

multiple approaches a detector can utilize to reach decisions. For example, there

are many cues and formulations that can be used to detect the image splicing op-
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eration [1, 8, 12, 17, 18, 13, 15, 19, 20, 21]. Depending on what cue is used, the

manipulation explanation might include ”inconsistent lighting”, ”inconsistent cam-

era characteristics”, or ”abnormal wavelet coefficient statistics”. In other words,

the tampering identification answers the ”what” question and the explanation task

may use multiple different ways to answer ”how”.

The comprehensive set of manipulation explanation information also provides a

better ground if further image analysis is to be conducted. Since the data annotation

concerning manipulation details has already been provided, the analysis process

would be less expensive and time-consuming.

1.4 Suspicious Area Localization

Localization of suspicious areas is also one critical topic in image forensics. The

ability of pinpointing the area of suspicion in an image allows provision of convincing

explanations about the suspected tampering. For example, once a person within the

picture has been successfully identified as spliced, it serves as an informative basis

for experts to extract further details of the image regions and conduct in-depth

examination.

The expert can compare the localized image part with other images in the

database and find its source photograph. Suppose it is successfully found, it not

only strengthens the finding about tampering (because a source photograph is ob-

viously a strong evidence) but also leads to further study of the case. For instance,

the times and locations of the source photograph and the tampered image can be

used to determine the scenarios of the tampering. If the two photographs are taken

at the same location (e.g., a popular tourist spot) and around the same time (e.g.,

two consecutive shots of the same person with different poses), then it is possible
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that the tampering is for aesthetic purposes, aiming at creating a better looking

photograph (e.g., copying the human figure with better pose onto another photo-

graph with a more clean background). In this case, the semantic of the photograph

is not altered. Such tampering can often be categorized as innocuous. However, if

the times and locations are clearly distinct, (e.g., source images from two different

locations as shown in the Kerry-Fonda photograph Fig. 1.1b), it is more likely that

the tampered photograph is generated in order to cause false belief.

Localization of manipulated areas may also be used to link local content in the

tampered image to the sources [22]. Discovery of such links over a collection of

duplicate images allows construction of the history of image manipulations, starting

from the original source, through intermediate image copies, to the final manipulated

versions. An interesting application, as discussed in [22], involves the study of the

correlation of image manipulations and the change of viewpoints of image owners.

Localization of suspicious areas relies significantly on the spatial constraints

imposed. The inherent assumption is that the spliced content is often contiguous

rather than scattered. Nearby pixels or blocks in the spliced foreground area should

share the same cue (e.g., lighting, device characteristics, or transform coefficient

distributions) that is very different from the cue shared by the authentic background

pixels. Such contiguity assumption, as shown later in Chapter 4, imposes certain

smoothness constraints on tampering detection results, forcing the estimated cues

to be spatially homogeneous.

1.5 Thesis Scope

This thesis focuses on the development of single image tampering detection. It first

solves the image level detection problem using a consistency checking method based
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on imaging device characteristics. Building on successful image level detection, we

further develop methods to localize the suspicious areas by fusing multiple tampering

detectors. These solutions are completely passive - no active mechanisms are needed

to generate and embed additional watermarks into images at sources. It is also blind

- no prior knowledge of manipulation cues is necessary.

The rest of this thesis is organized as follows: Chapter 2 reviews the image

formation process and useful cues from three categories: natural scene, device char-

acteristic and post processing artifacts. The related prior work using various cues

for source identification or the forgery detection is discussed. Chapter 3 focuses

on one of the device characteristics of digital cameras, Camera Response Function

(CRF), and a new statistical framework for tampering detection based on CRF

inconsistency. We study the suitable formulation that combines automatic image

region segmentation and inconsistency detection based on CRF models. We present

robust detection results using both simulated and realistic test sets. Chapter 4 ex-

plores one level higher and seeks to fuse multiple detectors into optimal image level

decisions. It summarizes the output of possible forgery detectors into two classes:

single node authenticity scores and pairwise inconsistency scores. It is expected that

fusing two sets of scores would lead to better forgery detection and more accurate

localization of suspicious areas. We use Discriminative Random Field (DRF) as the

fusion framework, with a relaxed, non-strictly-Markov edge structure to incorpo-

rate CRF inconsistency scores. Experimental results confirm the performance gains

using the multi-detector fusion approach. The proposed framework is powerful in

its capability of combining diverse types of detection results (both single node and

pairwise detectors) under a single framework. The conclusion and future works will

be given in Chapter 5.

In this thesis, we will address technical issues in all levels described in Fig. 1.2.
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The CRF inconsistency based splicing detector proposed in Chapter 3 addresses the

tampering operation identification (defined in Sec. 1.2) and the manipula-

tion explanation (defined in Sec. 1.3) problems. Chapter 4, on the other hand,

segments the spliced foreground object by fusing two detectors and therefore fur-

ther addresses the suspicious area localization problem (defined in Sec. 1.4).

Both of these chapters address the image level binary authenticity decision

problem (defined in Sec. 1.1) as they both generate a yes/no answer to whether

the test image is doctored or not.
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Chapter 2

Previous Work

Most work in image forensics in the past two decades has focused on watermarking.

In the watermarking paradigm, a unique hidden digital signature needs to be em-

bedded into an image before the image is released. In most cases such insertion must

fall below human perception levels so that human eyes cannot detect the inserted

signatures. At the receiving end, if the copyright is ever in question, the watermark

is extracted and verified to determine the ownership and the authenticity of an im-

age. This active approach, although proven effective in terms of robustness and

accuracy, has its fundamental limitations. With the ease of access to image editing

tools nowadays, almost everyone can generate tampered images and it is difficult

to ensure every image goes through the standard watermarking process. Even if

no watermark is extracted from an image, one still cannot claim this image being

tampered. Therefore watermarking has limited use in practice. The alternative is

to resort to passive approaches. Namely, without assuming any embedded sig-

natures in the image, one looks at the traces inevitably left by the generation or

manipulation processes.

Understanding of the image formation process is necessary to develop passive

image forensics solutions. A brief illustration is given in Fig. 2.1. An authentic
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natural scene device 

characteristics

post 

processing

Figure 2.1: Natural image generation process.

image is generated from three steps: first the light is diffused/reflected from the

objects in the scene, then these light rays are recorded by a capturing device (typ-

ically cameras), and finally some post processing is applied (to generate required

compressed formats or meet certain storage constraints). Each of these steps leaves

inherent traces in the final output image. Any image that lacks any of the three sets

of natural characteristics is subject to the suspicion of being nonauthentic. These

cues can be categorized as natural scene (e.g., lighting, shadow, geometry.... etc.),

device characteristics (e.g., sensor noise statistics, color filtering array, Camera

Response Function.... etc.), or post processing artifacts (e.g., JPEG quantization

settings, video de-interlacing settings.... etc.). They will be discussed in more detail

in the following sections.

2.1 Natural Scene Related Cues

Natural scene related cues are concerned with the rendering process involving dif-

fused and reflected light rays from the object surfaces and the incident lights. One

typical light model, the Phong Illumination Model, contains three components,
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L

N

R

V

Figure 2.2: Phong illumination model.

diffusive, specular and ambient, as shown in Fig. 2.2 [23]:

E = kdL
TN + ks(R

TV)α + kaA (2.1)

where kd is the diffusive constant of the surface, ks the specular constant, and ka the

ambient constant. They characterize how the surface responds to different light com-

ponents. The 3D vectors L,N,R,V denote the following quantities, respectively:

L the unnormalized incident light direction contributing to the diffusive portion,

N the surface normal related to the object geometry, R the unnormalized reflected

light ray direction contributing to the specular portion and V the vector pointing

from the object location to the viewer’s position. The exponent α, typically greater

than 1, controls how shiny the surface is. The larger α, the more concentrated the

specular reflection. The scalar A represents the ambient light level (environmen-

tal light). It is immediately clear that the diffusive and ambient components do

not vary with respect to the viewer’s position while the specular component does.

Both the diffusive and specular components depend on the object geometry but the

ambient component does not.
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Based on this model, one can try to estimate the point light source direction

L given the object surface normals N’s or vice versa. Similar problems arise for

specular surfaces. Such estimation usually requires more than one image of the

same object, however recently the computer vision community has looked for single

image estimation solutions. Some representative works and their application to

image forensics will be discussed below.

2.1.1 Diffused Light Direction Estimation and Forgery Detection

The diffusive component in the Phong illumination model has been extensively

studied and modeled since diffusive surfaces are very common in our daily life. Such

purely diffusive (hence no specular component) surfaces are also called Lambertian

surfaces. The output light E (called radiance) is given by a linear equation:

Eij = LTNij (2.2)

where L and Nij are both 3D vectors denoting the point light source direction and

the surface normal at location (i, j) along the vertical and horizontal dimensions

of an image, respectively. In general, a 2D image only gives observations Eij’s and

both L and Nij’s are unknown. This fact leads to two separate problems: estimating

surface normals Nij’s given a set of known lighting L’s (the classic shape-from-

shading problem) (note each Nij has three unknown scalar components, therefore

at least three distinct L’s are needed to recover Nij) or estimating lighting L from

known surface normals Nij’s. The former requires multiple images of the same scene

with controlled lighting, while the latter can be done on a single image but the 3D

object geometry needs to be known.

Recent advances of computer vision research attempt to resolve such limitations
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and recover L and N’s from a single image. One representative work is the use of

object occlusion boundaries [24]. Leveraging the fact that points along the occlusion

boundaries have a surface normal with z component equal to zero and assuming a

parameterized ellipsoid model in a localized neighborhood, the authors are able to

arrive at a simpler Lambertian equation:

Eij = LTNij = LxNx + LyNy + LzNz

⇒ Eij = LTNij = Lx[
1

R
(u−R)] + Ly[

1

R

√
2u(R− u)] + 0 (2.3)

where R is the radius of the circle in the local neighborhood. The number of

unknowns is reduced from 6 (3 for L and 3 for N) to 4 (2 for L: Lx, Ly and 2

for N: R, u) per point. By further assuming all the points on the same boundary

share the same L and incorporating a probabilistic framework, accurate lighting

estimation can be achieved from only one image. The authors of [1] employed

this method, relaxed the one-L-per-boundary assumption and applied it to image

tampering detection. Examples of selected occlusion boundaries and the estimated

lighting directions are shown in Fig. 2.3a and 2.3b. Fig. 2.3c shows a successful

(a) (b) (c)

Figure 2.3: Single image lighting estimation based on occlusion boundaries (a)(b)
examples of occlusion boundaries and the estimated lighting directions (c) successful
tampering detection when applied to the famous Kerry-Fonda photograph [1].
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Figure 2.4: Specular reflection model [12].

tampering detection example. This photograph has been known for splicing the

2004 US Presidential Candidate John Kerry from a 1971 anti-Vietnam-war rally to

the side of actress Jane Fonda in a 1972 rally (Fig. 1.1b). The lighting inconsistency

on these two persons is exposed, declaring this photograph as unauthentic.

2.1.2 Specular Light Reflection

Another useful cue regarding lighting is from specular objects, e.g., human eyes [12].

Under a point light source, the observed radiance Eij from Lambertian surfaces stays

the same regardless of the viewing direction, but the reflection of specular objects

is focused in a specific angle. Therefore, if the viewing direction is outside this

observable range, no specular highlight will be seen. An illustrative model is given

in Fig. 2.4.

Such specular highlight from human eyes is investigated in [12]. By parameter-

izing the surface normals from human eye geometry (with two spheres of specific

radii), the view direction V can be estimated with the observed specular highlight

location. Based on the estimated V̂, the light direction L can be further recovered

specific to each eye. Shown in Fig. 2.5b are the estimated light directions (denoted

by the bright area on top of the eyeballs) from the eyes of four persons in Fig. 2.5a.

The inconsistency is immediately clear, suggesting that this photograph is spliced

from at least three distinct authentic images.
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(a)

(b)

Figure 2.5: Example spliced image (a) inconsistent specular reflections (b) esti-
mated incident light directions, where each white blob indicates the effect of its
corresponding incident light on a hemisphere [12].

2.1.3 BRDF Lighting Inconsistency

While the Lambertian surface diffusion can be represented as a simple linear equa-

tion (Eqn. (2.2)), it is in general an integral form over a small neighborhood on the

surface location, often called the Bidirectional Reflectance Distribution Function

(BRDF). From the signal processing perspective, it relates the surface geometry

(surface normals) and the lighting through a continuous space convolution [13], or

equivalently a frequency domain multiplication. It follows that if two parts of an

image possess the same multiplication constant, then this image is authentic. Other-

wise there is an inconsistency in the lighting condition and the image is inauthentic.

Fig. 2.6 shows one such example. The top half of Fig. 2.6b is from one lighting

condition and the second half is from another (relighting applied onto the original

known object geometry from Fig. 2.6a). While the spliced image is visually plausible
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(a) (b) (c)

Figure 2.6: Lighting inconsistency through deconvolution (a) authentic image, con-
sistent lighting (b) tampered image with two inconsistent lighting conditions (c)
multiplicative identity preserved by the authentic image (blue line) but destroyed
by the tampering (red line) [13].

to the human eye, the lack of multiplicative identity is detected (Fig. 2.6c). Note

that under certain circumstances the explicit recovery of the lighting and the surface

geometry is not necessary. This work has laid a solid foundation for realistic splicing

detections using BRDF deconvolution. More theoretical analysis and derivations can

be found in [13].

2.2 Device Characteristics Related Cues

The second category of passive cues is related to capturing device characteristics.

Since an authentic image must be acquired by a capturing device - camera, scanner

or others, it is useful to study traces that these devices left in the output images. As

far as image forensics is concerned, the capturing device of the images in question

is usually a digital camera.

A typical camera imaging pipeline is illustrated in Fig. 2.7. A camera performs a

series of operations on the incoming lights from the scene before it writes the image

to the memory card. These operations can be linear or nonlinear, point-wise or
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Figure 2.7: Typical camera imaging pipeline.

spatial, all of which when combined yield visually pleasant, comprehensible images

to human eyes. As shown in Fig. 2.7, the lights (radiances) are first refracted

through the optical lens and then recorded onto the CCD (or CMOS) sensor. Since

the CCD sensor only records a single color channel signal (by applying microlenses on

top of each sensor to control what wavelength it receives), a demosaicking color filter

interpolation is needed to convert the CCD output to a multispectral image (usually

in RGB or CMYK color spaces). After that, the Camera Response Function (CRF)

transforms the interpolated irradiance nonlinearly to produce a desirable dynamic

range and generate the final image output, denoted as brightness or intensity.

Components in this pipeline, such as optical lens, CCD sensor, demosaicking filter,

and CRF, may possess unique characteristics to camera models or even to camera

units. Recovery of such inherent characteristics is therefore useful for image source

identification.

Given the fingerprints, tampering detection can readily take place by checking

the inconsistency among different image areas or the anomaly that may exist in the

test image. Source identification and tampering detection based on device charac-

teristics will be elaborated in the following subsections.
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2.2.1 CCD Sensor Noise

The presence of noise is natural to any mechanical or electrical system. In digital

cameras, the sensor noise comes from multiple components and can be a useful

signature to characterize the camera unit. A common linear noise model for digital

cameras is as follows:

yij = aijxij + cij (2.4)

where xij denotes incoming irradiance signals from the lens at location (i, j) of

the image coordinate, aij the Photo Response Non-Uniformity (PRNU) and cij the

Fixed Pattern Noise (FPN). The non-uniformity is due to the imperfect manufac-

turing outcome of CCD or CMOS sensors. The PRNU aij models how different

sensor sites amplify the same incoming signal differently and therefore contributes

as a signal dependent noise component. The FPN cij accounts for the inherent

additive noise of the CCD (or CMOS) sensor plate when there is no input xij at all

(the dark current) and is signal independent [25, 26].

A comprehensive study of sensor noise is given in [25] with sophisticated model-

ing and experiments. Although the study includes extra sources such as the readout

noise, nonlinearity noise and the signal dependent shot noise, the most representa-

tive components have been shown to be PRNU and FPN. Our discussion will there-

fore be still focused on these two components. All noise variances are measured in

Analog-to-Digital Units (ADU) (also called Data Numbers), the generic unit mea-

suring discrete outputs of the A/D converter (e.g., a 16-bit system has an output

range of 216 = 65536 ADU’s).

An ideal camera will have all PRNU aij’s equal to 1, indicating the same amount

of amplification for the same input at each sensor. However in practice, the aij’s

follow a Gaussian distribution with mean at 1 and variance as high as 6.25 × 10−4
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Table 2.1: Contribution of noise variances. σ2
NL: variance of nonlinear noise, σ2

x:
variance of input signal x [25].

Source Variance (ADU2)
Nonlinearity Noise σ2

NL

Noise due to PRNU 6.25× 10−4σ2
x

Shot Noise 2.30× 10−3σx
Readout Noise 0.56
FPN 3.66
Total Variance σ2

NL + 6.25× 10−4σ2
x + 2.30× 10−3σx + 4.22

≈ 6.25× 10−4σ2
x + 3.66

(Table 2.1). The variance of the FPN, on the other hand, is measured as 3.66ADU2

(Table 2.1). Variances of other noise sources are also listed in Table 2.1, although

they have only minor contributions to the overall noise amplitude. The final values

aijxij +cij is the noise added output sent to later modules in the camera pipeline for

further processing (e.g., demosaicking and nonlinear Camera Response Function).

Fig. 2.8 shows the behaviors of these noise components with respect to the am-

plitude of the input irradiance xij, with xij in the horizontal axis and noise variances

in the vertical axis. The signal dependence property of PRNU is obvious from the

figure, and it also appears to be the dominant source in medium to high xij ranges.

The amplitude of FPN, on the contrary, stays almost the same across all irradiance

levels. The study provides insight into each noise source and therefore points out

clear directions for modeling and denoising for image quality enhancement.

2.2.1.1 Source Identification Using Sensor Noise Correlation

The FPN can be used as a device signature to identify the source of digital pho-

tographs as reported in [27]. The assumption is that the sensor imperfection is

unique to each CCD/CMOS plate and is a subtle but distinguishable feature to

each camera unit. Even if two cameras are of the same model, they still possess
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Figure 2.8: Contribution of noise components with respect to the incoming irradi-
ance level [25].

each of their own FPN and therefore can be differentiated.

Following the linear noise model in Eqn. (2.4), the observed images are repre-

sented as

Yk = AskXk + Csk (2.5)

where Yk is the 2D matrix of the observed noisy irradiance of the kth image, Xk the

corresponding unknown original irradiance. The integer sk denotes the unknown

camera source of image k, and Ask and Csk are the PRNU component and FPN

noise residual of camera sk, respectively.

The objective is to recover sk from Yk with the remaining information com-

pletely unknown. This is achieved through a linear additive noise model, inherently

assuming the absence of the PRNU component. Xk and Csk
are also assumed to be

separable by denoising algorithms. To recover sk, the reference patterns of known

camera sources need to be computed beforehand:

For each camera s, collect Ns images {Y1....YNs}, obtain their FPN components
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by wavelet domain denoising,

Y1 = X̂1 + C1

...

YNs = X̂Ns + CNs (2.6)

The reference FPN Cs
0 for camera s is obtained through averaging C1....CNs :

Cs
0 =

1

Ns

Ns∑
m=1

Cm (2.7)

Note the reference FPN should be obtained from images without color interpolation

or any post processing. Only images in the RAW or TIFF formats qualify such

criterion. JPEG images are not appropriate as they have undergone transformation

and compression.

For a test image k (whose camera source sk is yet to be found), its FPN is also

extracted by denoising:

Yk = X̂k + Ck (2.8)

Its camera source sk is then determined by selecting the reference FPN that resulted

in the highest correlation with the extracted Ck:

sk = arg max
s
ρ(Ck,C

s
0) (2.9)

where ρ(Ck,C
s
0) is the normalized 2D correlation coefficient given by

ρ(Ck,C
s
0) =

∑
i

∑
j[Ck(i, j)− C̄k][C

s
0(i, j)− C̄s

0]

||Ck|||Cs
0||

(2.10)
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The matrix C̄k denotes the average of Ck(i, j)’s and C̄s
0 the average of Cs

0(i, j)’s.

The test image, on the other hand, is not restricted to RAW or TIFF. While

all formats are allowed, the source identification of JPEG images is expected to be

more difficult compared to uncompressed RAW or TIFF images, as supported by

lower correlation coefficients shown in [27].

The data used in [27] are from a total of 9 cameras with varying image resolution

and functionality. 320 images are captured for each camera. They are stored in

uncompressed formats whenever possible, although some cameras only allow JPEG

output. The reference FPN is obtained from approximately 300 images. The results

reported from these images have shown great success in camera source identification.

Fig. 2.9 shows two scatterplots of correlation coefficients ρ’s for two different camera

sources. The large discrepancy between correct camera source and wrong camera

sources shows the effectiveness in determining which camera a given image comes

from. The ensemble correlation coefficients of different pairs of camera sources

are summarized in Table 2.2, showing the superior power of this correlation based

camera source identifier. It is worth noting that two camera units of the same model

(C765-1, C765-2) can be effectively distinguished. Additional results also show its

robustness when applied to test images with JPEG compression and even malicious

noise removal [27].

2.2.1.2 Forgery Detection Using Sensor Noise Correlation

The authors of [27] have further applied the CCD sensor noise source identification

technique for image forgery detection [15]. Two scenarios are tested: (1) to deter-

mine if a manually labeled suspicious region is indeed forged and (2) to automatically

locate the forged region without any manual labeling.

For the first task, the camera source sk needs to be determined first from non-
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(a) (b)

Figure 2.9: Correlation coefficients of FPN (a) test images from Canon G2 has the
highest correlation ρ with Canon G2 reference FPN (b) test images from Nikon
D100 also has the highest correlation ρ with Nikon D100 reference FPN [27].

suspicious regions, relying on a priorly built library of camera noise reference pat-

terns. The noise residual in the suspicious region ck is then correlated with the

reference FPN cs0 recovered from the non-suspicious areas. Intuitively, if the sus-

picious region is indeed forged, this correlation coefficient ρsusp should be low. An

adaptive way to determine this fact is to look at where ρsusp falls in the overall ρ

distribution collected within the entire image. All correlation coefficients of the test

Table 2.2: Correlation coefficients between pairs of camera units. Cross correlations
between images of the same camera unit are significantly higher that those from
different camera units [27].

Nikon C765-1 C765-2 G2 S40 Sigma C3030 Kodak A10
Nikon 1 0.0017 -0.0001 0.0335 0.0497 0.0082 0.0198 0.0030 0.0034
C765-1 0.0017 1 0.0215 0.0009 0.0034 0.0017 0.0018 0.0036 0.0032
C765-2 -0.0001 0.0215 1 0.0021 0.0025 -0.0006 0.0002 0.0050 0.0014

G2 0.0335 0.0009 0.0021 1 0.0579 0.0051 0.0072 0.0047 0.0060
S40 0.0497 0.0034 0.0025 0.0579 1 0.0060 0.0104 0.0064 0.0086

Sigma 0.0082 0.0017 -0.0006 0.0051 0.0060 1 0.0044 0.0055 0.0064
C3030 0.0198 0.0018 0.0002 0.0072 0.0104 0.0044 1 0.0019 0.0452
Kodak 0.0030 0.0036 0.0050 0.0047 0.0064 0.0055 0.0019 1 0.0052

A10 0.0034 0.0032 0.0014 0.0060 0.0086 0.0064 0.0452 0.0052 1
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(a) (b)

(c) (d)

Figure 2.10: Manual forgery detection using sensor noise correlation (a)(c) images
tampered by copying an area within the image and create duplicates at another
location (b)(d) successful detection of forgery with the suspicious areas manually
labeled (white areas) [15].

image to the reference FPN are modeled with a Generalized Gaussian distribution.

If ρsusp falls at the lower tail, then the labeled suspicious region is reported as forged.

This relative comparison avoids the bias from the ρ distribution, suppressing a low

ρsusp against a set of low ρ’s which in the absolute thresholding case would be falsely

reported as forgery.

The first task has been successfully resolved by the proposed detector. The

forged regions can be correctly detected even when JPEG compression is present

(quality factor Q as low as 70). Some sample results are shown in Fig. 2.10.

The second task involves automatic localization of forged regions and is slightly

more complicated. A set of N sliding masks of different shapes is used (Fig. 2.11a).

For each shape, the mask is slid across the test image in an overlapping manner and
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(a)

(b) (c)

(d) (e)

Figure 2.11: Automatic forgery detection and localization using sensor noise cor-
relation (a) sliding masks of various shapes (b) image with a tampered head on
the person at the left (c) correct detection and localization of the tampered head
(d) image with a tampered car at the lower left corner (e) correct detection and
localization of the tampered car [15].

produces a set of correlation coefficients ρ’s. The subset of lower ρ’s is recorded. A

larger subset is later formed by aggregating these lower ρ subsets from all shapes.

Based on this large subset, each pixel in the test image is examined to see how many

of such low ρ shapes cover the pixel. If the number is high, then the pixel is labeled
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Figure 2.12: Color filtering arrays (a) illustration of the principle (b) Bayer pattern.

as forged, otherwise authentic. This technique is able to detect forged regions on

the finest level: pixel, and has been quite successful, as shown in Fig. 2.11.

In addition to the aforementioned two representative works on digital camera

sensor noise, there are other efforts utilizing such signature for digital camcoder

fingerprinting as well [28, 29].

2.2.2 Demosaicking

The term demosaicking is defined as opposed to mosaicking. Mosaicking refers

to the subsampling from multispectral to single color signal at each CCD (or CMOS)

sensor. This process is necessary due to the fact that it is only possible to insert a

single layer CCD sensor plate into a digital camera. Although some recent camera

models have successfully used three thin sensor plates, enabling simultaneous recep-

tion of three wavelengths at the same site, single layer CCD sensor plates remain

dominant in today’s market, therefore it is still relevant to study mosaicking and

demosaicking.

Mosaicking is done by applying a color filter array (CFA) on top of the sensor

plate. As a result, each site only receives light of one particular wavelength, as
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shown in Fig. 2.12a. The sensor output is therefore a single channel image, with

different sites recording colors of different wavelengths. There are multiple widely

used color filter array configurations, among which the Bayer Pattern is the most

popular (Fig. 2.12b) [30]. Note in Bayer Pattern the green channel is sampled twice

as much as the red and blue channels.

To generate a multispectral image from the single channel CCD output, in-

terpolation from neighboring sites is needed. The interpolation process is termed

demosaicking and it performs the opposite operation of mosaicking. For instance,

in the Bayer Pattern, if site (i, j) records red light, then its green component needs

to be interpolated from its four neighboring sites (i − 1, j), (i + 1, j), (i, j − 1) and

(i, j+1) and its blue components from another 4 neighboring sites (i−1, j−1), (i+

1, j − 1), (i − 1, j + 1) and (i + 1, j + 1). The interpolation is custom designed by

each camera manufacturer and may include proprietary information such as inter-

polation locations and interpolation coefficients. As such, the color interpolation,

or demosaicking filter scheme, varies from brand to brand, or even from model to

model, therefore serves as a suitable camera signature for source identification and

forgery detection purposes.

2.2.2.1 Demosaicking Estimation Using EM Algorithm

An expectation-maximization (EM) based algorithm is proposed in [16] for demo-

saicking estimation since the interpolation sources (i.e., at site (i, j), which channel

it records for itself and which channels are interpolated from its neighbors) and the

interpolation coefficients are in general both unknown. The authors have also pro-

vided a systematic survey of common demosacking filters: bilinear, bicubic, smooth

hue transition, median filter, gradient based, adaptive color pane, and threshold-

based variable number of gradients. Linear interpolation is used to approximate
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most demosaicking operations. The problem is formulated as a two-class clustering

problem, as described in the following.

For each site (i, j), determine whether it belongs to cluster 1 (interpolated from

neighboring sites) or cluster 2 (original, non-interpolated). These two clusters are

assumed to be equally probable (i.e., with equal prior). For cluster 1, a Gaussian

emission probability model is used for the observed irradiance y(i, j):

p(y(i, j)) ∼ N (ŷ(i, j), σ2) (2.11)

where ŷ(i, j) is the interpolated value from neighbors

ŷ(i, j) =
∑

(i′,j′)∈Nij

α(i′, j′)y(i′, j′) (2.12)

where Nij defines the neighborhood of site (i, j), α(i′, j′) the unknown linear inter-

polation coefficients and σ2 the predefined variance of the Gaussian distribution.

Cluster 2, on the other hand, is assumed to have uniform distribution over the

dynamic range of intensity values. The algorithm iterates between the E-step (esti-

mating the optimal cluster that each site (i, j) belongs to) and the M-step (estimat-

ing the most probable interpolation coefficients α’s) with predefined neighborhood

structure, Gaussian variance σ2 (for cluster 1) and range of uniform distribution

(for cluster 2). Some sample EM estimation results are shown in Fig. 2.13. Though

only results of the green channel are displayed, those of red and blue channels are

similar. Since demosacking introduces periodical patterns in the estimated proba-

bility map, it is best visualized in the Fourier domain (right column) rather than the

spatial domain (center column). The presence of demosaicking is correctly detected

(periodical pattern clearly visible in the rightmost column of Fig. 2.13a and 2.13b
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but not in Fig. 2.13c and 2.13d). The estimated coefficients α’s have also been

shown to be effective distinguishing different interpolation techniques.

The demosaicking estimation can be used to expose image forgery since the

tampered areas either has not gone through any interpolation or has a different,

inconsistent interpolation scheme than the untampered area. This results in the

lack of periodic patterns in the Fourier transform of the probability map of the

tampered area, as shown in Fig. 2.14d (compare that with the periodical patterns

in untampered area Fourier transform to its right). Foreseeably, any tampering

operation, no matter simplistic or sophisticated, will be caught by this technique as

long as it modifies the interpolation relations between neighboring pixels. Several

other sets of results have also shown the effectiveness of forgery detection.

2.2.2.2 Demosaicking Estimation with a Presumed Knowledge Base

Another non-intrusive demosaicking estimation is introduced in [17, 18]. The au-

thors form a presumed demosaicking knowledge base by combining all possible CFA

configurations (the spatial site-to-site alignment of image pixels to Bayer pattern

cells and three options of dominant color channels) and interpolation filters (bilin-

ear, bicubic, smooth hue transition, median filter, gradient based and adaptive color

pane) [16]. To calculate how probable a test image is generated with a particular

demosaicking setting (CFA configuration plus interpolation filter), the authors first

estimate the interpolation coefficients according to the candidate CFA configuration.

It is then downsampled and upsampled using the estimated coefficients to synthe-

size the interpolation operation. All these procedures are aimed at reproducing the

mosaicking and demosaicking procedures. The pixel-wise RMSE is computed be-

tween the original test image and the synthesized image. An ideal case would be

having chosen the correct setting and the reproducing procedure is exact, giving a
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(a)

(b)

(c)

(d)

Figure 2.13: EM estimation of demosaicking filters (a) bicubic interpolation (b)
variable number of gradients (c)(d) no demosaicking interpolation. Left column:
test image, center column: demosaicking probability map, right column: Fourier
transform of probability map [16].
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(a) (b)

(c) (d)

Figure 2.14: Demosaicking based forgery detection (a) original image (b) tampered
image (red: tampered area, blue: untampered area) (c) estimated demosaicking
probability map (d) probability maps in Fourier domain (left: tampered area, right:
untampered area) [16].

zero RMSE. In practice, the final estimated demosaicking output would be the one

with the lowest RMSE among all possible settings in the knowledge base.

Assuming different camera manufacturers use different demosaicking settings,

the estimation can be used as a distinguishing signature to recover the camera

source of each image. With a total of 16 test camera models and 360 test images,

this technique is able to achieve more than 85% correct manufacturer identification

(Table 2.3). The fact that different camera models indeed use different demosaicking

settings is verified in Fig. 2.15. Symmetric Kullback-Leibler Divergence scores
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between the ”demosaicking usage vector” by two cameras are reported:

φ(c1, c2) = D(π(c1)||π(c2)) +D(π(c2)||π(c1)) (2.13)

where π(c), the ”demosaicking usage vector”, denotes the frequencies that various

demosaicking settings are used by camera c:

π(c) = [π1, π2, ...., πN ] (2.14)

A π(c) vector with π1 equal to 0.9 and π2 equal to 0.1 and all other elements equal

to zero means that camera c uses the first demosaicking setting 90% of the time and

the second setting 10% of the time. If two cameras use these demosaicking settings

in the same manner, then π(c1) and π(c2) should be similar, which is reflected as

a low KLD score φ(c1, c2). Observing Fig. 2.15, it is clear that the estimated

demosaicking correctly separates different camera models, verifying both the power

of the estimation algorithm and the hypothesis that similar cameras have similar

demosaicking usage behaviors.

This technique can be applied to splicing detection, as shown in Fig. 2.16, which

successfully exposes two different camera sources from two distinct areas within a

tampered image. The misclassified areas (displayed in grey) are either along the

splicing boundary or in extremely smooth areas, therefore their reliability should be

further decreased, trusting the results from those confidently identified areas (black

and white) only.
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Table 2.3: Confusion matrix identifying camera manufacturers (*: <1%) [17].

Canon Nikon Sony Olympus Minolta Casio Fuji Epson
Canon 98% * * * * * * *
Nikon 6% 85% 5% 3% * * * *
Sony 3% 3% 93% * * * * *

Olympus 6% 6% * 85% * * * *
Minolta 2% 2% 4% * 91% * * *
Casio 3% * * 5% * 91% * *
Fuji * * * * 3% * 95% *

Epson * * * * * * * 100%

Figure 2.15: Divergence scores between camera models [17].

(a) (b) (c)

Figure 2.16: Demosaicking based forgery detection (a) original image (b) ground
truth source map (white: Canon S410, black: Sony P72) (c) estimated camera source
map (white: Canon S410 correctly detected, black: Sony P72 correctly detected,
grey: misclassified) [17].
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2.2.3 Camera Response Function

The Camera Response Function is arguably the most salient point-wise operation in

the whole imaging pipeline. It maps scene irradiance to image brightness nonlinearly

(Fig. 2.17). While irradiances are formed linearly by light reflection or diffusion in

natural scenes, cameras possess a much narrower dynamic range to which the irra-

diances must adapt to. CRF mimicks traditional films to account for such dynamic

range shrinkage [31] and is therefore often concave. Such point-wise nonlinear trans-

form generally stays invariant across different areas of an image. Although some

emerging models of cameras may add spatially varying CRFs adapting to local im-

age contents, the assumption of a single, invariant CRF in a camera model is still

considered valid for existing cameras today.

The CRF is often denoted as a single-variable function R = f(r). Although

different manufacturers may produce different dynamic ranges of irradiance r and

brightness R, without loss of generality, both r and R are assumed to be between

[0, 1]. Some popular parameterized models are listed as follows:

• PCA-based empirical model of response (EMOR) [31]

• Single-parameter gamma function R = f(r) = rα0 [32]

• Polynomial R = f(r) =
∑N

n=0 r
βn [33]

• Generalized gamma curve model (GGCM) R = f(r) = r
∑n

i=0 αir
i

[34, 35]

Generally, more parameters lead to more accurate representations of the CRF with

the drawback of increased complexity. Therefore one should choose an optimal

model considering the tradeoff between approximation accuracy and computational

complexity. A comparison among these models is given in [34] and [35]. The EMOR
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Figure 2.17: Illustration of Camera Response Function (CRF).

and GGCM have been shown to approximate CRFs better than the gamma and

polynomial models.

The recovery of CRF is an under-constrained problem, since only the output

intensity R is observed with both the irradiance r and CRF f unknown. Some earlier

works estimate the CRF using multiple images of the same scene content [36, 37, 38],

formulating the CRF estimation as a least squares or modified least squares problem.

The focus of recent research work has nevertheless been shifted to single image (or

even single color channel) CRF estimation [32, 34, 35, 39, 40]. It is driven by

the high demand of image forensics because it is impossible to obtain multiple

images of known exposures under forensics investigation - each suspicious case to

be inspected is one and only one photograph. Previous work related to single image

CRF recovery includes blind gamma estimation [32], single image CRF estimation

based on color space colinearity [39, 40] and single channel CRF estimation using

geometry invariants [34, 35]. Algorithms in [39, 40] and [34, 35] are representative

and will be discussed in the following two subsections.

Since the ground truth CRF is often undisclosed, proprietary only to camera

manufacturers, an additional calibration step is needed. It is usually carried out with

Macbeth Charts with known irradiances under uniform illumination [31, 34, 35, 39]
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and has been fairly reliable as CRF ground truths.

2.2.3.1 Single Image CRF Estimation Using Color Colinearity

The physical assumption of [39] is illustrated in Fig. 2.18. For the image pixels

lying on an edge, their irradiances will be a linear blending of the two colors on each

side of the edge, i.e.,

Iedge = αI1 + (1− α)I2 (2.15)

where Iedge = [Redge, Gedge, Bedge]
T denotes all the colors along the edge, I1 and I2

the two colors on each side of the edge, respectively. The scalar α is the blending

factor taking value in [0, 1]. Note all the I’s are unobserved.

After the CRF is applied, the linear relationship is no longer retained. In the

intensity space (R, or following the notations of the authors, M), the observed

path from M1 = f(I1) to M2 = f(I2) can be arbitrarily shaped. The objective

is therefore to find the optimal f (or, equivalently, its inverse function f−1) that

”bends” this path back to a straight line in the irradiance domain. By combining

this physical assumption with a Gaussian Mixture Model as the prior for EMOR

CRF parameters, this algorithm is able to accurately recover the CRF (Fig. 2.19).

The reported RMSE is between 0.0054 and 0.0291, varying across color channels.

Figure 2.18: Color space colinearity along edges [39].
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(a) (b)

(c) (d)

Figure 2.19: CRF estimation based on color space colinearity (a)(b) test images,
with edge patches highlighted in green (c)(d) CRF estimation results (blue: first
benchmark algorithm [37], black: second benchmark algorithm [38], red: proposed
in [39], green: ground truth from Macbeth Chart) [39].

The same principle can also be applied to greyscale images [40]. Color blending

along edges results in an equalized histogram in the irradiance domain (Fig. 2.20)

and the objective is to find a single channel CRF that equalizes the arbitrarily shaped

[M1,M2] histogram as should have been in [I1, I2]. The results are also promising

(Fig. 2.21), with reported RMSEs at the level of 0.01. Note both Fig. 2.19 and 2.21

display the inverse CRF (convex), rather than the CRF itself (concave).
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Figure 2.20: Equalized greyscale histogram along edges [40].

(a) (b)

Figure 2.21: Greyscale CRF estimation based on color space colinearity (a) test
image with edge patches highlighted, taken with Canon EOS-1D (b) estimated CRF
(blue dashed line: benchmark algorithm [37], green: ground truth from Macbeth
Chart, red: proposed in [40], cyan: proposed in [40] averaged over the image set of
Canon EOS-1D, black: worse estimation among the image set of Canon EOS-1D)
[40].

2.2.3.2 Forgery Detection Using CRF Abnormality

Based on the CRFs estimated from only one single image, the authors of [39, 40]

have further examined its authenticity and proposed to detect doctored photographs

by detecting abnormal CRFs [41]. Any set of CRFs that fails to exhibit any of these

three features is considered inauthentic:

• Every CRF should be monotonically increasing.
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(a) (b)

(c) (d)

Figure 2.22: Detecting doctored photographs using CRF abnormality (a) authentic
image, edge patches highlighted in red (b) doctored image, edge patches highlighted
in red (c) CRFs estimated from the authentic image (d) CRFs estimated from the
doctored image [41].

• Every CRF should have at most one inflexion point (the point where the

curvature changes sign).

• The CRFs of red, green and blue channels should be close to each other.

One example of successful tampering detection from the abnormal CRF set is shown

in Fig. 2.22. The splicing of the human figure onto a different background indeed

creates inconsistent CRFs from three color channels that do not comply to all three

criteria mentioned above. More results can be found in [41].
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2.2.3.3 Single Image CRF Estimation Using Geometry Invariants

The CRF estimation method proposed in [34] and [35] takes another route concern-

ing the under-constrained nature of CRF and irradiance signal estimation problem:

while it is in general impossible to recover the CRF f and irradiance r from bright-

ness (intensity)R, there are certain special points that only carry information related

to the CRF but not to the image content. Therefore, by extracting such points from

a test image, the CRF f can be recovered.

In the following derivations, both the irradiance r and brightness R are to be

viewed as 2D meshes: r(x, y) and R(x, y). Only R(x, y) is observed but not r(x, y).

The unknown CRF f is a nonlinear transformation which warps the r(x, y) surface

into R(x, y): R(x, y) = f(r(x, y)). Using chain rule, the first order partial derivatives

in the brightness domain Rx and Ry are related to those in the irradiance domain

rx and ry as follows:

Rx = f ′(r)rx

Ry = f ′(r)ry (2.16)

Note rx and ry are both unknown since r(x, y) is unknown. Similarly, the second

order partial derivatives take such forms:

Rxx = f ′′(r)r2
x + f ′(r)rxx

Ryy = f ′′(r)r2
y + f ′(r)ryy

Rxy = f ′′(r)rxry + f ′(r)rxy (2.17)

where rx, ry, rxx, ryy, rxy are all unknown. However if a point has a locally planar
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irradiance geometry r(x, y) = ax+ by+ c, the second order partial derivatives in the

irradiance domain rxx, ryy, rxy would all vanish, and the brightness domain partial

derivatives become:

Rx = f ′(r)rx = f ′(r)a

Ry = f ′(r)ry = f ′(r)b; (2.18)

Rxx = f ′′(r)r2
x = f ′′(r)a2

Ryy = f ′′(r)r2
y = f ′′(r)b2

Rxy = f ′′(r)rxry = f ′′(r)ab (2.19)

and the following equation holds:

Rxx

R2
x

=
Rxy

Rxry
=
Ryy

R2
y

(2.20)

They are all equal to the quantity below:

Rxx

R2
x

=
Rxy

Rxry
=
Ryy

R2
y

=
f ′′(r)

(f ′(r))2
=

f ′′(f−1(R))

(f ′(f−1(R)))2
(2.21)

Eqn. (2.20) is one condition that Locally Planar Irradiance Points (LPIPs)

must satisfy. However it is not a bijective relation: there are non-LPIPs that also

satisfy this condition. To correctly distinguish these two types of points, a Bayesian

learning scheme is adopted to infer the probability of a point belonging to the LPIP

category. The features used in the inference process involve the level of deviation

from Eqn. (2.20), the local geometric property (e.g., gradient value and normalized

second derivative in the gradient direction) and the isolation level of a candidate

pixel (the total mass, the centroid and higher order moments of a 5 pixel by 5 pixel
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& inference conditions
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local intensity profile of a 

qualifying point

Figure 2.23: Most detected LPIPs fall on object edges. [34].

window to measure the local density of candidate pixels). LPIPs and non-LPIPs

are expected to exhibit notable differences in these features.

LPIPs are found in two steps. First, we compute partial derivatives and their

ratios on every pixel of the test image. Only the pixels satisfying Eqn. (2.20) are

retained. Second, we construct a feature vector associated with each qualifying

pixel and utilize the pre-trained Bayesian classifier to verify if it is indeed an LPIP.

Typical LPIPs are found along object edges. Such edges appear as ramp profiles

rather than sharp cliffs due to color blending on CCD sensors. Examples of detected

LPIPs and the local ramp profile are shown in Fig. 2.23.

The ratio in Eqn. (2.21) of an LPIP is denoted as A(R) and does not carry

any information about the geometry of r, i.e., {a, b, c}. In other words, for two

LPIPs with different local planar geometry r1(x, y) = a1x+ b1y + c1 and r2(x, y) =

a2x+ b2y + c2, they yield the same A(R) value.

With further manipulation we get another quantity Q(R),

Q(R) =
1

1− A(R)R
(2.22)
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Figure 2.24: CRF estimation using geometry invariants [34].

which is also independent of local irradiance geometry {a, b, c} and is named Ge-

ometry Invariant (GI). It is exactly equal to the gamma parameter α0 if the

CRF takes the gamma form. If a first order GGCM is used to represent CRF, a

tractable form for Q(R) can still be obtained:

f(r) = rα0 ⇒ Q(R) = α0 (2.23)

f(r) = rα0+α1r ⇒ Q(R) =
(α1r ln r + α1r + α0)2

α0 − α1r

Q(R) =
(α0 + α1R)2(α1 lnR− α0 + α1R)

T
(2.24)

where

T = α2
0 + α0α1R[α0(lnR + 1)− 2(1− lnR)]

+α2
1R

2[1− 4α0 − 2α1R + (lnR− 2)(α1R + lnR)]

Depending on the model the CRF assumes, the relation between Q(R) and its model

parameters varies. Nevertheless the CRF estimation is always carried out through

the search of optimal parameters α’s in the (Q,R) domain. In other words, it is

a curve fitting process looking for the Q(R) curve that best fits the (Q,R) points

extracted from the actual image.
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Figure 2.25: (Q,R) distributions from simulated images with gamma model for the
CRF, R = rα0 (a) without LPIP inference, the distribution is random and the mode
of the marginal distribution p(Q) does not coincide with the model parameter α0 (b)
with LPIP inference, the distribution is concentrated and the mode of the marginal
distribution p(Q) coincides with the model parameter α0. Top row: α0=0.6, center
row: α0=0.4, bottom row: α0=0.2. [35].

The overall CRF estimation algorithm is illustrated in Fig. 2.24. Given a test

image, brightness domain partial derivatives Rx, Ry, Rxx, Ryy, Rxy need to be ob-

tained first. The LPIPs are then extracted by selecting the points satisfying the

equality in Eqn. (2.20) and passing the Bayesian inference. From these LPIPs, the

GIs (i.e., Q(R)) can be computed. The optimal CRF parameters (α0, α1) are then

found through weighted least squares fitting of computed GIs in the form of Eqn.

(2.24) where the weights are determined by the density in the (Q,R) space.

The effect of the aforementioned Bayesian inference to accurately extract LPIPs

is shown in Fig. 2.25. Without LPIP inference, the (Q,R) samples do not fit to the

estimated curve and the mode of the marginal distribution p(Q) does not coincide

with the gamma model parameter α0. This phenomenon is effectively rectified with

Bayesian learning where (Q,R) samples exhibit better fitting behaviors.
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(a) (b)

Figure 2.26: RMSE of CRF estimation (a) average over multiple images for each
camera (b) variance of estimation errors for each camera [34].

In practice, [34, 35] further explores a rigorous error metric definition and the

cross color channel similarity to enhance the CRF estimation accuracy. Several

estimation schemes are used:

• E1: Estimate one CRF from one single color channel image.

• Ergb: Constrain CRFs from RGB channels of one image to be similar.

• E2, E3, E4: Estimate one CRF from multiple (2 to 4) single color channel

images of different content.

The overall results have been successful - average RMSE as low as 0.0224, outper-

forming the state of the arts. The more constraints on the CRF, the more accurate

the estimation (Fig. 2.26). The CRF estimation quality from the same camera is

better visualized in Fig. 2.27: when using only E1, there is significantly larger dis-

persion, i.e., more erroneous estimation results (green lines in Fig. 2.27a), while the

dispersion is greatly reduced if E4 is used (green lines in Fig. 2.27b). E4 also distin-

guishes two cameras Canon Rebel XT and Nikon D70 more effectively than E1, as

shown in the final subfigures in Fig. 2.27a and 2.27b. These results have shown the

advantage of using as much information as possible in the CRF estimation process.



49

(a)

(b)

Figure 2.27: Single image CRF estimation results for five cameras (blue: ground
truth, green: estimated) (a) E1 (b) E4 [34].

This single channel CRF estimation comes as a useful tool for image tampering

detection. We extend the estimation method to develop a statistical consistency

verification framework in this thesis. Details will be discussed in Chap. 3.

2.3 Post Processing Related Cues

In order to further improve the image quality or meet the practical constraints in

storage or transmission, various post processing steps are often employed in the

imaging pipeline. Upon observing the artifacts generated by the tampering opera-
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tion in these post processing domains, one can effectively determine the authenticity

of an image. Note these post processing cues are independent of device signatures.

They are generally used for tampering detection instead of source identification.

Previous work along this line has been largely focused on compression related

artifacts. As the lossy JPEG compression is commonly used in practice, there has

been extensive study on double quantization effects in JPEG images for tampering

detection [21, 42, 43, 44]. Among these, the double JPEG quantization detection

algorithm in [21] will be summarized below since it is more relevant to the focus of

this thesis: forensics of digital images. We will also include this component in our

later design of integrated solutions combining multiple tampering detection cues.

Also, with video cameras, similar post processing cues exist and are even more

prominent than digital still cameras. These cues include double MPEG effects [45]

and video de-interlacing [46].

2.3.1 Double JPEG Quantization

The double JPEG quantization (DQ) effect resulted from image tampering has been

studied in [21, 42, 43, 44]. The representative algorithm from [21] will be summarized

in this subsection.

A tampering scenario is illustrated in Fig. 2.28a: starting with a background

image of JPEG quantization step q1, one area is cropped and replaced by the con-

tent from another image of arbitrary formats, and finally the tampered image is

compressed again with a different quantization step q2 and also stored in JPEG.

Since the background is quantized twice with q1 and q2 with aligned 8x8 DCT

block structures, it will exhibit the DQ effect. On the other hand, the tampered area

might be quantized only once with q2 or twice with different q’s with unmatched

block structures, the DQ effect is therefore expected to be absent. The DQ ef-
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Figure 2.28: Illustration of DQ effect (a) scenario (b) DCT coefficient histograms of
background and spliced foreground areas [21].

fect can be detected by analyzing the histograms of DCT coefficients: take all the

quantized coefficients at location (fx, fy) ((fx, fy) can be (0, 0) to (7, 7)) from all

8x8 DCT blocks throughout the image, the histogram of doubly quantized blocks

should possess the pattern of periodical peaks and valleys, while the histogram of

singly quantized blocks is smooth, as shown in Fig. 2.28b.

Let u1 and u2 denote the DCT coefficients before the first quantization and after

the second quantization, respectively, it can be shown that the number of bins in

the histogram of u1 that would accumulate into the histogram bin of a given u2 is:

nu1(u2) = q1

(⌊
q2

q1

(
u2 +

1

2

)⌋
−
⌈
q2

q1

(
u2 −

1

2

)⌉
+ 1

)
(2.25)

Note nu1(u2) is a periodical function in the u2 domain with period p = q1/gcd(q1, q2)

(gcd is the greatest common divisor of two integers). Usually gcd(q1, q2) is smaller
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than both q1 and q2, resulting in a period p greater than 1 and visible periodicity in

the background area histograms (Fig. 2.28b). For the tampered area, however, non-

periodical histograms are very often observed. Several reasons include the lack of the

first quantization (i.e., q1 = 1, possibly from uncompressed formats such as BMP),

the spatial mismatch between 8x8 DCT block structures of the first and second

quantizations, or the fact that one 8x8 DCT block might be hybrid, containing

content from both images and therefore a less meaningful coefficient histogram.

Given a test image, the period p in doubly quantized areas needs to be computed

first in order to classify each 8x8 DCT block as doubly or singly quantized. Then

a Naive Bayesian detector is applied to each DCT block to detect the DQ effect,

resulting in an assigned posterior probability value p(undoctored|histogram). Some

sample results are shown in Fig. 2.29. The probability maps at the top in Fig. 2.29d

and 2.29h (from authentic images) are clearly flat when compared to those in Fig.

2.29b and 2.29f (from doctored images) where a visibly darker area identifies the

singly quantized spliced object. To further obtain a binary localization map of tam-

pered areas, the authors used adaptive thresholding on the normality probabilities,

with the optimal threshold given as

Topt = arg max
T

σ

σ0 + σ1

(2.26)

Cluster 0 after thresholding shall contain singly quantized blocks (supposedly the

spliced object) and cluster 1 containing doubly quantized blocks (the background).

This criterion adaptively computes a Topt for each image such that the intra-class

variances σ0 and σ1 are minimized (compact clusters) and the inter-class squared

difference σ is maximized. It is very similar to the Fisher discriminant in the con-

ventional Linear Discriminant Analysis.
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OriginalSpliced

Figure 2.29: Double quantization (a)(e) spliced images (b)(f) their DQ detection
outputs (c)(g) original authentic images (d)(h) their DQ detection outputs [21].

Fig. 2.29 shows the advantage of such adaptive thresholding: the image in Fig.

2.29a has a probability map where the two classes (doctored vs undoctored) are

more separable (Fig. 2.29b, top), while the image in Fig. 2.29e has a relatively

ambiguous probability map (Fig. 2.29f, top). It would not be sensible to use a

single threshold for these two images with such different behaviors. The binary

normality maps determined adaptively are shown at the bottom in Fig. 2.29b and

2.29f. It justifies that such intelligent thresholding gives correct, accurate detection

and localization of doctored image areas.

2.4 Summary

This chapter surveyed related works in the image forensics research. As opposed

to the conventional watermarking paradigm, all of these works incorporate passive

cues without requiring any actively inserted signatures. Making use of these cues
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Table 2.4: Summary of tampering detection techniques surveyed in this chapter.
All methods take single image as input.

Method Robust Object NoteAgainst Localization

Natural Scene Related Cues

Diffused light inconsistency [1] JPEG Noa

Specular reflection inconsistency [12] JPEG No
BRDF lighting inconsistency [13] N/Ab No
Device Characteristics Related Cues

CCD noise correlation for source identification [27] JPEG Imagec Libraryd

CCD noise correlation for forgery detection [15] JPEG Yes Library
Demosaicking estimation - EM [16] N/A Yes
Demosaicking estimation - knowledge base [17] JPEG Yes Library
CRF estimation - color colinearity [39] N/A Image
CRF abnormality for forgery detection [41] N/A No
CRF estimation - geometry invariants [34, 35] N/A Image
Device Characteristics Related Cues

Double quantization detection [21] JPEG Yes

aNo: objects of interest need to be priorly identified
bN/A: not addressed
cImage: algorithm operates at image level
dLibrary: a library of the camera signature in question is required

allows these algorithms to handle a wide variety of doctored images.

These passive cues are inspired by the image formation process and can be cat-

egorized into three sets: natural scene, device characteristics, and post processing

related cues (refer to Table 2.4 for a comparison of these techniques). Some com-

mon, representative cues used in each category were summarized: lighting from

natural scene related cues, CCD sensor noise, demosaicking filter, and CRF from

device characteristics related cues, and JPEG double quantization effects from post

processing related cues. We have discussed the underlying models, estimation tech-

niques and the forgery detection setups. Results were presented along with discus-

sion of strengths, weaknesses and feasibility in practice.
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Chapter 3

Splicing Detection Using CRF Consistency

Checking

An intuitive clue for detecting doctored images is the inconsistency between the

tampered and untampered areas. Except images with global adjustments (e.g.,

tuning the color tone of the entire image), most malicious tampering operations

use content from two or more photographs and merge them into one single image.

These distinct photographs are typically taken at different times and locations and

therefore possess different scene and device characteristics. It is expected that if

after inspection there is indeed inconsistency across the extracted cues from two

different areas, the chance of the given image being tampered is high. The concept

of consistency checking is illustrated in Fig. 3.1a.

Having summarized candidate cues inspired by the image formation process in

Chapter 2, in this chapter we focus on the consistency checking utilizing features de-

rived from device or scene characteristics. Specifically, we will describe a tampering

detection technique based on CRF consistency checking.
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3.1 Consistency Checking

Depending on the cues used and the resulting artifacts, the optimal setup to utilize

a particular kind of anomaly may vary significantly. A general two-way checking

scheme is illustrated in Fig. 3.1b. It compares any arbitrary pair of areas within

an image and measures their consistency. This is applicable to almost all possible

cues (lighting, sensor noise statistics, demosaicking setting, CRF, or DQ). It will be

desirable to have a high correlation between the consistency measures and whether

the content in two areas come from identical or different sources - high consistency

for identical sources and low consistency for different sources. The fact that a cue is

useful for identifying camera sources does not automatically ensure high correlation

mentioned above. First, some signatures are indeed unique to each camera but the

intra-camera difference is comparable to the inter-camera difference. In such cases,

a high consistency score does not necessarily imply identical sources and a low score

does not imply different sources. Such cues are therefore not sufficiently discrim-

inative for consistency checking. Second, when scaling down the cue estimation

process from an entire image to local areas, the small number of pixels within an

area is likely to degrade the estimation quality. Therefore the extracted cues are

not reliable anymore and can deteriorate consistency checking results.

On the other hand, for certain cues it might be more effective to use a tailored

consistency checking scheme rather than standard two-way. An example is shown

in Fig. 3.1c where only adjacent areas are compared and the boundary segment

in between is included. This is appropriate for the use of Geometry Invariant (GI)

based CRF estimation, as summarized earlier in Sec. 2.2.3.3 [34]. Since the CRF

estimation relies heavily on Locally Planar Irradiance Points (LPIPs), with the

assumption that splicing creates false LPIPs and hence abnormal CRF estimation
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Figure 3.1: Consistency checking (a) consistency checking based on extracted fea-
tures (b) general two-way consistency checking between any pair of segmented areas
(c) consistency checking between adjacent areas only, exploring abnormality intro-
duced by the tampering on the boundary

along the splicing boundary, it is necessary that the boundary segment is included

in order to capture such anomaly. Such boundary segments between adjacent areas

are not available in the general two-way scheme.

Besides choosing a suitable formulation for consistency checking, another im-

portant issue is to determine the specific measure for computing consistency scores.

One can directly compute the discrepancy between extracted cues either in the orig-
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inal representation (e.g., distance between two sets of estimated demosaicking filter

coefficients, point-to-point distance between two estimated CRFs.... etc.) or in the

parameter domain (e.g., distance between two estimated gamma values for CRFs in

the gamma form). However in most cases this type of discrepancy measure is not ef-

fective since it ignores the statistical property of the data. A reasonable alternative

for consistency checking is cross fitting. In addition to the extracted models, the

”closeness” of the data points to the model, or how well the model represents the

data points, is considered. If two areas are from the same source, these models are

expected to fit to the data points closely. This captures more reliable information

than the direct calculation of model parameters.

This chapter proposes a consistency checking algorithm using GI based CRF

estimation (Sec. 2.2.3.3) for single image splicing detection. As mentioned above,

the use of LPIPs in CRF estimation requires a consistency checking scheme con-

sidering only adjacent areas and their shared boundary segment. Also, in order to

fully explore the statistical correlation between LPIPs and CRFs, cross fitting will

be used to compute the consistency measures.

3.2 Consistency Checking Using CRF

An overview of the proposed consistency checking algorithm is shown in Fig. 3.2

[19, 20]. For a test image, the technique aims at detecting CRF inconsistency among

suspicious areas within the image. As mentioned in the previous section (Sec. 3.1),

the boundary segment between two adjacent areas is included in order to expose

the CRF estimation anomaly caused by artificial LPIPs created along the splicing

boundary. The consistency checking is therefore not applied to every possible pair

of areas but only on adjacent ones.
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Figure 3.2: A consistency checking system for automatic local spliced area detection

A necessary component prior to the actual consistency checking process is image

segmentation. One straightforward way would be manual labeling of the suspicious

splicing boundary. This can be most accurate since humans would easily segment

an object as a whole (which often coincides with the actual splicing boundary), as

opposed to the error prone segments generated by automatic segmentation. In some

scenarios, manual segmentation is indeed feasible and not too costly. For example, in

the publishing business, most suspicious images are celebrity photographs with only

several human figures and relatively smooth contours. Manual segmentation of these

low complexity images is therefore not unrealistic. In fact, it is the segmentation

scheme suggested in a tampering detection work proposed in [41].

However, in many scenarios there are more images of ambiguous contours and

complex content. It would be impossible to manually label every single suspicious

image considering the vast amount of time and effort required. Therefore an au-

tomated process is needed. The image segmentation problem has been studied

extensively and there have been numerous tools available. Among these tools, the

state-of-the-art algorithm Normalized Cuts [47] will be incorporated as our auto-

matic segmentation component, although other methods such as Mean Shift [48]

may also be considered. Both manual and automatic segmentation schemes will be

tested within the proposed consistency checking algorithm. Their respective merits

and drawbacks will also be discussed in the following sections and compared through

experimental results.
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After the segmentation of the test image, the CRF estimation is then run on

each of the segmented areas. Based on the estimated CRFs and extracted LPIPs,

cross fitting errors are computed. As mentioned earlier in Sec. 3.1, a spliced image

is expected to possess high errors both across the two adjacent areas and within the

boundary segment.

Each image (or boundary segment) will be represented by a feature vector com-

posed of these CRF fitting measures. Statistical Support Vector Machine (SVM)

classifiers [49] are applied on such feature vectors to first learn authentic and spliced

classes from a set of training instances and then used to determine whether an in-

coming test image is authentic or spliced. SVM has been known to possess great

generalization power, a desired property of classifiers. When testing the consistency

checking with manual segmentation, we have observed the dissatisfactory perfor-

mance of linear SVM. The implication is that our training data pools are not lin-

early separable, motivating the use of Radial Basis Function (RBF) kernel SVM’s

in our algorithm and also justifies such choice over simple linear classifiers.

For manual segmentation, since only one boundary segment is generated per

image, the binary SVM training and testing instances are all constructed at image

level, i.e., the binary decision of a segment is equal to that of its corresponding

image. For automatic segmentation, on the other hand, since there are multiple

segments produced within each image, the SVM training and testing is applied at

the segment level. After all segments in the test image have received their SVM

classification results, the image level decision is obtained by fusing these segment

level SVM outputs.

In addition to proposing a workable splicing detection algorithm described above,

later sections in this chapter will provide a systematic in-depth study to discover

and justify the dominant factor driving the success of the proposed technique. This
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is conducted as a series of feature selection experiments, separating the boundary

segment self fitting from the cross fitting of two adjacent areas. The hypothesized

key feature set (boundary segment self fitting) is tested in both standalone and

auxiliary roles in order to fully assess its contribution. The study shows the great

importance of the boundary segment - it needs to be included in order for the

splicing detection to be successful. A refined feature set is also presented at the end

of the feature selection study.

The rest of this chapter is organized as follows: Sec. 3.2.1 discusses in more

detail the manual and automatic segmentation schemes. Mathematical presentation

of cross fitting measures will be given in Sec. 3.2.2, followed by the SVM learning

process explained in Sec. 3.2.3. Sec. 3.2.4 includes the details of the feature selection

study. Experimental results will presented in Sec. 3.3.

3.2.1 Image Segmentation

The first critical component in the overall consistency checking pipeline (Fig. 3.2)

is image segmentation. We will discuss two options in the following - manual and

automatic.

3.2.1.1 Manual Segmentation

An example of manual segmentation is given in Fig. 3.3. Manual segmentation is

usually done with prior suspicion on a target object in the image. In other words,

the spliced object has already been localized. An image will be divided into three

areas: background A, suspicious foreground object B, the splicing boundary E (the

union of these three areas will be denoted as area O). Suppose the human figure

in Fig. 3.3a appears suspicious to a manual segmentation inspector, he/she will

label the image as in Fig. 3.3b where he/she specifies the target area for subsequent
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consistency checking.

The advantage of manual labeling is that the segmentation result tends to align

well with the entire object. The segmentation output will often coincide with the

actual splicing boundary, since spliced images are created by human hackers copying

and pasting a contiguous object, aiming at a drastic semantic change of the image.

Such clean segmentation, at a price of higher human labor costs, is rarely achieved

by automatic algorithms.

3.2.1.2 Automatic Segmentation

Automated tools are desired in many scenarios when fast decisions are demanded

with limited resources and human labor for manual segmentation. The automatic

image segmentation problem has been studied for decades and there have been nu-

merous excellent algorithms proposed in the literature. In this chapter, we choose a

popular image segmentation tool, Normalized Cuts (NCuts) [47], as our automated

solution. NCuts [47] is widely used because of its intuitive formulation and ro-

(a)

E

B

A

(b)

Figure 3.3: Sample manual segmentation results (a) test image (b) manual segmen-
tation output with foreground, background regions and region boundary explicitly
indicated.
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bustness against over-segmentation, demonstrating improvement over the standard

minimum cut method proposed in [50]. It treats pixels of the image as vertices in a

graph and considers dissimilarity measures between pixels. The results are multiple

subgraphs that exhibit high similarity within each subgraph and minimal similarity

across distinct subgraphs.

In practice, NCuts requires the number of desired areas to be predetermined,

typically from 2 to 20. Over-segmentation should be avoided so that the resulting

areas are not too small and the boundaries sufficiently long. One potential drawback

in this case, however, is the inability to detect small spliced areas. Considering the

tradeoff, in this work the number of areas is set to be 8, which has been shown to

generate satisfactory outcomes in our experiments.

Given the segmentation results, the tampering detection problem can be formu-

lated asking any of the following questions: are all the areas captured by the same

camera? Do any pairs of subset of areas reveal any inconsistency? Does any bound-

ary segment between two adjacent areas show anomaly? In this thesis, we choose

the last formulation as it reveals most information about the consistency between

neighboring areas and the normality of the boundary in between.

Due to imperfect segmentation, there are three possibilities in the output, as

shown in Fig. 3.4a, where the three types of output boundaries are plotted in solid

lines of corresponding colors with the true splicing boundary overlaid as a yellow

dashed contour. The formal definitions of these three categories of segments are

listed as follows:

• Authentic: Both sides (areas A and B) are from the same camera; thus the

segment under consideration is authentic. An authentic boundary does not

overlap with the splicing boundary at all.
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• Spliced: Both areas are untampered but are from different cameras. In this

case, the boundary segment coincides with the splicing boundary.

• Partially-aligned: One or both areas contain content from two cameras. In

other words, the automatic boundary segment is a partial hit - the actual

splicing boundary cuts through one or both neighboring areas, in some cases

partially overlapping with the automatic segment.

From the spliced image detection point of view, there is no need to distinguish

Spliced from Partially-aligned cases since they both indicate the presence of the

splicing operation. However, at the boundary segment level, the authenticity of

partially-aligned segments is ambiguous, depending on the extent of its overlap

with the true splicing boundary. Therefore, to build a good statistical classifier,

the segment level training data needs to be constrained to Authentic and Spliced

categories only. Such well-defined training data allows us to learn robust classifiers

for two distinct classes. Our hypothesis, as will be confirmed later by experimental

(a)

E

B

A

(b)

Figure 3.4: Sample segmentation results by Normalized Cuts (a) incoming test
image with three classes of segments overlaid (blue line: well-defined authentic
segment, red line: well-defined spliced segment, green line: ill-defined partially-
aligned segment, yellow dashed line: actual splicing boundary) (b) notation of the
areas corresponding to a test segment E.
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results, is that such discriminative classifiers will still provide satisfactory detection

outcome when ambiguous (i.e., partially-aligned) cases are tested.

Fig. 3.4b shows one boundary segment with its two neighboring areas, the target

of our detection method. We will denote the two adjacent areas as areas A and B,

the boundary segment in between as area E, and the union of A, B, E as area O.

3.2.2 Consistency Measure via Cross Fitting

Once the test image has been properly segmented, to check if a boundary segment

is authentic or spliced, cross fitting errors need to be computed using the estimated

CRFs and (Q,R) values of the selected LPIPs from areas A, B, E and O (refer

to Sec. 2.2.3.3 for the definition of the Geometry Invariant (GI) Q(R)). Recall

when the gamma model of CRF is assumed, Q(R) is equal to α, the exponent

parameter of the CRF model. Namely, for an ideal CRF, the (Q,R) curve should

be a horizontal line. If more sophisticated CRF models are used, the (Q,R) curves

will look like those shown in Fig. 3.5. As mentioned in Sec. 3.1, cross fitting

captures the statistical relations between LPIPs and CRFs and is more informative

than the direct distance between the estimated CRFs. Moreover, since cross fitting

inherently includes self fitting, it can be used on the boundary segment to measure

the anomaly by using a CRF fitting its own LPIPs. If only CRFs are used and the

fitness metrics between LPIPs and CRFs are dropped, this information would not

be available and one needs to entirely rely on obtaining a CRF of abnormal shape

from suspicious boundaries, which in practice does not always occur when splicing

is present.

In the following derivations, we use the measurements of (Q,R) extracted from

the LPIPs located on the boundary and associated neighboring regions to estimate

the consistency. This choice needs to be justified by examining how respective
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Figure 3.5: Visualization of CRF and (Q,R) spaces. When CRF takes on gamma
form R = f(r) = rα: (a) CRF space (b) (Q,R) space. When CRF takes on first-
order GGCM model R = f(r) = rα0+α1r: (c) CRF space (d) (Q,R) space.

domains behave in terms of source separation. Namely, a good source separation

domain should exhibit low dissimilarity with two identical sources and high dissim-

ilarity with two different sources.

Fig. 3.6 shows the CRF and Q(R) domains. The top row displays the LPIP

and CRF information from an authentic image (two segmented areas with identical

camera source), visualized in the raw CRF and the Q(R) domains. The LPIP and

CRF information from a spliced image is shown in the bottom row.

It is desirable that when two sources are identical, the curves are close to each

other; when two sources are different, on the other hand, the two curves should
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(a) (b)

(c) (d)

Figure 3.6: Q(R) curve has better discrepancy separating different cameras than the
CRF (a) two estimated CRFs from an authentic image which are similar to each
other as expected (red: from suspicious foreground, blue: from background) (b)
corresponding Q(R) curves also similar to each other (c) two estimated CRFs from
a spliced image (d) corresponding Q(R) curves exhibiting a larger gap in between
than the two CRFs in (c).

be separable. This property is clearly present in the Q(R) domain but not in the

CRF. For an authentic image, Fig. 3.6b (Q(R) domain) contracts the two curves

more than those in Fig. 3.6a (CRF domain). For a spliced image, Fig. 3.6d (Q(R)

domain) pushes the curves farther from each other than those in Fig. 3.6c (CRF
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domain). In other words, the Q(R) domain offers a better choice for distinguishing

spliced images from authentic ones.

The cross fitting procedure in the Q(R) domain will be presented below, starting

with the extraction of LPIPs. Recall in Sec. 2.2.3.3, it is necessary to detect

qualifying LPIPs that satisfy the partial derivative equality constraint:

Rxx

R2
x

=
Rxy

Rxry
=
Ryy

R2
y

=
f ′′(r)

(f ′(r))2
=

f ′′(f−1(R))

(f ′(f−1(R)))2
= A(R) (3.1)

Furthermore, the Geometry Invariants (GIs) Q(R) can be computed as follows:

Q(R) =
1

1− A(R)R
(3.2)

When the CRF is a simple single-parameter model R = f(r) = rα, Q(R) = α.

Therefore Q(R) provides a direct estimate of the CRF parameter. When represented

with first order GGCM parameters (α0, α1), Q(R) also has a tractable close form:

f(r) = rα0+α1r ⇒ Q(model)(R) =
(α1r ln r + α1r + α0)2

α0 − α1r
(3.3)

An ideal LPIP should have Q(R) equal to Q(model)(R). In the forgery detection

context, there are two hypotheses to be tested through cross fitting. First, if two

segmented areas share the same camera source, the CRF from one area should fit

well to the LPIPs from another area, resulting in a zero fitting error. Second, if a

boundary segment is indeed a splicing boundary, the estimated CRF is expected to

represent its LPIPs poorly, which should result in a large fitting error.

Recall the notations in Fig. 3.3 and 3.4 where areas A and B denote segmented

areas, E the shared boundary segment, and O the union of areas A, B and E. When

considering the cross fitting between areas A and B, we collect all fitting errors
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between the calculated Q(R) from one of these two areas (denoted as area i) and

the CRF model from another area (denoted as area j). In mathematical terms,

when fitting CRF model j to LPIPs extracted from area i, we obtain a set of fitting

errors sij:

For i, j ∈ {A,B},

sij = {s(n)
ij |n ≤ Ni} = {(Qi(Rn)−Q(model)

j (Rn))2|n ≤ Ni} (3.4)

where Rn denotes the intensity value of the n-th LPIP in area i. The integer Ni

is the total number of LPIPs from area i. The GI calculated from ratios of partial

derivatives is written as Qi(Rn) and the GI calculated from the CRF model in area

j is written as Q
(model)
j (Rn). Both are functions of Rn (refer to Eqn. (3.1)-(3.3)).

The scalar s
(n)
ij is the deviation of Qi(Rn) from Q

(model)
j (Rn). If areas A and B are

from the same source, s
(n)
ij ’s should be generally small, otherwise they should be

large.

Plugging in the expression of Q
(model)
j from Eqn. (3.3), this equation can be

rewritten as

sij = {(Qi(Rn)− (α1,jrn ln rn + α1,jrn + α0,j)
2

α0,j − α1,jrn
)2|n ≤ Ni} (3.5)

Likewise, for points extracted from the boundary (E) and the entire region in

question (O), the self fitting errors are given by

skk = {s(n)
kk |n ≤ Nk}

= {(Qk(Rn)−Q(model)
k (Rn))2|n ≤ Nk}, k ∈ {E,O} (3.6)

⇒ skk = {(Qk(Rn)− (α1,krn ln rn + α1,krn + α0,k)
2

α0,k − α1,krn
)2|n ≤ Nk} (3.7)
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Anomalous distributions of (Q,R) samples from areas E and O are expected if

they are not from a single camera. Thus, their self fitting results should exhibit

distinct behaviors from those of authentic areas. More specifically, the spliced area

may generate more non-LPIPs than authentic areas, particularly along the splicing

boundary. Although a Bayesian learning process has been designed to discard non-

LPIPs in authentic images, the non-LPIPs from spliced areas may possess different

properties and therefore still pass the overall LPIP detection. These non-LPIPs

are expected to reside far from the estimated Q(R) curve, reflected through a large

curve fitting error measured by Eqn. (3.7) [35].

The first set of twelve features of a boundary segment is constructed by collecting

the first- and second-order moments of these cross fitting errors,

F1,µ = [µ(sAA), µ(sBB), µ(sAB), µ(sBA), µ(sEE), µ(sOO)] (3.8)

F1,σ = [σ(sAA), σ(sBB), σ(sAB), σ(sBA), σ(sEE), σ(sOO)] (3.9)

where µ and σ indicate the mean and variance, respectively. In addition, [34] showed

the range of image brightness (R) of local image points significantly influence the

CRF estimation accuracy (Fig. 3.7). This is intuitive as CRF specifies the relation

between input irradiance to camera and output image intensity over the entire range

of irradiance. Naturally, a larger coverage of the image intensity will lead to a smaller

estimation error. Therefore, in our feature set, we add the averages and the ranges

of R’s from each area as a second feature set:

F2,µ = [µ(RA), µ(RB), µ(RE), µ(RO)] (3.10)

F2,∆ = [∆(RA),∆(RB),∆(RE),∆(RO)] (3.11)
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Figure 3.7: Quality of CRF estimation with respect to R range (a) higher estimation
accuracy with high range (b) lower estimation accuracy when the range of R is low.

Finally, each segment is represented by the combined 20-dimensional feature

vector Fall, including features in Eqn. (3.8)-(3.11).

3.2.3 SVM Classification

We use Support Vector Machine (SVM) for binary classification because of its satis-

factory performance and desirable generalization capability in practical applications.

Based on our experimental results with the manual segmentation setting using linear

SVM, we have also observed that our training data pools are not linearly separable,

further justifying our choice of sophisticated RBF kernel SVM.

3.2.3.1 Image Level Classification with Manual Segmentation

The first set of feature vectors F1,µ and F1,σ in Eqn. (3.8) and (3.9) are used for

image level SVM training and testing. Additional features related to the range and

average of intensity values are excluded so that we can study the effect of cross fitting

features. Both linear and Radial Basis Function (RBF) kernel were evaluated. Since

RBF has better capability handling complex shapes of data point distributions, it

often outperforms the linear kernel in most machine learning problems. This work
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is no exception to such behavior and therefore only the results using RBF kernel

are reported here.

Cross validation is conducted in search of the best parameters used in SVM.

A total of 11 penalty factors C (2−5+2k, k = 0, . . . , 10) and 10 RBF widths γ

(2−15+2k, k = 0, . . . , 9) are used. For each set of (C, γ), the training set is divided

into a training subset and a validation subset. A five-fold cross validation setting re-

sults in a training subset of population four times larger than the validation subset.

An SVM is then trained on the training subset, tested on the validation subset, and

the accuracy over the validation subset is recorded. The cross validation is repeated

five times for each (C, γ), each time on a different training subset and validation

subset. The performance of a given (C, γ) setting is measured by the average accu-

racy across its five runs. At the end, we choose the (C, γ) with the highest average

accuracy and test the classifier on a test set that is different from the training and

validation sets.

3.2.3.2 Segment Level Classification with Automatic Segmentation

With automatic segmentation, the SVM classifier is applied to each boundary seg-

ment. Upon observing the automatic segmentation outputs, we find that spliced

segments tend to be much less than the authentic ones due to over-segmentation

within authentic areas (areas A and B). This may result in a bias towards the au-

thentic samples in the classifier training process and a poor classification accuracy.

To ensure balanced training data, SVM bagging is adopted as the solution. We di-

vide the larger pool (in this case the authentic segments) into P subsets, each with

a similar number of samples as the smaller pool (the spliced segments) and train

P classifiers out of these evenly populated samples (Fig. 3.8a). At the test stage,

every test segment receives P classified labels lp (p = 0 . . . P − 1) and correspond-
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ing distances to the decision boundaries dp (p = 0 . . . P − 1). These distances are

transformed with a sigmoid warping function to scores between 0 and 1 and linearly

fused to obtain the final binary decision for a boundary segment:

dbagging =
1

P

P−1∑
p=0

1

1 + exp(−dp/ω)
(3.12)

lbagging = sign(dbagging − 0.5) (3.13)

In our experiment, P is set to 5, and ω is used to control the ”bandwidth” (or

sensitivity) of each single distance. Its value is determined empirically through

cross validation. The decision threshold (currently set at 0.5) can be changed to

obtain different operation points in the precision recall curve which will be shown

later. For evaluation purposes, the test segments must have well-defined ground

truth. Since there is no ground truth for partially-aligned ambiguous segments that

the test results can be compared against, such segments are excluded in segment

level testing as well as in the training process, as shown in Fig. 3.8b.

3.2.3.3 Segment to Image Level Classification with OR Fusion

For a test image, let dm,bagging denote the SVM output distance of the m-th segment

(obtained by Eqn. (3.13)). To get a global decision for the image, naively averaging

over all segment level score dm,bagging’s would not be appropriate, since an image

with only one spliced segment is certainly spliced, but its single positive dm,bagging

will vanish if there are multiple authentic segments with low scores, bringing down

the overall average score below the detection threshold.

We adopt a simple method - as long as there is at least one segment confidently

detected as spliced with a threshold τ , i.e. dm,bagging ≥ τ for some m, then the image

is classified as spliced. This is equivalent to a binary OR fusion of the segment level
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Figure 3.8: SVM bagging at the boundary segment level (a) training (b) testing.
Both training and testing are conducted on only authentic and spliced segments,
partially-aligned segments are excluded since they do not have well defined ground
truth. The distances from a test segment to multiple decision boundaries dp’s are
shown in (b) in dashed lines.

SVM labels lm,bagging’s:

With threshold τ ,

limage = l0,bagging ⊕ l1,bagging ⊕ ...⊕ lM−1,bagging (3.14)

where ⊕ denotes the binary OR operation, M the total number of segments within

the test image and limage the final image level binary decision.

Varying the threshold τ will result in different operation points in the perfor-
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Figure 3.9: Segment to image level OR fusion. Segments of all three categories are
fed through SVM classifier to obtain an inauthenticity score, including partially-
aligned instances.

mance curve. More sophisticated fusion strategies may consider the structural rela-

tionships among boundary segments to detect a spliced object, instead of scattered

suspicious segments. Contrary to segment level classification where ambiguous seg-

ments are excluded (Sec. 3.2.3.2), segments of all three categories are used to form

image level decisions (Fig. 3.9). This is feasible because we do have unambiguous

ground truth at the image level (spliced or authentic).

3.2.4 Dominant Factor of Successful Splicing Detection

In addition to developing a consistency checking technique mentioned above, we seek

to identify the relative effectiveness of individual features. This will be done through

feature selection over the 20-dimensional feature vector guided by hypotheses with

physical meanings. Re-examining Eqn. (3.8) and (3.9), the original set of features

can be categorized into three different groups:
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1. Consistency: two-region (A,B) cross fitting

FAB = [µ(sAA), µ(sBB), µ(sAB), µ(sBA);

σ(sAA), σ(sBB), σ(sAB), σ(sBA));

µ(RA), µ(RB),∆(RA),∆(RB)] (3.15)

2. Anomaly: self fitting of boundary segment (E)

FEE = [µ(sEE), σ(sEE), µ(RE),∆(RE)] (3.16)

3. Anomaly: self fitting of the whole area (O)

FOO = [µ(sOO), σ(sOO), µ(RO),∆(RO)] (3.17)

The first group represents the consistency between two ”authentic” areas, the

second extracts only the information from suspicious splicing boundaries, and the

third captures evidence of anomaly in the whole image. The grouping of these

features naturally gives rise to these questions:

1. Is two-way cross fitting between A and B sufficient for splicing detection?

2. How important is the anomaly from splicing boundaries (solely from E and/or

collectively from O)?

3. If E and O are indeed crucial, what is the sensible way to use them?

4. Based on these tests and observations, what would be the ideal feature set for

image splicing detection?
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The answers to these questions shall be found by properly arranging feature

subsets and designing experiments as follows:

1. Two-way Cross Fitting

This question can be answered by the classification performance of FAB com-

pared with the whole feature set Fall. By examining the performance gain/drop

from Fall to only FAB, one will be able to determine how two-way cross fitting

contributes to the overall detection success.

Posing the question at a higher level, one asks if two-way fitting works in

general. A related interesting issue, therefore, is whether the two-way cross

fitting measure is adequate for distinguishing the camera sources of two images,

not just two segmented areas. To answer this, we further create a synthetic

image set using CRFs corresponding to 61 devices (13 cameras and 48 films)

from the Database of Response Functions (DORF) library [31]. These CRFs

are applied to RAW1 images we captured with several cameras (e.g., Canon G3

and Nikon D70). The resulting image set is used as ground truth to evaluate

the effectiveness of two-way cross fitting.

The results of two-way cross fitting will be presented in Sec. 3.3.6.1.

2. Boundary Self Fitting as Standalone Feature Sets

To assess how much the anomaly contributes to the overall detection success,

we run SVM training and testing on FEE alone and FOO alone. We compare

them against the results using only FAB to determine which factor plays the

1RAW is the direct output from CCD sensor without any demosaicking, CRF transform, or
in-camera post processing. Many high end camera models provide access to such data. Different
manufacturers may encode RAW data differently but they typically follow the TIFF encoding
convention.
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key role: two-way cross fitting from authentic areas or the anomaly created

around splicing boundaries.

The experimental results will be shown in Sec. 3.3.6.2.

3. Boundary Self Fitting as Auxiliary Feature Sets

In addition to the above comparison, we run tests on FAB+FEE and FAB+FOO

to observe the impact of FEE and FOO when combined with FAB.

Secs. 3.3.6.2 and 3.3.6.3 examine two possibilities using anomaly related fea-

ture sets FEE and FOO and discuss whether it is more advantageous to use

them in a standalone or auxiliary role.

4. Refined Feature Subset

Inspired by the findings through above experiments that anomaly plays a more

crucial role than cross fitting across two authentic areas, we further create

another subset which treats areas A and B as one single source C (implicitly

assuming they come from the same camera) and conduct cross fitting between

this area and area E. Note C does not contain the boundary segment E and

is equivalent to the remaining area after taking E out of the entire union O.

FCE = [µ(sCC), µ(sEE), µ(sCE), µ(sEC);

σ(sCC), σ(sEE), σ(sCE), σ(sEC));

µ(RC), µ(RE),∆(RC),∆(RE)] (3.18)

The intuition is that when treating the content from different cameras as if

they are from the same camera, an abnormal result in CRF estimation will

occur. By fitting this abnormal CRF to the abnormal (Q,R) points generated
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from suspected splicing boundary E, the anomaly effect from two separate

sources will be amplified.

A set FCO is created following the same rationale. The training and testing

processes will be reproduced on FCE and FCO. An refined feature subset will

be constructed after inspecting their performances alongside all earlier feature

subsets. The results and discussion on the refined subset will be given in Sec.

3.3.6.4

3.3 Experiments and Results

The experimental results in this section are organized as follows: data sets used

for the experiments are presented in Sec. 3.3.1, consistency checking results using

manual and automatic segmentations from Secs. 3.3.2 through 3.3.4, followed imme-

diately by a theoretical explanation for segment to image fusion in Sec. 3.3.5. The

in-depth study of dominant factor for successful splicing detection will be elaborated

in the final subsection, Sec. 3.3.6.

3.3.1 Data Sets

There are two data sets used in the consistency checking experiments. The first set

consists of 363 uncompressed images [19]: 183 authentic and 180 spliced. Authentic

images are taken with four cameras: Canon G3, Nikon D70, Canon EOS 350D,

and Kodak DCS330. These cameras range from simple point-and-shoot (Kodak

DCS330) to higher end Single Lens Reflex (SLR) models (Nikon D70 and Canon

EOS 350D) (Canon G3 is an intermediate model). They have different functionality

and complexity and produce images of different qualities. The image dimensions

are between 757x568 and 1152x768. These authentic images mainly contain indoor
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(a) (b)

(c) (d)

Figure 3.10: Example images from the Basic data set (a)(b) authentic (c)(d) spliced.

scenes, e.g., desks, computers, or corridors. About 27 images, or a percentage of

15% are taken outdoors on a cloudy day.

The spliced images are created with Adobe Photoshop without any post pro-

cessing. Each spliced image has content from exactly two cameras, with one object

from one image (e.g., a yellow rubber duck) copied and pasted onto another image.

We also made best efforts to ensure sufficient content diversity among spliced and

authentic categories. This data set will be referred to as the Basic data set. Some

sample images are shown in Fig. 3.10.

Another set, the Advanced data set, contains 21 authentic images and 38 high-

quality spliced images with heavy post processing developed in Microsoft Research

Asia [51, 52, 53, 54, 55, 56, 57]. This is a much more realistic and challenging set
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(a) (b)

(c) (d)

Figure 3.11: Example images from the Advanced data set (a)(b) authentic (c)(d)
spliced.

since these images are typically JPEG compressed, with advanced matting or color

adjustment in addition to copy-and-paste. Some sample images shown in Fig. 3.11.

The consistency checking with manual segmentation is only tested on the Basic

set. For automatic segmentation, the detector is trained on the Basic set and tested

on the Basic (to verify its detection capability) and the Advanced sets to simulate

realistic splicing detection scenarios and observe how well the classifier generalizes.

From the Basic set, standard validation procedures are used to randomly parti-

tion the data set into training and test sets. The partitioning is done at the image

level so that different boundary segments from the same image will not be included

in both training and test sets.
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Table 3.1: Image level confusion matrix with manual segmentation, overall classifi-
cation accuracy 85.90%.

Detected
Authentic Spliced

Actual
Authentic 85.93% 14.07%

Spliced 14.13% 85.87%

3.3.2 Image Level Classification Using Manual Segmentation

The confusion matrix of image level classification using manual segmentation is

shown in Table 3.1 [19]. Using SVM with RBF kernels and the parameter search

process described in Sec. 3.2.3.1, we get an overall classification accuracy 85.90%,

with the spliced image detection rate as high as 85.87%. As a comparison, since the

authentic and spliced images are evenly populated, detection by random guessing

will result in a poor performance at 50%.

Further inspection of the results reveals that correct detection of splicing images

usually results from good quality Q(R) curve (or equivalently, CRF) estimation, as

shown in Fig. 3.12. Note the (Q,R) distribution appear quite scattered. This is

due to our use of the first generation CRF estimation method without Bayesian

LPIP inference (refer to Sec. 2.2.3.3) which was the only version available at the

time of our experiment. In our later tests using automatic segmentation, we will

incorporate the updated CRF estimation module with LPIP inference and the (Q,R)

distributions will appear more concentrated around the estimated curves.

Both examples in Fig. 3.12 have sufficiently wide intensity ranges and therefore

good quality Q(R) results. On the other hand, almost as expected, bad quality

Q(R) estimation leads to detection failures (Fig. 3.13). The degradation of Q(R)

estimation is largely due to the R range being too narrow, as shown in both Fig.

3.13c and 3.13d. This confirms the finding reported in [34] and Fig. 3.7. It also
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(a) (b)

(c) (d)

Figure 3.12: Good quality Q(R) curves often lead to correct classification of spliced
images (a) test image 1 (b) test image 2 (c) two estimated Q(R) curves from different
cameras in test image 1 are noticeably distinct (d) the range of intensity values
extracted from test image 2 is wide enough for accurate Q(R) estimation.

motivates the augmentation of the feature vectors by incorporating R ranges in the

detection algorithm used in subsequent experiments.

3.3.3 Segment Level Classification Using Automatic Segmentation

With automatic segmentation, SVM classifiers are applied to individual segments.

The authenticity test is conducted on each segment within a test image and the

scores are then fused to become an image level decision. This subsection presents

segment level test results.
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(a) (b)

(c) (d)

Figure 3.13: Images with bad quality Q(R) curves and therefore wrong classification
(a) test image 3 (b) test image 4 (c) two estimated Q(R) curves from different
cameras in test image 3 are too close (d) range of intensity values extracted from
test image 4 is too narrow, leading to inaccurate Q(R) estimation.

The output boundary segments from NCuts are categorized into three sets: Au-

thentic, Spliced, and Partially-aligned (i.e., segment partially aligned with the splic-

ing boundary), using the definitions in Sec. 3.2.1.2 and a threshold for the spatial

distance between the ground truth splicing boundary and the automatic boundary

segment. The statistics is reported in Table 3.2, with an image to image breakdown

shown in Fig. 3.14. It is clear that spliced segments are significantly outnumbered

by authentic segments, justifying the use of SVM bagging in the learning process

described in Sec. 3.2.3.2.
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Table 3.2: Numbers of test segments and images in the Basic data set.

Segments Images
Authentic Spliced Partially-aligned Authentic Spliced

675 189 432 84 89

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

Image Index (90 spliced images)

N
um

be
r 

of
 B

ou
nd

ar
y 

S
eg

m
en

ts

Distribution of [au,par−algn,sp] segments within images

 

 

authentic
partially−aligned
fully−aligned spliced

Figure 3.14: Distribution of 3 types of boundary segments within each spliced image
in the basic test set

Since partially-aligned segments are excluded from segment level experiments,

the number of segments within each image is trimmed down to 7∼10. They will

nevertheless be included in image level tests in order to examine the effect of the

partial alignment.

Because of unbalanced data between authentic and spliced categories both at

segment and image levels, all performance will be reported in precision and recall,

rather than the overall classification accuracy. The precision is defined as the portion

of correctly detected spliced segments over all segments detected as spliced (among

which some might actually be authentic), and the recall is the portion of correctly

detected spliced segments over all spliced segments in the test data. The same

definitions apply for precision and recall at the image level. Also, the PR curves

will be compared to the curve corresponding to random guess. The random guess
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(a) (b)

Figure 3.15: PR curves for SVM classification (blue: Basic data set, red: Advanced
data set) (a) segment level (b) image level. The vertical lines show the results
corresponding to random guess.

ratio is calculated by the portion of the population of spliced segments/images over

all test segments/images.

The segment level classification on the Basic set is unfortunately only slightly

better than random guess (25% precision at 70% recall, as shown in the Precision

Recall curve in Fig. 3.15a) [20]. One operating point with precision 29% and

recall 44% is shown in the confusion matrix in Table 3.3. When generalized to

the unseen Advanced set with post processing, we observe performance decrease as

anticipated: the PR curve is almost only as good as random guess (red line in Fig.

3.15a). Segment SVM scores from the Basic (Fig. 3.16a) and the Advanced data

sets (Fig. 3.16b) also support such results - the authentic and spliced classes appear

almost inseparable.

However discouraging the segment level classification may seem, it will be shown

in the next subsection that when fused to image level decisions, this classifier still

performs quite well in detecting spliced images.
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Table 3.3: Segment level confusion matrix from the Basic data set.

Detected
Authentic Spliced

Actual
Authentic 470 205

Spliced 106 83
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Figure 3.16: SVM score distributions of authentic and spliced segments (a) from the
Basic data set (b) from the Advanced data set. These curves are highly overlapped,
resulting in classification accuracy just slightly better than random.

3.3.4 Image Level Classification with OR Fusion

With the segment level classification performance only slightly better than random

guess, the OR fusion scheme turns out to be effective in image level detection on

the Basic data set (70% precision, 70% recall, Fig. 3.15b) [20]. The curves when

excluding and including partially-aligned segments are almost identical, meaning

that such ill-defined instances do not play a major role in image level decisions.

On the Advanced set, despite the degradation at segment level (Fig. 3.15a), at

image level, a precision recall of 70% and 70% can still be obtained, comparable

to the benchmark data set, as shown in Fig. 3.15b. This is encouraging in that it

promises successful detection even when the classifier is applied to compressed im-
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ages with different content and with unknown, potentially composite post processing

operations, which was not considered in the training process.

Out of 38 spliced images in the Advanced set, 36 are correctly identified, a 95%

recall rate. However only a quarter of these, 9 images, are due to successful detection

of spliced segments. Among the rest 27 images, half are detected thanks to their

partially-aligned segments detected as spliced, and the other half are false alarms,

with authentic segments mistakenly classified as spliced. Three sets of example

images are shown in Fig. 3.17. With close inspection on these images, the following

observations can be made: spliced images with a bulky object, e.g., human face or

body, are more likely to get both precise segmentation and correct detection, even

when post processing is present (Fig. 3.17a and 3.17b). Images with similar object

and background colors and textures tend to suffer from inaccurate segmentation.

However in some of these cases the resultant partially-aligned segments can be of

much aid, helping the image to be still correctly classified as spliced, as shown in

Fig. 3.17c and 3.17d. Lastly, images with sophisticated textures (e.g., grass and

tree in Fig. 3.17e and lake reflections in Fig. 3.17f) tend to be overly segmented

and are prone to false alarms.

Two images that are missed by our detector are shown in Fig. 3.18. Contrary

to some cases in Fig. 3.17 where detection mistakes were due to automatic seg-

mentation mistakes, intermediate segmentation results from these two images have

suggested reasonable outputs: human object successfully differentiated in Fig. 3.18a

and the small-sized UFO successfully outlined in Fig. 3.18b. Although these two

images do not form enough collective evidence explaining detection misses, we are

able to confidently rule out segmentation failure as the underlying cause. The sus-

picion is that for the image in Fig. 3.18a, sophisticated post processing along the

object edge (especially on the hair) may have confused the LPIP extraction and
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Three types of detected image in the Advanced data set. Red denotes
successfully detected spliced segments, green denotes partially-aligned segments de-
tected as spliced, and blue denotes authentic segments detected as spliced.

CRF estimation process. For Fig. 3.18b, the spliced object is too small, therefore

there may not even be enough number of qualifying LPIPs to provide reliable CRF

estimation and cross fitting features.

3.3.5 Theoretical Analysis For Image Level OR Fusion

One may question why the image level classification results appear to be much better

than the segment level performance. Below we offer validation and explanation

through theoretical derivations of the simple OR fusion scheme.



90

(a) (b)

Figure 3.18: Two spliced images from the Advanced Data Set missed by our detector.

3.3.5.1 Probabilistic Model For OR Fusion

Consider the segment level false alarm rate αS and recall βS at a certain decision

threshold τ , the image level recall βI using our OR fusion scheme is the probability

that at least one of the segments receives an SVM score higher than the threshold:

βI = 1− p(ds < τ, ∀s ∈ IS)

= 1− (1− αS)na(1− βS)ns(1− γS)np (3.19)

where ds is the classification score for boundary segment s in a spliced image Is.

The number of authentic segments in a spliced image is denoted as na, the number

of spliced segments ns, and the number of partially-aligned segments np. The scalar

γS represents the probability that a partially-aligned segment receives a score higher

than the threshold τ . Note when computing image level recall βI , authentic images

are not involved.

In the following, the uppercase letters in the subscript S and I denote whether

the analysis is at the segment or image level. The lowercase letters a, s, p denote

the categories of segments or images: authentic, spliced or partially-aligned

(which is only relevant to segments but not images).
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3.3.5.2 Conditional Probabilistic Model For OR Fusion

In this section we describe a more sophisticated model than Eqn. (3.19). From our

experimental results, we have found that images of different segmentation properties

give different segment level classification accuracies. In other words, images with

different scene characteristics usually result in different segmentation patterns, and

present different levels of difficulty for the same detection method.

We introduce a three-dimensional vector n to denote the numbers of segments

of different types {na, ns, np} in a spliced image. Stating the previous paragraph in

mathematical terms, if we collect all images with the same n1 = {na1, ns1, np1} and

compute the segment level performance {αS1, βS1, γS1} and compute {αS2, βS2, γS2}

for another set of images with n2 = {na2, ns2, np2}, {αS1, βS1, γS1} will be different

from {αS2, βS2, γS2}.

Therefore, the segment level detection measures {αS, βS, γS} need to be condi-

tioned on n. Since the image level recall βI is obtained through {αS, βS, γS} and

n = {na, ns, np}, it is also conditioned on n:

βI,n = 1− p(ds < τ, ∀s ∈ IS|n)

= 1− (1− αS,n)na(1− βS,n)ns(1− γS,n)np (3.20)

From this formulation we are ready to derive the image level recall rate, image

level false alarm rate, and image level precision.



92

3.3.5.3 Image Level Recall Rate

The overall image level recall βI is obtained by summing all conditional recalls given

in Eqn. (3.20) over all possible n’s:

βI =
∑
n

βI,np(n) (3.21)

where p(n) is proportional to the number of the spliced images with n.

The overall segment level recall βS observed in the experiments can also be

obtained through all conditional βS,n:

βS =
∑
n

βS,np(n) (3.22)

3.3.5.4 Image Level False Alarm Rate

The image level false alarm αI is estimated by using authentic images. The discus-

sion will be concerned with authentic segments since this is the only category present

in authentic images. From such segments we conduct a similar conditioning pro-

cedure and obtain the conditional segment level false alarms αS,n0 associated with

authentic images. The integer n0 denotes the number of authentic segments within

one authentic image. Note αS,n0 and αS,n are two different quantities computed

from authentic and spliced images, respectively.

The image level false alarm αI,n0 is therefore the probability that an authentic

image is classified as spliced given that it has n0 authentic segments:

αI,n0 = 1− p(ds < τ, ∀s ∈ I|n0)

= 1− (1− αS,n0)
n0 (3.23)
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Summing over all possible n0’s, we get the overall image level false alarm αI :

αI =
∑
n0

αI,n0p(n0) (3.24)

3.3.5.5 Image Level Precision

Having obtained the image level recall βI and false alarm αI in Eqn. (3.21) and

(3.24), the image level precision can be readily derived as their weighted average,

νI =
βINs

βINs + αINa

(3.25)

where Ns and Na are the numbers of spliced and authentic images, respectively.

3.3.5.6 Experimental Verification of Proposed Theoretical Analysis

The derivations for image level precision and recall (Eqn. (3.25) and (3.21)) will

be verified in this subsection. We start with segment level detection measures

αS,n, βS,n, γS,n and αS,n0 from actual experimental results in Sec. 3.3.3, then follow

the earlier derivations from Sec. 3.3.5.1 through Sec. 3.3.5.5 to obtain theoretical

estimates of image level precision and recall {νI , βI}, and finally compare such esti-

mates to the results in Sec. 3.3.4 to validate the surprisingly good performance of

segment to image level fusion as indeed theoretically sound.

We use the statistics in the Basic data set to estimate parameters required in

the above models. Specifically, we group the spliced images according to their n’s

(i.e., {na, ns, np}) and evaluate the recall value βI,n and segment level performance

αS,n, βS,n, γS,n for different n’s and thresholds τ . From the data set we also obtain

false alarms αS,n0 associated with authentic images. Probability mass functions

p(n) and p(n0) are estimated using the counts of images containing different types
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of segments. We then use these empirical parameter values to predict image level

performance and compare them with the actual PR curves from experiments.

The predicted precision, recall, and PR curves are shown in Fig. 3.19, with

comparison to the actual performance using the automatic detector. Despite the

simple analytical model of the fusion scheme, the predicted performance is consistent

with the actual detection accuracies over a large range of decision thresholds (close

approximation of precision curve in Fig. 3.19a and even better approximation of

recall curve in Fig. 3.19b). The most important observation is that the fusion scheme

can indeed be used to boost the image level detection accuracy by combining only

moderate accuracies at segment level. Such performance gain is verified theoretically

using the proposed model as well as actual experiments.

3.3.6 Dominant Factor of Successful Splicing Detection

As discussed in Sec. 3.2.4, the objective of this study is to verify that the anomaly

introduced along splicing boundaries is indeed the dominant factor leading to suc-

cessful detection as reported in previous subsections. The study is conducted as a

series of feature selection experiments with different feature subsets. Based on the

findings we will be able to design a final refined subset of sufficiently low dimension

and high detection power. The results and discussions are presented below.

3.3.6.1 Two-Way Cross Fitting

Recall the original 20-dimensional feature vector Fall consists of features of two

different natures: the consistency set and the anomaly set (Sec. 3.2.4). The con-

sistency set considers solely the cross fitting between two authentic areas, excluding

all anomaly related measures. This subsection examines how such set performs in

terms of detecting splicing segments/images and discriminating camera sources.
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Figure 3.19: Image level PR curves: predicted vs actual (a) precision (b) recall (c)
precision recall curve

When excluding self fitting scores from splicing boundaries, two-way cross fitting

between areas A and B pulls down the original classification performance using

Fall, as shown in Fig. 3.20a and 3.20b. At segment level (Fig. 3.20a), it can be

as dramatic as a 15% precision decrease when recall is low (around 20%). In Fig.

3.20b, the image level classification performance suffers even more than segment

level: with recall at 80%, precision is 10% lower, and when recall drops to as low as

30%, precision falls by 20%.
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Figure 3.20: PR curves: two-way cross fitting (A-B + E-E + O-O: Fall, A-B:
two-way cross fitting) (a) segment level (b) image level (c) test of camera source
discrimination on DORF synthetic images.

The results on DORF synthesized images (as mentioned in Sec. 3.2.4) are shown

in Fig. 3.20c: classification performance only slightly better than random guess.

These two sets of results verify that two-way cross fitting is not sufficient to dis-

tinguish images from different sources. It is clear that the anomaly from splicing

boundaries needs to be included to obtain reasonable detection power.
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3.3.6.2 Boundary Self Fitting as Standalone Feature Sets

Results from the previous subsection confirm the necessity of splicing boundary

information. Another issue is therefore how to use the anomaly to its full power.

There are two possibilities: only using the anomaly (as a standalone set) or using

the anomaly in addition to two-way cross fitting (as an auxiliary set). We discuss

the results of these two possibilities in the following.

In this subsection, we are interested in self fitting scores from area E (or area

O) as standalone features. Their performances will be compared against the results

of two-way cross fitting in order to examine their respective detection powers on a

fair ground.

The PR curves using FEE and FOO alone are shown in Fig. 3.21a and 3.21b. It is

worth noting that FEE performs similarly as FAB (Fig. 3.21a), demonstrating that

the anomaly from splicing boundaries would not work alone either. Nevertheless,

when we compute the self fitting scores within the whole image (area O), both

segment level and image level PR curves move much closer to those of the original

20-dimensional full feature set Fall. Also, close inspection on the segment level PR

curve of FOO in Fig. 3.21a indicates that if we choose thresholds corresponding

to recall rates higher than 45%, FOO can be even more powerful than the original

feature set Fall.

We also combine FEE and FOO, equivalent to collecting all the anomaly related

features in the original feature set. The segment level PR curve lies between FAB

and the original set Fall (Fig. 3.21a). At image level, the PR curve is very close to

the original feature set, especially when recall is above 70% (Fig. 3.21b).

Results so far show that within all possible features, anomaly related ones are

more effective than those related to two-way cross fitting. Although FEE is not
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Figure 3.21: PR curves: boundary self fitting (a)(b) as standalone feature sets (c)(d)
as auxiliary feature sets. Left column: segment level, right column: image level.

effective on its own, when combining areas A, B, E altogether (FOO alone, or FEE

combined with FOO), we can achieve even better performance than the original

feature set, specifically at medium to high recalls.

3.3.6.3 Boundary Self Fitting as Auxiliary Feature Sets

We now look at how the anomaly related features behave as auxiliary sets to the

poorly performing two-way cross fitting. We add FEE and FOO to FAB, respectively.
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Fig. 3.21c shows that FEE and FOO both boost the segment level performance of

FAB, with FEE achieving much higher performance gain.

The image level classification of FEE with FAB, on the other hand, does not

perform consistently better than FAB alone, as might have been expected. At high

recalls (above 70%) it achieves 10% less precision than FAB (Fig. 3.21d). While

FOO with FAB is not as good as FEE with FAB at the segment level, it performs

extremely well at the image level: comparable to the whole feature set at recall

above 70% and 5∼10% higher precision than FEE with FAB throughout the whole

range of recall.

These results show that the anomaly related features not only perform well when

compared with the non-anomaly related features (FAB), but also serve as great aid

when used in conjunction. In other words, the abnormal behavior introduced around

splicing boundaries is key to successful detection whichever way they are used.

3.3.6.4 Refined Feature Subset

Based on previous findings, we observe that the abnormal behavior created near

the spliced image boundary contributes much more than two-way cross fitting from

homogeneous areas. This inspires a modification of the original two-way cross fitting

features FAB to carry an ”anomaly” spirit: treating areas A and B as if they are

one authentic area C. There is hence potential anomaly in the estimated CRF and

fitting of LPIPs if they are actually from different sources.

We then conduct cross fitting between this area and area E. If an image is

spliced, then there will be anomaly both in C and E. Such cross fitting between

two anomalous areas is expected to amplify the inconsistency more than self fitting

within only one anomalous area. PR curves in Fig. 3.22a and 3.22b validate this

claim: FCE better than FEE and FCO better than FOO. Note this is a validation
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Figure 3.22: PR curves: (a)(b) anomaly from authentic areas and splicing boundary.
(c)(d) refined feature set in red lines. Left column: segment level, right column:
image level.

of the notions of consistency and anomaly: it explores cross fitting between two

areas but not in the strict sense that both of the two areas are authentic, and it is

certainly not plain self fitting although each of these areas (areas C and E) inherently

carries anomaly inside.

Prior to constructing a refined feature set, we summarize what previous experi-

ments have revealed:
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• Two-way cross fitting from authentic areas alone is not sufficient for successful

splicing detection.

• Anomaly from ”hybrid” areas, such as E, C, or O, is crucial and needs to be

included in the feature set.

• The anomaly is equally helpful either as standalone or auxiliary sets although

the auxiliary setting performs better. An even more powerful way of use is

cross fitting between anomalous areas. It amplifies the anomaly and performs

well on its own without any authentic two-way cross fitting.

These observations lead us to look for a refined feature set, taking cross fitting

components from FAB and the full FCE, constructing an optimal set

Frefined = [µ(sAB), µ(sBA), σ(sAB), σ(sBA);

µ(RA), µ(RB),∆(RA),∆(RB);

µ(sCC), µ(sEE), µ(sCE), µ(sEC);

, σ(sCC), σ(sEE), σ(sCE), σ(sEC));

µ(RC), µ(RE),∆(RC),∆(RE)] (3.26)

Note this optimal set relies largely on the anomalous behaviors of hybrid areas: the

self fitting measures from C and E are retained while those from authentic areas

A and B are excluded. This set performs significantly better than all the feature

subsets experimented above. It is even superior to the original set Fall (as shown in

Fig. 3.22c and 3.22d), especially over the range of precision from 70% to 80%.
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3.4 Summary

In this chapter, we presented a consistency checking algorithm based on one of the

device characteristics: Camera Response Function (CRF). We first introduced the

general concept of consistency checking and possible alternatives of implementations

in practice. The consistency measure was constructed by cross fitting between two

adjacent areas, making full use of the anomaly introduced by the splicing process

which was expected to be revealed through CRF self fitting of features extracted

from boundaries. Both manual and automatic segmentation schemes were tested,

with the manual scheme achieving a more precise, semantically sensible output and

the automatic scheme enabling a more general solution in practice. Cross fitting

measures were computed based on these segmentation outputs and SVM based

classifiers were trained to detect spliced segments and images.

Both schemes reported good performance. The manual segmentation setup

achieved an overall image level classification accuracy of 85.90%. With automatic

segmentation, the classification was done at the segment level - detecting whether a

boundary segment between two adjacent areas is authentic or spliced. Since inaccu-

rate segmentation is inevitable in automatic schemes, the quality of output areas and

therefore segments degraded from that of manual segmentation, and the SVM based

classification became more difficult, showing a segment level precision recall curve

only slightly better than random guess. However, when such results were fused into

image level decisions using a simple OR operator, powerful image level detection

was obtained - 70% precision and 70% recall. Even when generalizing to an unseen,

challenging data set with heavy post processing, the detection performance did not

degrade much. It demonstrated greatly the practicality of the proposed algorithm -

it is indeed a workable solution on real world doctored images without even needing
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to re-train the classifier. A theoretical analysis was also provided to explain the

performance gain from segment level detection to the success at image level.

In addition to showing the effectiveness of the proposed technique, a systematic

study was also conducted to discover the underlying key factor leading to correct

splicing detection. This was achieved by a series of feature selection experiments,

aiming at understanding the behaviors of two-way cross fitting and anomaly related

features. It was found that the anomaly induced on the splicing boundary was the

crucial element and should always be included, whether as a standalone feature set

or as additions to two-way cross fitting measures. Such findings further motivated

the design of a new way of fitting between the original two-way authentic areas in

a manner similar to the anomaly features designed to detect splicing boundaries.

Finally, a refined feature set was constructed, maximizing the detection capability

and the feature dimension efficiency. Results showed the power of such refined

feature set, even outperforming the original longer dimensional feature vector.

The promising detection accuracy and theoretical analysis of the proposed con-

sistency checking method makes it a suitable solution in practical scenarios of image

splicing detection. It shall be noted that although the features constructed are tai-

lored to the specific properties of the CRF estimation technique incorporated, the

general concept of consistency checking can be applied to other image cues (e.g.,

cues mentioned in Chapter 2).
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Chapter 4

Fusion of Multiple Detectors

While the previous chapter focused on one specific cue for tampering detection:

Camera Response Function (CRF) inconsistency, this chapter tackles the forensics

problem at a higher level. Since quite a few solutions have been proposed over

the past years, it is now appropriate to ask how to best utilize these solutions

simultaneously. In other words, suppose we have multiple solutions at hand and

have applied each of them on an image, what is the sensible way to integrate these

different sets of outputs to obtain the optimal, consistent final decision for this test

image? This chapter will be devoted entirely to the discussion and solution of such

fusion task.

4.1 Problem Statement

As introduced in Chapter 2, recent image forensics research has focused on passive

and blind approaches, which do not require any active embedding mechanisms or

prior assumptions. Various tampering detectors have been developed based on pas-

sive cues inspired by the image formation process. Each of these detectors targets

at one specific cue and therefore performs well only for certain types of doctored
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images. In order to create a universal tampering detector that is able to tackle all

types of images, we seek to integrate individual solutions previously proposed. The

goal of this chapter, therefore, is to propose a sound framework for such fusion task

to achieve accurate detection of tampering and localization of the spliced object. To

the best of our knowledge, this is the first work integrating different types of image

forgery detectors.

4.1.1 Categories of Detector Outputs

To construct an appropriate fusion framework one needs to first review the as-

sumptions and properties of component tools mentioned in Chapter 2. While they

were grouped according to the stage of the image formation process they belong

to (natural scene, device characteristics, or post processing), it is also possible to

categorize them based on the type of detection output - single node authenticity

or pairwise inconsistency.

The single node authenticity detector operates on individual nodes (pixels or

blocks or areas) and analyzes the level of authenticity for each node. Usually a

probability is generated to estimate the likelihood of the node belonging to the

authentic background or spliced foreground). Some examples include the incident

light direction estimated on each pixel [1], the demosaicking filter setting estimated

for each block [16, 17], CCD sensor noise pattern for each pixel [15], and the Double

Quantization (DQ) effects for each block [21].

The pairwise inconsistency detector, on the other hand, takes two candidate

nodes and verifies whether they come from the same source. Our discussion in

Chapter 3 have been centered around the Camera Response Function (CRF) based

inconsistency checking [19, 20], however other cues such as the difference between

lighting directions of two distinct pixels or the distance between demosaicking filter
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coefficients of two distinct blocks are also possible.

These two classes of detectors are of different natures and complement each

other. While the single node authenticity score is sometimes informative enough

to determine whether the node belongs to the authentic or tampered area, in most

cases it is advantageous to incorporate inconsistency information since the individual

authenticity detector is never ideal. Similarly, the authenticity detectors can often

provide significant aid when inconsistency detectors perform less than satisfactory.

There are additional advantages by fusing multiple cues. As different detectors

explore different stages of the image formation process, if an image lacks certain

cues, the corresponding detector would not be of use and other detectors need to

be incorporated for a correct decision. For example, a spliced image may be cre-

ated with two source images of similar JPEG quantization settings but very different

cameras. In this case, the splicing will be successfully detected by the CRF inconsis-

tency checker but not the DQ detector. We thus benefit from having both modules

at hand since the detection would have failed completely if only the DQ detector

is available. Also, if one detector outputs noisy, erroneous scores, having other de-

tectors at hand makes it possible to correct such unreliable decisions. Therefore,

the advantage of fusion is twofold: by making different modules work together, we

are able to handle images which have undergone diverse types of tampering and we

are also able to obtain detection accuracies beyond the level achieved by individual

detectors.

Before delving into our fusion framework, we review below two representative

detectors from different categories: single node authenticity scores via the Double

Quantization (DQ) detector and pairwise inconsistency scores via the Camera Re-

sponse Function (CRF) inconsistency checker. Although they have been described

in Sec. 2.3.1 and Chapter 3, respectively, it is beneficial to briefly repeat the discus-
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sion such that their roles within the fusion framework are better understood. It is

worth noting that although we use DQ and CRF consistency as examples, this fusion

framework is never restricted to these specific modules. Other detectors utilizing

different cues can be easily incorporated.

4.1.1.1 Single Node Authenticity Score: Double Quantization

The Double Quantization (DQ) detector discussed in Sec. 2.3.1 explores the hidden

traces of image tampering left in the widely used JPEG image compression format.

As shown in Fig. 4.1a (also refer to Fig. 2.28 in Sec. 2.3.1), most spliced images are

created using two source images, which are often both stored in the JPEG format.

After splicing, the spliced image is also stored in JPEG format with a second set

of quantization setting applied in addition to the original setting. Therefore, the

Double Quantization (DQ) effect can be found in the DCT transform coefficient

histograms of the background area since the DCT block structure is not changed

and the DCT coefficients of each block are quantized twice. Such effect results in

periodical peaks and/or valleys as opposed to the smooth patterns in the distribu-

tions commonly observed. It will not appear in the foreground areas which either

have been quantized only once or have a mismatched block structure from that of

the background areas. The block structure used in the second compression process

is different from that used in the first one. Examples of singly and doubly quantized

coefficient histograms are shown in Fig. 4.1b.

By detecting abnormal histogram shapes, one can distinguish which 8x8 DCT

blocks have been quantized only once and which have been quantized twice [21].

The output is a likelihood map measuring the probability of the DQ effect. Usually

the foreground object is of lower DQ scores and background of higher scores, how-

ever this can be reversed because it is possible that the foreground was quantized
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Figure 4.1: Illustration of DQ effect (a) scenario (b) DCT coefficient histograms of
authentic background and spliced foreground areas [21].

twice but not the background. A further adaptive binary thresholding scheme was

proposed in [21] to obtain a hard segmented foreground object, however in our fu-

sion work we will use the raw probabilistic authenticity scores without thresholding.

Each 8x8 block is associated with one DQ score between [0, 1] and we will refer to

it as ai (for i-th block in the image) in the following sections.

4.1.1.2 Pairwise Inconsistency Scores: Camera Response Function

The inconsistency checking algorithm in Chapter 3 [19, 20] is used as our incon-

sistency score generator. It is built upon one specific type of device characteristics

- Camera Response Function (CRF), the concave point-wise function mapping in-

coming irradiance to cameras to the final intensity data stored in the output image

(Sec. 2.2.3). The hypothesis is that different areas within a spliced image should

exhibit dissimilar CRF attributes if they come from different sources. Such incon-
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Figure 4.2: Pairwise inconsistency scores are generated by cross fitting Camera
Response Functions to Locally Planar Irradiance Points from adjacent areas.

sistency can be successfully revealed through cross fitting, statistically classifying

a boundary segment between two neighboring image areas as authentic or spliced.

The cross fitting scheme is illustrated in Fig. 4.2.

The Locally Planar Irradiance Point (LPIP) based CRF estimation proposed in

[34] and Support Vector Machine (SVM) classifiers were used in the inconsistency

checking algorithm. When splicing is present, not only the CRFs from two areas are

expected to be dissimilar, but the LPIPs extracted from the boundary segment are

also expected to be anomalous. The feature vectors fed into SVM classifiers were

designed based on these two hypotheses. The statistical classification is conducted

on each of the boundary segments produced by manual or automatic image seg-

mentation, after which all segment level scores are aggregated into an image level

decision, declaring an image as authentic or spliced.

Results in Chapter 3 have shown the success of the inconsistency checking al-

gorithm. The precision and recall at segment and image levels over a basic image

set are both satisfactory. When generalized to a challenging, heavily post-processed
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data set, a 70% precision and 70% recall at the image level can be achieved without

re-training the classifier. An in-depth study of the cross fitting feature vectors has

also been conducted, concluding the anomaly induced by splicing boundaries as the

most dominant factor for successful detection.

Unlike single node authenticity detectors, the output of such inconsistency check-

ing is associated with two neighboring areas, indicating their inconsistency relation.

The segment level classification scores will be used as the inconsistency scores within

the fusion framework. Note it is applicable on arbitrarily shaped image areas, de-

pending on the segmentation outcome. These inconsistency scores also fall within

the range [0, 1] and will be referred to as cij (between the i-th and j-th blocks) later

in this chapter. The higher cij, the more likely the boundary between the areas is

caused by splicing.

4.1.2 Challenges for the Fusion Task

The objective of the fusion task is shown in Fig. 4.3. By integrating single node

authenticity scores with pairwise inconsistency scores, we seek to obtain a better

decision, both correctly identifying the image as authentic or spliced and accurately

locate the spliced object if it is present.

Although the diversity across multiple detectors provides the opportunity to

improve detection performance, it is also where the main challenge lies. As different

detectors are developed based on distinct physical motivations, their outputs are

often concerned with cues of different natures and cannot be directly combined.

Furthermore, different detectors report decisions based on different segmentation

structures. For instance, the DQ detector computes one score for each 8 pixel by 8

pixel DCT block while the CRF inconsistency scores are assigned to two arbitrarily

shaped areas sharing a common boundary.
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Figure 4.3: The proposed framework fuses individual tampering detection scores to
infer the likely splicing boundary.

As such, a more sophisticated framework is needed to take into account the

different natures and different structures of the detector outputs to be fused. The

objective of this chapter is to develop a sound and effective framework that addresses

these challenges.

The rest of this chapter is organized as follows. In Sec. 4.2, the problem for-

mulation is presented. We propose a Random Field based solution. Variations

of Random Fields including traditional Markov Random Field (MRF), Conditional

Random Field (CondRF) and Discriminative Random Field (DRF) will be discussed

from Sec. 4.2.1 through Sec. 4.2.5, along with an unconventional, non-strict Markov

edge structure to better utilize our inconsistency detector outputs. The DRF will

be adopted as our final fusion framework and its learning process will be discussed

in Sec. 4.2.6.

Experiment setup and the issues to be investigated will be described in Sec.

4.3. The power of multiple cue fusion over single cue detection will first be verified

in Sec. 4.3.2, with an in-depth examination of the effect of authenticity scores in
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Sec. 4.3.3. Sec. 4.3.4, on the other hand, explores the implications of the current

inconsistency score formulation and Sec. 4.3.5 presents an adaptive fusion method

to account for content variation in different images. Besides the average detection

accuracy, we also apply statistical significance tests to validate the results, as will

be explained in Sec. 4.3.6. Experimental results are presented in Sec. 4.4. Finally,

Sec. 4.5 concludes this chapter.

4.2 Problem Formulation

We formulate the fusion task as a labeling problem and introduce variations of

solutions based on Random Fields (RF). The detector outputs are treated as obser-

vations and used to recover hidden labels indicating whether each block in the test

image belongs to the foreground spliced object or the authentic background [58].

4.2.1 Fusion as a Labeling Problem

In a typical labeling problem, each node i is associated with a binary label yi which

takes on values {−1,+1}. These labels are usually hidden and unobserved. What is

observed is the noisy single node signal xi at node i and pairwise signal zij between

nodes i and j. The labeling problem starts with observations x, z and attempts to

recover the unknown labels y. A 2D labeling problem is illustrated in Fig. 4.4.

Within our fusion context, the single node xi’s will be the single node authenticity

scores ai’s and pairwise zij’s our inconsistency scores cij’s. Note the xi’s and zij’s

do not necessarily consist of just one channel. There can be multiple single node

scores and multiple pairwise scores from different detectors. In such case, all single

node scores will be aggregated to form a vectorized representation xi. All pairwise

scores will form a vectorized zij.
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Figure 4.4: A labeling problem with single node and pairwise observations.

To reconcile the differences in image segmentation used by different detectors, the

finest granularity among all detector outputs will be adopted as the corresponding

entity of a node. In this chapter, since the DQ detector and the CRF inconsistency

checker are used, we use the fixed size 8x8 pixel blocks of the DQ detector output as

the common data unit since the arbitrarily shaped segmented areas from the CRF

checker are usually larger than an 8x8 block. Under this setting, the DQ score ai

is readily computed for each block, while the CRF inconsistency score cij between

two given blocks can be assigned using the score between the two areas that contain

these blocks. If a block is ill-defined, i.e., it sits across two adjacent areas, then it is

grouped into the area that occupies the larger portion of this 8x8 block.

4.2.2 Markov Random Field

Markov Random Field (MRF) offers well established theories for solving labeling

problems and can be viewed as the 2D version of Markov Chains [59]. The most

common form of MRF is a generative formulation, characterizing the observations

based on hidden class labels. The observation on each node xi is influenced by

its hidden label yi (usually through an emission probability model p(xi|yi) whose
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parameters will be found in the random field optimization process) while its hidden

label yi is influenced by hidden labels yj’s at other nodes (through predetermined

prior probabilities p(yi, yj),∀j 6= i). In general, yi is conditioned on all other yj’s.

However such exhaustive enumeration would lead to models that are too complex.

Therefore, the dependence of yi is usually modeled only on its neighboring nodes.

For a model that can be reduced to neighboring node dependence, it is said to

satisfy the Markov property, as expressed in the following equation:

p(yi|yj, all j 6= i) = p(yi|yj, j ∈ Ni) (4.1)

whereNi denotes the neighborhood of node i. For a model with Markov property,

it is enough to predict the information at node i only based on its neighboring nodes.

There is no need to observe all nodes in the network.

When used as the solution to a labeling problem, the MRF formulation looks for

maximum a posteriori (MAP) labels y based on single node observations x. Below

shows a commonly used form:

ŷ = arg max
y

p(y|x) = arg max
y

p(x|y)p(y)

= arg max
y

∏
i

p(xi|yi)
∏
i,j

p(yi, yj) (4.2)

where the overall posterior probability of a set of labels y is factorized into the

emission terms p(xi|yi) and the prior terms p(yi, yj). Gaussians or Mixture of Gaus-

sians are widely used for the emission term, while the prior is often predetermined

according to applications. A common assignment is a smoothness constraint that

favors yi = yj and penalizes different labels at neighboring nodes, yi 6= yj. Each

factorized prior term is defined on a clique where every pair of nodes within the
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clique are neighbors of each other. In a 2D field, the 4-neighbor and 8-neighbor

systems are most frequently used. They both lead to a clique structure of size 2,

i.e., each clique consists of two nodes that are immediate neighbors of each other.

The resulting edge structure is therefore between immediate horizontal or vertical

neighbors (termed 2-cliques), as shown in Fig. 4.5a.

As the exact MAP solutions for hidden labels y in Eqn. (4.2) is only obtainable

under certain restrictions (e.g., Graph Cuts [60, 61, 62, 63]) and is generally in-

tractable, there have been a significant number of approximate solutions, including

the traditional simulated annealing, Mean Field (MF) and Loopy Belief Propaga-

tion (LBP) [64, 65]. The MRF framework has also been widely used in the image

processing community, solving problems as texture analysis, image segmentation

and object recognition [66, 67].

For our fusion framework, the traditional MRF is not directly applicable and

several revisions need to be made. The seemingly elegant edge structure has to

be relaxed in order to incorporate the nature of our inconsistency scores and the

generative formulation can be further modified to control model complexity. These

revisions will be described in details in the following subsections.

4.2.3 Unconventional Edge Structure

Although the Markov assumption mentioned in the last subsection greatly simplifies

the random field model, in our fusion work it might not be entirely advantageous. As

our inconsistency scores cij’s are defined across all possible pairs of nodes, restricting

the spatial dependence to 2-cliques fails to capture the effect of remote neighbors

on the current node and thus weakens the overall spatial constraints. Therefore we

revise the 2-clique edge structure and relax the Markov assumption in order for our

inconsistency scores cij’s to be fully utilized.
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Figure 4.5: Edge structures (a) traditional MRF (b) relaxed structures that link
non-adjacent blocks across the segmentation boundary (c) relaxed structures that
link blocks within same area

Fig. 4.5 shows an illustrative example on a 24-block (4x6) image segmented into

3 areas, denoted by nodes with 3 different shades. As shown in Fig. 4.5a, traditional

MRFs are built only upon neighboring blocks following the Markov assumption on

4-neighbor and 8-neighbor systems. Under such structure one would assign the

inconsistency scores cij associated with each color coded boundary segment only to

the 2-clique edges directly across the boundaries (color dashed lines in Fig. 4.5a)

and inconsistency scores of zero between 2-cliques in the same area. It is clear

that the amount of inconsistency information carried by these edges is too little to

achieve effective fusion over the entire image.

Recall our inconsistency scores cij are defined across segmentation boundaries.

As long as there is a score for the boundary segment between two areas, any block

pair from these two areas has a well-defined cij, even though these two blocks might

not be neighbors of each other (Fig. 4.5b). In the relaxed version, for any two
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areas with a shared boundary (e.g., black and gray sharing the pink boundary),

we randomly sample a number of block pairs and assign the cij associated with

the shared boundary to these block pairs (Fig. 4.5b, color coded in the same way

as the boundaries). For block pairs within the same area (Fig. 4.5c), we make a

simple assumption to trust the image segmentation results and consider them as

strictly consistent with each other, with 0 as their assigned cij’s. Note the number

of randomly sampled edges is controlled to be much less than the total number of

all possible block pairs so that the model complexity is still manageable.

4.2.4 Conditional Random Field

In the context of graphical model, the MRF is associated with a strict directed

graph structure. Fig. 4.6a illustrates the 1D version, Hidden Markov Model (HMM)

along with other variations. The generative nature of HMM and MRF leads to an

optimization of the joint probability, requiring enumerations of all possible label

sequences. This intractability has motivated an alternative formulation of Markov

networks and change of the underlying optimization process.

The first variation is the Maximum Entropy Markov Model (MEMM) introduced

in [68] (Fig. 4.6b) where the dependency between labels and observations is reversed

and the MAP criterion is replaced by the maximum entropy criterion. This model

removes the generative property and instead adopts a conditional framework. How-

ever the directed graph structure is still too restrictive, ignoring the possible effect

of later data on earlier inference results. This is known as the label bias problem.

In a text sequence example given in [69], suppose there are two models ”rib” and

”rob” to choose from, where ”rib” has been observed three times more frequently

than ”rob”. If the observation is ”rib”, the fact that the second observation is ”i”

does not influence the inference of the first label ”r”. Both models ”rib” and ”rob”



118
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Figure 4.6: Random Field progression illustrated in 1D (a) traditional HMM (b)
MEMM introduced in [68] (c) Conditional Random Field [69].

will be equally probable, i.e., each with probability 0.5.

A further revision has been proposed to alleviate this problem. It removes the

directed dependency in the graph structure and hence creates a more relaxed con-

ditional formulation. This is known as the Conditional Random Field (CondRF)

and is illustrated in Fig. 4.6c [69]. It results in the influence of later observation on

earlier labels. Take the previous text sequence example. The CondRF formulation

will look at the second observation ”i” and determines it should propagate back its

effect to the first label. It determines that the chance of choosing ”rib” should be

three times higher than choosing ”rob”. In other words, in CondRF, all observations

will affect all parameters and all inferred labels, no matter they happen before or

after the time instance in question.

We summarized the migration from generative models (traditional MRF) to

discriminative models (MEMM, CondRF) in these two sections. Note the pros and

cons of discriminative versus generative formulations have been a classic debated

topic under the graphical model context. They each have their own merits and

should be employed according to the applications in question. Also, they do not

entirely conflict each other. In fact, there has proven to be shared links under certain

circumstances. Further study can be found in [70].
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4.2.5 Discriminative Random Field

The migration from traditional MRF to CondRF has offered a suitable solution

for our fusion task. The CondRF removes the emission probability p(xi|yi). It

also changes the optimization criterion to maximum conditional probability p(y|x),

implicitly relaxing the strict dependency between labels and observations at the

same instance. It is shown as the undirected graph structure in Fig. 4.6c as opposed

to the directed graph structures of HMM and MEMM in Fig. 4.6a and 4.6b.

There is still one issue to be resolved in the CondRF. So far the spatial relations

are only considered between hidden labels and are modeled as prior terms, enforcing

penalties in the label domain. In our fusion task, however, the inconsistency scores

cij’s are defined in the observation domain. An appropriate model should include

such ”inconsistency observations” and utilize this information to determine the op-

timal hidden labels. This has led us to a slightly different framework, Discriminative

Random Field (DRF) [71], an extension of the Conditional Random Field family.

The DRF model has been used to classify the image content in fixed size blocks in

an image as natural or human-made. It can be defined as

ŷ = arg max
y

p(y|x, z)

= arg max
y

∏
i

p(yi|xi)
∏
i,j

p(yi, yj|zij) (4.3)

Note the optimization objective of the DRF is the same as traditional MRF: it

looks for the optimal MAP labels y. The difference, however, is that it models

the posterior probabilities p(yi|xi) and p(yi, yj|zij) directly. This avoids the extra

marginalization step when the random field is modeled in the generative domain

but inferred in the posterior domain, as in the traditional MRF. It also includes
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the inconsistency scores as a second set of observations z in addition to single node

scores x, making the model consistent with the optimization objective.

For posterior probabilities on single node and pairwise observations p(yi|xi) and

p(yi, yj|zij), we use logistic models as in the original DRF work proposed in [71].

They are parameterized by vectors w and v:

p(yi|xi) = (1 + e−yiw
T xi)−1 (4.4)

p(yi, yj|zij) = (1 + e−yiyjv
T zij)−1 (4.5)

This choice has been theoretically justified in that the logistic model is a natural

form of posterior probabilities if the emission probability belongs to the exponential

family [72]. As most real world data roughly follows exponential family distributions,

it is a sensible choice to use logistic models for posteriors.

In this work, since we are using only one detector for authenticity scores and

one for inconsistency scores, both the single node observation vector xi and the

pairwise observation vector zij are of dimension 2: xi = [1, ai]
T , zij = [1, cij]

T .

The scalar 1 at the first feature dimension accounts for any potential bias within

ai or cij values. Namely, if all ai’s, including those of class −1, are concentrated

around higher values, the first feature dimension allows the DRF to learn an adaptive

cutoff point distinguishing these two classes rather than bluntly assuming a constant

cutoff point (e.g., the midpoint 0.5 for a dynamic range of [0, 1]) for all sorts of

data. The observation vector representation also makes this DRF framework readily

expandable. If in the future the number of detectors is to be increased, one would

only need to append additional scores to xi or zij to obtain higher dimensional

observation vectors. The formulation and learning process would stay unchanged.
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4.2.6 Learning of Discriminative Random Field

Having identified the DRF as an appropriate framework for our fusion task, we

now discuss its learning process. For such unsupervised learning, the Expectation-

Maximization (EM) algorithm is a theoretically justified solution, where one set of

variables are optimized in the Expectation step (E-step) through the computation

of expected values and the other in the Maximization step (M-step) through max-

imum likelihood [73]. Depending on specific models at hand, one may encounter

intractable forms in either the E-step or M-step. Proper approximations are there-

fore needed. Such inexact EM algorithms are termed Variational EM. A summary

of approximation methods can be found in [74].

The learning process can also be divided into parameter estimation and inference

steps according to the optimal variables in question. The parameter estimation is

concerned with model parameters and corresponds to the M-step if the EM algo-

rithm is used. The inference step looks for optimal hidden labels and corresponds

to the E-step. Such separation may not always be valid, since the usage of E-step

and M-step in the EM algorithm is often adapted based on various objectives. How-

ever in most unsupervised learning problems this is often valid, including the DRF

learning in our fusion task.

Under our problem setting, there is intractability in both the E-step and the M-

step. In the E-step, the optimal hidden label at instance i is inferred by computing

the expected value of yi, therefore the conditional (or posterior) distribution p(y|x)

is needed. The conditional distribution is obtained from the joint distribution p(y,x)

through a marginalization step, as shown in the following equation:

p(y|x) =
p(y,x)

p(x)
=

p(y,x)∑
y p(y,x)

(4.6)
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The marginalization
∑

y p(y,x) is where the difficulty lies since it involves an ex-

haustive enumeration of all possible y’s. Besides the intractability in the E-step,

the lack of a parametric close form in the M-step also gives rise to numeric solutions

seeking maximum likelihood parameters. In such numeric solutions, the gradient

functions do not have a close form and additional approximations are needed.

The empirical study in [75] has investigated several options to approximate the

parameter estimation step (the M-step) in DRF learning, including Pseudo-Marginal

Approximation (PMA), Saddle Point Approximation (SPA) and Maximum Marginal

Approximation (MMA). It has been shown that the learning results are the best

when E-step and M-step are coupled. Two combinations satisfy this criterion: MAP

inference with SPA parameter estimation (the same maximum posterior probability

criterion is used both in the E-step and in the M-step) and MPM inference with

MMA parameter estimation.

Since the focus of this chapter is to properly formulate the fusion problem and

identify suitable solutions, we follow the standard learning procedure for DRFs

rather than pursuing new learning methods. As mentioned above, the learning

process iterates between two steps: parameter estimation step (look for optimal

w, v) and inference step (look for optimal y based on the estimated w, v of the

current step). As the exact MAP solution for y is intractable, we use MF and

LBP as inference engines. Among these two options, LBP achieves higher inference

accuracy and better convergence behavior, therefore we report results based on LBP

only. We use the open source CRF2D toolbox implemented by [76].

The learning procedure is outlined as follows:

1. Randomly initialize parameters w and v

2. Based on current parameters ŵ, v̂, infer labels ŷ
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3. Based on current labels ŷ, update parameters ŵ and v̂

4. Iterate between steps 2 and 3 until convergence

The learning process stops when the number of iterations reaches certain limits

(e.g., 5). Thanks to the LBP inference engine, we have observed that most test cases

converge quite early, usually by the third run. Note the above learning process is

completely unsupervised. There is no need for annotation of training sets. Given

a new test image, the optimal parameters and the inferred labels are estimated

without any prior knowledge of the label distributions.

4.3 Experiment Setup

This section presents the experiment setup for DRF based fusion. Besides verifying

the improved performance of fusion over individual detector, several related issues

are also explored. The Basic Data Set mentioned in Sec. 3.3.1 is used in this work,

with additional JPEG compression and re-compression processes to generate DQ

scores. The benchmark performance of DRF fusion is first given in Sec. 4.3.2 by

comparing splicing detection results from fusion against those using the DQ detector

only. The dominance of DQ scores in the fusion results is then explored in Sec. 4.3.3.

Secs. 4.3.4 and 4.3.5 further evaluate the proper usage of DRF in two different

aspects: how valid it is to impose the zero inconsistency constraint between blocks

in the same segmented area and whether there exist universal optimized parameters

regardless of the variations of image content.

4.3.1 Data Set

The experiments in this chapter are all performed on the Basic Data Set mentioned

in Sec. 3.3.1. These images are taken with four cameras: Canon G3, Nikon D70,
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Canon EOS 350D, and Kodak DCS330, ranging from low-end point-and-shoot mod-

els (Kodak DCS330) to high-end DSLR models (Nikon D70, Canon 350D) so that

diverse image quality and camera settings can be ensured. Each spliced image has

content from exactly two cameras, with visually salient objects from one image

copied and pasted onto another using Adobe Photoshop without post processing.

The images are originally stored in the uncompressed TIFF format and therefore

not associated with any DQ detection output. To generate their DQ scores, we

add the JPEG compression into the original splicing pipeline. We first compress

authentic images with a lower quality factor (Q=70), copy and paste the foreground

object, then re-compress the spliced images with a higher quality factor (Q=85).

These quality factors are chosen following the settings used in [21] and are supported

by human behavioral patterns in the tampering occasion. In real world scenarios, a

tampered image is usually created from source images from the internet, typically

of lower quality and low Q factors. After tampering, the aim is usually to make the

tampered image in good visual quality, hence the high Q factor.

Typical image sizes range from 757x568 to 1152x768 pixels. This results in 94x71

(a total of 6674) to 144x96 (a total of 13824) 8x8 DCT blocks within each image.

The number of randomly sampled cij edges is fixed regardless of image size. We

select 250,000 block pairs across segmentation boundaries and 250,000 for block

pairs from the same segmented area. The computation time varies depending on

convergence speeds. A random field of this size can take 10 minutes or as long as

60 minutes to reach a steady state on a 2GHz quad core CPU machine.

The DQ scores ai’s are generated over 8x8 DCT blocks and the inconsistency

scores cij’s from the CRF checker are associated with boundary segments between

adjacent, arbitrarily shaped areas. As discussed in Sec. 4.2, the finest segmentation

granularity (in this case 8x8 DCT blocks) will be used as the labeling unit. The cij
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of a block pair is then defined as the inconsistency score of the boundary separating

the areas that contain the two blocks. If they belong to the same area, their cij is

assigned to be zero, implying exact consistency between each other.

The original data set consists of 180 spliced images, however in the construction

of SVM based inconsistency classifiers, 90 were used as training images and 90 as

test images. In this fusion work, we experiment with 90 test images only and discard

the training images so that we can evaluate the generalization capabilities of the

proposed solution.

4.3.2 Fusion vs Single Node

The first and foremost question to be answered is the advantage of fusion over single

detectors. For single node detector setting, only the DQ scores are employed. The

edge structure between pairs of blocks are retained, however all inconsistency score

cij’s are assigned to be 0.5 (including the enforced zero cij’s between blocks from the

same segmented area), the midpoint of the dynamic range [0, 1] of cij’s, implying

its neutral role in the inference process such that no pair of labels would be moved

toward the consistent or inconsistent class.

The performance will be evaluated by the inference accuracy, i.e., percentage of

correctly inferred labels within the image. This evaluation metric carries information

about both successful splicing detection and accurate localization of the spliced

object. To eliminate the dependency of inference results on parameter initialization,

we run 5 different w, v initializations for each image and report the average accuracy

across these 5 runs. Statistical significance tests are also conducted to demonstrate

consistent performance gains of the fusion method.

Three settings are tested: fusion with random parameter initialization, fusion

with parameters initialized with DQ optimized output, and DQ with random pa-
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rameter initialization. While the final setting is obviously the baseline with only

single node scores, the first two settings assess the advantages of fusion in different

aspects. Fusion with random initialization corresponds to the scenario where two

detectors are used in parallel, which in most cases is the most likely implementation

in practice. Under the second setting, the user initially has only one single node de-

tector and therefore runs the model optimization based on the limited information

at hand. At a later time, an additional set of observations from another detector

becomes available and the priorly optimized model is refined. In this case these two

detectors are cascaded to form the fusion machinery. Both settings are expected to

outperform the individual DQ only detector.

4.3.3 Dominance Level of Single Node Scores

Besides verifying fusion is indeed advantageous over the individual detector, we also

study the dominance level of DQ scores in the overall fusion scheme. For this, we

conduct a series of experiments to simulate various levels of degradation.

We apply additive Gaussian noise of two different variances (σ2=0.3, 0.5) to the

DQ scores and observe how the fusion performance is affected by such moderate

and heavy noise. If poor quality DQ scores do not lead to poor fusion results, then

there is reasonably low dependence on single node scores. However if the aggregated

fusion machinery is strongly dependent on the performance of a particular detector,

then the fusion system fails to achieve robustness by using different components to

compensate the deficiency of each other.

4.3.4 Enforced Consistency Assumption

The second issue to explore is the strict consistency assumption on block pairs

within the same segmented area. Recall in Sec 4.2.3, the actual CRF inconsistency
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scores computed from statistical classifiers are used for block pairs belonging to two

different areas, and the cij’s between block pairs in the same segmented area are

enforced to be zero.

The underlying assumption of such assignment is that image segmentation is

trustable and consistent blocks are grouped into the same segmented area. However

this assumption may not be valid - the fact that two blocks belong to the same

segmented area does not guarantee their source consistency. The automatic seg-

mentation process may miss the actual splicing boundary and thus blocks in the

same segmented area may still come from different sources. One alternative is to

consider cij’s between such block pairs as unobserved rather than zero.

To study the effect of such assignment, we drop these edges in the random field

and only keep cij’s across segmented boundaries. The underlying principle is to

”only use observed, meaningful inconsistency scores without excessively extrapo-

lating scores that are unobserved”. If such test leads to better detection, we may

conclude that we should only use trustable information at hand. If inference results

reveal that the enforced zero cij’s are crucial to successful detection, it implies we

should place a strong reliance on the image segmentation component, although such

enforcement might initially appear overly confident.

4.3.5 Image Specific Adaptation of the DRF Model

This subsection is concerned with the consistency of the learned DRF model over

different image content. Namely, for different images of different content, will their

learned parameters w and v be significantly different from each other?

We answer this question through a controlled experiment. The 90 spliced images

are partitioned into a training set and a testing set. One set of optimal DRF

parameters w and v is learned from all the images in the training set. The estimated
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w and v are then applied to the images in the testing set inferring their hidden labels

y. If the DRF parameters are optimal across images of diverse contents, the inferred

labels should be highly accurate.

Each partition consists of 75 training images and 15 testing images. A total of

6 partitions are formed from the 90 spliced images, resulting in 6 runs of validation

experiments. Within each partition, 5 random initializations of w and v are applied.

The average accuracy over these 5 initializations is reported for each test image.

Results will be shown in the next section and this supervised setting will prove

to be less effective than its unsupervised counterpart. Therefore there is no single

general DRF suitable for images of diverse content. Instead, it will be beneficial to

learn one specific set of parameters w and v for each image.

4.3.6 Statistical Significance Tests

In this subsection we incorporate statistical significance tests to verify the validity

of the comparison of average inference accuracies.

Statistical significance implies that the difference between two sets of measure-

ments does not happen by chance. Such tests are carried out through the calculation

of a p-value from these two measurement sets in order to decide whether the null

hypothesis (two measurement sets are not different) can be rejected. The interpre-

tation of the p-value is the probability of observing these two sets of measurements

given the null hypothesis is true, where the null hypothesis refers to the two sets

coming from the same distribution, hence an insignificant difference. Therefore, the

fact that the two sets of measurements are different in a statistical significant sense

translates to a low p-value and a rejection of the null hypothesis.

The p-value is often reported with a critical value, e.g., 5%, 10% or 15% to deter-

mine whether the null hypothesis can be rejected with a certain level of confidence.
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For example, if the p-value is lower than the 5% value, then it is safe to reject the

null hypothesis at a 95% confidence level.

Let αi,1, ...αi,5 be the inference accuracies of the i-th image from run 1 to run 5

under the first experiment setting and βi,1, ....βi,5 the accuracies of the same image

from run 1 to run 5 under the second experiment setting (each run accounts for

a different DRF initialization). We ask whether the α’s are different than the β’s

in a statistically significant sense. An appropriate significance test for our scenario

needs to satisfy several necessary conditions. First, it has to accommodate a paired

test setting, i.e., αi,1 is to be compared with βi,1 but not with βi,2, ....βi,5 since αi,1

and βi,1 are obtained from the same DRF initialization. Second, it has to be able to

test dependent measurement sets, i.e., βi,1 is dependent on αi,1 and βi,2 dependent

on αi,2.... so forth. Finally, it is ideal if the test does not assume any form of

distribution, e.g., Gaussian distribution of the measurements, so that it is generally

applicable regardless of the behavior of our data.

Although the Student’s t-test [77] has been a widely used significance test tool,

its inherent independence and Gaussianity assumptions are not adequate for our

case. To properly address the conditions mentioned above, we adopt Wilcoxon’s

signed rank test instead [78]. This test relaxes both assumptions: each pair of mea-

surements can be dependent on each other and the distribution of each measurement

set does not have to be Gaussian. It is conducted in the two-way setting, i.e., it

tests if α’s are significantly different than β’s, whether it is a ”greater than” relation

or a ”less than” relation. One test is performed for each image. It starts by taking

the signed difference between two paired measurements, ranking absolute values of
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such differences, then applying the signs back onto the ranks:

δi,k = αi,k − βi,k, k = 1....N

unsigned rank z̃i,k = rank(|δi,k|) (4.7)

signed rank zi,k = sign(δi,k)z̃i,k (4.8)

sum of signed ranks Zi =
∑
k

zi,k (4.9)

where N is the total number of measurements in each set (5 in our case) and i is the

index of the test image. Intuitively, if these two sets of measurements are from the

same distribution, there should be roughly same amounts of negative and positive

δ’s (in terms of the numbers of negative and positive entries and also the aggregated

mass at each side). It introduces approximately equal mass at the negative side of

z’s as the positive side and a final sum Z that is very close to zero. The other

extreme is when two measurement sets are significantly different. If all δ’s are

positive (implying all α’s strictly greater than β’s), Z will be the sum from 1 to N ,

a value of N(N + 1)/2, the largest possible value for Z. Also if all α’s are strictly

less than β’s, Z will take on the smallest value −N(N + 1)/2.

It is clear that Z is a function of the total number of measurements N . It is also

a random variable. When N is large, it can be well approximated by a Gaussian

distribution with zero mean and variance:

µZ = 0, σ2
Z =

N(N + 1)(2N + 1)

6
(4.10)

The final step of the Wilcoxon’s test is to compare Z against this Gaussian distri-

bution and determine whether Z falls into the far tail of the distribution, reported

through the p-value (when N is small, the Gaussian approximation is not valid and
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the p-value would be obtained through a lookup table, e.g., when N=5 in our case).

If it does, the p-value would be small, implying low possibility of observing the

current Z given the null hypothesis is true.

As we have 90 spliced images, we have 90 p-values for each pair of experiment

settings. To arrive at a final conclusion whether the first setting is better than

the second over all test images, we need to fuse these p-values. This can be done

by meta-analysis, among which we adopt a commonly used method called Fisher’s

combined probability test given as follows [79]:

χ2
2I = −2

I∑
i=1

log(pi) (4.11)

where pi is the p-value from Wilcoxon’s test of the i-th image, I the total number of

images (I=90 in our test). The variable χ2
2I follows a chi-square distribution with

2I degrees of freedom. The final meta analysis p-value pmeta is then obtained by

using Fχ2(χ2
2I), the cumulative distribution function of the chi-square distribution:

pmeta = 1− Fχ2(χ2
2I) (4.12)

The most dominant assumption behind Fisher’s method is the independence be-

tween each test, which we consider to be valid in our scenario since every Wilcoxon’s

test is performed on a test image whose content is unrelated to any other image.

The quantity pmeta will be referred to as the meta analysis p-value in the following

sections. It is also compared with a critical value, usually 5%, to determine the

validity of the null hypothesis. This significance test setting starting from the com-

putation of p-values of each image and finally deriving a meta analysis p-value will

be termed the small pool test.
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It is also possible to treat the inference accuracies from all 90 images under

one experiment setting as a large measurement pool. The Wilcoxon’s test is then

conducted across two pools both of sizes 5x90=450 and one single p-value is obtained

from all 90 images without any meta-analysis. This will be referred to as the large

pool test in the following sections.

4.4 Experimental Results

All experiments are conducted on the Basic Data Set as mentioned in Sec. 4.3.1.

Results will be reported in this section in the same order as the previous section.

The advantage of fusion over single node scores is first demonstrated in Sec. 4.4.1

with both parallel and cascade fusion settings. Sec. 4.4.2 explores the dominance

level of single node scores in the overall fusion scheme, determining the extent the

fusion relies on this particular detector. The results validating the enforcement of

zero cij’s on block pairs within the same area are presented in Sec. 4.4.3, followed by

the supervised results in Sec. 4.4.4 to verify whether the optimized DRF model is

general for images of different content. These results and findings will be summarized

in the final subsection, Sec. 4.4.5.

4.4.1 Fusion vs Single Node

As mentioned in Sec. 4.4.1, the advantage of fusion is verified through three ex-

periment settings: fusion with random initialization (parallel fusion), fusion with

DQ initialization (cascade fusion) and individual detector (DQ only). Inference ac-

curacies for 90 test images are shown in Fig. 4.7. For every image, the detection

accuracy is averaged over 5 different initializations.

With only the DQ detector, the baseline average accuracy across all 90 images
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Figure 4.7: Impact on inference accuracy of fusion and DQ only settings. (a) images
1∼45 (b) images 46∼90 (average accuracy over 90 images: parallel fusion 83.49%,
cascade fusion 81.71%, individual detector 80.87%)

is 80.87%. If this optimized DRF model is used as the initial point from which

inconsistency scores are included for further refinement (cascade fusion), a better

accuracy 81.71% can be achieved. The best setting among the three is however fusing

these two sets of scores in a parallel way, learning the optimal DRF parameters from

a randomly initialized point. The average accuracy is boosted to 83.49%. Among

these 90 images, the most significant improvement can be as high as 18.44% on an

absolute basis. (Another random guess baseline using the probability of the portion

of foreground labels over the entire image gives us a 79.14% accuracy.)

The performance gain of parallel fusion over DQ only is also supported by the

statistical significance test results: meta analysis p-value = 0.0043, large pool p-

value = 1.5818×10−17 as in Fig. 4.8a.

The two fusion settings, on the other hand, do not appear to differ significantly.

As shown in Fig. 4.8b, the p-values are not concentrated around the lower end

and the p-values do not fall under critical values of 5%, 10% or 15% (meta analysis

p-value = 0.3987, large pool p-value = 0.4580). This suggests that the performance
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Figure 4.8: Histograms of p-values (a) parallel fusion > DQ only? meta analysis
p-value = 0.0043, large pool p-value = 1.5818×10−17 (b) parallel fusion > cascade
fusion? meta analysis p-value = 0.3987, large pool p-value = 0.4580 (c) cascade
fusion > DQ only? meta analysis p-value = 4.5641×10−5, large pool p-value =
7.2049×10−10.

gain is largely due to adopting the fusion scheme, rather than a specific setting.

The histogram of p-values testing cascade fusion versus DQ only is shown in Fig.

4.8c. Although cascade fusion is not as good as parallel fusion when measured by

average accuracy, it still outperforms the DQ only detector, reflected through the p-

values even more concentrated around 0. The meta analysis p-value, 4.5641×10−5,
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(e) (f) (g) (h)

Figure 4.9: Visual examples: (a)(e) original test image (b)(f) ground truth label
(c)(g) parallel fusion inference output (d)(h) DQ only inference output

and the large pool p-value, 7.2049×10−10, are both extremely low.

The histograms in Fig. 4.8 verified the performance increase from DQ only to

two fusion settings, demonstrating that including more information is indeed more

advantageous than using only one detector, regardless of how the fusion is arranged.

Fig. 4.9 shows two sets of visual examples. For demonstrative purposes, only

the inference outputs from parallel fusion are displayed here but not the cascade

fusion. It shows that the fusion also leads to more compact inference outcome: the

detected foreground object is connected, rather than the scattered blocks as those

obtained by using the DQ detector alone. This is desirable because in practice, the

spliced object is more likely to be a compact, connected component. In other words,

the advantage of fusion over single node detector is manifested in both improved

detection accuracy and the subjective visual quality.

4.4.2 Dominance Level of Single Node Scores

This section explores how much the overall fusion relies on the DQ only detector.
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We add synthetic Gaussian noise of two variances (σ2 = 0.3, 0.5) to degrade the

DQ scores and observe its impact on the fusion and DQ only experimental results.

Image-wise inference accuracies are shown in Fig. 4.10 and 4.11. With moderate

noise (σ2=0.3 as in Fig. 4.10), there is an equal amount of performance drop in

the fusion and DQ only settings (for fusion: 83.49% to 80.74%, an absolute 2.8%

drop; for DQ only: 80.87% to 78.45%, an absolute 2.4% drop), while for larger noise

(σ2=0.5 as in Fig. 4.11), the performance in the fusion setting suffers much more

than the DQ only setting (for fusion: 83.49% to 75.71%, an absolute 7.8% drop; for

DQ only: 80.87% to 77.17%, an absolute 3.7% drop).

The obtained p-values are shown in Fig. 4.12. As anticipated, after imposing the

first set of noise, fusion still performs better than the DQ only detector though both

have decreased accuracies. The meta analysis p-value is as low as 0.0096 and the

large pool p-value is 3.2941×10−12 (Fig. 4.12a), both confidently rejecting the null

hypothesis. However when the noise becomes too high, fusion is no longer superior

to DQ only, as reflected in a high meta analysis p-value 0.7585 and a large pool

p-value of 0.1643. It is also clear that the p-value histogram in Fig. 4.12b is less

concentrated around low values than that in Fig. 4.12a.

Both sets of results imply that the current fusion framework might have put too

much emphasis on the DQ scores. It is especially obvious on the second set where

heavy additive noise is added. Not only does the fusion accuracy suffers more than

DQ only, but it even drops to a level lower than the DQ only detector. Fusion seems

to be less robust in face of noise interference, suggesting a minimum requirement on

the quality of single node scores in order for fusion to perform well in practice.
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Figure 4.10: Impact on inference accuracy of fusion by simulating additive DQ
noise σ2 = 0.3 (a) images 1∼45 (b) images 46∼90 (average accuracy over 90 images:
fusion with good quality DQ 83.49%, DQ only with good quality DQ 80.87%, fusion
with bad quality DQ 80.74%, DQ only with bad quality DQ 78.45%)
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Figure 4.11: Impact on inference accuracy of fusion by simulating additive DQ
noise σ2 = 0.5 (a) images 1∼45 (b) images 46∼90 (average accuracy over 90 images:
fusion with good quality DQ 83.49%, DQ only with good quality DQ 80.87%, fusion
with bad quality DQ 75.71%, DQ only with bad quality DQ 77.17%)

4.4.3 Enforced Consistency Assumption

This section evaluates the validity of the assumption that block pairs from the same

segmented area are from the same source (thus we may assign zero as their cij’s).
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Figure 4.12: Histograms of p-values (a) fusion > DQ only? (DQ noise σ2=0.3) meta
analysis p-value = 0.0096, large pool p-value = 3.2941×10−12 (b) fusion > DQ only?
(DQ noise σ2=0.5) meta analysis p-value = 0.7585, large pool p-value = 0.1643.

Since the image segmentation might miss some splicing boundaries, it is still possible

that one segmented area consists of contents from different sources.

We test the fusion setting that keeps only the cij’s between different area block

pairs, discarding the zero cij’s from the same segmented area. Inference accuracies

are shown in Fig. 4.13. The average inference accuracy over 90 images drops from

83.49% to 80.25%, even exhibiting no advantage over the DQ detector alone (80.87%

from Sec. 4.4.1). For some images, the degradation can be as dramatic as 39.37%

on an absolute basis.

When comparing these two settings (including versus excluding zero cij’s), the

histogram of p-values from the statistical significance test in Fig. 4.14 concentrates

around 0, indicating the importance of enforced zero cij’s. The meta analysis and

large pool p-values are 0.0032 and 2.1814×10−13, respectively, both extremely low

and confidently rejecting the null hypothesis. Some subjective visual examples are

shown in Fig. 4.15. It is clear by including the enforced zero cij’s, the inference favors
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Figure 4.13: Impact on inference accuracy of fusion with and without enforced zero
cij’s from the same segmented area. (a) images 1∼45 (b) images 46∼90 (average
accuracy over 90 images: fusion with all edges 83.49%, fusion without zero cij’s
80.25%)
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Figure 4.14: Histogram of p-values: fusion, all cij’s > dropping zero cij’s? meta
analysis p-value = 0.0032, large pool p-value = 2.1814×10−13.

same labels for the blocks belonging to the same segmented area, resulting in a more

connected foreground object whose shape loosely follows that of the segmentation

boundary.

The results imply that although same area block pairs do not have properly

defined cij scores, the image segmentation itself can still serve as another source of
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Figure 4.15: Visual examples: (a)(e) original test image (b)(f) ground truth label
(c)(g) fusion, including zeros cij’s (d)(h) fusion, dropping zeros cij’s

inconsistency scores - blocks in the same segmented area are more likely to come

from the same source. Therefore, we are essentially fusing three sets of scores: single

node scores from the DQ detector, neighboring area block pair inconsistency scores

from the CRF checker, and same area block pair consistency scores from automatic

image segmentation.

4.4.4 Image Specific Adaptation of the DRF Model

The final question to be answered is how generalizable the optimized DRF parame-

ters are. This is done through the comparison of the original unsupervised learning

with a supervised test setting described in Sec. 4.3.5.

Inference accuracies are shown in Fig. 4.16. The shared DRF setting hurts the

fusion scheme (83.49% to 82.03%) but is beneficial for DQ only (80.87% to 81.85%).

These performance changes are also supported by the significance test p-values in

Fig. 4.17a and 4.17b where we observe extremely small p-values at the order of

10−6 ∼ 10−5, as stated in the caption of Fig. 4.17.
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Figure 4.16: Impact on inference accuracy of image specific and shared DRF settings.
(a) images 1∼45 (b) images 46∼90 (average accuracy over 90 images: unsupervised
fusion 83.49%, supervised fusion 82.03%, unsupervised DQ only 80.87%, supervised
DQ only 81.85%)

The implication is multi-fold. First, it suggests that the fusion performs the best

when the DRF model parameters are optimized for each test image. This serves as an

important lesson for using the proposed fusion framework in practical applications.

Second, with only one detector at hand and therefore less information available for

decision making, we benefit from using knowledge learned from a collection of images

to obtain a set of model parameters. Lastly, even with the supervised setting on

DQ only detector, the inference results are still not as strong as supervised fusion,

not to mention the most ideal setting - unsupervised fusion. This finding further

strengthens the argument that fusion is indeed superior to single detector.

4.4.5 Summary and Findings

To sum up, the tests in the previous subsections have revealed the following findings:

1. It is advantageous to fuse multiple cues rather than using only one splicing

detector. The fusion can be done in parallel or cascade forms, where the par-
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Figure 4.17: Histograms of p-values (a) fusion, image specific DRF > shared DRF?
meta analysis p-value = 7.7971×10−6, large pool p-value = 3.9213×10−6 (b) DQ
only, shared DRF > image specific DRF? meta analysis p-value = 1.5144×10−6,
large pool p-value = 1.2125×10−5.

allel setting performs better than cascade fusion in terms of average accuracy

but not in a statistically significant way.

2. The heavy dependence of fusion on single node scores poses a quality constraint

on DQ scores.

3. For the block pairs within the same segmented area where the inconsistency

scores are not properly defined, enforcing strict consistency helps the overall

inference performance. In other words, the automatic image segmentation is

a reasonably trustable source providing another set of consistency cues.

4. The optimal DRF model should be adapted to individual image content. It is

more desirable that one DRF model is trained for each test image. However if

only single node scores are available, learning model parameters from multiple

training images can give better inference results.

We now have a systematic fusion framework to integrate cues of hybrid types. All

results from Sec. 4.4.1 through Sec. 4.4.4 are summarized in Table 4.1.
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Table 4.1: Summary of image splicing detection accuracies using the proposed DRF
based fusion framework.

Section Settings Average Accuracy

Sec. 4.4.1 Fusion over single node detectors

Fusion, parallel 83.49%
Fusion, cascade 81.71%
DQ only 80.87%

Sec. 4.4.2 Single node score dominance level

Fusion, good quality DQ 83.49%
DQ only, good quality DQ 80.87%

Fusion, DQ with additive noise, σ2 = 0.3 80.74%
DQ only, DQ with additive noise, σ2 = 0.3 78.45%

Fusion, DQ with additive noise, σ2 = 0.5 75.71%
DQ only, DQ with additive noise, σ2 = 0.5 77.17%

Sec. 4.4.3 Within area consistency assumption

Fusion, with all cij edges 83.49%
Fusion, dropping edges with enforced zero cij ’s 80.25%

Sec. 4.4.4 Image specific model adaptation

Fusion, image specific DRF 83.49%
Fusion, shared DRF 82.03%

DQ only, image specific DRF 80.87%
DQ only, shared DRF 81.85%

4.5 Summary

In this chapter, we proposed a general, effective framework to fuse multiple cues

for image tampering detection. We addressed the challenges in integrating diverse

components that explore different physical characteristics and different segmentation

granularities. We formulated it as a labeling problem and applied Discriminative

Random Field (DRF) based methods to incorporate both local-block authenticity

and inter-block inconsistency measures. The process is completely unsupervised,

without the need of any training data annotation.

Results showed the advantage of fusion over individual detectors, both in terms
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of inference accuracy, statistical significance, and visual compactness of detection

outputs. We have also investigated different fusion settings and have found it is

best that the cues are fused simultaneously rather than in a cascaded way, although

both fusion settings consistently outperform approaches using only single detectors.

Several other issues were also explored in order to understand the proper usage

of the DRF fusion framework. Results suggested a heavy dependence on the single

node detector, posing a minimum quality requirement on DQ scores for the fusion

scheme to perform well in practice. The strict enforcement of consistent block

pairs within the same segmented area proved to be crucial, implying the automatic

image segmentation as a trustable source of consistency information. Finally, we

showed the advantage of adapting DRF models to each individual image rather than

applying a global model. However with only one single node detector, it is better

to combine multiple images to obtain one set of optimal parameters. Fusion always

performs better than the single node detector no matter we use the unsupervised

or supervised settings. This confirms the advantage of fusing multiple cues.

This framework is not restricted to the use of specific cues because other types

of single node authenticity and pairwise inconsistency scores can be easily incor-

porated. Should more image splicing detectors be developed in the future, this

framework can be readily extended by augmenting the observation vectors to longer

dimensions. All learning processes are applicable and will stay unaltered, providing

a general and flexible solution.
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Chapter 5

Conclusion and Future Work

This thesis has focused on passive blind tampering detection where no active wa-

termarking scheme is involved. Hidden traces inevitably left in the natural image

formation process are analyzed and used to determine a suspicious image as au-

thentic or doctored. Such passive blind approaches are more feasible in practice

since the large amount of photographs circulated each day makes it impractical to

assume the presence of inserted watermarks in every image. Moreover, as no prior

knowledge of hidden signatures is required, the tampering detection tools developed

along this direction can be applied to a wide variety of images.

5.1 Summary and Contributions

In this section we summarize the two novel techniques proposed in this thesis: CRF

based inconsistency checking in Chapter 3 and multiple cue fusion in Chapter 4.

5.1.1 Camera Response Function Based Consistency Checking

A statistical consistency checking algorithm was proposed in Chapter 3 for splicing

detection. It is based on the nonlinear point-wise transformation component within
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a digital camera, Camera Response Function (CRF). A single channel estimation

method using Locally Planar Irradiance Points (LPIPs) was used to recover the

CRF from one single image or one local area within an image. Starting with the

assumption that a spliced image should have image areas with distinct CRF proper-

ties and the splicing boundary should create anomalous LPIPs and CRF estimation

results, an image splicing detection solution was proposed and a comprehensive set

of experiments were conducted.

Cross fitting errors between extracted LPIPs and estimated CRFs were used as

the features representing a candidate image or a candidate boundary segment be-

tween two adjacent areas. Both manual and automatic image segmentation schemes

were tested to produce such local areas. Support Vector Machine (SVM) classifiers

were learned using these feature vectors to determine whether an image or segment

is authentic or spliced. For the automatic segmentation setting where one test image

consists of multiple test segments, the classifiers were trained at segment level. The

global image level decision was obtained by an OR fusion of the SVM test scores

associated with all segments in the image.

Our experiments have shown promising performance on a basic data set where

no post processing was applied after the splicing operation. When generalized to

an advanced data set, the splicing detector still showed very good performance.

This has been extremely encouraging as it implies the classifiers learned on less

challenging data sets can be directly used to detect splicing images in real world

scenarios without any re-training or adjustments.

A series of feature selection experiments were also conducted for an in-depth

study to discover the underlying dominant factor for successful detection. The

two way cross fitting between two authentic areas has been found to be of little

importance while the anomaly introduced along the splicing boundary was revealed
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as the key component leading to successful detection. The anomaly related features

can be employed either as standalone features or in an auxiliary role. If the feature

sets consist of cross fitting between two distinct anomalous areas, such effect will be

amplified even more and the detection results are shown to be greatly improved.

The contributions of this work lie in multiple aspects. First, the proposed detec-

tor has proven effective when tested over diverse data sets. In addition, the discov-

ery of contributing factors provides further insights into the consistency checking

method. The methodology used is general and can be easily extended to the design

of detectors utilizing other cues.

5.1.2 Multiple Cue Fusion

Chapter 4 moves one level beyond Chapter 3 and seeks to integrate a collection of

tampering detectors for better quality decisions. The detectors are categorized into

local authenticity and spatial inconsistency types, according to the nature of their

output. The objective of multiple cue fusion was to achieve more effective splicing

detection and more accurate boundary localization.

The main challenge lies in the diversity of detectors. As different detectors are

concerned with cues of different properties, their outputs cannot be directly ag-

gregated. Also, since specialized image segmentation schemes are used in different

detectors, it is nontrivial to come up with a common representation to incorporate

all detector outputs. To address these issues, we incorporated a random field based

framework to accommodate different types of detectors and used the finest gran-

ularity among all modules as the labeling unit, manipulating the scores of coarser

granularity accordingly. The Double Quantization (DQ) detector was used as the

local authenticity score generator and the CRF consistency checking measures at

segment level proposed in Chapter 3 were used as spatial inconsistency scores.
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Experimental results have demonstrated the advantage of fusion over individ-

ual detectors. We have also discovered the optimal fusion architecture under the

Discriminative Random Field (DRF) framework. Both cascade and parallel con-

figurations outperformed single detector with insignificant performance difference

between the two fusion settings. As to determining edge weights based on incon-

sistency scores, imposing the seemingly strong consistency assumption on the block

pairs within the same segmented area was shown to be crucial. Also, it is preferable

to train a set of optimal DRF parameters for each individual test image rather than

sharing common parameter values for a collection of multiple images. The shared

DRF setting is however a better choice over the image specific DRF setting when

only one detector is available.

Although the fusion performance is shown to be determined by single node de-

tectors, our results have confirmed the performance improvement of the proposed

fusion framework. The proposed framework is also general. The only requirement

is that the detection scores are categorized into local authenticity versus spatial

consistency types, which cover a broad set of tampering detectors reported in the

literature. Therefore it is quite easy to expand the observation vectors by adding

new tampering detection modules.

5.2 Future Work

5.2.1 Consistency Checking Using Other Cues

Although the current cross fitting scheme and features have been tailored for the

LPIP based CRF estimation, the consistency checking idea can be applied to other

cues. However, customized consistency measures must be carefully designed such

that the unique anomaly introduced in the specific cue can be successfully revealed.
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For instance, the RMSE based consistency measure should be replaced by correlation

based measure if the CCD sensor noise detector mentioned in Sec. 2.2.1.1 is to be

used. Therefore each consistency checking algorithm will be unique to its core

tampering detection signature.

Different cues are expected to perform differently in the consistency checking

framework. Besides determining the most powerful cues under this paradigm, it is

also helpful to investigate further the underlying reasons and phenomenons. The

different behaviors might be caused by the underlying physical characteristics of that

specific cue. For example, the demosaicking filter is intended to produce visually

sensible images, therefore its coefficients cannot be any arbitrary value. Similar

constraints can be found in almost every candidate cue within the image generation

process. These constraints sometimes lead to a fundamental limitation on their

behaviors. By constructing consistency checking algorithms using other cues and

analyzing the corresponding performance, one can actually discover valuable insights

about the natural scene physics, the imaging device characteristics and the post

processing operations.

5.2.2 Larger Fusion Machinery

Although we have verified the advantage of fusing multiple detector results, gen-

eralization to a large system using many component detectors is not easy. With

augmented observation vectors, many interesting question arise.

It is intuitive to expect different optimal cues for detecting tampering of different

types of images since each image has its own specific generation process and hence

distinctive cues for tampering detection. In fact, such image-specific approach has

been shown in our results to yield better fusion performance.

In these pilot experiments, there was only one set of single node scores (DQ de-
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tector) and one set of pairwise scores (CRF inconsistency checker), therefore there

was no doubt that the full emphasis of each score set would be wholly on the only

detector. However when more detectors are involved, different feature dimensions

might contribute differently according to the image type. The larger fusion machin-

ery using more cues can serve as a quantitative evidence for image understanding.

Besides training one DRF model for each test image, it would be interesting to study

the correlation between the dominant features and the image types.

For example, suppose we are given JPEG images as the type of images to analyze

with two single node detectors: DQ effect detector and CCD sensor noise detector.

Intuitively, we would expect that the DQ effect detector to be more targeted at

JPEG images than the CCD sensor noise detector. To verify if such claim is valid,

one can set up experiments with JPEG images and these two detectors versus non-

JPEG images and these two detectors. The contribution of the DQ detector on

JPEG images is expected to be higher than that on non-JPEG images. The contri-

bution of the CCD sensor noise detector is expected to be lower on JPEG images

than that on non-JPEG images. If the outcome is not as anticipated, then either

a correlation between DQ detector and CCD sensor noise detector is implied, or

the CCD sensor noise detector is not distinctive with respect to image types (i.e.,

it cannot be used as a discriminative feature to declare ”if the CCD sensor noise

detector contributes largely on this image, then this image is likely to be in JPEG

format”). Both provide directions and evidences for further study.

The image type can be defined according to image processing operations (JPEG

compression, splicing....etc.) and the content properties (texture properties, color

attributes....etc.). Regardless of the categorization, the purpose of the analysis based

on a larger fusion machinery is to understand and predict a most suitable fusion

setting specific to each test image (given the image type known, if we have limited
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resources at hand and can only use a subset of detectors, which detectors should

we include and what the performance would be). Such in-depth study can make

the fusion framework more adaptable to various real world data sets and therefore

leading to more robust solutions.

5.2.3 Practicality of Tampering Detection Systems

Since image forensics is a real world problem, a good tampering detection system

should meet realistic requirements. The first issues is its robustness against possi-

ble attacks. The objective is to design a system with reliable features, extraction

processes and authenticity checking components so that doctored images can still

be successfully detected even when extra attacks have been applied.

Attacks are usually in the form of post processing operations on the doctored

image. They can be innocuous or malicious, with or without the intention of com-

promising the tampering detection system. It can be as modest as just local touch-

ups of a photograph or as severe as reapplying synthetic camera operations after

tampering so that the doctored image appears as if it is from a single camera source.

One way to handle such attacks is to model them mathematically in the tam-

pering detection formulation. Take JPEG compression. It is a major operation that

may alter the image content significantly if a low quality factor is used (and hence

degrades the detection performance because of content alteration). The benefit is,

however, that it is a standardized process and we have full knowledge of which

operations have taken place except the quantization parameters. We may there-

fore integrate these operations into our tampering detection system by adding extra

mathematical terms in the formulation. By observing the augmented mathematical

model, we may be able to derive certain quantities that stay invariant even though

JPEG compression is present. Therefore the knowledge of this specific attack will
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help us in improving the system robustness. This approach is suitable for attacks of

known models (e.g., JPEG compression, edge matting by alpha blending techniques

or inpainting by a certain filter model).

In most cases, however, we do not have any knowledge of the attacks that have

occurred. For this, we have to resort to the statistical aspect of the tampering

system. For instance, our consistency checking algorithm mentioned in Chap. 3

relied on SVM binary classification of spliced segments. After the attack, a test

segment is expected to move to a different location in the feature space, sometimes

across the classifier boundary and thus receives an incorrect inferred label. In this

case, a resilient classifier boundary is needed so that such location shift does not

affect final detection results. Typical solutions include expanding the training data

by introducing images with attacks or adding certain randomness to the classifier

boundary so that it permutes slightly each time it is used. This is in fact analogous

to many standard pattern recognition problems, e.g., in biometrics, the extracted

features (e.g., face) of a person might be distorted by the illumination, pose or

expression and the system should be able to perform under such distortions. The

circumstances have been similar, except for image forensics the consequences are

usually higher, therefore the resilience requirement is usually more strict.

In addition to robustness against attacks, tampering detection systems should

also be fast and efficient, meeting the realistic constraints on computational speed

and memory usage. In the current consistency checking technique, one speed bot-

tleneck is caused by automatic image segmentation, which takes a few minutes

to complete for a typical sized image (800 pixel by 600 pixel). Possible solutions

include a faster implementation of the Normalized Cuts algorithm or even an alter-

native image segmentation algorithm (e.g., Mean Shift) which improves the speed

at the cost of over-segmentation. For multiple cue fusion, the computational speed



153

is more acceptable than consistency checking. However if the number of edges in

the random field model or the number of iterations in the learning process is to be

increased, the DRF fusion convergence speed may become a concern and thus faster

implementations of the inference process would be needed.
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