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ABSTRACT

Large-Scale Machine Learning for
Classification and Search

Wei Liu

With the rapid development of the Internet, nowadays tremendous amounts of data

including images and videos, up to millions or billions, can be collected for training machine

learning models. Inspired by this trend, this thesis is dedicated to developing large-scale

machine learning techniques for the purpose of making classification and nearest neighbor

search practical on gigantic databases.

Our first approach is to explore data graphs to aid classification and nearest neighbor

search. A graph offers an attractive way of representing data and discovering the essential

information such as the neighborhood structure. However, both of the graph construction

process and graph-based learning techniques become computationally prohibitive at a large

scale. To this end, we present an efficient large graph construction approach and sub-

sequently apply it to develop scalable semi-supervised learning and unsupervised hashing

algorithms. Our unique contributions on the graph-related topics include:

1. Large Graph Construction: Conventional neighborhood graphs such as kNN

graphs require a quadratic time complexity, which is inadequate for large-scale applications

mentioned above. To overcome this bottleneck, we present a novel graph construction ap-

proach, called Anchor Graphs, which enjoys linear space and time complexities and can thus

be constructed over gigantic databases efficiently. The central idea of the Anchor Graph is

introducing a few anchor points and converting intensive data-to-data affinity computation

to drastically reduced data-to-anchor affinity computation. A low-rank data-to-data affin-

ity matrix is derived using the data-to-anchor affinity matrix. We also theoretically prove

that the Anchor Graph lends itself to an intuitive probabilistic interpretation by showing



that each entry of the derived affinity matrix can be considered as a transition probability

between two data points through Markov random walks.

2. Large-Scale Semi-Supervised Learning: We employ Anchor Graphs to develop

a scalable solution for semi-supervised learning, which capitalizes on both labeled and un-

labeled data to learn graph-based classification models. We propose several key methods

to build scalable semi-supervised kernel machines such that real-world linearly inseparable

data can be tackled. The proposed techniques take advantage of the Anchor Graph from

a kernel point of view, generating a set of low-rank kernels which are made to encompass

the neighborhood structure unveiled by the Anchor Graph. By linearizing these low-rank

kernels, training nonlinear kernel machines in semi-supervised settings can be simplified to

training linear SVMs in supervised settings, so the computational cost for classifier training

is substantially reduced. We accomplish excellent classification performance by applying the

proposed semi-supervised kernel machine - a linear SVM with a linearized Anchor Graph

warped kernel.

3. Unsupervised Hashing: To achieve fast point-to-point search, compact hashing

with short hash codes has been suggested, but how to learn codes such that good search

performance is achieved remains a challenge. Moreover, in many cases real-world data sets

are assumed to live on manifolds, which should be taken into account in order to cap-

ture meaningful nearest neighbors. To this end, we present a novel unsupervised hashing

approach based on the Anchor Graph which captures the underlying manifold structure.

The Anchor Graph Hashing approach allows constant time hashing of a new data point by

extrapolating graph Laplacian eigenvectors to eigenfunctions. Furthermore, a hierarchical

threshold learning procedure is devised to produce multiple hash bits for each eigenfunction,

thus leading to higher search accuracy. As a result, Anchor Graph Hashing exhibits good

search performance in finding semantically similar neighbors.

To address other practical application scenarios, we further develop advanced hashing

techniques that incorporate supervised information or leverage unique formulations to cope

with new forms of queries such as hyperplanes.

4. Supervised Hashing: Recent research has shown that the hashing quality could



be boosted by leveraging supervised information into hash function learning. However,

the existing methods either lack adequate performance or often incur cumbersome model

training. To this end, we present a novel kernel-based supervised hashing model which

requires a limited amount of supervised information in the form of similar and dissimilar

data pairs, and is able to achieve high hashing quality at a practically feasible training

cost. The idea is to map the data to compact binary codes whose Hamming distances are

simultaneously minimized on similar pairs and maximized on dissimilar pairs. Our approach

is distinct from prior work in utilizing the equivalence between optimizing the code inner

products and the Hamming distances. This enables us to sequentially and efficiently train

the hash functions one bit at a time, yielding very short yet discriminative codes. The

presented supervised hashing approach is general, allowing search of both semantically

similar neighbors and metric distance neighbors.

5. Hyperplane Hashing: Hyperplane hashing aims at rapidly searching the database

points near a given hyperplane query, and has shown practical impact on large-scale active

learning with SVMs. The existing hyperplane hashing methods are randomized and need

long hash codes to achieve reasonable search accuracy, thus resulting in reduced search

speed and large memory overhead. We present a novel hyperplane hashing technique which

yields high search accuracy with compact hash codes. The key idea is a novel bilinear form

used in designing the hash functions, leading to a higher collision probability than all of

the existing hyperplane hash functions when using random projections. To further increase

the performance, we develop a learning based framework in which the bilinear functions are

directly learned from the input data. This results in compact yet discriminative codes, as

demonstrated by the superior search performance over all random projection based solu-

tions.

We divide the thesis into two parts: scalable classification with graphs (topics 1 and 2

mentioned above), and nearest neighbor search with hashing (topics 3, 4 and 5 mentioned

above). The two parts are connected in the sense that the idea of Anchor Graphs in Part

I enables not only scalable classification but also unsupervised hashing, and hyperplane

hashing in Part II can directly benefit classification under an active learning framework. All



of the machine learning techniques developed in this thesis emphasize and pursue excellent

performance in both speed and accuracy, which are verified through extensive experiments

carried out on various large-scale tasks of classification and search. The addressed problems,

classification and nearest neighbor search, are fundamental for many real-world applications.

Therefore, we expect that the proposed solutions based on graphs and hashing will have a

tremendous impact on a great number of realistic large-scale applications.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

This thesis is dedicated to developing large-scale machine learning techniques for the purpose

of making classification and nearest neighbor search practical on gigantic databases.

1.1 Motivations

In the current era of data divulgence, there is emerging attention in leveraging massive

amounts of data available in open sources such as the Web to help solve long standing

computer vision, data mining, and information retrieval problems. Then, how to effectively

incorporate and efficiently exploit large-scale data corpora is an open problem. In this

thesis, we try to deliver effective machine learning models for disposing of and searching

into large-scale data collections.

Above all, we explore graph representation to load massive data samples. A data graph

offers a very attractive way of representing data and discovering the underlying information,

e.g., the neighborhood structure, essential for the data. It is very intuitive that neighbor-

hood graphs [33] can reveal the manifolds that underlie the input data. Figure 1.1 showcases

a kNN graph which discovers the underlying data manifold existing in the Swiss roll toy

data [144]. In the literature, neighborhood graphs have demonstrated wide usage in a great

number of problems including classification, clustering, regression, dimensionality reduc-

tion, relevance ranking, and so on. However, scalability of data graphs to the explosive

growth of data sets remains challenging. For example, the time complexity for constructing
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Figure 1.1: Data graphs discover manifolds. (a) Swiss roll toy data; (b) a 10NN graph.

a neighborhood graph is quadratic in the database size, which is computationally infeasible

for practical large-scale data sets consisting of millions up to billions of samples.

Semi-supervised learning (SSL) [23][211][213] has significant impact on pervasive appli-

cations of machine learning and pattern recognition. In these practical applications, one

frequently encounters the situations where only a few labeled data are available and large

amounts of data remain unlabeled. The labeled data often suffer from difficult and expen-

sive acquisition, whereas the unlabeled data can be cheaply and automatically gathered.

Among the vast number of SSL methods, graph-based semi-supervised learning (GSSL) is

substantially appealing because it is easy to implement and generally renders closed-form

solutions. With rapid development of the Internet, now we can gather massive unlabeled

data, and then the need for large scale SSL arises. Despite appealing advantages of GSSL

in practical applications, most GSSL methods scale poorly with the data size because of

the computationally expensive steps stemming from large graph construction and classifier

training over graphs.

Hashing is becoming increasingly popular for time-efficient nearest neighbor search in

massive databases, because it removes the curse of dimensionality that traditional tree-

based indexing methods suffer from. However, learning compact hash codes that yield good

search performance is still a challenge. Moreover, in many cases real-world data nearly live

on low-dimensional manifolds, which should be taken into account to capture meaningful



CHAPTER 1. INTRODUCTION 3

Figure 1.2: Linear vs. nonlinear hash function. (a) A standard linear hash function cuts

off the two manifolds. (b) A nonlinear hash function adaptively yields hash bits along the

two manifolds.

nearest neighbors in the code learning process. As shown in Figure 1.2, the desired manifold-

motivated hash function should be in a nonlinear form (ϕ(x) is a nonlinear function) so that

hash bits can be continuously yielded along data manifolds.

Recent years have witnessed the growing popularity of unsupervised hashing in large-

scale machine learning, computer vision, and information retrieval problems. Nevertheless,

unsupervised hashing usually achieves limited search accuracy. To this end, there has been

some recent research [93][137] which shows that the hashing quality could be boosted by

leveraging supervised information into hash function learning. Such supervised information

is customarily expressed as similar and dissimilar data pairs. Figure 1.3 discloses that a

desirable hash function should be consistent with the supervised information. While super-

vised hashing makes sense, the existing supervised hashing methods either lack adequate

performance or often incur cumbersome model training.

In margin-based active learning, the data point nearest to the current decision bound-

ary is chosen to request its label, which inspires a “point-to-hyperplane” search problem

distinct from the conventional point-to-point search problem. Figure 1.4 illustrates the two

problems in contrast. To speed up the point-to-hyperplane search process, a new hashing

scenario, hyperplane hashing, arises. Such a new scenario requires us to rationally hash



CHAPTER 1. INTRODUCTION 4

similar

dissimilar

0

1

desirable hash function

Figure 1.3: A desirable hash function subject to supervised information.

a hyperplane query to near database points, which is not easy to fulfill because point-

to-hyperplane distances are quite different from routine point-to-point distances in terms

of the computation mechanism. Despite the bulk of nearest neighbor search and hashing

literature, this special hashing paradigm is rarely touched.

1.2 Our Techniques

First, we address the scalability issue of large graph construction in Chapter 2. Typically,

provided with a data set X = {xi ∈ Rd}ni=1, the widely used kNN graph needs the O(dn2)

time complexity that is computationally infeasible for practical million-scale data. To over-

come this computational bottleneck, we present a novel graph model Anchor Graph which

has linear space and time complexities O(n) and can thus be constructed over gigantic data

collections efficiently. As shown in Figure 1.5, the central idea of the Anchor Graph is

introducing a few anchor points and converting intensive data-to-data affinity computation

to drastically reduced data-to-anchor affinity computation. Concretely, m anchor points

{uk ∈ Rd}mk=1 are used to form a highly sparse data-to-anchor affinity matrix Z ∈ Rn×m

in which Zij > 0 if and only if anchor uk is among s (≪ m) nearest anchors of data

point xi. Then, the data-to-data affinity matrix of the Anchor Graph is W = ZΛ−1Z⊤

(Z1 = 1 and Λ = diag(1⊤Z)), which is derived from Markov random walks between data

points and anchors. The nonnegative, sparse, and low-rank characteristics of the affinity (or
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Figure 1.4: Two distinct nearest neighbor search problems. (a) Point-to-point search; (b)

point-to-hyperplane search.

adjacency) matrices W yielded by Anchor Graphs are substantially critical, which ensure

positive semidefinite graph Laplacians and allow efficient eigenfunction extensions of graph

Laplacians. The memory cost of an Anchor Graph is O(sn) for storing Z, and the time

cost is O(dmn). Since m≪ n, the time cost for constructing an Anchor Graph is linear in

the data size n. Our experiments demonstrate that Anchor Graphs exhibit high fidelity to

conventional kNN graphs yet with much shorter construction time.

Second, we address the scalability issue plaguing graph-based semi-supervised learning

in Chapter 3. Our purpose is to develop nonlinear and discriminative semi-supervised clas-

sifiers from a kernel view. We realize that the classical GSSL algorithms [212][208] perform

label propagation over neighborhood graphs without optimizing the margins in between

different classes. To this end, we aim at learning SVM-like classifiers to maximize the mar-

gins. The central idea is to generate a low-rank kernel by leveraging an Anchor Graph into a

kernel machine framework. In doing so, the large-scale semi-supervised learning task on all

data samples is reduced to a supervised linear classification task carried out on much fewer

labeled samples. Therefore, we eventually apply a linear SVM over a new feature space

which is explicitly derived from decomposing the low-rank kernel. The generated low-rank

kernel and its direct linearization succeed in addressing the scalability issue of GSSL. Ex-

tensive semi-supervised classification experiments performed on several large datasets of up
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Figure 1.5: Design the data-to-data affinity matrix W using the data-to-anchor affinity

matrix Z.

to one million samples demonstrate the efficacy of the Anchor Graph-based low-rank kernel

generation technique. A linear SVM with the proposed low-rank kernel achieves remarkable

performance gains over state-of-the-art large-scale GSSL algorithms.

Third, we present a novel graph-based hashing technique that we name Anchor Graph

Hashing (AGH) in Chapter 4. AGH is fully unsupervised but can automatically discover the

neighborhood structure inherent in the data to learn appropriate compact codes. To make

such an approach computationally feasible on large databases, we utilize Anchor Graphs

having been presented in Chapter 2 to obtain tractable low-rank adjacency matrices and

derive the nonlinear hash functions from the eigenspectra of such low-rank matrices. The

formulation of our Anchor Graph-driven hash functions allows constant time hashing of a

new data point by extrapolating graph Laplacian eigenvectors to eigenfunctions. Finally,

we describe a hierarchical threshold learning procedure in which each eigenfunction yields

multiple bits, leading to higher search accuracy. Experimental comparison with the other

state-of-the-art hashing methods on several large datasets demonstrates the efficacy of the

presented AGH approach in terms of searching semantically similar neighbors.

Fourth, we present a novel Kernel-Based Supervised Hashing (KSH) technique in Chap-
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ter 5. KSH requires a limited amount of supervised information, i.e., similar and dissimilar

data pairs, and a feasible training cost in achieving high quality hashing. The idea of KSH

is to map the data to compact binary codes whose Hamming distances are simultaneously

minimized on similar pairs and maximized on dissimilar pairs. Our approach is distinct from

prior work in utilizing the equivalence between optimizing the code inner products and the

Hamming distances. This enables us to sequentially and efficiently train the hash functions

one bit at a time, yielding very short yet discriminative codes whose code inner products are

optimized explicitly and at the same time whose Hamming distances are optimized in an

implicit manner. Extensive experiments on several image benchmarks of up to one million

samples demonstrate that our approach KSH significantly outperforms state-of-the-arts in

searching both semantically similar neighbors and metric distance neighbors.

Lastly, we present a novel hyperplane hashing technique in Chapter 6. The existing

hyperplane hashing methods are randomized in nature and need long hash codes to achieve

reasonable search accuracy, thus suffering from reduced search speed and large memory

overhead. To this end, we make our hyperplane hashing technique yield compact hash

codes through designing principled hash functions. The key idea is the bilinear form of

the designed hash functions, which leads to a higher collision probability than the exist-

ing hyperplane hash functions when using random projections. To further increase the

performance, we develop a learning based framework in which the bilinear functions are

directly learned from the input data. This results in short yet discriminative codes, and

also boosts the search performance over the random projection based solutions. Large-scale

active learning experiments carried out on several large datasets of up to one million samples

demonstrate the overall superiority of the presented hyperplane hashing technique.

1.3 Thesis Overview

Finally, we provide the overview of this thesis in brief. We divide the whole thesis into two

main parts:

Part I: Scalable Classification with Graphs, containing Chapter 2 and Chapter 3.

Part II: Nearest Neighbor Search with Hashing, containing Chapter 4, Chapter
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5 and Chapter 6.

The two parts are correlated as the idea of Anchor Graphs presented in Chapter 2 is not

only applied to develop scalable classification models in Part I but also exploited to derive

unsupervised hashing with compact codes in Part II. Moreover, Chapter 6 actually marries

up classification explored in Part I with hashing investigated in Part II, since hyperplane

hashing can directly benefit classification under an active learning framework.

As an ending, Part III (containing only Chapter 7) draws our conclusions of the thesis,

where we summarize the presented large-scale machine learning techniques, highlight their

contributions in both theory and practice, and provide some future research directions.
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Part I

Scalable Classification with Graphs
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Chapter 2

Large Graph Construction –

Anchor Graphs

A data graph offers a very attractive way of representing high-dimensional data and discov-

ering the underlying information, e.g., the neighborhood structure, essential for the data.

In the literature, neighborhood graphs have demonstrated wide usage in a great number

of machine learning, data mining, and computer vision problems including classification,

clustering, regression, dimensionality reduction, relevance ranking, and so on. However,

scalability of data graphs to the explosive growth of data sets remains challenging. For

example, the time complexity for constructing a neighborhood graph is quadratic in the

database size, which is computationally infeasible for practical large-scale data sets of mil-

lions up to billions of samples.

In this chapter, we address the scalability issue plaguing neighborhood graph construc-

tion via a small number of anchor points which adequately cover the entire point cloud.

Critically, these anchor points enable nonparametric regression that predicts the label for

each data point as a locally weighted average of the labels on anchor points. Because con-

ventional graph construction is inefficient in a large scale, we present a computationally

and storage efficient large graph by coupling anchor-based label prediction and adjacency

matrix design. Contrary to the Nyström approximation of graph adjacency matrices which

results in indefinite graph Laplacians and in turn leads to potential non-convex optimiza-
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tion over graphs, the presented graph construction approach based on a unique idea called

Anchor Graph provides nonnegative adjacency matrices to guarantee positive semidefinite

graph Laplacians. Our approach scales linearly with the data size and in practice usually

produces a large and sparse graph. Experiments on three toy datasets and three real-world

datasets validate the scalable trait and good quality of Anchor Graphs.

In this chapter, we state the problem background of neighborhood graphs and typical

graph-based learning in Section 2.1, review the related work in Section 2.2, introduce the

notations that we will use in Section 2.3, give the prerequisites for large graph construction in

Section 2.4, present our large graph Anchor Graph in Section 2.5, develop a scalable graph-

based learning method Anchor Graph Regularization in Section 2.6, show the experimental

results in Section 2.7, and finally give our summary and discussion in Section 2.8.

2.1 Problem Background

Above all, we elicit the graph representation of data which will be used in this chapter. Given

a data set X = {xi ∈ Rd}ni=1 with cardinality |X | = n, an undirected graph converted from

the input data X is represented by G = (X , E,W ). X refers to a set of nodes (or vertices)

each of which corresponds to a data point. E = {eij} is a set of graph edges and each edge

eij has a nonnegative weight Wij . The edge weights are collected to form a weighted graph

adjacency matrix W = (Wij)i,j ∈ Rn×n. A proper edge connecting strategy is crucial to the

topological structure of the data graph G. Throughout this thesis, we consider the widely

exploited neighborhood graphs which adopt such a connecting strategy: put an edge eij

between xi and xj if they are neighbors under some distance function D(·). There are two

main types of neighborhood graphs, kNN graph and ε-neighborhood graph [33][153][10].

The former sets up edges over k nearest neighbors among X , and the latter identifies an

edge eij if and only if D(xi,xj) ≤ ε. Although there are other strategies for establishing

edges over data points, it turns out that a kNN graph has advantages over others (e.g.,

a ε-neighborhood graph) as shown in [67]. One of main advantages is that a kNN graph

provides a better adaptive connectivity.

Let us define a diagonal node-degree matrix D ∈ Rn×n whose diagonal entries are
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Dii =
∑n

j=1Wij . Importantly, the well-known (weighted) graph Laplacian [33] is calculated

by

L = D −W. (2.1)

The graph Laplacian determines a point cloud Laplace operator ∆X applied to a function

f : Rd 7→ R, which is defined on data points:

(∆X f)(xi) = Diif(xi)−
n∑

j=1

Wijf(xj). (2.2)

Such a Laplace operator ∆X leads to a graph-based semi-norm

∥f∥2G = ⟨f,∆X f⟩G

=
n∑

i=1

f(xi)(∆X f)(xi)

=

n∑
i=1

f(xi)

Diif(xi)−
n∑

j=1

Wijf(xj)


=

n∑
i=1

Diif
2(xi)−

n∑
i=1

n∑
j=1

Wijf(xi)f(xj)

= f⊤Df − f⊤Wf

= f⊤Lf , (2.3)

where the vector f =


f(x1)

· · ·

f(xn)

 contains the outputs of f on the point cloud X . It turns

out that ∥f∥2G = f⊤Lf ≥ 0 for any function f , because

∥f∥2G = f⊤Lf

=
1

2

n∑
i=1

n∑
j=1

Wij (f(xi)− f(xj))
2

≥ 0. (2.4)

Immediately, the graph Laplacian matrix L is guaranteed to be positive semidefinite.

Delving into the norm ∥f∥G , it sums weighted variations of the function f on all edges

of the graph G. Therefore, minimizing the norm ∥f∥G encourages that f varies smoothly
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along the edges of G such that adjacent nodes have similar function values. Essentially,

the graph Laplacian L, that decides the smoothness norm ∥f∥G , plays a critical role in

differential geometry. [11][172] have proven that under certain conditions, the point cloud

Laplace operator ∆X determined by the graph Laplacian L asymptotically converges to

the Laplace-Beltrami operator ∆M on the underlying Riemannian manifoldM from which

the data points X were sampled. Simply speaking, lim|X |→∞∆X → ∆M. Hence, the

smoothness norm ∥f∥G described above is geometrically meaningful and hereby applied to

many manifold-motivated fields for measuring smoothness of target functions.

Let us introduce a classical learning paradigm with graphs which is referred to as graph-

based semi-supervised learning (GSSL) in literature. Assume that we are given a set of

labeled samples as Xl = {x1, · · · ,xl} with cardinality |Xl| = l and a set of unlabeled

samples Xu = {xl+1, · · · ,xn} with cardinality |Xu| = u = n − l, where typically l ≪ n.

The labeled data set Xl is associated with labels Yl = {y1, · · · , yl} in which yi ∈ {1, · · · , c}

(i = 1, · · · , l and c is the total number of classes). The goal of GSSL is to infer the missing

labels Yu = {yl+1, · · · , yn} of the unlabeled data Xu. A crucial component of GSSL is the

construction of a neighborhood graph G(X , E,W ) from the entire input data X = Xl ∪Xu.

After that, GSSL algorithms use G and the initial seed labels Yl to infer Ŷu = {ŷl+1, · · · , ŷn}

which are expected to match the true labels Yu as well as possible.

For convenient expression, we encode the initial label information Yl into a label matrix

Y ∈ {1, 0}n×c, where Yij = 1 if and only if sample xi has a label j ∈ {1, · · · , c}, i.e.,

yi = j, and Yij = 0 otherwise. If the label of sample xi is unknown or unavailable, the

whole row Yi. is zero. For illustration, Figure 2.1 (originally from [115]) gives an example

of a graph as well as the corresponding graph quantities. Several classical GSSL algorithms

[212][208][184] solve the semi-supervised classification problem by propagating or spreading

the initial discrete labels Yl from the labeled data Xl to the unlabeled data Xu over the built

neighborhood graph G. Meanwhile, a continuous soft label matrix F ∈ Rn×c is obtained by

means of minimizing a proper cost or penalty over the graph G. Then the missing labels of

the unlabeled data Xu are estimated as ŷi = argmaxj∈{1,··· ,c} Fij (i = l + 1, · · · , n).

Semi-supervised learning (SSL) [23][211][213], that is the central subject we will inves-

tigate in this chapter and the next chapter, has significant impact in pervasive applications
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Figure 2.1: An example of a graph G with only five nodes. W is the associated weighted

adjacency matrix, D = diag(W1) is the node-degree matrix, and Y is the label matrix.

of machine learning and pattern recognition. In these practical applications, one frequently

encounters situations where only a few labeled data are available and large amounts of data

remain unlabeled. The labeled data often suffer from difficult and expensive acquisition

whereas the unlabeled data can be cheaply and automatically gathered. SSL has been in-

tensively explored to cope with the very situations of limited labeled data and abundant

unlabeled data.

With rapid development of the Internet, now we can collect massive (up to hundreds of

millions) unlabeled data such as images and videos, and then the need for large scale SSL

arises. As shown in Figure 2.2, once some seed labels are available (these labels may be

acquired from users’ annotation or samples’ meta-data, e.g., tags, captions, etc.), one can

establish a data graph over the collected data set and then apply GSSL with the graph to

infer labels for a large amount of unlabeled data samples. Despite the appealing scenario

of GSSL in large-scale learning tasks, most GSSL methods scale poorly with the data size

n because of the computationally challenging step of large graph construction. Typically,
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seed label

data graph

Figure 2.2: A graph-based semi-supervised learning task.

provided with a data set X = {xi ∈ Rd}ni=1, the widely used kNN graph needs a time

complexity of O(dn2) which is certainly expensive and intractable for practical large-scale

data collections in the level of millions or even billions.

In this chapter, to overcome the computational bottleneck of traditional graph construc-

tion approaches, we present a novel large graph construction approach named Anchor Graph

[113] which is efficient in both computation and storage, achieving linear time and space

complexities. Our approach usually yields a large sparse graph and is capable of scaling

linearly to gigantic databases.

2.2 Related Work

In the past decade, researchers found that data graphs, acting as an informative platform,

can be employed to deal with tremendous data-driven applications in a large variety of

problems arising from, but not limited to, machine learning, pattern recognition, computer

vision, data mining, information retrieval, and bioinformatics. Why have graphs attracted

extensive attention in both theory and practice? One intuitive advantage that graph-based

methods bear is that data graphs are capable of reflecting and revealing the intrinsically low-

dimensional manifolds which are embedded in high-dimensional data collections, such as

images and videos, and tend to capture the hidden semantics of data. Theoretically, it turns

out that the graph Laplacian L (or its normalized versions D−1L and D−1/2LD−1/2) of a
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point cloud of data samples converges to the Laplace-Beltrami operator defined on the un-

derlying manifold where the data samples reside [65][66][11][172], and that the eigenvectors

of the graph Laplacian converge to the eigenfunctions of the Laplace-Beltrami operator on

the manifold [13][35][131][34]. In-depth algebraic theory about graphs and graph spectrums

can be found in the Spectral Graph Theory [33].

Due to the intuitive yet provable characteristics of graphs, graphs have led to enormous

implications in manifold learning [169][144][10], dimensionality reduction [63], feature ex-

traction [64], feature selection [62], image segmentation [153][107], spectral embedding and

clustering [135][203][182], semi-supervised learning [212][208][184], active semi-supervised

learning [215][57][73], online learning [70][69][68], online semi-supervised learning [177], on-

line active semi-supervised learning [54], relevance ranking [209][210], and so on. Besides

the progress in theory, graphs have also motivated numerous exciting applications such as

image and video retrieval [59][72][199], web image search and reranking [82][185][114], web

image tag ranking [109] and refinement [110], web page categorization [206], and protein

classification [192].

Among the vast number of semi-supervised learning methods, graph-based semi-supervised

learning (GSSL) is substantially appealing because it is easy to implement and generally

renders closed-form solutions. The representative techniques include graph partitioning

[15][16][84][99], graph-based random walks [167][7], manifold regularization [12][157][124],

graph regularization [212][208][184][183][166], and graph Laplacian eigenfunction fitting

[159][51][49]. Comprehensive surveys of these methods can be found in [23][211][213].

Although GSSL has been studied extensively, it is likely to lack sufficient robustness

on real-world data sets which usually involve noise, because of the sensitivity of graphs

[112]. The quality of graphs is very sensitive to the edge connecting strategy, the choice

of edge weighting functions, and the related parameters (e.g., k and ε). These factors will

considerably affect the performance of GSSL. Therefore, beyond traditional kNN graph

and ε-neighborhood graph [121], more sophisticated methods for fine graph construction

are needed. For example, [76] tried to learn to prune the redundant edges by optimizing b-

matching, resulting in a regular graph in which each node is incident to an equal number of

edges; [112] attempted to learn the entire adjacency matrixW of a graph in a nonparametric
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mode, leading to a unit-degree graph; [37] integrated graph construction and label diffusion

into a joint learning framework, producing a discriminative graph. Although these methods

show up influences of different graph topological structures on the outcome performance

of GSSL, they all need to build a kNN graph as a heuristic solution to start their graph

learning procedures. Consequently, all of them still suffer from the quadratic computational

cost O(dn2), and cannot yet be scalable to gigantic databases.

From above discussion, we are aware that designing efficient large graphs constitutes

a major bottleneck of large-scale GSSL. In the recent literature, constructing large graphs

over gigantic databases begins to draw attention. [28] used divide and conquer algorithms

to compute an approximate kNN graph in nearly linear time O(dnρ) (1 < ρ < 2), but the

space complexity could still be large because a kd-tree indexing structure must be saved

in memory. Another approximate kNN graph construction approach [41] performed local

search instead of shared global indexing like kd-tree according to arbitrarily given similarity

measures, achieving an empirical time complexity of O(dn1.14).

By utilizing a small set of anchor points U = {uk}mk=1 (m ≪ n), [204] applied the

Nyström matrix approximation [193] to yield a low-rank adjacency matrix

W = KnmK−1
mmK⊤

nm, (2.5)

where the two matrices Knm and Kmm denote two kernel matrices between the raw data X

and the anchor points U , and U and U , respectively. Although the Nyström graph enjoys

a strictly linear time complexity O(dmn), it may yield improper dense graphs that could

limit the performance of GSSL. The Anchor Graph that we will describe in Section 2.5

capitalizes on a Markov random walk model across data points and anchor points to derive

a low-rank graph adjacency matrix:

W = ZΛ−1Z⊤, (2.6)

where Z ∈ Rn×m is the data-to-anchor affinity matrix, and Λ ∈ Rm×m is a diagonal matrix

with definition Λ = diag(Z⊤1). Because Z is made highly sparse, such an adjacency matrix

W is also sparse empirically.

A very important property stemming from the Anchor Graph’s design strategy isW ≥ 0.

This nonnegative property is sufficient to guarantee the resulting graph Laplacian L =
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Table 2.1: Summary of the properties of efficient large graphs. d is the data dimension and

n is the data size. Denote by L ≽ 0 positive semidefinite L.

Large Graph Time Complexity W is W ≥ 0? L ≽ 0?

Construction sparse?

Approximate kNN Graph [28][41] O(dnρ) (1 < ρ < 2) Yes Yes Yes

Nyström Graph [204] O(dmn) (m≪ n) No No No

Anchor Graph (this chapter) O(dmn) (m≪ n) Yes Yes Yes

D −W to be positive semidefinite [33], and thus ensures global optimum of GSSL. Table

2.1 summarizes the key properties of aforementioned efficient large graphs.

2.3 Notations

In this section, we first define the notations and symbols that we will use to delineate our

approach in the rest of this chapter. All notations as well as their definitions are listed in

Tables 2.2 and 2.3.

2.4 Prerequisites

We try to address the scalability issue pertaining to large graph construction from two

perspectives: anchor-based label prediction and adjacency matrix design.

2.4.1 Anchor-Based Label Prediction

Our key observation is that the computational intensiveness of graph-based semi-supervised

learning (GSSL) stems from the full-size label prediction models. Since the number of

unlabeled samples is huge in large scale applications, learning full-size prediction models is

inefficient.

Suppose a soft label prediction function f : Rd 7→ R defined on the input data points

X = {xi ∈ Rd}ni=1. To work under a large scale, [40][216] made the label prediction function

be a weighted average of the labels on a small set of anchor (or landmark) points. As such,
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Table 2.2: Table of notations.

Notation Definition

n The number of data points

l The number of the labeled data

m The number of anchor points

d The dimension of data or anchor points

i, j The indices of data points

k The index of anchor points

xi ∈ Rd The ith data point

uk ∈ Rd The kth anchor point

X = {xi}ni=1 The data set

Xl = {xi}li=1 The labeled data set

U = {uk}mk=1 The anchor set

U = [u1, · · · ,um] ∈ Rd×m The anchor data matrix

c The number of classes

yi ∈ [1 : c] The class label of xi, i ∈ [1 : l]

ŷi ∈ [1 : c] The estimated class label of xi, i ∈ [l + 1 : n]

Y ∈ Rn×c The initial label matrix

G(X , E,W ) A data graph

E ⊆ X × X The set of edges in G

W = (Wij)i,j ∈ Rn×n The weighted adjacency matrix of G

D = diag(W1) ∈ Rn×n The diagonal node-degree matrix of G

L = D −W ∈ Rn×n The graph Laplacian matrix of G

∥ · ∥G The graph Laplacian regularization norm

f : Rd 7→ R A soft label prediction function

f ∈ Rn The soft label vector of all data points X

a ∈ Rm The soft label vector of anchor points U

Z = (Zij)i,j ∈ Rn×m The data-to-anchor affinity matrix between X and U

Λ = diag(Z⊤1) ∈ Rm×m The diagonal anchor-degree matrix of an Anchor Graph

s The number of nearest anchors in U for each data point

⟨i⟩ ⊂ [1 : m] The set of indices of s nearest anchors in U for xi

Kh : Rd × Rd 7→ R A kernel function with bandwidth h
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Table 2.3: Table of notations (continued).

Notation Definition

zi ∈ Rs The coefficient vector of combining s anchors for xi

g(zi) ∈ R The objective function for optimizing zi

S ⊂ Rs The multinomial simplex in Rs

ΠS(z) The projection of z onto simplex S

B(X ,U , E , Z) The data-anchor bipartite graph

E ⊆ X × U The set of edges in B

B ∈ R(n+m)×(n+m) The adjacency matrix of B

DB = diag(B1) ∈ R(n+m)×(n+m) The diagonal node-degree matrix of B

p(1) One-step transition probability of random walks on B

p(2) Two-step transition probability of random walks on B

aj ∈ Rm The soft label vector of U for the jth class

A = [a1, · · · ,ac] ∈ Rm×c The soft label matrix of U

Yl ∈ Rl×c The sub-matrix of Y corresponding to Xl

Zl ∈ Rl×m The sub-matrix of Z corresponding to Xl

γ > 0 The graph regularization parameter

τj > 0 The normalization factor for the jth class

z(x) ∈ Rm The data-to-anchor mapping

if one can infer the labels associated with the much smaller anchor set, the labels of the raw

data points will be easily obtained by a simple linear combination.

The idea is to introduce an anchor set U = {uk ∈ Rd}mk=1 in which each uk acts as an

anchor point since we represent the label prediction function f in terms of these points,

that is,

f(xi) =

m∑
k=1

Zikf(uk), (2.7)

where Zik’s are data-adaptive weights. Such a label prediction essentially falls into non-

parametric regression [58]. Let us define two soft label vectors f = [f(x1), · · · , f(xn)]
⊤ and

a = [f(u1), · · · , f(um)]⊤, and rewrite eq. (2.7) as

f = Za, Z ∈ Rn×m, m≪ n. (2.8)
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This formula serves as a main disposal of scalable SSL because it reduces the solution

space of unknown labels from large f to much smaller a. This economical label prediction

model eq. (2.8) surely mitigates the computational burden of the original full-size prediction

models.

Importantly, we take these anchor points {uk} as K-means clustering centers instead of

randomly sampled exemplars because of the found fact that K-means clustering centers have

a stronger representation power to adequately cover the vast point cloud X [205][204]. While

the K-means clustering step incurs additional computation, its time complexity O(dmnT )

(T is the iteration number) is relatively manageable compared with the quadratic complexity

O(dn2) needed by traditional graph construction schemes. If we set m to a number much

smaller than n, the K-means running time is much faster than the time for constructing a

kNN graph. Additionally, some fast implementations of approximate K-means clustering

such as [86] may be exploited to further mitigate the computational overhead.

2.4.2 Adjacency Matrix Design

Recall that in the literature an undirected weighted graph G(X , E,W ) is built on n data

points. X also refers to a set of nodes (or vertices). E ⊆ X ×X is a set of edges connecting

adjacent nodes, and W ∈ Rn×n is a weighted adjacency matrix which measures the strength

of edges. The time cost of the broadly used kNN graph construction is O(dn2), so even this

conventional graph construction approach is infeasible at a large scale. Although we may

utilize approximate kNN graph construction as proposed by [28][41] to save the time cost,

large scale matrix manipulations such as inversion and linear system solving upon the huge

matrix W remain a big hurdle. The associated time complexities are O((kn)1.31) at least

(see Subsection 2.6.1).

On the other hand, it is unrealistic to save in memory a matrix W as large as n × n.

Hence, designing a memory and computationally tractableW constitutes a major bottleneck

of large scale GSSL. We should find an approach to parsimoniously represent W for large

graphs.
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2.4.3 Design Principles

Now we investigate some principles for designing Z and W tailored to large scale problems.

Principle (1) We impose the nonnegative normalization constraints
∑m

k=1 Zik = 1 and

Zik ≥ 0 to maintain the unified range of values for all soft labels predicted via regression.

The manifold assumption [12] implies that contiguous data points should have similar labels

while distant data points are very unlikely to take similar labels. This motivates us to also

impose Zik = 0 when anchor uk is far away from xi so that the regression on xi is a locally

weighted average in spirit. As a result, Z ∈ Rn×m is nonnegative as well as sparse.

Principle (2) We require W ≥ 0. The nonnegative adjacency matrix is sufficient to

make the resulting graph Laplacian L = D −W (D = diag(W1) ∈ Rn×n is the diagonal

node-degree matrix) positive semidefinite [33]. This nonnegative property is important to

guarantee global optimum of many GSSL algorithms.

Principle (3) We prefer a sparse W because sparse graphs have much less spurious

connections among dissimilar points and tend to exhibit high quality. [211] has pointed out

that fully-connected dense graphs perform worse than sparse graphs in practice.

Intuitively, we would use the nonnegative sparse matrix Z to design the nonnegative

sparse matrix W . Actually, in the next section, we are able to design Z and W jointly and

generate empirically sparse large graphs. On the contrary, the recently proposed Proto-

type Vector Machine (PVM) [204] designed Z and W separately, producing improper dense

graphs. In addition, when using the Nyström method [193] to approximate a predefined W

like a kernel matrix, PVM fails to preserve the nonnegative property of graph adjacency

matrices. Therefore, PVM cannot guarantee that the graph Laplacian regularization term

appearing in its cost functions is convex, so PVM suffers heavily from local minima. Cru-

cially, we are not trying to approximate any predefined W ; instead, we design it directly to

cater for the nonnegative and sparse properties.
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2.5 Anchor Graphs

2.5.1 Design of Z

We aim at designing a regression matrix Z that measures the potential relationship between

raw samples X and anchors U (note that U is outside X ). Following Principle (1) in the

last section, we desire to keep nonzero Zik for s (< m) closest anchors to xi. Exactly, the

Nadaraya-Watson kernel regression [58] defines such Zik based on a kernel function Kh()

with a bandwidth h:

Zik =
Kh(xi,uk)∑

k′∈⟨i⟩Kh(xi,uk′)
, ∀k ∈ ⟨i⟩, (2.9)

where the notation ⟨i⟩ ⊂ [1 : m] is the set saving the indexes of s nearest anchors of xi.

Typically, we may adopt the Gaussian kernel Kh(xi,uk) = exp(−∥xi − uk∥2/2h2) for the

kernel regression.

Under the consideration that the kernel-defined weights may be sensitive to the hyperpa-

rameter h and lack a meaningful interpretation, we obtain them from another perspective:

a geometric reconstruction similar to LLE [144]. Concretely, we reconstruct any data point

xi as a convex combination of its closest anchors, and the combination coefficients are

preserved for the weights used in the nonparametric regression. Let us define a matrix

U = [u1, · · · ,um] and denote by U⟨i⟩ ∈ Rd×s a sub-matrix composed of s nearest anchors of

xi. Then, we develop Local Anchor Embedding (LAE) to optimize the convex combination

coefficients:

min
zi∈Rs

g(zi) =
1

2
∥xi − U⟨i⟩zi∥2

s.t. 1⊤zi = 1, zi ≥ 0 (2.10)

where s entries of the vector zi correspond to s combination coefficients contributed by s

closest anchors. Beyond LLE, LAE imposes the nonnegative constraint and then the convex

solution set to eq. (2.10) constitutes a multinomial simplex

S =
{
z ∈ Rs : 1⊤z = 1, z ≥ 0

}
. (2.11)

In contrast to the regression weights as predefined in eq. (2.9), LAE is more advantageous
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because it provides optimized regression weights that are also sparser than the predefined

ones.

Standard quadratic programming (QP) [18] solvers can be applied to solve eq. (2.10), but

most of them need to compute some approximation of the Hessian and are thus relatively

expensive. We apply the projected gradient method, a first-order optimization procedure,

to solve eq. (2.10) instead. The updating rule in the projected gradient method is expressed

as the following iterative formula

z
(t+1)
i = ΠS

(
z
(t)
i − ηt∇g(z(t)

i )
)
, (2.12)

where t denotes the time stamp, ηt > 0 denotes the appropriate step size, ∇g(z) denotes

the gradient of g at z, and ΠS(z) denotes the simplex projection operator on any z ∈ Rs.

Mathematically, the projection operator is formulated as

ΠS(z) = argmin
z′∈S
∥z′ − z∥. (2.13)

Such a projection operator has been implemented efficiently in O(s log s) time [44], which

is described in Algorithm 1.

To achieve faster optimization, we employ Nesterov’s method [134] to accelerate the

gradient decent in eq. (2.12). As a brilliant achievement in the optimization field, Nesterov’s

method has a much faster convergence rate than the traditional methods such as gradient

descent and subgradient descent. We present LAE accelerated by Nesterov’s method in

Algorithm 2. After solving the optimal weight vector zi, we set

Zi,⟨i⟩ = z⊤
i , |⟨i⟩| = s, zi ∈ Rs (2.14)

and Z
i,⟨i⟩ = 0 for the rest entries of Z. To summarize, we optimize the weights used for

anchor-based nonparametric regression by means of data reconstruction with contiguous

anchors. For each data point, the presented LAE algorithm converges within a few iterations

T ′ in practice. Ultimately, LAE outputs a highly sparse matrix Z (a memory space of O(sn))

at a total time complexity O(dmn+ s2nT ′). Also keep Z1 = 1 in mind.

2.5.2 Design of W

So far, we have set up m anchors (cluster centers) to cover a point cloud of n data samples,

and also designed a nonnegative matrix Z that supports the economical label prediction
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Algorithm 1 Simplex Projection
Input: A vector z ∈ Rs.

sort z into v such that v1 ≥ v2 ≥ · · · ≥ vs

find ρ = max{j ∈ [1 : s] : vj − 1
j (
∑j

r=1 vr − 1) > 0}

compute θ = 1
ρ (
∑ρ

j=1 vj − 1)

Output: A vector z′ = [z′1, · · · , z′s]⊤ such that z′j = max{zj − θ, 0}.

model formulated in eq. (2.8). Now we want to design the large graph adjacency matrix

W directly using the obtained regression matrix Z. As displayed in Figure 2.3, Z actually

captures data-to-anchor affinities whose computational cost is drastically lower than the

cost of directly computing data-to-data affinities, which has been conducted in construct-

ing conventional neighborhood graphs. The central idea of our large graph construction

approach is to infer the data-to-data affinity Wij in the form of the inner product between

two data-to-anchor affinity vectors Zi. ∈ R1×m and Zj. ∈ R1×m, that is, Wij
∼= Zi.Z

⊤
j. . The

intuitive interpretation is that since {Zij}j shapes local supports of anchors for each data

point xi, Wij can be regarded as the overlap between the local supports of two data points

xi and xj . For illustration, Figure 2.3 shows that data pair x1 and x8 become connected

in W because their nearest anchors overlap, while data pair x1 and x4 remain disconnected

because their nearest anchors do not overlap.

Specifically, our approach designs the graph adjacency matrix W as follows

W = ZΛ−1Z⊤, (2.15)

in which the diagonal matrix Λ = diag(Z⊤1) ∈ Rm×m can be considered as an anchor-degree

matrix. The diagonal element Λkk =
∑n

i=1 Zik stores the total affinity between anchor

point uk and its adjacent data points xi’s. Immediately, such a defined adjacency matrix

W satisfies Principle (2) since Z is nonnegative. Further, we find out that a nonnegative

sparse Z leads to an empirically sparse W when the anchor points are set to cluster centers

such that most data point pairs across different clusters do not share the same set of closest

cluster centers. Accordingly, W satisfies Principle (3) in most cases1.

1In an extreme case, if a hub anchor point exists such that a large number of data points are connected

to it, then W may be dense.
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Algorithm 2 Local Anchor Embedding (LAE)

Input: data points {xi}ni=1 ⊂ Rd, anchor point matrix U ∈ Rd×m, integer s.

for i = 1 to n do

for xi find s nearest neighbors in U , saving the index set ⟨i⟩;

define functions g(z) = ∥xi − U⟨i⟩z∥2/2, ∇g(z) = U⊤
⟨i⟩U⟨i⟩z − U⊤

⟨i⟩xi, and g̃β,v(z) = g(v) +

∇g(v)⊤(z − v) + β∥z − v∥2/2;

initialize z(1) = z(0) = 1/s, δ−1 = 0, δ0 = 1, β0 = 1, t = 0;

repeat

t = t+ 1, αt =
δt−2−1
δt−1

set v(t) = z(t) + αt(z
(t) − z(t−1))

for j = 0, 1, · · · do

β = 2jβt−1, z = ΠS(v
(t) − 1

β∇g(v
(t)))

if g(z) ≤ g̃β,v(t)(z) then

update βt = β and z(t+1) = z

break

end if

end for

update δt =
1+
√

1+4δ2t−1

2

until z(t) converges;

zi = z(t).

end for

Output: LAE vectors {zi}ni=1.

We term the large graph G delineated by the adjacency matrixW in eq. (2.15) an Anchor

Graph. Eq. (2.15) is the core finding of this chapter, which constructs a nonnegative and

empirically sparse graph adjacency matrix W via crafty matrix factorization. Furthermore,

it couples anchor-based label prediction and adjacency matrix design via the common matrix

Z. Hence, we only need to save Z, linear in the data size n, in memory as it not only

contributes to the final label prediction but also skillfully constructs the Anchor Graph.

The resultant graph Laplacian of the Anchor Graph is derived by L = I − ZΛ−1Z⊤ where
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Figure 2.3: Design the data-to-data affinity matrix W using the data-to-anchor affinity

matrix Z. The circles represent data points xi’s, and the solid circles represent anchor

points uk’s.

the diagonal node-degree matrix is

D = diag(W1) = diag(ZΛ−1Z⊤1) = diag(ZΛ−1Λ1)

= diag(Z1) = diag(1) = I. (2.16)

Theoretically, we can derive eq. (2.15) in a probabilistic means. As the presented LAE

algorithm derives Z from a geometrical reconstruction view, this matrix Z actually unveils

a tight affinity measure between data points and anchor points. That is sound in the

sense that the more an anchor uk contributes to the reconstruction of a data point xi,

the larger the affinity between them. To explicitly capture the data-to-anchor relationship,

we introduce a bipartite graph [33] B(X ,U , E , Z). The new node set U is composed of the

anchor points {uk}mk=1. The edge set E contains the cross edges between data points X

and anchor points U . Concretely, we connect an undirected edge between xi and uk if and

only if Zik > 0 and designate the edge weight as Zik. Then the cross adjacency matrix

between X and U is Z, and the full adjacency matrix of the bipartite graph B is thus

B =

 0 Z

Z⊤ 0

 ∈ R(n+m)×(n+m) in which Z1 = 1. A toy example for B is visualized in
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Figure 2.4: Random walks over a data-anchor bipartite graph. (a) The data-anchor

bipartite graph B(X ,U , E , Z); (b) path 1 = p(1)(u1|x2)p
(1)(x3|u1) and path 2 =

p(1)(u2|x2)p
(1)(x3|u2); (c) W23 = p(2)(x3|x2) = path 1 + path 2.

Figure 2.4(a).

Over the introduced bipartite graph B, we establish stationary Markov random walks

through defining the one-step transition probability matrix P = (DB)−1B in which DB =

diag(B1) ∈ R(n+m)×(n+m) is the diagonal node-degree matrix of the bipartite graph B. By

doing so, we obtain the transition probabilities in one time step as follows:

p(1)(uk|xi) =
Zik∑m

k′=1 Zik′
= Zik, p(1)(xi|uk) =

Zik∑n
j=1 Zjk

∀i ∈ [1 : n], ∀k ∈ [1 : m]. (2.17)

Obviously, p(1)(xj |xi) = 0 and p(1)(ur|uk) = 0 since there are no direct edges connecting

them in B. Let us think about the two-step transition probabilities p(2)(xj |xi). We have

the following theorem to provide an elegant mathematical expression for them.

Theorem 1. Given one-step transition probabilities defined in eq. (2.17), the transition
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probabilities in two time steps are

p(2)(xj |xi) = p(2)(xi|xj) =

m∑
k=1

ZikZjk

Λkk
. (2.18)

Proof. Let us exploit the chain rule of Markov random walks and notice Λkk =
∑n

i=1 Zik,

thus deducing as follows

p(2)(xj |xi) =
m∑
k=1

p(1)(xj |uk)p
(1)(uk|xi)

=

m∑
k=1

Zjk∑n
j′=1 Zj′k

Zik =

m∑
k=1

ZikZjk

Λkk
,

which does not depend on the order of i and j, so we complete the proof.

Theorem 1 indicates

Wij =

m∑
k=1

ZikZjk

Λkk
= p(2)(xj |xi) = p(2)(xi|xj), (2.19)

which interprets the designed adjacency matrix in a probabilistic measure and thereby

testifies the correctness of our design for W . For visual explanation, Figures 2.4(b) and (c)

display that Wij is the sum of probabilities of all two-step walking paths starting from xi

and arriving on xj .

It is noticeable that we may also define a graph adjacency matrix using the higher-order

transition probabilities such as W ′
ij = p(4)(xj |xi), but this leads to a denser adjacency

matrix W ′ = ZΛ−1Z⊤ZΛ−1Z⊤ and increases the computational cost as well.

From a qualitative perspective, the proposed Anchor Graph resembles the classical kNN

graph in terms of edge connection structure. On the two-moon toy data, the Anchor Graph

with m = 100 and s = 2, which is really sparse and shown in Figure 2.5(c), is close to the

10NN graph shown in Figure 2.5(b). However, to clarify, the essence of the Anchor Graph

is an approximate neighborhood graph since we derive W in an indirect mode for the sake

of saving the time complexity. In Anchor Graphs, Wij > 0 does not necessarily mean that

data pair xi and xj are nearest neighbor to each other.

In summary, the graph adjacency matrix W given by an Anchor Graph is nonnegative,

sparse, and low-rank (its rank is at most m). Hence, Anchor Graphs do not need to compute

W explicitly, but instead keep the low-rank form. The space cost of an Anchor Graph is
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Figure 2.5: The two-moon toy data consisting of 1200 2D points. (a) 100 anchor points from

K-means clustering centers; (b) a 10NN graph built on original points; (c) the proposed

Anchor Graph with m = 100, s = 2 built on original points.

O(sn) for storing Z, and the time cost is O(dmnT + dmn) in which O(dmnT ) originates

from K-means clustering. Since m ≪ n, the time complexity for constructing an Anchor

Graph is linear in the data size n.

2.5.3 Connection to Low-Rank Matrix Approximation

It is attractive that our proposed Anchor Graph yields a low-rank adjacency matrix W =

ZΛ−1Z⊤, which is in a very similar mathematical formulation to the low-rank approxima-

tion K̃ = KnmK−1
mmK⊤

nm of a positive semidefinite matrix K, typically a kernel matrix,

proposed by the well-know Nyström method [193]. While both methods are using the low-

rank trick, the motivations are quite different. As clarified in Subsection 2.4.3, our purpose

is to design a large graph adjacency matrix W such that the nonnegative and sparse char-

acteristics are explicitly satisfied to make the constructed graph sparse and the resulting

graph Laplacian positive semidefinite. In contrast, the Nyström method generates a low-

rank matrix K̃ such that the approximation error between this matrix and the original

kernel matrix K is kept as small as possible, where only the positive semidefiniteness is

imposed on the approximated kernel matrix K̃ whereas nonnegativeness and sparsity are

not insured.
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The latest progress of the Nyström method either investigated advanced sampling strate-

gies [205][98] to achieve smaller approximation errors, or developed faster variants [97][105]

to accelerate the kernel computation under a larger rank (≥10,000). While our Anchor

Graph is not trying to approximate any predefined W , we could evaluate its quality accord-

ing to the error between the Anchor Graph’s adjacency matrix and kNN graph’s adjacency

matrix, since their edge connecting structures are very close as shown in Figures 2.5(b)(c).

Consequently, we may explore the error bound in the future. Such a bound should also

be dependent on the number of anchors m (i.e., the rank of the Anchor Graph’s adja-

cency matrix) like the error bounds having been proven by the Nyström-related approaches

[193][205][97][105].

2.6 Anchor Graph Regularization

Though Anchor Graphs offer approximate neighborhoods, they are found to enjoy similar

topological structures to exact neighborhood graphs such as kNN graphs. To testify Anchor

Graphs deeply and thoroughly, we must make quantitative evaluations. Accordingly, we

hold Anchor Graph-based semi-supervised learning as the testbed and take classification

accuracy as a quantitative criterion of Anchor Graph’s quality.

Now we develop a novel GSSL algorithm named Anchor Graph Regularization (AGR)

which establishes a regularized framework upon an Anchor Graph. Let us concentrate on

a standard multi-class SSL setting where each labeled sample xi (i = 1 · · · , l) carries a

discrete label yi ∈ {1, · · · , c} from c distinct classes. We denote by Yl = [y1
l , · · · ,yc

l ] ∈ Rl×c

a class indicator matrix on the labeled samples Xl with (Yl)ij = 1 if yi = j and (Yl)ij = 0

otherwise. Amenable to the aforementioned anchor-based label prediction model, we only

need to solve the soft labels associated with m anchors which are put in the label matrix

A = [a1, · · · ,ac] ∈ Rm×c of which each column vector accounts for a class.

We employ the smoothness norm ∥f∥2G = f⊤Lf introduced in Section 2.1 to impose

Anchor Graph regularization on c label prediction functions fj = Zaj (j = 1, · · · , c) each
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of which is tailored to a single class. Then we formulate a GSSL framework as follows:

min
A=[a1,··· ,ac]

Q(A) =
c∑

j=1

∥Zlaj − yj
l ∥

2 + γ
c∑

j=1

∥Zaj∥2G

= ∥ZlA− Yl∥2F + γ

c∑
j=1

a⊤
j Z

⊤LZaj

= ∥ZlA− Yl∥2F + γtr(A⊤Z⊤LZA),

where Zl ∈ Rl×m is the sub-matrix according to the labeled partition, ∥.∥F stands for the

Frobenius norm, and γ > 0 is the regularization parameter.

Meanwhile, we compute a “reduced” Laplacian matrix:

L̃ = Z⊤LZ = Z⊤(I − ZΛ−1Z⊤)Z

= Z⊤Z − (Z⊤Z)Λ−1(Z⊤Z),

which is both memory-wise and computationally tractable, taking O(m2) space and O(m3+

m2n) time. Subsequently, we can simplify the cost function Q(A) to

Q(A) = ∥ZlA− Yl∥2F + γtr(A⊤L̃A). (2.20)

With simple algebra, we can easily obtain the globally optimal solution to eq. (2.20):

A∗ = (Z⊤
l Zl + γL̃)−1Z⊤

l Yl. (2.21)

As such, we yield a closed-form solution for addressing large scale GSSL. In the sequel, we

employ the solved soft labels associated with the anchors to predict the hard label for any

unlabeled sample as

ŷi = arg max
j∈{1,··· ,c}

Zi.aj

τj
, i = l + 1, · · · , n, (2.22)

where Zi. ∈ R1×m denotes the ith row of Z, and the normalization factor τj = 1⊤Zaj ,

suggested as a useful class mass normalization in the classical GSSL paper [212], balances

the possibly skewed class distribution in the labeled data set Xl.

2.6.1 Analysis

The developed AGR algorithm consists of three stages: 1) find anchors by running K-

means clustering, 2) design Z, and 3) perform graph regularization. In each stage the space
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Table 2.4: Time complexity analysis of the developed scalable GSSL algorithm Anchor

Graph Regularization (AGR). n is the data size, m is the number of anchor points, d is the

data dimension, s is the number of nearest anchors in LAE, T is the number of iterations

in K-means clustering, and T ′ is the number of iterations in LAE (n≫ m≫ s).

Algorithm Find Design Z Graph Total Time

Anchors Regularization Complexity

AGR O(dmnT ) O(dmn) or O(m3 +m2n) O(dmnT +m2n)

O(dmn+ s2nT ′)

complexity is bounded by O(dm+dn). In the second stage, we may use either a predefined

Z in eq. (2.9) or an optimized Z that the LAE algorithm yields. The time complexity of

each stage is listed in Table 2.4. We have used a fixed number m (s ≪ m ≪ n) of anchor

points for constructing the Anchor Graph and specifying the label prediction model, which

is independent of the data size n. Table 2.4 indicates that the total time complexity of

AGR is O(dmnT +m2n), so AGR scales linearly with the data size n.

In order to highlight the differences between our approach AGR and classical GSSL

approaches including Local and Global Consistency (LGC) [208], Gaussian Fields and Har-

monic Functions (GFHF) [212], and Graph Regularization (GR) [213], we plot Table 2.5 to

list several key features of these approaches. It is noted that GFHF is the extreme case of

GR as the graph regularization parameter γ is prone to be 0, and that AGR may be thought

of as an anchor-approximated version of GR. As far as the time complexity is concerned,

LGC, GFHF and GR need to invert sparse and symmetric matrices as large as n × n in

addition to the expensive cost O(dn2) incurred by kNN graph construction. Since there

exists a nearly linear solver for solving sparse and symmetric linear systems [160], one can

avoid the expensive matrix inversion operation and apply the sparse linear system solver

instead. Thus, we give the lowest time complexity O
(
c(kn)1.31

)
for LGC, GFHF and GR

in Table 2.5.

Lastly, we must state that our approach AGR is able to predict labels for any novel data

beyond the n data points available in training. This is simply fulfilled by either defining a
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Table 2.5: Comparison of three classical GSSL algorithms with AGR. LGC, GFHF and

GR use the same kNN graph, while AGR uses the Anchor Graph (m anchors). F ∈ Rn×c

expresses the target soft label matrix associated with all n data points and c classes, L and

L̄ respectively denote the graph Laplacian and normalized graph Laplacian matrices of the

kNN graph, and L̃ represents the reduced Laplacian matrix of the Anchor Graph.

Algorithm Objective Parameter Time Handle

Function γ Complexity Novel

Data

LGC [208] minF ∥F − Y ∥2F + γtr(F⊤L̄F ) γ > 0 O(dn2) +O(c(kn)1.31) No

GFHF [212] minF ∥Fl − Yl∥2F + γtr(F⊤LF ) γ → 0 O(dn2) +O(c(kn)1.31) No

GR [213] minF ∥Fl − Yl∥2F + γtr(F⊤LF ) γ > 0 O(dn2) +O(c(kn)1.31) No

AGR minA ∥ZlA− Yl∥2F + γtr(A⊤L̃A) γ > 0 O(dmnT +m2n) Yes

nonlinear data-to-anchor mapping (or embedding) z : Rd 7→ Rm

z(x) =
[δ1Kh(x,u1), · · · , δmKh(x,um)]⊤∑m

k=1 δkKh(x,uk)
, (2.23)

where δk ∈ {1, 0} and δk = 1 if and only if anchor uk is one of s nearest anchors in U of

the novel sample x; or performing Local Anchor Embedding (formulated in eq. (2.10)) for

x to obtain a kernel-free z(x). Because of z(xi) ≡ [Zi1, · · · , Zim]⊤, we can generalize the

aforementioned label prediction model in eq. (2.7) to the following universal expression:

f(x) = z⊤(x)a, (2.24)

in which x can be any sample. In the literature, the ability of coping with unseen samples

for a SSL algorithm is called inductive [216][211]. It has manifested that all of LGC, GFHF

and GR are only transductive but not inductive. In contrast, our approach AGR developed

in this chapter preferably exhibits the inductive capability besides the high computational

efficiency.

2.7 Experiments

In this section, we evaluate the proposed large graph construction approach Anchor Graph

on two synthetic toy datasets and three real-word datasets which vary in size from 1,000 to
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9,000 samples.

2.7.1 Toy Datasets

In addition to the two-moon toy dataset that we have used to qualitatively test Anchor

Graphs in Section 2.5.2, here we try two more toy datasets: the two-ring toy dataset [76]

consisting of 1,000 2D points and the two-sun toy dataset of 1,500 2D points. On both

datasets, we assign K-means clustering centers to the anchor points with which Anchor

Graphs are built. The number m of anchors is chosen to 100 or 200. To construct Anchor

Graphs, we use predefined matrices Z and fix the parameter s to 2 on both datasets.

The visual results are shown in Figures 2.6 and 2.7. These results again verify that

Anchor Graphs are close to kNN graphs in topology, and that the number of adopted

anchors controls the sparsity, possibly quality, of Anchor Graphs. Figures 2.6(d)(f) and

2.7(d)(f) indicate that more anchors used, sparser Anchor Graphs gained.

2.7.2 Real-World Datasets

In this subsection, we provide quantitative experiments to testify the quality of Anchor

Graphs in contrast with kNN graphs. Concretely, we use the classification accuracy of

graph-based semi-supervised learning (GSSL) carried out on three real-world datasets to

evaluate Anchor Graphs as well as Anchor Graph Regularization (AGR).

The compared GSSL algorithms include Local and Global Consistency (LGC) [208],

Gaussian Fields and Harmonic Functions (GFHF) [212], and Graph Regularization (GR)

[213], all of which exploit kNN graphs. We run K-means clustering in five iterations (i.e, T =

5), and the generated clustering centers are taken as anchor points that are fed to construct

Anchor Graphs. We run two versions of AGR: 1) AGR with predefined Z, denoted by

AGR0, and 2) AGR with LAE-optimized Z, denoted by AGR. To speedup the construction

time of Anchor Graphs, we limit the iterations of LAE to T ′ = 10. The classification

experiments are conducted in a standard transductive setting as [208][212][184][76][112]:

use both labeled and unlabeled samples for learning classifiers and afterwards calculate

the classification accuracy over the unlabeled samples. All these experiments are run on a

workstation with a 2.53 GHz Intel Xeon CPU and 48GB RAM.
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(f) Anchor Graph (m=200, s=2)

Figure 2.6: Results on the two-ring toy dataset. (a) The original data points; (b) a 10NN

graph; (c) 100 anchor points; (d) an Anchor Graph with m = 100, s = 2; (e) 200 anchor

points; (f) an Anchor Graph with m = 200, s = 2.
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(a) The two−sun toy dataset (1500 data points)
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Figure 2.7: Results on the two-sun toy dataset. (a) The original data points; (b) a 10NN

graph; (c) 100 anchor points; (d) an Anchor Graph with m = 100, s = 2; (e) 200 anchor

points; (f) an Anchor Graph with m = 200, s = 2.
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The three datasets are the COIL-20 dataset [133] composed of images from 20 object

classes, the SCENE-15 dataset [101] composed of images from 15 natural scene classes,

and the USPS dataset [1] comprised of images from 10 classes of digits ‘0’, ‘1’, ... ,‘9’.

Some example images of the three datasets are displayed in Figures 2.8, 2.9, and 2.10.

On COIL-20 (1,440 samples), to make a SSL environment, we randomly choose l = 200

and l = 400 labeled samples respectively such that they contain at least one sample from

each class. Note that this learning environment introduces skewed class distributions in

the labeled samples. The image features of COIL-20 are in 1,024 dimensions. We do

PCA to reduce to 30 dimensions such that higher 1NN classification accuracy is achieved.

We evaluate the baseline 1NN, PCA+1NN, three state-of-the-art GSSL algorithms LGC,

GFHF and GR using 6NN graphs and 12NN graphs, and AGR0 and AGR using 20 up to 200

anchors from random exemplars and cluster centers. All GSSL algorithms we are comparing

use 30-dimensional PCA features to construct graphs. Averaged over 50 trials, we calculate

the classification error rates and report the running time for the referred methods. The

results are displayed in Table 2.6 and Figure 2.11. Table 2.6 lists a total running time

including three stages K-means clustering, designing Z, and graph regularization for every

version of AGR (note that AGR0 does not do the K-means step). The time cost of graph

regularization is quite small and can almost be ignored. From Table 2.6, we know that AGR0

is much faster than LGC, GFHF and GR, and that AGR is slower because of optimizing

Z. However, AGR using 200 anchors achieves comparable classification accuracy to its

upper bound GR and GFHF. Figure 2.11 reveals the classification performance of AGR0

and AGR under various parameters s ∈ [2 : 10] and m ∈ [20 : 200]. All these results

show that 1) the cluster center anchors demonstrate an advantage over the random anchors

when using them to build Anchor Graphs, that 2) the increasing anchor size m indeed

leads to significant improvement of classification accuracy for every version of AGR, and

that 3) AGR with LAE-optimized Z substantially improves the performance of AGR with

predefined Z (AGR0). Actually, Z optimized by LAE induces a sparser adjacency matrix

W than predefined rigid Z because Z optimized by LAE is sparser than predefined Z. Using

more anchors also leads to sparser W , so the resulting Anchor Graph becomes sparser and

closer to the kNN graph. To conclude, we can say that cluster anchors and the geometrical
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strategy for designing Z make sense, resulting in high-fidelity Anchor Graphs.

On SCENE-15 (4,485 samples), we randomly choose l = 150 and l = 600 labeled

samples respectively such that they contain at least one sample from each class. We adopt

a 21*1024-dimensional sparse-coding feature vector [189], extracted from dense SIFTs [101],

to represent each image in SCENE-15. Like COIL-20, we do PCA to reduce the very

high dimensions to 220 dimensions and subsequently normalize each reduced feature vector

to unit ℓ2 norm. Again, we evaluate the baseline 1NN, PCA+1NN, three state-of-the-art

GSSL algorithms LGC, GFHF and GR using 6NN graphs and 12NN graphs, and AGR0 and

AGR using 100 up to 1,000 anchors from random exemplars and cluster centers. All GSSL

algorithms in comparison use ℓ2 normalized 220-dimensional PCA features to construct

graphs. Averaged over 50 trials, we report the classification accuracy as well as the running

time for the referred methods in Table 2.7 and Figure 2.12. On this larger dataset, both

AGR0 and AGR are faster than LGC, GFHF and GR. AGR0 and AGR achieve comparable

classification accuracy. Figure 2.12 reveals the classification performance of AGR0 and AGR

under various parameters s ∈ [2 : 10] and m ∈ [100 : 1000]. These results again indicate

that for AGR cluster center anchors are more advantageous than random anchors, and that

the increasing anchor size m conduces to higher classification accuracy.

On USPS (9,298 samples), we randomly choose l = 100 and l = 200 labeled samples

respectively such that they contain at least one sample from each class. The image features

are in 256 dimensions which are acceptable, so we do not need to try PCA on this dataset.

Like above experiments, we evaluate the baseline 1NN, three state-of-the-art GSSL algo-

rithms LGC, GFHF and GR using 6NN graphs and 12NN graphs, and AGR0 and AGR

using 100 up to 1,000 anchors from random exemplars and cluster centers. Averaged over

50 trials, we report the classification error rates as well as the running time for the referred

methods in Table 2.8 and Figure 2.13. Like SCENE-15, both AGR0 and AGR are faster

than LGC, GFHF and GR. AGR achieves higher classification accuracy than AGR0. Figure

2.13 discloses the classification performance of AGR0 and AGR under various parameter

settings s ∈ [2 : 10] and m ∈ [100 : 1000]. All these results further corroborate that for

AGR: i) cluster center anchors are more preferable than random anchors, ii) the growing

number of anchors conduce to higher classification accuracy, and iii) AGR using optimized
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Figure 2.8: Example images from the COIL-20 dataset. The original figure is from http:

//www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

Z behaves better than using predefined Z.

2.8 Summary and Discussion

The prior GSSL methods scale poorly with the data size because of the quadratic time

complexity for neighborhood graph construction, which prevents SSL from being widely

applied. This chapter proposes approximate neighborhood graphs, called Anchor Graphs,

which are skillfully designed and efficiently constructed over massive data collections, thus

making GSSL practical on large-scale problems. Our experiments show that Anchor Graphs

exhibit high fidelity to kNN graphs yet with much shorter construction time. Upon An-

chor Graphs, the developed novel GSSL algorithm Anchor Graph Regularization (AGR) is

simple to understand, easy to implement, and comparable with state-of-the-arts in terms

of classification performance. Both time and memory needed by Anchor Graphs as well as

AGR grow only linearly with the data size. Therefore, we successfully address the scalabil-

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Figure 2.9: Example images from the SCENE-15 dataset.

Figure 2.10: Example images from the USPS dataset. The original figure is from http:

//www.cad.zju.edu.cn/home/dengcai/Data/USPS/images.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/USPS/images.html
http://www.cad.zju.edu.cn/home/dengcai/Data/USPS/images.html
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Table 2.6: Classification performance onCOIL-20 (1,440 samples). l denotes the number of

labeled examples for training GSSL algorithms. All running time is recorded in second. The

K-means clustering time for 100 and 200 anchors is 0.049 and 0.083 seconds, respectively.

AGR-related methods set s = 10. At a fixed l, two lowest error rate values are displayed in

boldface type.

l = 200 l = 400

Method Error Rate Running Error Rate Running

(%) Time (%) Time

1NN 10.58±1.66 – 4.53±0.90 –

PCA+1NN 8.92±1.49 0.007 3.15±0.93 0.013

LGC with 6NN Graph 3.00±0.93 0.183 1.11±0.61 0.192

LGC with 12NN Graph 8.82±1.15 0.208 6.30±1.43 0.223

GFHF with 6NN Graph 2.12±0.87 0.223 0.75±0.41 0.208

GFHF with 12NN Graph 7.75±0.98 0.253 4.04±1.00 0.227

GR with 6NN Graph 2.18±0.87 0.163 0.76±0.40 0.167

GR with 12NN Graph 8.57±0.98 0.190 4.87±1.10 0.190

AGR0 with 100 random anchors 17.62±1.56 0.018 13.65±0.94 0.019

AGR0 with 200 random anchors 14.56±1.35 0.032 8.81±0.85 0.034

AGR0 with 100 cluster anchors 17.16±1.46 0.066 12.66±0.99 0.067

AGR0 with 200 cluster anchors 12.47±1.35 0.114 6.87±0.92 0.116

AGR with 100 random anchors 15.51±1.14 0.262 12.61±1.26 0.289

AGR with 200 random anchors 7.75±1.35 0.270 3.84±0.81 0.291

AGR with 100 cluster anchors 12.73±1.06 0.334 10.49±0.85 0.335

AGR with 200 cluster anchors 5.16±1.21 0.370 1.78±0.67 0.372
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(a) Classification Error Rates vs. s (l=200, m=100)

 

 

LGC
GFHF

AGR0 (random)
AGR (random)

AGR0 (cluster)
AGR (cluster)

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

s

E
rr

or
 R

at
e 

(%
)

(b) Classification Error Rates vs. s (l=200, m=200)
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(c) Classification Error Rates vs. s (l=400, m=100)
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(d) Classification Error Rates vs. s (l=400, m=200)

 

 

LGC
GFHF

AGR0 (random)
AGR (random)

AGR0 (cluster)
AGR (cluster)

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45
(e) Classification Error Rates vs. # Anchors (l=200)

E
rr

or
 R

at
e 

(%
)

# Anchor Points (m)

 

 

LGC
GFHF

AGR0 (random)
AGR (random)

AGR0 (cluster)
AGR (cluster)

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

# Anchor Points (m)

E
rr

or
 R

at
e 

(%
)

(f) Classification Error Rates vs. # Anchors (l=400)
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Figure 2.11: Results on COIL-20. (a)(b)(c)(d) Classification error rates with increasing s

under different l,m settings; (e)(f) error rates with increasing m under s = 10.
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Table 2.7: Classification performance on SCENE-15 (4,485 samples). l denotes the num-

ber of labeled examples for training GSSL algorithms. All running time is recorded in

second. The K-means clustering time for 500 and 1000 anchors is 0.465 and 0.815 seconds,

respectively. AGR-related methods set s = 3. At a fixed l, two highest accuracy values are

displayed in boldface type.

l = 150 l = 600

Method Accuracy Running Accuracy Running

(%) Time (%) Time

1NN 54.49±1.56 – 62.49±1.02 –

PCA+1NN 55.76±1.40 0.018 63.86±0.95 0.046

LGC with 6NN Graph 63.80±1.53 2.26 71.12±0.79 2.63

LGC with 12NN Graph 63.50±1.76 2.76 71.22±1.06 3.11

GFHF with 6NN Graph 66.73±1.03 1.54 71.93±0.62 1.72

GFHF with 12NN Graph 66.57±1.12 1.94 72.64±0.66 2.09

GR with 6NN Graph 66.59±1.16 1.65 71.90±0.54 1.73

GR with 12NN Graph 66.28±1.26 2.00 71.66±0.63 2.14

AGR0 with 500 random anchors 57.44±1.27 0.200 64.71±0.64 0.209

AGR0 with 1000 random anchors 58.78±1.42 0.456 65.71±0.59 0.492

AGR0 with 500 cluster anchors 63.26±1.13 0.665 68.84±0.66 0.674

AGR0 with 1000 cluster anchors 63.83±1.09 1.27 69.42±0.61 1.31

AGR with 500 random anchors 57.80±1.31 0.401 64.85±0.60 0.410

AGR with 1000 random anchors 59.46±1.37 0.910 65.88±0.61 0.982

AGR with 500 cluster anchors 63.50±1.14 0.866 68.98±0.67 0.875

AGR with 1000 cluster anchors 64.20±1.07 1.73 69.55±0.64 1.80
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(a) Classification Accuracy vs. s (l=150, m=500)
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(b) Classification Accuracy vs. s (l=150, m=1000)
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(c) Classification Accuracy vs. s (l=600, m=500)
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(d) Classification Accuracy vs. s (l=600, m=1000)
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(e) Classification Accuracy vs. # Anchors (l=150)
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(f) Classification Accuracy vs. # Anchors (l=600)
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Figure 2.12: Results on SCENE-15. (a)(b)(c)(d) Classification accuracy with increasing

s under different l,m settings; (e)(f) accuracy with increasing m under s = 3.
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Table 2.8: Classification performance on USPS (9,298 samples). l denotes the number of

labeled examples for training GSSL algorithms. All running time is recorded in second. The

K-means clustering time for 500 and 1000 anchors is 1.49 and 2.76 seconds, respectively.

AGR-related methods set s = 3. At a fixed l, two lowest error rate values are displayed in

boldface type.

l = 100 l = 200

Method Error Rate Running Error Rate Running

(%) Time (%) Time

1NN 21.75±1.41 0.136 16.28±1.11 0.155

LGC with 6NN Graph 8.42±1.25 7.49 6.54±0.78 8.24

LGC with 12NN Graph 9.27±1.34 8.75 7.19±0.85 9.21

GFHF with 6NN Graph 5.64±0.63 7.15 5.04±0.32 6.50

GFHF with 12NN Graph 6.94±0.75 7.67 6.23±0.40 7.43

GR with 6NN Graph 5.88±0.78 7.30 5.22±0.33 7.36

GR with 12NN Graph 7.40±0.94 7.64 6.55±0.41 7.65

AGR0 with 500 random anchors 14.41±1.02 0.369 12.49±0.62 0.378

AGR0 with 1000 random anchors 11.72±0.96 0.670 10.37±0.47 0.707

AGR0 with 500 cluster anchors 9.09±0.96 1.81 7.78±0.44 1.83

AGR0 with 1000 cluster anchors 8.04±0.87 3.42 7.07±0.37 3.43

AGR with 500 random anchors 13.56±1.03 1.05 11.79±0.62 1.06

AGR with 1000 random anchors 11.08±0.93 1.07 9.87±0.42 1.08

AGR with 500 cluster anchors 8.56±0.96 2.51 7.35±0.45 2.53

AGR with 1000 cluster anchors 7.68±0.78 3.82 6.82±0.36 3.83
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(a) Classification Error Rates vs. s (l=100, m=500)
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(b) Classification Error Rates vs. s (l=100, m=1000)
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(c) Classification Error Rates vs. s (l=200, m=500)
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(d) Classification Error Rates vs. s (l=200, m=1000)
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(e) Classification Error Rates vs. # Anchors (l=100)
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(f) Classification Error Rates vs. # Anchors (l=200)
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Figure 2.13: Results on USPS. (a)(b)(c)(d) Classification error rates with increasing s

under different l,m settings; (e)(f) error rates with increasing m under s = 3.
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ity issue of large graph construction and then make GSSL scalable. In the next chapter, we

will apply Anchor Graphs and AGR to larger datasets of up to one million samples.

Having stated in Section 2.6.1, AGR has a natural out-of-sample extension and can

easily apply to novel samples once we compute the data-to-anchor mapping z(x) for novel

sample x. For very large datasets (millions or more) K-means clustering may be expensive.

To construct Anchor Graphs, we suggest doing clustering on a small subsample of the entire

database or trying faster clustering algorithms such as random forest clustering.

For very high-dimensional data, in order to reduce the construction time as well as

suppressing noisy data, appropriate dimensionality reduction methods such as PCA, ICA

and LDA are strongly suggested before running our Anchor Graphs, referring to what we

have done for the COIL-20 and SCENE-15 datasets which contain over 1000 dimensional

data. What we can do in future is to seek a principled way to further sparsify Anchor Graphs

like [161]. Recently, parallel large graph construction such as [187][188] is on the rise. We

may engage in setting up Anchor Graphs in a parallel mode, which is very meaningful for

faster graph construction over larger scale data.

Lastly, we have to clarify that although in this chapter we select GSSL as the testbed of

the proposed large graph construction approach, it is an unsupervised approach in essence

and can thus be applied to a large spectrum of machine learning and information retrieval

problems. [30] applied Anchor Graphs for large-scale spectral clustering, and [196] made

manifold ranking scalable on the foundation of Anchor Graphs, which both witness the

power of our proposed Anchor Graphs. Hence, we believe that Anchor Graphs will trigger

more applications and make some existing computationally challenging problems tractable.

In Chapter 4, we will resolve graph hashing, that was regarded computationally infeasible

at a large scale, by employing Anchor Graphs.
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Chapter 3

Large-Scale Semi-Supervised

Learning

In this chapter, we study large-scale semi-supervised learning deeply. Our purpose is to

develop nonlinear and discriminative semi-supervised classifiers from a kernel point of view.

We realize that the Anchor Graph Regularization (AGR) algorithm we have developed in the

last chapter essentially performs label propagation over Anchor Graphs without optimizing

the margins in between different classes. To this end, we aim at learning SVM-like classifiers

to maximize the margins. The central idea is to generate a low-rank kernel by leveraging an

Anchor Graph into a kernel machine framework. In doing so, the large-scale semi-supervised

learning task on all data samples is reduced to a supervised linear classification task carried

out on much fewer labeled samples. Therefore, we eventually apply a linear SVM over a

new feature space which is derived from decomposing the low-rank kernel. The generated

low-rank kernel and its direct linearization succeed in addressing the scalability issue of

semi-supervised learning, leading to higher classification accuracy than AGR.

Specifically, we propose three low-rank kernel generation methods. The first method

directly takes the low-rank adjacency matrix of the Anchor Graph as a kernel. The second

one obtains a low-rank kernel from truncating the pseudo inverse of the Anchor Graph

Laplacian on its eigenspectrum. The third one derives a novel kernel through enforcing

Anchor Graph based regularization to warp a priori kernel. The resulting Anchor Graph
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warped kernel turns out to bear a low-rank expression. Extensive semi-supervised classifi-

cation experiments performed on three large image datasets of up to one million samples

demonstrate the efficacy of the Anchor Graph based low-rank kernel generation techniques.

SVMs with the proposed low-rank kernels achieve remarkable performance gains over AGR

and state-of-the-art large-scale semi-supervised learning algorithms.

In this chapter, we state the problem background of large-scale semi-supervised learning

in Section 3.1, review the related work in Section 3.2, introduce the notations that we will use

in Section 3.3, describe the fundamental large-scale learning technique Kernel Linearization

in Section 3.4, propose our low-rank kernel generation techniques in Section 3.5, show the

experimental results in Section 3.6, and finally draw our summary and discussion in Section

3.7.

3.1 Problem Background

In the current age of data divulgence, there is emerging attention in leveraging massive

amounts of data available in open sources such as the Web to help solve long standing com-

puter vision, data mining, and information retrieval problems like object recognition, topic

detection and discovery, multimedia information retrieval, community detection, collabora-

tive filtering, and so on. How to effectively incorporate and efficiently exploit large-scale

data corpora is an open problem.

In this chapter, we further focus on the promising direction Semi-Supervised Learning

(SSL) [23][211][213] which has gained broad interest: developing the best ways of combining

labeled data, often of limited amount, and a huge pool of unlabeled data in forming abun-

dant training resources for optimizing machine learning models. Let us quote one typical

application of SSL. Nowadays, massive amounts of data, e.g., images, videos, audio, doc-

uments, etc., are present on the Web and may thus be crawled from the Web in demand.

For example, images associated with a desired tag, customarily a semantic label, can be

gathered via searching this tag at web image search engines such as Google and Bing, or

photo sharing websites such as Flickr and Fotolog. However, the large number of images

retrieved by search engines are usually noisy and frequently do not match the user-provided
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tag entirely [48]. Therefore, users are suggested to give accurate labels for some images and

the labels of the rest of images will be predicted by applying an appropriate semi-supervised

classifier.

The challenging issue pertaining to SSL for web-scale applications is scalability – how

to successfully accommodate millions or billions of data samples in a learning framework.

Unfortunately, most SSL methods scale poorly with the data size and become intractable in

computation for large scale learning tasks. As far as the popular graph-based SSL (GSSL)

algorithms are concerned, they require a quadratic time complexityO(dn2) for neighborhood

graph construction (suppose that n data points live in Rd) and O(nρ) (1 < ρ ≤ 3) for

classifier training over graphs. Hence, the overall time complexity remains O(dn2) at least.

Such an expensive cost is computationally prohibitive for large scale applications, severely

preventing the adoption of SSL in practical situations.

Through taking advantage of Anchor Graphs proposed in the previous chapter, we are

able to keep a reduced linear computational complexity O(dn) for the graph construction

step. Actually, we can benefit further from the Anchor Graphs, leveraging them to develop

efficient semi-supervised classifiers which are trained in linear time as well. We have achieved

a linear time semi-supervised classifier, i.e., the Anchor Graph Regularization (AGR) al-

gorithm developed in Chapter 2, but it is not discriminative enough to separate multiple

classes since AGR essentially performs label propagation over Anchor Graphs without opti-

mizing the margins in between different classes. In this chapter, we would like to do better

and develop more discriminative semi-supervised classifiers. A natural idea is to create a

kernel machine for margin maximization and make it accommodate the semi-supervised sce-

nario. Motivated from the kernel linearization technique [143] which is critical to scaling up

traditional kernel machines, our approach generates and linearizes several low-rank kernels

from and with an Anchor Graph. The linearized low-rank kernels give rise to novel feature

spaces over which linear SVMs can easily be trained on much fewer labeled samples. Conse-

quently, the challenging large-scale SSL problem is addressed via solving a small-scale linear

classification problem. In one sentence, our low-rank kernels are yielded from the kernel

viewpoints of Anchor Graphs.
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3.2 Related Work

Semi-supervised learning (SSL), a modern machine learning paradigm, deals with learning

tasks through utilizing both labeled and unlabeled examples. The learning tasks allow var-

ious scenarios including semi-supervised classification [212][208], semi-supervised regression

[100][80], and semi-supervised clustering [9][92]. In such learning tasks, one is confronted

with the situations where a few labeled data together with large amounts of unlabeled data

are available. SSL has been increasingly popular in a lot of practical problems, since it is

quite feasible to obtain unlabeled data by an automatic procedure but quite expensive to

identify the labels of data.

This chapter concentrates on semi-supervised classification whose paramount foundation

necessitates an appropriate assumption about data distributions. Two commonly adopted

assumptions are the cluster assumption [25] and the manifold assumption [12]. The former

assumes that samples associated with the same structure, typically a cluster, tend to take

similar labels. The latter often implies that close-by samples on data manifolds are very

likely to share close labels. Notice that the cluster assumption is assumed in a global view

whereas the manifold assumption is often imposed locally.

Among current research on semi-supervised classification, [25][26] implemented the clus-

ter assumption which favors decision boundaries for classification passing through low-

density regions in the input sample space. In line with them, Transductive Support Vector

Machines (TSVMs) [83][156][36][24] aimed to optimize the margins among both labeled

and unlabeled examples. A bunch of GSSL algorithms [212][208][184][112][12][157][124] put

forward various graph-based learning frameworks with similar graph regularization terms.

Besides these, numerous approaches in the literature have exploited the manifold assump-

tion to pursue smooth classification or prediction functions along data manifolds which were

represented by graphs. It is feasible to integrate the two assumptions to develop stronger

SSL models like [87][29]. There also exist many other methods engaging in semi-supervised

classification from other perspectives or with other assumptions, such as semi-supervised

generative models [43][165] and semi-supervised boosting [122][29].

With rapid development of the Internet, now we can collect massive (up to hundreds of

millions) unlabeled data such as images and videos, and then the need for large scale SSL
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arises. Unfortunately, most SSL methods scale poorly with the data size n. For instance, the

classical TSVM [83] is computationally challenging, scaling exponentially with n. Among

various versions of TSVM, the Concave-Convex Procedure (CCCP)-TSVM [36] has the

lowest complexity, but it scales as at least O(n2) so it is still difficult to scale up. As

for GSSL which is appealing in use and implementation, it incurs a quadratic to cubic

time complexity O(n2) ∼ O(n3) because of neighborhood graph construction and nontrivial

manipulations upon large n× n graph Laplacian matrices.

To temper the high time complexity of GSSL, recent studies seek to reduce the intensive

computations upon graph Laplacians. A few solutions have been proposed recently. [40]

proposed a nonparametric inductive function for label prediction based on a subset of sam-

ples and aggressive truncation in calculating the graph Laplacian. However, the truncation

sacrifices the topology structure within the majority of input data and hence will likely lose

useful information of the data set. [216] fitted a generative mixture model to the raw data

and proposed harmonic mixtures to span the label prediction function, but the key step,

i.e., constructing a large sparse graph, needed in estimating the harmonic mixtures remains

open. [176] scaled up the manifold regularization method first proposed in [12] by solving

the dual optimization problem of manifold regularization subject to a sparsity constraint,

but such optimization still requires heavy computation (taking O(1/ϵ8) time where ϵ > 0

is the approximation factor) to achieve a good approximate solution. [204] applied the

Nyström approximation to build a huge graph adjacency matrix, but there is no guaran-

tee for the positive semidefiniteness of the resulting graph Laplacian, which is required to

ensure convexity of the optimization problem and convergence of the solution. [49] approx-

imated the label prediction function by linearly combining smooth eigenfunctions of 1D

graph Laplacians calculated from each dimension of data, whose derivation relies on several

assumptions about the data, e.g., dimension independence and 1D uniform distributions,

which are not true for real-world data.

Almost all semi-supervised learning methods can be categorized to two families: trans-

ductive and inductive. The former aims to infer labels of unlabeled data without develop-

ing an explicit classification model, thus lacking the capability of dealing with novel data.

The latter takes advantage of both labeled and unlabeled data to train classification mod-
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els (i.e., inductive models) which can be used to handle unseen data outside the training

data set. Consequently, inductive semi-supervised learning is referred to as truly semi-

supervised learning [157]. Several classical GSSL methods including GFHF [212], LGC

[208] and GTAM [184] are purely transductive, and other methods such as graph min-

cuts [15][16][99], spectral graph partitioning [84], random walks [167][7], and local learning

[194] also belong to the transductive family since they focus on predicting information as-

sociated with the existing unlabeled data. The inductive family consists of all versions

of TSVMs [83][36][24], manifold regularization [12][157][124], multi-kernel semi-supervised

learning [171], translated kernel logistic regression [147], etc. The recent advance in induc-

tive semi-supervised learning explores semi-supervised relevance ranking [199], structured

output semi-supervised learning [125], and multi-label semi-supervised learning [200].

For the scalability issue, most purely transductive methods are not suitable solutions

except the Blockwise Supervised Inference method [202] which, however, made a restrictive

assumption that the data graph has a block structure. Because of the capability of handling

novel data, scalable and inductive semi-supervised learning is more desirable for real-world

web-scale data, which usually anticipates dynamic novel data.

The scalable GSSL work mentioned before, including Nonparametric Function Induction

[40], Harmonic Mixtures [216], Sparsified Manifold Regularization [176], Prototype Vector

Machines [204], and Eigenfunction Combination [49], is actually inductive. As described and

analyzed in Chapter 2, our approach Anchor Graph Regularization (AGR) is also inductive

and scalable. Akin to AGR, Nonparametric Function Induction, Harmonic Mixtures, and

Prototype Vector Machines all exploit the idea of “anchors”. Table 3.1 summarizes and

conceptually compares four scalable yet inductive GSSL models using the anchor idea, most

of which can reach a training time complexity O(m3 +m2n) and all of which can attain a

test time complexity O(dm) (m is the number of adopted anchors).

To gain a deeper understanding, we point out that besides being applied to construct

Anchor Graphs or approximate large kernel matrices (the Nyström method [193]), the

idea of anchors is also related to the concept of randomly subsampled “beacons” in large-

scale network analysis [88], in which node distances are inferred based on the triangulation

over the distances between nodes and beacons. In the speech recognition community, the
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Table 3.1: Summary of anchor-based GSSL models which share the same form of classifi-

cation functions f(x) =
∑m

k=1 Zxkak. Zxk denotes the affinity between data point x and

anchor uk, S(·) is some similarity function, κ(·) is a kernel function, and p(Ck|x) is the

posterior probability of x assigned to cluster Ck.

GSSL Model Anchors {uk} {ak} Affinities {Zxk}

Nonparametric exemplars labels on anchors
S(x,uk)∑m

k′=1 S(x,uk′)

Function Induction [40]

Harmonic Mixtures [216] GMM labels on anchors p(Ck|x)

clustering centers

Prototype Vector K-means classifier coefficients κ(x,uk)

Machines [204] clustering centers

Anchor Graph K-means labels on anchors
S(x,uk)∑m

k′=1 S(x,uk′)

Regularization clustering centers

(Chapter 2)

idea of anchor models has also been employed to prune the number of speaker models

needed by the applications in speaker detection and speaker indexing on a large database,

achieving a promising tradeoff between detection accuracy and computational efficiency

[164]. One important distinction between the prior anchor work and the anchor-based SSL

models discussed currently is that the anchor-based SSL models aims at inferring the label

information of a large number of original data points rather than pursuing the minimal-

distortion reconstruction of the entire network.

3.3 Notations

In this section, we first define the notations and symbols that we will use to describe our

approaches in the rest of this chapter. All notations as well as their definitions are listed in

Tables 3.2 and 3.3.
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Table 3.2: Table of notations.

Notation Definition

n The number of data points

l The number of labeled data

m The number of anchor points

d The dimension of data or anchor points

i, j The indices of data points

k The index of anchor points

xi ∈ Rd The ith data point

uk ∈ Rd The kth anchor point

X = {xi}ni=1 The data set

Xl = {xi}li=1 The labeled data set

U = {uk}mk=1 The anchor set

c The number of classes

yi ∈ [1 : c] The class label of xi, i ∈ [1 : l]

ŷi ∈ [1 : c] The estimated class label of xi, i ∈ [l + 1 : n]

G(X , E,W ) The Anchor Graph

E ⊆ X × X The set of edges in G

W = (Wij)i,j ∈ Rn×n The weighted adjacency matrix of G

Z = (Zij)i,j ∈ Rn×m The data-to-anchor affinity matrix between X and U

Λ = diag(Z⊤1) ∈ Rm×m The diagonal anchor-degree matrix of G

s The number of nearest anchors in U for each data point

⟨i⟩ ⊂ [1 : m] The set of indices of s nearest anchors in U for xi

Kh : Rd × Rd 7→ R A kernel function with bandwidth h

L ∈ Rn×n The Anchor Graph Laplacian matrix

L+ ∈ Rn×n The pseudo inverse of L

r The truncation rank of L+

(pk, λk) The kth eigenvector-eigenvalue pair of L

P ∈ Rn×r The eigenvector matrix of L

∥ · ∥G The Anchor Graph Laplacian regularization norm
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Table 3.3: Table of notations (continued).

Notation Definition

KW : Rd × Rd 7→ R The Anchor Graph kernel function

KL : Rd × Rd 7→ R The Anchor Graph Laplacian kernel function

κ : Rd × Rd 7→ R A priori kernel function

κ̃ : Rd × Rd 7→ R The Anchor Graph warped kernel function

KUU ∈ Rm×m The kernel matrix between U and U

K.U ∈ Rn×m The kernel matrix between X and U

z(x) ∈ Rm The data-to-anchor mapping

F(x) ∈ Rm An explicit feature mapping

f : Rd 7→ R A classification function

f ∈ Rn The output vector of f on all data points X

a ∈ Rm The coefficient vector on anchor points U

Q(a) ∈ R The objective function for optimizing a

Loss(xi, yi) ∈ R A loss function defined on labeled samples (xi, yi)

Hκ The RKHS induced by κ

∥ · ∥Hκ The RKHS regularization norm

β > 0 The RKHS regularization parameter

γ > 0 The graph regularization parameter

3.4 Kernel Linearization

The challenging issue that both supervised learning and semi-supervised learning suffer from

is scalability: how to successfully accommodate millions up to billions of data samples in

learning models. Unfortunately, most traditional machine learning models scale poorly with

the data size, thus blocking widespread applicability to real-life problems that encounter

growing amounts of data.

In this section, we consider the widely used kernel machines and introduce a state-of-

the-art technique Kernel Linearization [143] which has been corroborated to be able to

scale up a kernel machine with a shift-invariant kernel at the training expense of a linear

time complexity O(n).

[143] proposed to approximate a shift-invariant kernel function κ : Rd × Rd 7→ R which
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will be plugged into a kernel machine such as a kernel Support Vector Machine (SVM) or a

kernel Support Vector Regression (SVR) [149]. Critically, such an approximation attempts

to linearize the nonlinear kernel κ as the inner product between two feature vectors:

κ(x,x′) ≈ F⊤(x)F(x′), (3.1)

where F : Rd 7→ Rm is an explicit feature mapping that yields special features for an original

data sample x. Once the dimension m of the yielded features is much smaller than the total

size n of the input data set X , the kernel machine can be converted to a linear machine via

taking {F(xi)}ni=1 as new training samples to train a linear SVM or a linear SVR in linear

time.

The kernel linearization technique has exhibited promising performance: the classifica-

tion accuracy of a linearized kernel SVM does not drop much apart from that of a kernel

SVM, while the training time of a linearized kernel SVM is several orders of magnitude faster

than that of a kernel SVM. As an extension, [178][104] developed more feature maps to ap-

proximate several shift-variant kernels. It is worth while pointing out that all these explicit

feature maps are data-independent. They are adequate for supervised learning problems

that encounter enough labels, but could lack to some extent for semi-supervised learning

problems where labels are usually scarce. Therefore, we intend to develop data-dependent

feature maps in what follows.

3.5 Generating Low-Rank Kernels

In this section, we address the scalability issue that GSSL suffers from and propose several

key techniques to establish scalable kernel machines under the semi-supervised scenario.

Importantly, the proposed techniques take advantage of Anchor Graphs from a kernel point

of view. While some linear machines such as linear TSVMs [155][123] are scalable, we

prefer developing nonlinear kernel machines because kernel-based classifiers have been the-

oretically and empirically proven to be able to tackle practical data that are mostly linearly

inseparable.

Above all, let us define a low-rank kernel which leads to a nonlinear classifier and simul-

taneously enables linear time training of the classifier.
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Definition 2. A low-rank kernel function K : Rd × Rd 7→ R satisfies

K(x,x′) = F⊤(x)F(x′), (3.2)

where F(x) is some vectored representation with m dimensions smaller than the total number

n of data samples.

Using a low-rank kernel K for training a nonlinear classifier f is equivalent to using the

new data representation {F(xi)}ni=1 for training a linear classifier:

f(x) = w⊤F(x), (3.3)

in which w ∈ Rm is the weight vector to be learned from the l labeled examples {F(xi)}li=1.

Since l ≪ n in most semi-supervised learning tasks, in order to alleviate the overfitting

issue, we need to deliver a “rich” feature map F(x) such that information from abundant

unlabeled examples is absorbed into it. In the following, we generate meaningful low-rank

kernels by exploring the underlying data structure, deriving data-dependent feature maps

via simple kernel linearization.

3.5.1 Anchor Graph Kernels

Here we propose the first low-rank kernel which is exactly the low-rank adjacency matrix

W = ZΛ−1Z⊤ of the Anchor Graph G(X , E,W ). By utilizing the data-to-anchor mapping

z(·) defined in eq. (2.23) of Chapter 2, we give this low-rank kernel as follows

KW (x,x′) = z⊤(x)Λ−1z(x′), (3.4)

which we name the Anchor Graph kernel since KW (xi,xj) = Wij . Below we give a straight-

forward proposition, realizing Λ > 0.

Proposition 3. KW defined in eq. (3.4) is a low-rank kernel.

In spirit, our Anchor Graph kernel is very similar to the Random Walk kernel [190],

and can be seen as its anchor-approximated version. In a Random Walk kernel Krand,
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Krand(xi,xj) = p⊤(xi)p(xj) in which p(xi) ∈ Rn represents a vector whose n entries

constitute a transition probability distribution of random walks from xi to all data points

in X . Because 1⊤z(x) = 1 for any sample x, z(xi) ∈ Rm also constructs a transition

probability distribution of random walks from xi to all anchor points in U . Thus, the Anchor

Graph kernel can be deemed as the inner product between two probability distributions of

random walks across data and anchors, with proper normalization.

3.5.2 Anchor Graph Laplacian Kernels

[85][5] suggested that the pseudo inverse matrices of graph Laplacians are good data-

dependent kernels for training semi-supervised kernel machines. As graph Laplacians are

positive semidefinite, their pseudo inverse matrices inherit the positive semidefiniteness and

thus become valid kernel matrices. Following [85][5], we can derive another low-rank kernel

function through inverting the Anchor Graph Laplacian matrix.

In what follows, we first obtain the eigenvectors of the Anchor Graph Laplacian L and

then calculate the pseudo inverse L+. To do that, we give Proposition 4.

Proposition 4. If a matrix B⊤B has an eigenvalue system {(vk, σk)}rk=1 (σk > 0) in which

vk is the normalized eigenvector corresponding to eigenvalue σk, then the matrix BB⊤ has

an eigenvalue system {(Bvk/
√
σk, σk)}rk=1 in which Bvk/

√
σk is the normalized eigenvector

corresponding to eigenvalue σk.

Proposition 4 is one of basic properties of eigenvalue systems of matrices [55].

Since L = I−W , the Anchor Graph Laplacian eigenvectors {pk}k are also eigenvectors of

W = ZΛ−1ZT , but the Anchor Graph Laplacian eigenvalues {λk}k equal 1−σk with {σk}k
being the eigenvalues of W . Afterwards, one can easily solve the eigen-system {(pk, σk)}k
of W by utilizing W ’s low-rank property and Proposition 4.

In order to achieve the eigen-system of the large n× n matrix W = ZΛ−1Z⊤, we solve

the eigen-system of a small m×m matrix M = Λ−1/2Z⊤ZΛ−1/2 guided by Proposition 4,

resulting in r (< m) eigenvector-eigenvalue pairs {(vk, σk)}rk=1 where 1 > σ1 ≥ · · · ≥ σr > 0.

Note that we discard 1 eigenvalues of M (W ) which correspond to 0 eigenvalues of L. After
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expressing V = [v1, · · · ,vr] ∈ Rm×r (V is column-orthonormal) and Σ = diag(σ1, · · · , σr) ∈

Rr×r, we obtain an eigenvector matrix P of W as

P = ZΛ−1/2V Σ−1/2, (3.5)

each column of which corresponds to an eigenvalue 0 < σk < 1. Let denote by P̄ another

eigenvector matrix corresponding to eigenvalues {σk = 0}n′
k=r+1 (n′ < n) of W .

Realizing λk = 1−σk for the Anchor Graph Laplacian eigenvalues, we drive the pseudo

inverse of the Anchor Graph Laplacian L as follows

L+ =
∑
λk>0

1

λk
pkp

⊤
k

=
∑
σk<1

1

1− σk
pkp

⊤
k

=

r∑
k=1

1

1− σk
pkp

⊤
k +

n′∑
k=r+1

pkp
⊤
k

= P (I − Σ)−1P⊤ + P̄ P̄⊤

= ZΛ−1/2V Σ−1/2(I − Σ)−1Σ−1/2V ⊤Λ−1/2Z⊤ + P̄ P̄⊤

= ZΛ−1/2V (Σ− Σ2)−1V ⊤Λ−1/2Z⊤ + P̄ P̄⊤

= ZQQ⊤Z⊤ + P̄ P̄⊤, (3.6)

where Q = Λ−1/2V (Σ− Σ2)−1/2 ∈ Rm×r.

The derived equation eq. (3.6) inspires us to truncate the pseudo inverse L+ on its

eigenspectrum to acquire a low-rank kernel, which is carried out by keeping the eigen-

components ZQQ⊤Z⊤ of L+ corresponding to r largest eigenvalues of L+ (i.e., r smallest

nonzero eigenvalues {λk = 1− σk}rk=1 of L).

Accordingly, we give the following Proposition 5.

Proposition 5. The best rank-r approximation to the pseudo inverse of the Anchor Graph

Laplacian is a low-rank kernel KL(x,x′) = z⊤(x)QQ⊤z(x′).

We name KL the Anchor Graph Laplacian kernel since it stems from the Anchor Graph

Laplacian L, and its rank is r < m. It is noticeable that the mechanism that we derive
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the kernel KL is unsupervised without accessing the label information. [214] tried to learn

a kernel matrix from the family PΩP⊤ with Ω being an active diagonal matrix. [214]

incorporated the label information associated with the l labeled examples into an optimiza-

tion framework such that the optimal Ω can be solved. In comparison, we actually fix

Ω = (I − Σ)−1 to avoid tedious optimization at a large scale. Such a treatment is simple

yet effective, and will be verified through our experiments shown in Section 3.6.

3.5.3 Anchor Graph Warped Kernels

It turns out that if the manifold assumption holds, i.e., manifolds exist or nearly exist under

input data collections, graph-based approaches work well for various learning problems

including clustering, retrieval, and semi-supervised learning [23][211][213]. Accordingly, the

low-rank kernels KW and KL, which are directly constructed from Anchor Graphs, are good

enough at handling large-scale SSL. Nevertheless, when manifolds do not exist or are not

evident due to diverse data distributions or poor feature extraction schemes, merely relying

on graphs is not sufficient to deliver effective data-dependent kernels for tackling complex

data configurations. Hence, we consider yielding a low-rank kernel from a priori kernel that

has manifested beneficial to the data domain. This time the role of the Anchor Graph is to

warp a priori kernel like a filter, making the resulting kernel encompass the neighborhood

structure unveiled by the Anchor Graph.

Given a priori kernel function κ : Rd × Rd 7→ R, we follow the state-of-the-art GSSL

method manifold regularization [12] to derive our low-rank kernel. Note that even the ac-

celerated version [124] of manifold regularization costs a quadratic training time complexity

O(n2) due to learning a full-size classification function

f(x) =

n∑
i=1

κ(x,xi)ai, (3.7)

which originates from the Representer Theorem of kernel machines [149]. To compose a

scalable kernel machine, we propose an economical classification function based on the

small set of anchors:

f(x) =

m∑
k=1

κ(x,uk)ak = a⊤k(x), (3.8)
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where a = [a1, · · · , am]⊤ denotes the coefficient vector of f to be learned, and k(x) =
κ(x,u1)

· · · · · ·

κ(x,um)

 ∈ Rm denotes the anchor-supported kernel feature vector.

Subsequently, we formulate a GSSL framework to seek the optimal classification function

f of the expression being shown in eq. (3.8), that is

min
f∈span{κ(·,uk)}mk=1

l∑
i=1

Loss(f(xi), yi) + β∥f∥2Hκ
+ γ∥f∥2G , (3.9)

where Loss(, ) is a proper loss function defined on labeled examples, β > 0 is the regular-

ization parameter for the reproducing kernel Hilbert space (RKHS) norm ∥f∥2Hκ
(Hκ is the

RKHS induced by the given kernel κ), and γ > 0 is the regularization parameter for the

Anchor Graph Laplacian regularization norm ∥f∥2G = f⊤Lf defined in Chapter 2.

As a matter of fact, the above GSSL framework approximates the manifold regularization

framework by means of the introduced anchors U = {uk}mk=1. Importantly, we can show

that eq. (3.9) is equivalent to a supervised learning framework, formulated as follows, using

a novel kernel κ̃:

min
f∈span{κ̃(·,uk)}mk=1

l∑
i=1

Loss(f(xi), yi) + β∥f∥2Hκ̃
. (3.10)

We present and prove our crucial finding that κ̃ is a low-rank kernel in the following

theorem.

Theorem 6. The GSSL framework formulated in eq. (3.9) results in a low-rank kernel

function κ̃(x,x′) = k⊤(x)R−1k(x′) in which R ∈ Rm×m is a positive definite matrix.

Proof. We deduce the RKHS norm as

∥f∥2Hκ
= ⟨f, f⟩Hκ =

m∑
k,k′=1

ak ⟨κ(·,uk), κ(·,uk′)⟩Hκ
ak′ =

m∑
k,k′=1

akκ(uk,uk′)ak′ = a⊤KUUa,

(3.11)

where KUU = ((KUU )k,k′)1≤k,k′≤m = (κ(uk,uk′))1≤k,k′≤m is a kernel matrix computed in

between the anchor set U .
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The Anchor Graph Laplacian regularization norm is deduced as

∥f∥2G = f⊤Lf = (K.Ua)
⊤L(K.Ua)

= (K.Ua)
⊤(I − ZΛ−1Z⊤)(K.Ua)

= a⊤
(
K⊤

.UK.U −K⊤
.UZΛ−1Z⊤K.U

)
a, (3.12)

where f =


f(x1)

· · ·

f(xn)

 ∈ Rn and K.U =


κ(x1,u1), · · · , κ(x1,um)

· · · · · ·

κ(xn,u1), · · · , κ(xn,um)

 ∈ Rn×m.

Putting eq. (3.11)(3.12) together, we have

β∥f∥2Hκ
+ γ∥f∥2G

=βa⊤KUUa+ γa⊤
(
K⊤

.UK.U −K⊤
.UZΛ−1Z⊤K.U

)
a

=βa⊤
(
KUU +

γ

β
K⊤

.UK.U −
γ

β
K⊤

.UZΛ−1Z⊤K.U

)
a

=βa⊤Ra, (3.13)

where the matrix

R = KUU +
γ

β
K⊤

.UK.U −
γ

β
K⊤

.UZΛ−1Z⊤K.U ∈ Rm×m (3.14)

can be calculated in O(m2n + m3) time. Obviously, R is positive definite due to the fact

K⊤
.UK.U −K⊤

.UZΛ−1Z⊤K.U = K⊤
.ULK.U ≽ 0.

Let us define a novel feature map F(x) = R−1/2k(x) and w = R1/2a. Then we obtain

f(x) = a⊤k(x) = w⊤F(x), (3.15)

β∥f∥2Hκ
+ γ∥f∥2G = β∥w∥2. (3.16)

By plugging eqs. (3.15)(3.16) back into eq. (3.9), we achieve a supervised linear machine as

follows

min
w∈Rm

l∑
i=1

Loss(w⊤F(xi), yi) + β∥w∥2. (3.17)

Therefore, the original GSSL framework is equivalently reduced to a supervised linear clas-

sification problem based on the new feature representation {F(xi)}li=1. Immediately, we
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Table 3.4: Summary of three low-rank kernels generated from and with Anchor Graphs.

Low-Rank Form Rank Feature Map Property of

Kernel F(x) F(x)

Anchor Graph z⊤(x)Λ−1z(x′) m Λ−1/2z(x) sparse

kernel

Anchor Graph z⊤(x)QQ⊤z(x′) < m Q⊤z(x) dense

Laplacian kernel

Anchor Graph k⊤(x)R−1k(x′) m R−1/2k(x) dense

warped kernel

acquire a “linear” kernel in terms of F(x):

κ̃(x,x′) = F⊤(x)F(x′)

= k⊤(x)R−1k(x′), (3.18)

which completes the proof.

To gain an in-depth understanding, the low-rank kernel κ̃ is obtained by warping a

priori kernel κ using the Anchor Graph based regularization, and the matrix R defined

in eq. (3.14) which is composing the warped kernel κ̃ has absorbed the information from

the Anchor Graph Laplacian L. Thus, we can say that κ̃ assimilates the neighborhood

structure unveiled by the Anchor Graph, bearing a geometrical meaning compared to the

raw kernel κ. To shed light on kernel generation, [157] has initially proven that the original

manifold regularization framework using a kNN graph can yield a full-rank new kernel which

is warped by the graph Laplacian of the kNN graph. In contrast, we generate a low-rank

kernel to fulfill the goal of scalable graph-based semi-supervised learning.

In the sequel, we summarize the three low-rank kernels we have proposed in Table 3.4.

3.6 Experiments

In this section, we conduct experiments on three large image databases which vary in size

from 60,000 to 1,000,000 samples. We evaluate the semi-supervised classification perfor-

mance of the three proposed low-rank kernels which are used in conjunction with linear
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SVMs after simple linearization. We compare these linearized low-rank kernels+linear

SVMs against AGR developed in Chapter 2 and two recent scalable GSSL algorithms

Eigenfunctions [49] and Prototype Vector Machines (PVMs) [204]. We also report the per-

formance of several baseline methods including 1NN, linear SVMs and kernel SVMs. We

feed the same Gaussian kernel κ(x,x′) = exp(−∥x−x′∥2/2ϵ2) to kernel SVMs, PVMs, and

the initial kernel for our Anchor Graph warped kernel on every dataset. The parameter ϵ

is tuned via cross-validation on every dataset. To construct an Anchor Graph, we also use

a Gaussian kernel Kh(x,x
′) = exp(−∥x−x′∥2/2h2) to define the regression matrix Z. The

value of the width parameter h is empirically chosen according to the trick suggested by

[112]. Since PVMs also use anchors, we assign the same set of K-means clustering centers

to PVMs and our Anchor Graph-related methods on every dataset. The iteration number

of K-means clustering is set to five for all datasets. We use LIBLINEAR [46] for running

all linear SVMs. All our experiments are run on a workstation with a 2.53 GHz Intel Xeon

CPU and 48GB RAM.

3.6.1 CIFAR-10

CIFAR-10 is a labeled subset of the 80 million tiny image collection [174], which consists

of a total of 60,000 32 × 32 color images from ten object classes. This dataset [91] is

partitioned into two parts: a training set of 50,000 images and a test set of 10,000 images,

all of which cover ten classes. Each image in this dataset is represented by a 512-dimensional

GIST feature vector [138]. Some image examples selected from CIFAR-10 are displayed

in Figure 3.1. The parameter s in the Anchor Graphs built on this dataset is set to 10.

To set up SSL trials, we sample l = 100 and l = 1, 000 labeled samples respectively

uniformly at random from the training set such that they contain at least one sample

coming from each class. The one-versus-all strategy is carried out to run all SVM-related

methods. The classification accuracy, averaged over 20 SSL trials, is computed over the

test set for each method under comparison. All of the evaluation results are shown in Table

3.5, which indicate that our Anchor Graph warped kernel with 1,000 anchors gives rise

to the highest classification accuracy when cooperated with linear SVMs through kernel

linearization.
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Table 3.5: Classification accuracy (%) on CIFAR-10 (60,000 samples).

Method l = 100 l = 1, 000

1NN 29.86 36.71

Linear SVM 32.60 38.20

Kernel SVM 35.20 42.10

Eigenfunctions 31.35 41.10

PVM(square loss) 35.71 42.88

with 500 anchors

PVM(square loss) 37.21 44.31

with 1,000 anchors

PVM(hinge loss) 36.19 43.43

with 500 anchors

PVM(hinge loss) 38.92 45.88

with 1,000 anchors

AGR with 500 anchors 36.25 44.45

AGR with 1,000 anchors 38.25 46.78

Anchor Graph kernel 34.92 42.80

with 500 anchors+SVM

Anchor Graph kernel 37.21 45.88

with 1,000 anchors+SVM

Anchor Graph Laplacian kernel 36.62 44.70

with 500 anchors+SVM

Anchor Graph Laplacian kernel 39.21 47.90

with 1,000 anchors+SVM

Anchor Graph warped kernel 37.68 46.60

with 500 anchors+SVM

Anchor Graph warped kernel 40.35 50.33

with 1,000 anchors+SVM



CHAPTER 3. LARGE-SCALE SEMI-SUPERVISED LEARNING 68

Table 3.6: Classification error rates (%) on MNIST (70,000 samples).

Method l = 100 l = 1, 000

1NN 28.86 11.96

Linear SVM 27.60 14.22

Kernel SVM 23.70 8.58

Eigenfunctions 22.35 12.91

PVM(square loss) 21.12 9.75

with 500 anchors

PVM(square loss) 20.21 8.88

with 1,000 anchors

PVM(hinge loss) 20.33 9.18

with 500 anchors

PVM(hinge loss) 19.55 8.21

with 1,000 anchors

AGR with 500 anchors 13.21 8.10

AGR with 1,000 anchors 12.11 7.35

Anchor Graph kernel 15.51 10.80

with 500 anchors+SVM

Anchor Graph kernel 14.35 9.69

with 1,000 anchors+SVM

Anchor Graph Laplacian kernel 12.11 7.28

with 500 anchors+SVM

Anchor Graph Laplacian kernel 11.20 6.80

with 1,000 anchors+SVM

Anchor Graph warped kernel 10.11 6.86

with 500 anchors+SVM

Anchor Graph warped kernel 9.30 5.66

with 1,000 anchors+SVM
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Table 3.7: Classification error rates (%) on Extended MNIST (1,030,000 samples).

Method l = 100 l = 1, 000

1NN 40.65 35.36

Linear SVM 43.60 37.13

Kernel SVM 38.70 32.58

Eigenfunctions 37.94 33.91

PVM(square loss) 30.21 26.36

with 500 anchors

PVM(square loss) 27.21 23.56

with 1,000 anchors

PVM(hinge loss) 29.31 25.37

with 500 anchors

PVM(hinge loss) 26.32 22.20

with 1,000 anchors

AGR with 500 anchors 25.71 21.90

AGR with 1,000 anchors 22.46 18.26

Anchor Graph kernel 28.21 24.90

with 500 anchors+SVM

Anchor Graph kernel 26.19 22.78

with 1,000 anchors+SVM

Anchor Graph Laplacian kernel 23.28 19.92

with 500 anchors+SVM

Anchor Graph Laplacian kernel 20.79 16.58

with 1,000 anchors+SVM

Anchor Graph warped kernel 21.35 17.82

with 500 anchors+SVM

Anchor Graph warped kernel 18.19 14.28

with 1,000 anchors+SVM
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Figure 3.1: Example images from the CIFAR-10 dataset.

3.6.2 MNIST

The MNIST dataset [102] contains handwritten digit images from ‘0’ to ‘9’. It has a

training set of 60,000 samples and a test set of 10,000 samples. Some image examples from

MNIST are plotted in Figure 3.2. The parameter s in the Anchor Graphs built on this

dataset is set to 3.

Similar to the CIFAR-10 experiments, we sample l = 100 and l = 1, 000 labeled

samples respectively uniformly at random from the training set such that they contain at

least one sample coming from each class, thus setting up the SSL trials. Like the CIFAR-

10 experiments, the SSL settings on MNIST also introduce skewed class distributions in

the labeled samples.

Averaged over 20 SSL trials, we calculate the error rates over the test set for all referred

methods, with the number of labeled samples being 100 and 1,000 respectively. The results

are listed in Table 3.6. Again, we observe that the Anchor Graph warped kernel (m =
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Figure 3.2: Example images from the MNIST dataset. The original figure is from http:

//www.cad.zju.edu.cn/home/dengcai/Data/MNIST/images.html.

1, 000) working with linear SVMs is superior to the other methods in comparison, which

demonstrates that the generated low-rank kernel κ̃ via Anchor Graph warping makes sense

and leads to more discriminative classifiers, thereby enabling more accurate graph-based

SSL at a large scale.

3.6.3 Extended MNIST

In order to test the performance at a larger scale, we construct an Extended MNIST by

translating the original training images by one and two pixels in eight directions, and then

obtain 17×60,000 training images like [87]. The parameter s in the Anchor Graphs built

on this dataset is set to 3.

By repeating the similar evaluation process as MNIST, we report the average classifi-

cation error rates over 20 SSL trials and on the test set for all referred methods in Table

3.7, given 100 and 1,000 labeled samples respectively. The results further confirm the supe-

rior classification performance of the proposed GSSL framework: linearized Anchor Graph

warped kernels + linear SVMs.

3.7 Summary and Discussion

Through this chapter, we have addressed the scalability issue that GSSL suffers from

and proposed several key techniques to establish scalable kernel machines under the semi-

supervised scenario. The proposed techniques take advantage of the Anchor Graph from

a kernel point of view, generating a group of low-rank kernels directly from or utilizing

the Anchor Graph. Such low-rank kernels enable simple linearization, by which new fea-

http://www.cad.zju.edu.cn/home/dengcai/Data/MNIST/images.html
http://www.cad.zju.edu.cn/home/dengcai/Data/MNIST/images.html
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ture spaces are produced and original semi-supervised kernel machines are converted to

supervised linear machines so that linear SVMs can be applied.

Why we prefer developing nonlinear kernel machines is because kernel-based classifiers

have been theoretically and empirically proven to be able to tackle practical data that are

mostly linearly inseparable. Our proposed low-rank kernels all bear closed-form solutions,

costing linear time O(n) to generate them. Since training nonlinear kernel machines in

semi-supervised settings can be transformed to training linear machines, typically linear

SVMs, in supervised settings, the cost for classifier training is substantially reduced, only

costing O(l) time where l ≪ n. Our experiments corroborate that linear SVMs using the

proposed linearized low-rank kernels, especially the Anchor Graph warped kernels, exhibit

superior classification accuracy over the state-of-the-art scalable GSSL methods, and are

more discriminative than AGR which only imposes label propagation and does not empha-

size margin maximization.

For the parameter settings of Anchor Graphs, we simply keep m ≤ 1000 to bound

the time complexity, although we are aware that more anchors (larger m) are very likely to

boost the classification accuracy for all Anchor Graph-related approaches. The experimental

results presented in Chapter 2 have shown that when m ≥ n/10 AGR can achieve the

classification accuracy comparable to that of classical GSSL methods using kNN graphs.

For the parameter s, we set it to a small integer that is smaller than m/c. A typical value

for s is in [2, 10]. For the regression matrix Z, we have found that in most datasets we have

tried, LAE-optimized Z is better than predefined Z but the latter is good enough when using

sufficient anchors (e.g., m ≥ 500). In addition, to save the construction time, we usually use

predefined Z to construct large scale Anchor Graphs, referring to the experiments conducted

in this chapter.

There is a problem being worthy to be considered that when the underlying manifolds

may not exist or are not evident, how well our Anchor Graph-related approaches can work.

Since all of the developed techniques including Anchor Graphs, AGR, and low-rank kernel

generation methods are based on the manifold assumption, they could behave poor if such

an assumption does not hold on some datasets. Then, other assumptions such as the cluster

assumption introduced in Section 3.2 should be incorporated to cope with the “difficult”
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circumstances. Motivated by [29] that combined multiple semi-supervised assumptions,

we are thinking of integrating our proposed Anchor Graph-related methods with proper

cluster-based ideas or any other sensible assumptions about the data to develop stronger

SSL models which are expected to accommodate a broader range of data structures.

Lastly, we discuss the limits of semi-supervise learning. [158] pointed out the particular

cases where unlabeled data do not help improve the performance of supervised learning

when adding them for co-training. [132] thought that when unlabeled data increase to

infinity the graph Laplacian eigenvectors tend to become less informative. All these are

valuable explorations to shed light on the theoretical value of unlabeled data. We would

also like to investigate and disclose the value of unlabeled data under our Anchor Graph’s

framework.
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Chapter 4

Unsupervised Hashing

Hashing is becoming increasingly popular for time-efficient nearest neighbor search in mas-

sive databases. However, learning compact hash codes that yield good search performance

is still a challenge. Moreover, in many cases real-world data often live on low-dimensional

manifolds, which should be taken into account in order to capture meaningful nearest neigh-

bors in the hash code learning process.

In this chapter, we present a novel graph-based hashing approach that we name An-

chor Graph Hashing (AGH) and has been described in our recent paper [117]. AGH is

fully unsupervised but can automatically discover the neighborhood structure inherent in

the data to learn appropriate compact codes. To make such an approach computationally

feasible for large-scale databases, we utilize Anchor Graphs that have been presented in

Chapter 2 to obtain tractable low-rank adjacency matrices and derive the nonlinear hash

functions from the eigenspectra of such low-rank matrices. The formulation of our Anchor

Graph-driven hash functions allows constant time hashing of a new data point by extrap-

olating graph Laplacian eigenvectors to eigenfunctions. Finally, we describe a hierarchical

threshold learning procedure in which each eigenfunction yields multiple bits, leading to

higher search accuracy. Experimental comparison with the other state-of-the-art hashing

methods on two large datasets demonstrates the efficacy of the presented AGH approach.

In the remainder of this chapter, we state the problem background of fast nearest neigh-

bor search in Section 4.1, review the related work in Section 4.2, introduce the notations

that we will use in Section 4.3, present our approach AGH in Section 4.4, show the ex-
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Image Database

query
visually relevant

Figure 4.1: A nearest neighbor search example in image retrieval. The query image is a

butterfly image, and the most visually relevant images, i.e., images containing at least a

butterfly, are expected to be retrieved from the given image database.

perimental results in Section 4.5, and finally give our summary and discussion in Section

4.6.

4.1 Problem Background

Nearest neighbor (NN) search is a fundamental problem that arises commonly in a variety

of fields including computer vision, machine learning, database systems, data mining, mul-

timedia, and information retrieval. Figure 4.1 displays a standard NN search task in the

context of image retrieval which has attracted broad interest from researchers in computer

vision, multimedia, and information retrieval.
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From the conceptually algorithmic perspective, searching nearest neighbors of a query

q ∈ Rd requires scanning all n items in a database X = {xi ∈ Rd}ni=1 (suppose that data

dimension is d and data size is n), which has a linear time complexity O(n) (more precisely,

O(dn)). For large n, e.g., millions, exhaustive linear search is expensive and therefore

impractical for large-scale applications. Consequently, a great number of techniques have

been proposed in the past few decades, focusing on fast approximate nearest neighbor (ANN)

(or near neighbor) search [151].

One classical paradigm to address the fast ANN search problem is building tree-based

indexing structures, such as kd-trees [14][50] which provide a logarithmic query (i.e., search)

time complexity O(log n) in expectation. However, for very high-dimensional data sets,

the worst-case search time for a kd-tree is O(dn1− 1
d ) that exponentially approaches the

exhaustive search time O(dn), as discovered in [103]. As a matter of fact, almost all tree-

based methods theoretically suffer from the dimensionality issue with their performance

typically degrading to exhaustive linear scan for high-dimensional data. Especially for a

kd-tree, it only works fine, in both theory and practice, with dimensions up to 20 [50].

To overcome the dimensionality issue, hashing-based methods coping with ANN search

have attracted considerable attention since the advent of the well-known Locality-Sensitive

Hashing (LSH) [52]. These methods convert each database item into a binary code and save

all codes in single or multiple hash lookup tables. Through looking up the code of a given

query in these hash tables, hashing algorithms can provide sub-linear O(nρ) (0 < ρ < 1) or

even constant O(1) search time.

Figure 4.2 shows a schematic diagram for a tree and a hash table, respectively. Shown in

Figure 4.2(a), in the search stage of a tree-based algorithm, some proper search strategies

such as Backtracking and Branch-and-Bound are exploited to browse the tree and then

locate the leaf node in which the database point is found closest to the query q among the

visited tree nodes. Revealed in Figure 4.2(b), in the search stage of a hashing algorithm,

the code of the query q is first extracted and then used to look up the hash table to locate

the matched hash bucket that contains the near neighbors.

From Figure 4.2, we can see that hash tables have much simpler indexing structures

than trees. Tree-based methods require a hierarchical scheme for both indexing and search
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Figure 4.2: Schematic diagrams for a tree and a hash table. q represents a query point.

(a) A binary space partitioning tree (e.g., kd-tree) where each node contains a database

point. (b) A linear hash table in which the binary codes of database points are treated as

addresses (or indices) into the hash table and every address points to a hash bucket that

stores corresponding database points.

stages, while hashing methods work in parallel and their generated codes can be directly

used to point to the addresses of data during table lookups. Notably, hashing requires less

storage than tree-based methods, because trees need to store the original data points in

memory in order to perform tree browsing during indexing and search stages, whereas hash

tables only need to save the data IDs if the exact NN ranking is not necessary.

In practice, rigorous large-scale performance comparison between kd-tree and hashing

for fast NN search still remains missing in the literature. Through some performance eval-

uations carried out on some benchmark databases such as local descriptor SIFTs [119] of

images, [3] showed that when using NN search for nonparametric classification, LSH is

generally better than kd-tree at the similar storage expense in terms of recognition rate

but inferior in terms of search time (the total running time for returning neighbors given a

query), and that the search time of LSH rises sharply with the database size while that of kd-

tree rises slowly (logarithmic increase). However, [3] did not supply the comparison between

kd-tree and some recent advanced hashing algorithms, particularly compact hashing that
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provides nearly constant search time. It did not include experiments for high-dimensional

data (e.g., ≥ 2000 dimensions) either.

In this chapter, we focus on hashing with compact codes of less than 100 binary bits,

which is called Compact Hashing [175] in the literature. It turns out that ANN search under

such a scenario is both time and memory efficient. What’s more, we suppose that only a

single hash table is used in the offline indexing phase and the online search phase.

Let us define the basic setting for hashing with compact codes, which we call compact

hashing mode and is the infrastructure of all compared hashing algorithms we will evaluate

in this chapter. Under such a mode, only one hash table is employed to index database

items (then the indexing structure is a simple linear table), and 8 ∼ 64 binary hash bits

(within the storage size for a double-precision value) are adopted to represent each database

item or a query in the Hamming space. The hash table construction time complexity is

O(n) in general. Here we concentrate on the query (search) time complexity since it is

the key to the true speed of hashing-based ANN search. This query time consists of two

components: 1) hashing time that is the time of converting a query to its binary hash code

via hash functions (usually multiple hash functions), and 2) hash table lookup time that is

the time of looking up, in a hash table, the target code addresses which are within a small

Hamming radius to the query’s code. Throughout this chapter, we use Hamming radius 2

to retrieve potential near neighbors for each query. For high-dimensional data, hashing time

may dominate the total query time. Very importantly, hash table lookup time (hash lookup

time in abbreviation) can be substantially fast by using a simple implementation. That is,

flipping zero up to two bits into the query’s hash code and then searching the new code

by addressing the hash table, which results in constant time querying. Table 4.1 provides

the times of Hamming-radius-2 hash lookups for varied hash bit length, from which we find

that the hash lookup times are
∑2

k=0

(
r
k

)
≤ 2081 for hash code length r ≤ 64. Hence, we

are able to regard the hash lookup time as a constant O(1).

As a critical finding from Table 4.1, the hash lookup time can be ignored with respect

to the hashing time for high-dimensional data of more than 500 dimensions. For example, a

LSH algorithm using 64 hash bits needs 2dr = 64, 000 floating-point operations for hashing

a 500-dimensional query, but only takes 2081 addressing operations for hash lookups within
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Table 4.1: Compact hashing mode: hash table lookup times within Hamming radius 2.

Hash Code Length Hash Lookup Times

8 37

12 79

16 137

24 301

32 529

48 1177

64 2081

Hamming radius 2. The latter is at most 3.25% of the former (note that the speed of

addressing operations is much faster than floating-point operations), so it can be completely

skipped compared with the hashing time (i.e., hash function evaluation time) which actually

constitutes the speed bottleneck of NN search via compact hashing.

4.2 Related Work

Beyond kd-trees, various variants of trees have been invented to deal with fast NN search,

such as ball trees [139], PCA trees [179], metric trees [201][111], random projection trees

[38], vantage-point trees [96], hierarchical K-means trees [136][130], etc. Very few of them

have theoretic guarantees about the accuracy of returned neighbors, and most of them

demonstrate their empirical advantages over kd-trees. Even when we only consider classical

kd-trees, there have been considerable improvements in both theory and practical perfor-

mance. As disclosed by the previous section, the curse of dimensionality causes that a

kd-tree search algorithm has to visit many more branches in very high-dimensional spaces

than in lower dimensional spaces. The worst case is that when the number of data points n

is slightly larger than the number of dimensions d, the search algorithm evaluates most of

the data points in the tree and is thus no faster than the exhaustive scan of all of the points.

With in-depth analysis, [74] indicated a general rule: a kd-tree search algorithm is efficient

when n≫ 2d. To enable kd-trees to work with high-dimensional data, a lot of modifications



CHAPTER 4. UNSUPERVISED HASHING 81

to kd-trees have been devised in order to remedy the curse of dimensionality by applying

PCA or random projections first [162][154][38], speed up the query time by limiting the

backtracking times [6], or enhance the practical performance by leveraging multiple trees

[154][130] or distributed tree organization [2]. All these alternatives modulate kd-trees for

specific applications such as indexing large-scale document and image collections [130][2],

fast image descriptor matching [154], and so on. [130] provides a comprehensive and system-

atic work which also gives the guidance to choose the best tree search method for particular

data. In addition, [130] developed a software system that can take any given dataset and a

desired degree of precision to automatically determine the best tree algorithm and the cor-

responding parameter values. [130] concluded that the hierarchical K-means tree behaves

best on many datasets, while the multiple-randomized kd-tree shows the best performance

on other datasets.

While there exist many new tree-based methods better than kd-trees, they are not trying

to address the dimensionality issue explicitly, and lack elegant formulations to the original

nearest neighbor search problem. In this chapter, we study the hashing technology which

tends to remove the curse of dimensionality [39][4] and formulates the NN search problem

in a binary code space.

Hashing methods essentially establish Hamming embeddings of data points, which map

real-valued data to binary codes. The pioneering work on Locality-Sensitive Hashing (LSH)

[52][4] uses simple random projections for such mappings. It has been extended to a variety

of similarity measures including the cosine similarity [27], p-norm distances for p ∈ (0, 2]

[39], the Mahalanobis distance [95], and the kernel similarity [94]. There are also a few vari-

ants originating from LSH, including Spherical LSH [170] for dealing with ℓ2-normalized

data vectors and Comparison Hadamard Random Projection [181] (one version of sparse

random projection) based LSH for accelerating dot-product computations during enforcing

random projections in LSH. Another related technique named Shift Invariant Kernel Hash-

ing (SIKH) was proposed in [142]. Although enjoying asymptotic theoretical properties,

LSH-related methods require long binary codes to achieve good precision. Nonetheless,

long codes result in low recall when used for creating a hash lookup table, as the collision

probability decreases exponentially with the code length [27][186]. Hence, one usually needs
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to set up multiple hash tables to achieve reasonable recall, which leads to longer query time

as well as significant increase in storage.

Unlike the data-independent hash generation in LSH-based algorithms, more recent

methods have focused on learning data-dependent hash functions. They try to learn com-

pact hash codes [175] for all database items, leading to faster query time with much less

storage. Several methods such as Boosted Similarity Sensitive Coding [152], Restricted

Boltzmann Machines (RBMs) [71][145] (or Semantic Hashing [146]), Spectral Hashing (SH)

[191], Binary Reconstruction Embeddings (BRE) [93], and Semi-Supervised Hashing (SSH)

[186] have been proposed, but learning short codes that yield high search accuracy, especially

under an unsupervised setting, is still an open question.

Perhaps the most critical shortcoming of the existing unsupervised hashing methods

is the need to specify a global distance measure. On the contrary, in many real-world

applications data nearly live on low-dimensional manifolds, which should be taken into

account to capture meaningful nearest neighbors during the code learning process. For these,

one can only specify local distance measures, while the global distances are automatically

determined by the underlying manifolds. In this chapter, we present a graph-based hashing

method which automatically discovers the neighborhood structure inherent in the data to

learn appropriate compact codes in an unsupervised manner. Our basic idea is motivated

by [191] in which the hashing purpose is to embed the input data in a Hamming space such

that the neighbors in the original data space remain neighbors in the produced Hamming

space.

4.3 Notations

In this section, we first define the notations and symbols that we will use in the rest of this

chapter. All notations as well as their definitions are listed in Tables 4.2 and 4.3.
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Table 4.2: Table of notations.

Notation Definition

n The number of database points

m The number of anchor points

d The dimension of database, anchor or query points

i, j The indices of database or anchor points

xi ∈ Rd The ith database point

uj ∈ Rd The jth anchor point

X = {xi}ni=1 The data set

U = {uj}mj=1 The anchor set

q ∈ Rd The query point

h : Rd 7→ {1,−1} A hash function for a single bit

sgn(x) ∈ {1,−1} The sign function that returns 1 for x > 0 and -1 otherwise

A = (Aij)i,j ∈ Rn×n The adjacency (affinity) matrix of a neighborhood graph

D = diag(A1) ∈ Rn×n The diagonal node-degree matrix of a neighborhood graph

L = D −A ∈ Rn×n The graph Laplacian matrix

Â = (Âij)i,j ∈ Rn×n The adjacency (affinity) matrix of an Anchor Graph

L̂ = I − Â ∈ Rn×n The Anchor Graph Laplacian matrix

D : Rd × Rd 7→ R A distance function defined in Rd

t The bandwidth parameter

s The number of nearest anchors in U for each data point

⟨i⟩ ⊂ [1 : m] The set of indices of s nearest anchors in U for xi

Z = (Zij)i,j ∈ Rn×m The data-to-anchor affinity matrix between X and U

Λ = diag(Z⊤1) ∈ Rm×m The diagonal anchor-degree matrix of an Anchor Graph

r The number of hash bits

k The index of hash bits

Y ∈ {1,−1}n×r The Hamming embedding matrix

hk : Rd 7→ {1,−1} The hash function for the kth bit

yk ∈ Rn The kth Anchor Graph eigenvector

wk ∈ Rm The kth projection vector in the anchor space

Y = [y1, · · · ,yr] ∈ Rn×r The eigenvector matrix of the Anchor Graph Laplacian

W = [w1, · · · ,wr] ∈ Rm×r The projection matrix in the anchor space
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Table 4.3: Table of notations (continued).

Notation Definition

z(x) ∈ Rm The data-to-anchor mapping

ϕk(x) = w⊤
k z(x) ∈ R The kth Anchor Graph eigenfunction

b+k ∈ R The kth positive threshold for positive elements in yk

b−k ∈ R The kth negative threshold for negative elements in yk

4.4 Anchor Graph Hashing (AGH)

4.4.1 Preview of AGH

Solving the graph hashing problem mentioned in Section 4.2 requires three main steps: (i)

building a neighborhood graph, e.g., a kNN graph, involving all n data points from the

database X , which costs O(dn2) time, (ii) computing r eigenvectors of the graph Laplacian

of the built sparse graph, which costs O(rn) time, and (iii) extending r eigenvectors to

any unseen (novel) data point, which also costs O(rn) time. Unfortunately, step (i) is

intractable for offline training while step (iii) is infeasible for online hashing given very

large n up to millions. To avoid these computational bottlenecks, Spectral Hashing (SH)

[191] made a strong assumption that the input data are uniformly distributed at each

dimension. This leads to a simple analytical eigenfunction solution of 1-D Laplacians, but

the manifold structure of the original data is almost ignored, substantially weakening the

claimed “graph/manifold” theme of SH.

On the contrary, in this section, we present a novel unsupervised hashing approach

named Anchor Graph Hashing (AGH) [117] to address both of the above bottlenecks. We

build an approximate neighborhood graph using Anchor Graphs (see Chapter 2), in which

the similarity between a pair of data points is measured with respect to a small number

of anchors (typically a few hundred). The resulting approximate neighborhood graph is

built in O(n) time and is sufficiently sparse with performance approaching to the exact

neighborhood graph – kNN graph as the number of anchors increases. Because of the low-

rank property of an Anchor Graph’s adjacency matrix, our approach can solve the graph

Laplacian eigenvectors in linear time. One critical requirement to make graph-based hashing
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Figure 4.3: Linear vs. nonlinear hash function. (a) A standard linear hash function h(x) =

sgn(w⊤x+ b) used by many hashing algorithms, which cuts off the two manifolds. (b) The

nonlinear hash function h(x) = sgn(ϕ(x)) used by our proposed AGH, which adaptively

yields hash bits along the two manifolds.

practical is the ability to generate hash codes for unseen data points. This is known as out-

of-sample extension in the literature. In this section, we show that the eigenvectors of the

Anchor Graph Laplacian can be extended to the generalized eigenfunctions in constant time,

thus leading to fast code generation for any incoming data. Finally, to deal with the problem

of poor quality of hash functions associated with the higher (less smooth) eigenfunctions of

the graph Laplacian, we develop a hierarchical threshold learning procedure in which each

eigenfunction yields multiple bits. Therefore, one avoids picking higher eigenfunctions to

generate more bits, and bottom (smoother) few eigenfunctions are visited multiple times.

We propose a simple method for optimizing the thresholds to obtain multiple bits.

One interesting characteristic of the proposed novel hashing method AGH is that it

tends to capture semantic neighborhoods. In other words, data points that are close in

the Hamming space, produced by AGH, tend to share similar semantic labels. This is

because for many real-world applications close-by points on a manifold tend to share similar

semantic labels, and AGH preserves the neighborhood structure found by a graph which

reveals underlying manifolds, especially for large-scale data collections. Figure 4.3 visually

illustrates the prominent trait of AGH. AGH provides the nonlinear hash function h(x) =
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sgn(ϕ(x)) (ϕ(x) is an eigenfunction of the graph Laplacian) that yields the same hash bit

for points on the same manifold, thereby capturing the existing semantic neighborhoods

residing on the underlying manifolds. In contrast, traditional linear hash functions with the

form h(x) = sgn(w⊤x+b) obviously lose the manifold structure, although widely employed

by Locality-Sensitive Hashing (LSH) [27][4], PCA Hashing (PCAH) [186], Metric Hashing

[95], Semi-Supervised Hashing (SSH) [186], Iterative Quantization (ITQ) [56], etc.

The key characteristic of AGH, i.e., preferring semantically similar neighbors, is vali-

dated by extensive experiments carried out on two datasets. The experimental results show

that AGH even outperforms exhaustive linear scan (using the commonly used ℓ2 distance in

the feature space) in terms of search accuracy, while almost all of the other hashing methods

are inferior to exhaustive linear scan.

4.4.2 Formulation

As stated before, the goal of graph hashing is to learn binary codes such that neighbors

found by a neighborhood graph built in the input feature space are mapped to nearby

codes in the Hamming space. Suppose that Aij ≥ 0 is the similarity (or affinity) between a

data pair (xi,xj) in the input space Rd. Then, similar to Spectral Hashing (SH) [191], our

method seeks an r-bit Hamming embedding Y ∈ {1,−1}n×r 1 for n points in the data set

X by optimizing the following constrained problem:

min
Y

1

2

n∑
i,j=1

∥Yi − Yj∥2Aij = tr(Y ⊤LY )

s.t. Y ∈ {1,−1}n×r

1⊤Y = 0

Y ⊤Y = nIr×r (4.1)

where Yi is the ith row of Y representing the r-bit code for point xi, A is the n× n graph

adjacency (affinity) matrix, and D = diag(A1) (where 1 = [1, · · · , 1]⊤ ∈ Rn) is the diagonal

node-degree matrix of the graph. The graph Laplacian matrix is then defined by L = D−A.

1We treat ‘0’ bit as ‘-1’ bit for formulation and training; in the implementations of data coding and

hashing, we use ‘0’ bit back since converting -1/1 codes to 0/1 codes is a trivial shift and scaling operation.



CHAPTER 4. UNSUPERVISED HASHING 87

The constraint 1⊤Y = 0 is imposed to maximize the information of each bit, which occurs

when each bit leads to balanced partitioning of the data. Another constraint Y ⊤Y = nIr×r

forces r bits to be mutually uncorrelated in order to minimize redundancy among bits.

The above problem is an integer program, equivalent to balanced graph partitioning even

for a single bit. This is known to be NP-hard. To make eq. (4.1) tractable, one can apply

spectral relaxation [153] to drop the integer constraint and allow Y ∈ Rn×r. With this, the

solution Y is given by r eigenvectors of ℓ2 norm
√
n corresponding to r smallest eigenvalues

(ignoring eigenvalue 0) of the graph Laplacian L. Y thereby forms an r-dimensional spectral

embedding in analogy to Laplacian Eigenmap [10]. Note that the excluded bottom most

eigenvector associated with eigenvalue 0 is 1 if the underlying graph is connected. Since all

of the remaining eigenvectors are orthogonal to it, 1⊤Y = 0 holds. Even though the graph

is not connected, by discarding the eigenvectors associated with all zero eigenvalues one can

still achieve 1⊤Y = 0. An approximate solution simply given by sgn(Y ) generates the final

desired hash codes, forming a Hamming embedding from Rd to {1,−1}r.

Although conceptually simple, the main bottleneck in the above formulation is com-

putation. The cost of building the needed neighborhood graph and the associated graph

Laplacian is O(dn2), which is intractable for large n up to millions. To avoid the computa-

tional bottleneck, unlike the restrictive assumption of a separable uniform data distribution

made by SH, in the next subsection, we present a more general approach based on Anchor

Graphs that have been presented in Chapter 2. The core idea is to directly approximate

the exact neighborhood graph as well as its associated sparse adjacency matrix.

4.4.3 Anchor Graphs

Above all, let us quickly review and sketch our proposed Anchor Graphs. An Anchor

Graph uses a small set of m data points called anchors, not necessarily belonging to the

raw database X , to approximate the neighborhood structure existing over X . Similarities

between all n database points are measured with respect to these m anchors, and the

true adjacency (or affinity) matrix A is approximated using the data-to-anchor similarities.

First, K-means clustering is performed on n data points to obtain m (m ≪ n) cluster

centers U = {uj ∈ Rd}mj=1 that act as anchor points. In practice, running K-means on a
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small subsample of the database with very few iterations (less than 10) is sufficient. This

makes clustering very fast, thus speeding up training significantly. One can also alternatively

use any other efficient clustering algorithms instead of K-means. Next, the Anchor Graph

defines the truncated similarities Zij ’s between all n data points and m anchors as,

Zij=


exp(−D2(xi,uj)/t)∑

j′∈⟨i⟩ exp(−D2(xi,uj′)/t)
, ∀j ∈ ⟨i⟩

0, otherwise

(4.2)

where ⟨i⟩ ⊂ [1 : m] denotes the indices of s (s ≪ m) nearest anchors of point xi in U

according to a distance function D(·) such as ℓ2 distance, and t denotes the bandwidth

parameter. Note that the matrix Z ∈ Rn×m is highly sparse. Each row Zi contains only s

nonzero entries which sum to 1.

Derived from random walks across data points and anchors, the Anchor Graph provides a

powerful approximation to the adjacency matrix A as Â = ZΛ−1Z⊤ where Λ = diag(Z⊤1) ∈

Rm×m is the diagonal anchor-degree matrix of the Anchor Graph. The approximate graph

adjacency matrix Â has three key properties: 1) Â is nonnegative and sparse since Z is very

sparse; 2) Â is low-rank (its rank is at most m), so an Anchor Graph does not compute

Â explicitly but instead keeps its low-rank form; 3) Â is a doubly stochastic matrix, i.e.,

has unit row and column sums, so the resulting Anchor Graph Laplacian is L̂ = I − Â.

Properties 2) and 3) are critical, which allow efficient eigenfunction extensions of Anchor

Graph Laplacians, as shown in the next subsection. The memory cost of an Anchor Graph

is O(sn) for storing Z, and the time cost is O(dmnT + dmn) in which O(dmnT ) originates

from K-means clustering with T iterations. Since m ≪ n, the cost for constructing an

Anchor Graph is linear in n, which is far more efficient than constructing a kNN graph that

has a quadratic cost O(dn2) though provides exact neighborhoods over X .

Since the graph Laplacian matrix of the Anchor Graph is L̂ = I − Â, the required r

Anchor Graph Laplacian eigenvectors are also eigenvectors of Â but associated with the

r largest eigenvalues (ignoring eigenvalue 1 which corresponds to eigenvalue 0 of L̂). One

can easily solve the eigenvectors of Â by utilizing its low-rank property and Proposition 4

presented in Chapter 3.

Specifically, in order to achieve the eigen-system of the big n×nmatrix Â = ZΛ−1Z⊤, we
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solve the eigen-system of a small m×m matrix M = Λ−1/2Z⊤ZΛ−1/2 accordingly, resulting

in r (< m) eigenvector-eigenvalue pairs {(vk, σk)}rk=1 where 1 > σ1 ≥ · · · ≥ σr > 0. After

expressing V = [v1, · · · ,vr] ∈ Rm×r (V is column-orthonormal) and Σ = diag(σ1, · · · , σr) ∈

Rr×r, we obtain the desired spectral embedding matrix Y as

Y =
√
nZΛ−1/2V Σ−1/2 = ZW, (4.3)

which satisfies 1⊤Y = 0 and Y ⊤Y = nIr×r. It is interesting to find out that hashing based

on Anchor Graphs can be interpreted as first nonlinearly transforming each input data

point xi to Zi by computing its sparse similarities to anchor points and second linearly

projecting Zi onto the vectors in W =
√
nΛ−1/2V Σ−1/2 = [w1, · · · ,wr] ∈ Rm×r where

wk =
√
n/σkΛ

−1/2vk. Finally, we accomplish the target Hamming embedding as sgn(Y ).

To verify the quality of the Hamming embedding solved from the Anchor Graph Lapla-

cian eigenvectors, we use the expanded two-moon toy dataset, which replicates the original

dataset introduced in Chapter 2 ten times with random small shifts, to exhibit the qual-

ity of Hamming embeddings acquired by (a) Idealized Graph Hashing that constructs a

10NN graph and computes two smoothest graph Laplacian eigenvectors, (b) our Anchor

Graph Hashing that constructs an Anchor Graph with m = 100, s = 2 and computes two

smoothest Anchor Graph Laplacian eigenvectors, and (c) Spectral Hashing that computes

two smoothest pseudo graph Laplacian eigenfunctions. The three Hamming embeddings

are shown in Figure 4.4. Figure 4.4 reveals that our proposed AGH produces a remarkably

better embedding than Idealized Graph Hashing because at the second dimension AGH

yields more balanced bits than the latter which is impractical at large scale. The Hamming

embedding generated by Spectral Hashing is very poor, losing smoothness along manifolds.

4.4.4 Eigenfunction Generalization

The procedure given in eq. (4.3) generates binary codes only for those database points

that are available during training. But, for the purpose of hashing, one needs to seek a

generic hash function h : Rd 7→ {1,−1} which can take any arbitrary data point as input.

For this, one needs to generalize the eigenvectors of the Anchor Graph Laplacian to the

eigenfunctions {ϕk : Rd 7→ R}rk=1 such that the required hash functions can be simply
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Figure 4.4: Two-bit Hamming embeddings of two-moon toy data consisting of 12,000 2D

points. The trivial eigenvector 1 has been excluded in each embedding. The blue color

denotes ‘1’ bits (positive eigenvector entries) and the red color denotes ‘-1’ bits (negative

eigenvector entries). (a) The Hamming embedding of Idealized Graph Hashing, (b) the

Hamming embedding of Anchor Graph Hashing, and (c) the Hamming embedding of Spec-

tral Hashing.

obtained as hk(x) = sgn(ϕk(x)) (k = 1, · · · , r). We create the “out-of-sample” extension

of the Anchor Graph Laplacian eigenvectors Y to their corresponding eigenfunctions using

the Nyström method [193][13] which is depicted by Proposition 7.

Proposition 7. Suppose a valid kernel function κ : Rd × Rd 7→ R and a kernel matrix

K = (κ(xi,xj))i,j ∈ Rn×n. If (y, σ) is an eigenvector-eigenvalue pair of K such that

∥y∥2 = n, then the Nyström-approximated eigenfunction of κ extended from y is

ϕ(x) =
1

σ
[κ(x,x1), · · · , κ(x,xn)]y. (4.4)

Through applying Proposition 7, we give Theorem 8 which derives an analytical form

to each Anchor Graph Laplacian eigenfunction ϕk.
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Theorem 8. Given m anchor points U = {uj}mj=1 and any sample x, define a data-to-

anchor mapping z : Rd 7→ Rm as follows

z(x) =

[
δ1 exp(−D2(x,u1)

t ), · · · , δm exp(−D2(x,um)
t )

]⊤
∑m

j=1 δj exp(−
D2(x,uj)

t )
, (4.5)

where δj ∈ {1, 0} and δj = 1 if and only if anchor uj is one of s nearest anchors of sample

x in U according to the distance function D(·). Then the Nyström eigenfunction extended

from the Anchor Graph Laplacian eigenvector yk = Zwk is

ϕk(x) = w⊤
k z(x). (4.6)

Proof. First, we check that ϕk and yk (the kth column of Y ) overlap on all n training

samples. If xi is in the training set X , then z(xi) = Z⊤
i where Zi is the ith row of Z. Thus,

ϕk(xi) = w⊤
k Z

⊤
i = Ziwk = Yik. Note that Y solved by eq. (4.3) satisfies Y ⊤Y = nIr×r and

then ∥yk∥2 = n.

The Anchor Graph’s adjacency matrix Â = ZΛ−1Z⊤ is positive semidefinite with each

entry defined as Â(xi,xj) = z⊤(xi)Λ
−1z(xj), so Â(·) forms a valid kernel. For any unseen

sample x, the Nyström method extends yk to ϕk(x) as the weighted summation over n

elements of yk, that is,

ϕk(x) =
1

σk

[
Â(x,x1), · · · , Â(x,xn)

]
yk.
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Since wk =
√

n/σkΛ
−1/2vk and Mvk = σkvk, we can show that

ϕk(x) =
1

σk
z⊤(x)Λ−1[z(x1), · · · , z(xn)]yk

=
1

σk
z⊤(x)Λ−1Z⊤yk

=
1

σk
z⊤(x)Λ−1Z⊤Zwk

=
1

σk
z⊤(x)Λ−1Z⊤Z

√
n

σk
Λ−1/2vk

=

√
n

σ3
k

z⊤(x)Λ−1/2
(
Λ−1/2Z⊤ZΛ−1/2vk

)
=

√
n

σ3
k

z⊤(x)Λ−1/2 (Mvk)

= z⊤(x)

(√
n

σk
Λ−1/2vk

)
= z⊤(x)wk = w⊤

k z(x),

which completes the proof.

By making use of Theorem 8, Anchor Graph Hashing (AGH) offers r hash functions as:

hk(x) = sgn(ϕk(x)) = sgn(w⊤
k z(x)), k = 1, · · · , r. (4.7)

In addition to the time for Anchor Graph construction, AGH needs O(m2n+ srn) time for

solving r Anchor Graph Laplacian eigenvectors retained in the spectral embedding matrix

Y , and O(rn) time for compressing Y into binary codes. Under the online search scenario,

AGH needs to save the binary codes sgn(Y ) of n training samples, m anchors U , and the

projection matrix W in memory. Hashing any test sample x only costs O(dm + sr) time

which is dominated by the construction of a sparse vector z(x) in the anchor space Rm.

Remarks. 1) Though graph Laplacian eigenvectors of the Anchor Graph are not as

accurate as those of an exact neighborhood graph, e.g., kNN graph, they provide good

performance when used for hashing. Exact neighborhood graph construction is infeasible

at large scale. Even if one could get r graph Laplacian eigenvectors of an exact graph,

the cost of calculating their Nyström extensions to a novel sample is O(rn), which is still

infeasible for online hashing requirement. 2) Free from any restrictive data distribution

assumption, AGH solves Anchor Graph Laplacian eigenvectors in linear time and extends

them to eigenfunctions in constant time depending only on constants m and s.
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Figure 4.5: Hierarchical hashing on a data graph. x1, · · · , x8 are data points and y is a

graph Laplacian eigenvector. The data points of filled circles take ‘1’ hash bit and the others

take ‘-1’ hash bit. The entries with dark color in y are positive and the others are negative.

(a) The first-layer hash function h1 uses threshold 0 ; (b) the second-layer hash functions

h2 use thresholds b+ and b−.

4.4.5 Hierarchical Hashing

As illustrated before, to generate r-bit hash codes, we need to access r graph Laplacian

eigenvectors, but not all eigenvectors are equally suitable for hashing especially when r

increases. From a geometric point of view, the intrinsic dimension of data manifolds is

usually low, so a low-dimensional spectral embedding containing the lower graph Laplacian

eigenvectors is desirable. Moreover, [153] discussed that the error made in converting the

real-valued eigenvector yk to the optimal integer solution y∗
k ∈ {1,−1}n accumulates rapidly

as k increases. In this subsection, we develop a simple hierarchical scheme that gives the

priority to the lower graph Laplacian eigenvectors/eigenfunctions by revisiting them to

generate multiple bits.

To explain the basic idea, let us look at a toy example shown in Figure 4.5. To generate

the first bit, the graph Laplacian eigenvector y partitions the graph by the red line using

threshold zero. Due to thresholding, there is always a possibility that neighboring points

close to the boundary (i.e., threshold) are hashed to different bits (e.g., points x3 and x5).

To address this issue, we conduct hierarchical hashing of two layers in which the second-layer

hashing tries to correct the boundary errors caused by the previous hashing. Intuitively, we
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form the second layer by further dividing each partition created by the first layer. In other

words, the positive and negative entries in y are thresholded at b+ and b−, respectively.

Hence, the hash bits at the second layer are generated by sgn(yi − b+) when yi > 0 and

sgn(−yi + b−) otherwise. Figure 4.5(b) shows that x3 and x5 are hashed to the same bit

at the second layer. Next we describe how one can learn the optimal thresholds for the

second-layer hashing.

We propose to optimize the two thresholds b+ and b− from the perspective of balanced

graph partitioning. Let us form a thresholded vector

 y+ − b+1+

−y− + b−1−

 whose sign gives a

hash bit for each training sample during the second-layer hashing. Two vectors y+ of length

n+ and y− of length n− correspond to the positive and negative entries in y, respectively.

Two constant vectors 1+ and 1− contain n+ and n− 1 entries accordingly (n+ + n− = n).

Similar to the first layer, we would like to find such thresholds that minimize the cut value

of the graph Laplacian with the target thresholded vector while maintaining a balanced

partitioning, i.e.,

min
b+,b−

Γ(b+, b−) =

 y+ − b+1+

−y− + b−1−

⊤

L

 y+ − b+1+

−y− + b−1−


s.t. 1⊤

 y+ − b+1+

−y− + b−1−

 = 0. (4.8)

Defining vector y =

 y+

−y−

 and arranging L into

 L+.

L−.

 =

 L++ L+−

L−+ L−−

 corresponding

to the positive and negative entries in y, we optimize b+ and b− by zeroing the derivatives

of the objective in eq. (4.8). After simple algebraic manipulation, one can show that

b+ + b− =
(1+)⊤L+.y

(1+)⊤L++1+
≡ β. (4.9)

On the other hand, combining the fact that 1⊤y = 0 with the constraint in eq. (4.8) leads

to:

n+b+ − (n− n+)b− = (1+)⊤y+ − (1−)⊤y− = 2(1+)⊤y+. (4.10)

We use the Anchor Graph’s adjacency matrix Â = ZΛ−1Z⊤ for the computations in-

volving the graph Laplacian L. Suppose, y is an eigenvector of Â with eigenvalue σ such
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that Ây = σy. Then, we have Â++y
+ + Â+−y

− = σy+. Thus, from eq. (4.9),

β =
(1+)⊤L+.y

(1+)⊤L++1+
=

(1+)⊤
(
(I − Â++)y

+ + Â+−y
−
)

(1+)⊤(I − Â++)1+

=
(1+)⊤(y+ − Â++y

+ + σy+ − Â++y
+)

n+ − (1+)⊤Â++1+

=
(σ + 1)(1+)⊤y+ − 2(1+)⊤Â++y

+

n+ − (1+)⊤Â++1+

=
(σ + 1)(1+)⊤y+ − 2(Z⊤

+1+)⊤Λ−1(Z⊤
+y+)

n+ − (Z⊤
+1+)⊤Λ−1(Z⊤

+1+)
, (4.11)

where Z+ ∈ Rn+×m is the sub-matrix of Z =

 Z+

Z−

 corresponding to y+. By putting

eq. (4.9)-(4.11) together, we solve the target thresholds as
b+ =

2(1+)⊤y+ + (n− n+)β

n

b− =
−2(1+)⊤y+ + n+β

n
,

(4.12)

which requires O(mn+) time.

Now we give the two-layer hash functions for AGH to yield an r-bit code using the first

r/2 graph Laplacian eigenvectors of the Anchor Graph. Conditioned on the outputs of the

first-layer hash functions {h(1)k (x) = sgn
(
w⊤

k z(x)
)
}r/2k=1, the second-layer hash functions are

generated dynamically as follows for k = 1, · · · , r/2,

h
(2)
k (x) =


sgn

(
w⊤

k z(x)− b+k
)

if h
(1)
k (x) = 1

sgn
(
−w⊤

k z(x) + b−k
)

if h
(1)
k (x) = −1

(4.13)

in which (b+k , b
−
k ) are calculated from each eigenvector yk = Zwk. Compared to r one-layer

hash functions {h(1)k }
r
k=1, the proposed two-layer hash functions for r bits actually use the

r/2 lower eigenvectors twice. Hence, they avoid using the higher eigenvectors which can

potentially be of low quality for partitioning and hashing. The experiments conducted in

Section 4.5 reveal that with the same number of bits, AGH using two-layer hash functions

achieves comparable precision but much higher recall than using one-layer hash functions

alone (see Figure 4.8(b)(c)). Of course, one can extend hierarchical hashing to more than
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two layers. However, the accuracy of the resulting hash functions will depend on whether

repeatedly partitioning the existing eigenvectors gives more informative bits than those from

picking new eigenvectors.

4.4.6 Complexity Analysis

For the same budget of r hash bits, we analyze two hashing algorithms which are presented

in subsections 4.4.4 and 4.4.5 and both based on Anchor Graphs with the same graph

construction parameters m and s. For convenience, we name AGH with r one-layer hash

functions {h(1)k }
r
k=1 1-AGH, and AGH with r two-layer hash functions {h(1)k , h

(2)
k }

r/2
k=1 2-

AGH, respectively.

Below we give space and time complexities of 1-AGH and 2-AGH.

Space Complexity: O((d + s + r)n) in the training phase and O(rn) (binary bits) in

the test phase for both of 1-AGH and 2-AGH.

Time Complexity: O(dmnT + dmn + m2n + (s + 1)rn) for 1-AGH and O(dmnT +

dmn+m2n+ (s/2+m/2+ 1)rn) for 2-AGH in the training phase; O(dm+ sr) for both in

the test phase.

To summarize, 1-AGH and 2-AGH both have linear training time and constant query

time (m and s are fixed to constants). Under the online search scenario, the memory cost

of either is quite efficient, capable of storing samples up to 3.58 billions in 10GB RAM if

r = 24 bits are used to represent each sample.

4.5 Experiments

4.5.1 Methods and Evaluation Protocols

We evaluate the proposed graph-based unsupervised hashing, both single-layer AGH (1-

AGH) and two-layer AGH (2-AGH), on two benchmark datasets: MNIST (70K) [102]

and NUS-WIDE (270K) [31]. Their performance is compared against other popular un-

supervised hashing methods including Locality-Sensitive Hashing (LSH) [4], PCA Hashing

(PCAH) [186], Unsupervised Sequential Projection Learning for Hashing (USPLH) [186], It-

erative Quantization (ITQ) [56], Spectral Hashing (SH) [191], Kernelized Locality-Sensitive
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Hashing (KLSH) [94], and Shift-Invariant Kernel Hashing (SIKH) [142]. These methods

cover both linear (LSH, PCAH, USPLH and ITQ) and nonlinear (SH, KLSH and SIKH)

hashing paradigms. Our AGH methods are nonlinear. We used publicly available codes of

USPLH, ITQ, SH and KLSH. To run KLSH, we sample 300 training points to form the

empirical kernel mapping and use the same Gaussian kernel as for SIKH. The kernel width

parameter is tuned to an appropriate value on each dataset. To run our methods 1-AGH

and 2-AGH, we fix the graph construction parameters to m = 300, s = 2 on MNIST and

m = 300, s = 5 on NUS-WIDE, respectively. We adopt the ℓ2 distance for the distance

function D() in defining the matrix Z. In addition, we run K-means clustering with T = 5

iterations to find anchors on each dataset. All our experiments are run on a workstation

with a 2.53 GHz Intel Xeon CPU and 48GB RAM.

We follow two search procedures, i.e., hash lookup and Hamming ranking, for consistent

evaluations across the two datasets. Note that evaluations based on the two distinct criteria

concentrate on different characteristics of hashing techniques. Hash lookup emphasizes more

on real-time search speed since it has constant query time. However, when using longer

hash codes and a single hash table, hash lookup often fails because the Hamming code space

becomes increasingly sparse and very few samples fall in the same hash bucket. Hence,

similar to the experimental setting introduced in [191], we search within a Hamming radius

2 to retrieve potential neighbors for each query. Hamming ranking measures the search

quality by ranking database points according to their Hamming distances to the query in

the Hamming space. Even though the time complexity of Hamming ranking is linear, it is

usually very fast in practice.

4.5.2 Datasets

The well-known MNIST dataset [102] consists of 784-dimensional 70,000 samples asso-

ciated with digits from ‘0’ to ‘9’. We split this dataset into two subsets: a training set

containing 69, 000 samples and a query set of 1, 000 samples. Because this dataset is fully

annotated, we define true neighbors as semantic neighbors based on the associated digit

labels. The number of hash bits is varied from 8 to 64 in this group of experiments.

The second dataset NUS-WIDE [31] contains around 270, 000 web images associated
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Figure 4.6: Example images from the NUS-WIDE dataset, every two of which respectively

come from 12 most frequent tags: ‘animal’, ‘buildings’, ‘clouds’, ‘grass’, ‘person’, ‘plants’,

‘sky’, ‘water’, ‘window’, ‘lake’, ‘ocean’ and ‘road’.

with 81 ground truth concept tags. Each image is represented by an ℓ2 normalized 1024-

dimensional sparse-coding feature vector [189] computed from dense SIFTs [101]. Unlike

MNIST, each image in NUS-WIDE contains multiple semantic labels (tags). The true

neighbors are defined based on whether two images share at least one common tag. For

evaluation, we consider 21 most frequent tags, such as ‘animal’, ‘buildings’, ‘person’, etc.,

each of which has abundant relevant images ranging from 5,000 to 30,000. Some example

images are displayed in Figure 4.6. We sample uniformly 100 images from each of the

selected 21 tags to form a query set of 2,100 images with the rest serving as the training

set. The number of hash bits also varies from 8 to 64.

4.5.3 Results

Table 4.4 shows the Hamming ranking performance measured by Mean Average Precision

(MAP), training time, and test time for different hashing methods on MNIST. For each

hashing method, training time refers to the hashing time for encoding all database samples
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Table 4.4: Hamming ranking performance on MNIST. Mean Average Precision (MAP),

training time, and test time are evaluated for each hashing method. r denotes the number

of hash bits used in hashing algorithms, and also the number of eigenfunctions used in SE

ℓ2 linear scan. The K-means execution time is 20.1 seconds for training AGH on MNIST.

All training and test time is recorded in second. At a fixed bit number, two highest MAP

values achieved by hashing are displayed in boldface type.

Method MNIST (70K)

MAP Train Time Test Time

r = 12 r = 24 r = 48 r = 48 r = 48

ℓ2 Scan 0.4125 –

SE ℓ2 Scan 0.6393 0.5269 0.3909 – –

LSH 0.1488 0.1613 0.2196 1.8 2.1×10−5

PCAH 0.2757 0.2596 0.2242 4.5 2.2×10−5

USPLH 0.4062 0.4699 0.4930 163.2 2.3×10−5

ITQ 0.3820 0.4351 0.4408 10.6 2.3×10−5

SH 0.2743 0.2699 0.2453 4.9 4.9×10−5

KLSH 0.2191 0.2555 0.3049 2.9 5.3×10−5

SIKH 0.1632 0.1947 0.1972 0.4 1.3×10−5

1-AGH 0.5956 0.4997 0.3971 22.9 5.3×10−5

2-AGH 0.5957 0.6738 0.6410 23.2 6.5×10−5

(images) into compact hash codes and test time is the time for hashing a query. We do not

count in the time for building a hash table as well as the time for hash lookup since both

can be ignored compared to the hashing time (i.e., data compression time) (see the last two

paragraphs and Table 4.1 in Section 4.2 for elaborate illustration). We also report MAP

for ℓ2 linear scan in the original feature space and ℓ2 linear scan in the spectral embedding

(SE) space, namely SE ℓ2 linear scan whose binary version is 1-AGH. From this table

it is clear that SE ℓ2 scan gives higher precision than ℓ2 scan for r ≤ 24. This shows

that spectral embedding is capturing the semantic neighborhoods by learning the intrinsic

manifold structure of the data. Increasing r leads to poorer MAP performance of SE ℓ2
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Table 4.5: Hamming ranking performance on NUS-WIDE. Mean Precision (MP) of top-

5000 ranked neighbors, training time, and test time are evaluated for each hashing method.

r denotes the number of hash bits used in hashing algorithms, and also the number of

eigenfunctions used in SE ℓ2 linear scan. The K-means execution time is 105.5 seconds for

training AGH on NUS-WIDE. All training and test time is recorded in second. At a fixed

bit number, two highest MP values achieved by hashing are displayed in boldface type.

Method NUS-WIDE (270K)

MP/5000 Train Time Test Time

r = 12 r = 24 r = 48 r = 48 r = 48

ℓ2 Scan 0.4523 –

SE ℓ2 Scan 0.4842 0.4866 0.4775 – –

LSH 0.3062 0.3196 0.2844 8.5 1.0×10−5

PCAH 0.3906 0.3643 0.3450 18.8 1.3×10−5

USPLH 0.4212 0.4269 0.4322 834.7 1.3×10−5

ITQ 0.4615 0.4669 0.4728 37.9 1.3×10−5

SH 0.3846 0.3609 0.3420 25.1 4.1×10−5

KLSH 0.3420 0.4232 0.4157 8.7 4.9×10−5

SIKH 0.2914 0.3270 0.3094 2.0 1.1×10−5

1-AGH 0.4673 0.4762 0.4761 115.2 4.4×10−5

2-AGH 0.4525 0.4699 0.4779 118.1 5.3×10−5

scan, indicating the intrinsic manifold dimension to be around 24. Further, the table shows

that even 1-AGH performs better than all other hashing methods except USPLH which

may be better than 1-AGH with more bits. 2-AGH performs significantly better than the

other hashing methods and ℓ2 scan, and even better than SE ℓ2 scan when r ≥ 24. Note

that the results from both ℓ2 and SE ℓ2 linear scans are provided to show the advantage

of taking the manifold view in AGH. Such linear scans are not fast NN search methods as

they are very expensive to compute in comparison to any other hashing methods.

In terms of training time, while 1-AGH and 2-AGH need more time than the most

hashing methods, they are faster than USPLH. Most of the training time in AGH is spent
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Figure 4.7: Hash lookup results on MNIST. (a) Mean precision of Hamming radius 2 hash

lookup using the varying number of hash bits (r); (b) hash lookup success rate using the

varying number of hash bits (r).

on the K-means step. By using a subsampled dataset, instead of the whole database, one

can further speed up K-means significantly. The test time of AGH methods is comparable to

the other nonlinear hashing methods SH and KLSH. Table 4.5 shows a similar trend on the

NUS-WIDE dataset. As computing MAP is slow on this larger dataset, we show Mean

Precision (MP) of top-5000 returned neighbors for all these compared hashing methods

along with two exhaustive searches ℓ2 scan and SE ℓ2 scan. This time 1-AGH outperforms

all of the other hashing methods in terms of MP when r ≤ 24, and 2-AGH outperforms all
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Figure 4.8: Hamming ranking results on MNIST. (a) Mean precision of top-5000 ranked

neighbors using the varying number of anchors (m); (b) mean precision curves of Hamming

ranking; (c) mean recall curves of Hamming ranking.
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Figure 4.9: Hash lookup results on NUS-WIDE. (a) Mean precision of Hamming radius 2

hash lookup using the varying number of hash bits (r); (b) hash lookup success rate using

the varying number of hash bits (r).

of the other hashing methods and even SE ℓ2 scan when r = 48.

Figures 4.7(a) and 4.9(a) show the mean precision curves using hash lookup within

Hamming radius 2. Note that we follow [186] to treat failing to find any hash bucket for a

query as zero precision, different from [191] which ignored the failed queries in computing

the mean hash lookup precision over all queries. Due to increased sparsity of the Hamming

space with more bits, precision for the most hashing methods drops significantly when longer

codes are used. However, both 1-AGH and 2-AGH do not suffer from this common drawback
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Figure 4.10: Hamming ranking results on NUS-WIDE. (a) Mean precision of top-5000

ranked neighbors using the varying number of anchors (m); (b) mean precision curves of

Hamming ranking; (c) mean recall curves of Hamming ranking.
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and provide stably higher precision when using more than 24 bits for both datasets. To

deeply investigate the issue encountered in hash lookups using longer codes, we report the

hash lookup success rate: the proportion of the queries resulting in successful hash lookups

in all queries. This success rate quantifies the failing cases in hash lookups. Figures 4.7(b)

and 4.9(b) clearly indicate that LSH, 2-AGH and 1-AGH enjoy the highest hash lookup

success rates. When r ≥ 24, the success rates of PCAH, ITQ, SH and KLSH drop sharply,

while those of LSH, 1-AGH and 2-AGH keep high values which are always larger than 0.97

on MNIST and 0.76 on NUS-WIDE, respectively. The reported hash lookup success

rates explain why some hashing methods suffer from very low Hamming radius 2 precision

when using longer codes, and why our proposed hashing approaches 1-AGH and 2-AGH

remain high precision. From another perspective, the high success rates that our approaches

accomplish also reveal that our approaches maintain tight neighborhoods (e.g., Hamming

distance 2), irrespective of the code length, in the produced code spaces.

We also plot the Hamming ranking precision of top-5000 returned neighbors with an

increasing number of anchors (100 ≤ m ≤ 600) in Figures 4.8(a) and 4.10(a) (except these

two, all of the results are reported under m = 300), from which one can observe that 2-

AGH consistently provides superior precision performance compared to ℓ2 linear scan, SE

ℓ2 linear scan, and 1-AGH. The gains are more significant on MNIST.

Finally, overall better performance of 2-AGH over 1-AGH implies that the higher (less

smooth) eigenfunctions of Anchor Graph Laplacians are not as good as the lower (smoother)

ones when used to create hash bits. 2-AGH reuses the lower eigenfunctions and gives

higher search accuracy including both precision and recall, as shown in Figures 4.8(b)(c)

and 4.10(b)(c). Note that though 1-AGH achieves comparable hash lookup and Hamming

ranking precision as 2-AGH, it has lower Hamming ranking recall than 2-AGH with the

same number of hash bits.

4.6 Summary and Discussion

In this chapter, we have developed a realizable graph-based unsupervised hashing approach

which respects the underlying manifold structure of the input data to capture semantic
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neighborhoods on manifolds and return meaningful nearest neighbors for a query. We fur-

ther showed that Anchor Graphs can overcome the computationally prohibitive steps of

building and manipulating large graph Laplacians by approximating graph adjacency ma-

trices with low-rank matrices. As such, the hash functions can be efficiently obtained by

thresholding the lower (smoother) eigenfunctions of the Anchor Graph Laplacian in a hi-

erarchical fashion. Experimental comparison showed that our proposed approach Anchor

Graph Hashing (AGH) enjoys significant performance gains over the state-of-the-art hash-

ing methods in retrieving semantically similar neighbors. In the future, we would like to

investigate if any theoretical guarantees could be provided on retrieval accuracy of AGH.

In addition, we make several important observations about the proposed AGH method

below.

1. The idea of AGH is centered around an assumption that manifolds exist or nearly

exist under the input data collection in a high-dimensional feature space. By making such an

assumption, we are then able to leverage Anchor Graphs to discover the manifold structure

of the data, and also conduct hashing to capture the manifold structure in the Hamming

code space. Nevertheless, if manifolds do not exist due to diverse data distributions or

poor feature extraction schemes, it remains an open question whether AGH can still be

successful. In the next chapter, we will try to answer this question and propose a more

general hashing approach which will not rely on any assumptions about the data but need

the supervised information to explicitly capture the semantic relationships among the data

into hashing.

2. Hierarchical hashing, that we have proposed in subsection 4.4.5, is a novel idea and

has not been mentioned and explored in the literature. The devised hierarchical thresholding

procedure perfectly works in conjunction with Anchor Graphs, providing data-adaptive hash

functions (functions at the second layer are conditioned on the outputs of functions at the

first layer). This hierarchical idea is not only suitable for Anchor Graph-based hashing,

but also applicable to other hashing algorithms as an improvement. Possibly, one needs

to make some proper modifications to our proposed hierarchical thresholding procedure.

The recent work [89] follows the proposed hierarchical hashing idea to successfully extend

several conventional one-layer hashing algorithms like LSH, SH and PCAH to two layers.
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Chapter 5

Supervised Hashing

Recent years have witnessed the growing popularity of hashing, typically unsupervised hash-

ing, in large-scale machine learning, computer vision, and information retrieval problems.

Under the compact hashing framework that we presented in Chapter 4, there has been

some recent research which shows that the hashing performance could be boosted by lever-

aging supervised information into the hash function learning process. However, the existing

supervised hashing methods either lack adequate performance or often incur cumbersome

model training.

In this chapter, we present a novel kernel-based supervised hashing model [116] which

requires a limited amount of supervised information, i.e., similar and dissimilar data pairs,

and a feasible training cost in achieving high quality hashing. The idea is to map the data

to compact binary codes whose Hamming distances are minimized between points of similar

pairs and simultaneously maximized between points of dissimilar pairs. Our approach is

distinct from prior work in utilizing the equivalence between optimizing the code inner prod-

ucts and the Hamming distances. This enables us to sequentially and efficiently train the

hash functions one bit at a time, yielding very short yet discriminative codes whose code

inner products are optimized explicitly and at the same time whose Hamming distances

are optimized in an implicit manner. We carry out extensive experiments on two image

benchmarks of up to one million samples, demonstrating that our approach significantly

outperforms the state-of-the-arts in searching both semantically similar neighbors and met-

ric distance neighbors, with accuracy gains ranging from 13% to 46% over the alternative
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methods.

In the rest of this chapter, we state the problem background of supervised hashing in

Section 5.1, review the related work in Section 5.2, introduce the notations in Section 5.3,

present our approach Kernel-Based Supervised Hashing (KSH) [116] in Section 5.4, show the

experimental results in Section 5.5, and lastly give our summary and discussion in Section

5.6.

5.1 Problem Background

During the past few years, hashing has become a popular solution to tackle a large spec-

trum of large-scale computer vision problems including nonparametric (e.g., k-NN based)

object recognition [174][175], fast image retrieval [95][186], fast image and video duplicate

detection [32][77], fast pose estimation [152], fast image matching [90][163], compact local

descriptor representation [129][77][79][78], etc. In these problems, hashing is exploited to

expedite similarity computation and search. Since the encoding of high-dimensional image

feature vectors to compact binary codes as proposed in [175], compact hashing has enabled

significant efficiency gains in both storage and speed, as validated in Chapter 4. In many

cases, hashing with only several tens of bits per image allows search into a collection of

millions of images in a constant time [175][186].

In Chapter 4, we have mentioned that unsupervised hashing has some limitations such

as low search accuracy (e.g., LSH, PCAH and SIKH) and dependence on somewhat strong

assumptions about data (e.g., SH). Even our proposed AGH relies on the manifold as-

sumption to derive smooth graph Laplacian eigenfunctions and then yield good hash codes.

As we mentioned in Section 4.6, if manifolds do not exist under data due to diverse data

distributions or poor feature sensing and extracting schemes, AGH cannot guarantee to

achieve good performance. What’s more, AGH is more suitable for retrieving semantically

similar neighbors and was not designed for seeking metric neighbors. Therefore, a more

general hashing approach that does not rely on any assumption about the data and can

accommodate various neighbor definitions is needed.

In this chapter, we study novel hashing methods by taking advantage of supervised
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(a) Semantic Supervision (b) Metric Supervision

similar

dissimilardissimilar

similar

dissimilar

Figure 5.1: Two types of supervised information. A blue solid line denotes a similar relation,

and a red dashed line denotes a dissimilar relation. (a) Semantic supervision: ‘similar’

represents that two images belong to the same object category, and ‘dissimilar’ represents

that two images come from different categories. (b) Metric supervision: ‘similar’ represents

that two samples hold a sufficiently short metric distance, and ‘dissimilar’ represents that

two samples incur a sufficiently long metric distance.

information. In the literature of supervised hashing [145][93][137][186], the supervised in-

formation is often given in terms of pairwise labels: 1 labels specify similar (i.e., neighbor)

pairs, and -1 labels designate dissimilar (i.e., nonneighbor) pairs. Such pairs may be ac-

quired from neighborhood structures in a predefined metric (e.g., ℓ2) space, or from semantic

relevancy when semantic-level labels of some samples are available via meta-data or manual

annotations. Hence, the supervised information covers definitions of semantic and metric

neighborhoods, which is schematically displayed in Figure 5.1 in which the image examples

are from Caltech-101 [47]. The purpose of supervised hashing is to explicitly preserve the

given supervised information during hash code generation. Figure 5.2 draws a desirable

hash function h(x) meeting such an objective. Such a function generates the same hash bit

(h(xi) = h(xj)) for a similar data pair (xi,xj) whereas different hash bits (h(xi) ̸= h(xj))

for a dissimilar data pair.
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Figure 5.2: A desirable hash function subject to supervised information.

5.2 Related Work

The early exploration of hashing focuses on using random projections to construct random-

ized hash functions. One of the well-known representatives is Locality-Sensitive Hashing

(LSH) [52][4] which has been continuously expanded to accommodate more distance/similarity

metrics including ℓp distances for p ∈ (0, 2] [39], the Mahalanobis distance [95], the cosine

similarity [27], and the kernel similarity [94]. Because of theoretical guarantees that orig-

inal metrics are asymptotically preserved in the Hamming (code) space with increasing

code length, LSH-related methods usually require long codes to achieve good precision.

Nonetheless, long codes result in low recall since the collision probability that two codes

fall into the same hash bucket decreases exponentially as the code length increases. Thus,

multiple hash tables are needed to maintain reasonable recall, leading to longer query time

and tremendous increase in storage.

As discussed in Chapter 4, in contrast to the data-independent hash schemes employed

in LSH-related methods, recent endeavors aim at data-dependent hashing which generates

a compact set of hash bits via learning meaningful hash functions. Through encoding high-

dimensional data points into compact codes, nearest neighbor search can be accomplished

with a constant time complexity as long as the neighborhood of a point is well preserved

in the code space. In addition, compact codes are particularly useful for saving storage

in gigantic databases. Even for linear scans through entire databases compact codes still
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allow fast search. As shown in our experiments presented in Section 5.5, searching hun-

dreds of neighbors of a query in one million samples consumes about 0.005 second using

48 binary bits per sample. To design effective compact hashing, a number of methods

such as projection learning for hashing [186][56][163], Spectral Hashing (SH) [191], Anchor

Graph Hashing (AGH) [117] (as described in Chapter 4), Optimized Kernel Hashing [60],

Semi-Supervised or Weakly-Supervised Hashing [186][128], Restricted Boltzmann Machines

(RBMs) (or semantic hashing) [145][146], Binary Reconstruction Embeddings (BRE) [93],

and Minimal Loss Hashing (MLH) [137] have been proposed. We summarize them into

three main categories, unsupervised, semi-supervised, and supervised methods.

For unsupervised hashing, principled linear projections like PCA Hashing (PCAH) [186]

and its rotational variant Iterative Quantization (ITQ) [56] were suggested for better quan-

tization rather than random projections. Nevertheless, only a few orthogonal projections

are good for quantization as the variances of data usually decay rapidly as pointed out

by [186]. An alternative solution is to seek nonlinear data representation from the low-

energy spectrums of data neighborhood graphs [191][117]. Exactly solving eigenvectors or

eigenfunctions of large-scale graphs is computationally prohibitive. In response, [191][117]

proposed several approximate solutions by adopting restrictive assumptions about the data

distribution or the neighborhood structure.

While unsupervised hashing is promising to retrieve metric distance neighbors, e.g., ℓ2

neighbors, a variety of practical applications including image search prefer semantically

similar neighbors [175]. Therefore, the recent work incorporated supervised information

to boost the hashing performance. Such supervised information is customarily expressed

as pairwise labels of similar and dissimilar data pairs in availability. One representative

work is Semi-Supervised Hashing (SSH) [186] which minimized the empirical error on the

labeled data while maximizing entropy of the generated hash bits over the unlabeled data.

Another work, namely Weakly-Supervised Hashing [128], handled higher-order supervised

information.

Importantly, we argue that supervised hashing could attain higher search accuracy than

unsupervised and semi-supervised hashing if the supervised information were thoroughly

exploited. Though the simple supervised method Linear Discriminant Analysis Hashing
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(LDAH) [163] can tackle supervision via easy optimization, it lacks adequate performance

because of the use of orthogonal projections in hash functions. Optimized Kernel Hashing

(OKH) [60] resembles the themes of SSH and LDAH in handling supervised information,

but pursued the orthogonal projections in a kernel space. There exist more sophisticated

supervised methods such as RBM [145], BRE [93] and MLH [137] that have shown higher

search accuracy than unsupervised hashing approaches, but they all impose difficult op-

timization and slow training mechanisms. This inefficiency issue has greatly diminished

the applicability of the existing supervised hashing methods to large-scale tasks. We dis-

cover that the expensive training costs are caused by the overcomplicated hashing objective

functions used in the prior work. To this end, high-quality supervised hashing with a low

training cost is fundamentally important, yet still unavailable to the best of our knowledge.

In this chapter, we show that the supervised information can be incorporated in a more

effective and efficient manner. Specifically, we propose a novel and elegant objective func-

tion for learning the hash functions. The prior supervised methods [93][137] both tried

to control the Hamming distances in the code space such that they correlate well with

the given supervised information. Unfortunately, it is very difficult to directly optimize

Hamming distances that are nonconvex and nonsmooth [93]. By utilizing the algebraic

equivalence between a Hamming distance and a code inner product, the proposed objective

function dexterously manipulates code inner products, leading to implicit yet more effec-

tive optimization on Hamming distances. We also exploit the separable property of code

inner products to design an efficient greedy algorithm which sequentially solves the target

hash functions bit by bit. To accommodate linearly inseparable data, we employ a kernel

formulation for the target hash functions, so we name the presented approach Kernel-Based

Supervised Hashing (KSH) which is able to deal with both semantic and metric supervision.

We evaluate the performance of KSH in searching both semantically similar neighbors and

metric distance neighbors on two large image benchmarks of up to one million samples, con-

firming its dramatically higher accuracy compared with the state-of-the-art unsupervised,

semi-supervised, and supervised hashing methods.

There are other hashing methods [108][61] which stress the necessity of independence

among hash bits based on the principle similar to that used in entropy-based hashing [141].
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Specifically, they attempted to minimize the Hamming distances between neighbor pairs

subject to the constraint that each bit of the learned hash functions should have maxi-

mum conditional entropy with respect to any of the other bits. Nevertheless, there is no

convincing evidence that independent hash bits will result in higher NN search accuracy.

Actually, in the supervised scenario, interdependent hash bits may be advantageous, which

is corroborated by the recent work Minimal Loss Hashing (MLH) [137] where hash bits were

treated as interdependent latent variables.

Following the practice in Chapter 4, in this chapter we will still focus on the compact

hashing mode, in which only 8 to 48 bits will be used in all performance comparison in

addition to the use of Hamming radius 2 hash table lookup. It is worthwhile to point

out that hash lookup within a small Hamming radius is equivalent to multi-probe hashing

[120][42] which constructs a few new queries around the original query.

Finally, to summarize various hashing methods we have discussed so far, we list the

basic properties of the representative hash functions in Table 5.1.

5.3 Notations

In this section, we define the notations and symbols that we will use in the rest of this

chapter. All notations as well as their definitions are listed in Tables 5.2 and 5.3.

5.4 Kernel-Based Supervised Hashing (KSH)

5.4.1 Hash Functions with Kernels

As stated in Chapter 4, the purpose of hashing is to look for a group of appropriate hash

functions {h : Rd 7→ {1,−1}}, each of which accounts for the generation of a single hash

bit, given a data set X = {x1, · · · ,xn} ⊂ Rd. In the same way as Chapter 4, we treat

‘0’ bit as ‘-1’ bit for formulation and training, and use ‘0’ bit back in the implementations

of data coding and hashing. Different from AGH that we have proposed in Chapter 4, we

use a kernel function κ : Rd × Rd 7→ R to construct the hash functions in demand. This is

because the kernel trick has been theoretically and empirically proven to be able to tackle
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Table 5.1: The basic properties of various hashing methods. x denotes a data vector, k(x)

denotes a kernel mapping, z(x) denotes the data-to-anchor mapping defined in Chapter 4,

w denotes a projection vector, k denotes an integer, and b, t denote shift scalars.

Method Hash Function w Learning Style

LSH [4] sgn(w⊤x+ b) randomized no learning

PCAH [186] sgn(w⊤x+ b) learned unsupervised

ITQ [56] sgn(w⊤x+ b) learned unsupervised

SSH [186] sgn(w⊤x+ b) learned semi-supervised

LDAH [163] sgn(w⊤x+ b) learned supervised

KLSH [94] sgn
(
w⊤k(x)

)
randomized no learning

OKH [60] sgn
(
w⊤k(x)

)
learned unsupervised or supervised

SIKH [142] sgn
(
cos(w⊤x+ b) + t

)
randomized no learning

SH [191] sgn
(
sin(π2 + kπ(w⊤x+ b))

)
learned unsupervised

AGH (Chapter 4) sgn
(
w⊤z(x)

)
learned unsupervised

BRE [93] sgn
(
w⊤k(x)

)
learned unsupervised or supervised

MLH [137] sgn(w⊤x+ b) learned supervised

KSH (this chapter) sgn
(
w⊤k(x)

)
learned supervised

practical data that are mostly linearly inseparable [149].

Following the Kernelized Locality-Sensitive Hashing (KLSH) [94] algorithm, we first

define a prediction function f : Rd 7→ R with the kernel κ plugged in as follows

f(x) =

m∑
j=1

κ(x(j),x)wj − b, (5.1)

where x(1), · · · ,x(m) are m samples uniformly selected at random from X , which behave as

anchor points as what have been used in AGH. wj ∈ R is the jth coefficient, and b ∈ R is

the bias. Based on f , the hash function for a single hash bit is constructed by

h(x) = sgn(f(x)), (5.2)

in which the sign function sgn(x) returns 1 if input variable x > 0 and returns -1 otherwise.

Note that m is fixed to a constant much smaller than the data set size n in order to maintain

fast hashing.
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Table 5.2: Table of notations.

Notation Definition

n The number of database points

l The number of labeled points

m The number of anchor points

d The dimension of database, anchor or query points

i, j The indices of database or anchor points

xi ∈ Rd The ith database point

x(j) ∈ Rd The jth anchor point

X = {xi}ni=1 The data set

Xl = {xi}li=1 The labeled data set

q ∈ Rd The query point

h : Rd 7→ {1,−1} A hash function for a single bit

sgn(x) ∈ {1,−1} The sign function that returns 1 for x > 0 and -1 otherwise

κ : Rd × Rd 7→ R A kernel function

f : Rd 7→ R A prediction function

k̄(x) ∈ Rm The zero-centered kernel mapping

w ∈ Rm A projection vector in a kernel feature space

b ∈ R The bias scalar

µj ∈ R The jth mean value, j ∈ [1 : m]

r The number of hash bits

k The index of hash bits

hk : Rd 7→ {1,−1} The hash function for the kth bit

wk ∈ Rm The kth projection vector

M⊂ Rd × Rd The set of similar data pairs

C ⊂ Rd × Rd The set of dissimilar data pairs

S = (Sij)i,j ∈ Rl×l The pairwise label matrix

DHr
: Rd × Rd 7→ [0 : r] The Hamming distance function between r-bit binary codes

Hr(x) = [h1(x), · · · , hr(x)] The r-bit binary code of sample x

Bl ∈ {1,−1}l×r The code matrix of the labeled data Xl

K̄l ∈ Rl×m The kernel matrix between Xl and m anchor points
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Table 5.3: Table of notations (continued).

W = [w1, · · · ,wr] ∈ Rm×r The projection matrix in the kernel feature space

Q : Rm×r 7→ R The objective (cost) function for optimizing W

Rk−1 ∈ Rl×l The (k − 1)th residue matrix, k ∈ [1 : r]

g : Rm 7→ R The objective (cost) function for optimizing wk

g̃ : Rm 7→ R The smooth surrogate of g

φ(x) ∈ R The sigmoid-shaped function to approximate sgn(x)

An important criterion guiding the design of hash functions is that the generated hash

bit should take as much information as possible, which implies a balanced hash function

that meets
∑n

i=1 h(xi) = 0 [191][186][56][117]. For our problem, this balancing criterion

makes b be the median of
{∑m

j=1 κ(x(j),xi)wj

}n

i=1
. As a fast alternative to the median, we

adopt the mean

b =

n∑
i=1

m∑
j=1

κ(x(j),xi)wj/n (5.3)

like [186][56]. Through substituting b in eq. (5.1) with the mean value, we obtain

f(x) =

m∑
j=1

(
κ(x(j),x)−

1

n

n∑
i=1

κ(x(j),xi)

)
wj

= w⊤k̄(x), (5.4)

where w = [w1, · · · , wm]⊤ and k̄ : Rd 7→ Rm is a vectorial mapping defined by

k̄(x) = [κ(x(1),x)− µ1, · · · , κ(x(m),x)− µm]⊤, (5.5)

in which µj =
∑n

i=1 κ(x(j),xi)/n can be precomputed. In KLSH, the coefficient vector

w came as a random direction drawn from a Gaussian distribution. Since w completely

determines a hash function h(x), we seek to learn w by leveraging supervised information

so that the resulted hash function is discriminative.

It is worthwhile to point out that w’s role is a projection vector in the m-dimensional

kernel feature space {k̄(x)|x ∈ Rd} induced by the m anchor points {x(j)}mj=1. We could

obtain better anchor points than the randomly selected exemplars via running K-means

clustering like Chapter 4, but we want to satisfy the most generic case that data are not
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known to have vectorial representation but only known to have a kernel function defined

between. Actually, in many vision problems, data such as images and videos do not have

vectorial representation, and are possibly expressed in the form of sets of features on which

K-means clustering is not trivial to implement.

5.4.2 Manipulating Code Inner Products

Suppose that r hash bits are needed. Accordingly, we have to find r projection vectors

w1, · · · ,wr to construct r hash functions
{
hk(x) = sgn(w⊤

k k̄(x))
}r
k=1

. In the customary

setting for supervised hashing [145][93][137][186][116], the supervised information is given

in terms of pairwise labels: 1 labels specify similar (or neighbor) pairs collected in setM,

and -1 labels designate dissimilar (or nonneighbor) pairs collected in set C. Such pairs

may be acquired from neighborhood structures in a predefined metric (e.g., ℓ2) space, or

from semantic relevancy when semantic-level labels of some samples are available. Without

loss of generality, we assume that the first l (m < l ≪ n) samples Xl = {x1, · · · ,xl} are

implicated inM and C. To explicitly record the pairwise relationships among Xl, we define

a label matrix S ∈ Rl×l as

Sij =


1, (xi,xj) ∈M

−1, (xi,xj) ∈ C

0, otherwise.

(5.6)

Note that Sii ≡ 1 since (xi,xi) ∈ M. The intermediate label 0 implies that the simi-

lar/dissimilar relationship about some data pair is unknown or uncertain. The 0 labels

mostly appear in the metric-based supervision (see Section 5.4.4).

Our purpose of supervised hashing is to generate discriminative hash codes such that

similar pairs can be perfectly distinguished from dissimilar pairs by using Hamming dis-

tances in the code space. Specifically, we hope that the Hamming distances between the

labeled pairs inM∪ C correlate with the labels in S, that is, a pair with Sij = 1 will have

the minimal Hamming distance 0 while a pair with Sij = −1 will take on the maximal

Hamming distance, i.e., the number of hash bits r. Figure 5.3(b) illustrates our expectation

for optimizing the Hamming distances.

However, directly optimizing the Hamming distances is nontrivial because of the complex
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Figure 5.3: The core idea of our proposed supervised hashing. (a) Three data points with

supervised pairwise labels: “1” (similar) and “-1” (dissimilar); (b) optimization on Hamming

distances; (c) optimization on code inner products (r is the bit number). The latter two are

equivalent due to the one-to-one correspondence between a Hamming distance and a code

inner product.
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mathematical formula DHr(xi,xj) = |{k|hk(xi) ̸= hk(xj), 1 ≤ k ≤ r}|. In this chapter, we

advocate code inner products that are easier to manipulate and optimize, entailing a concise

mathematical expression.

Code Inner Products vs. Hamming Distances

Let us write the r-bit hash code of sample x as Hr(x) = [h1(x), · · · , hr(x)] ∈ {1,−1}1×r,

and then deduce the code inner product as follows

Hr(xi) ◦Hr(xj)

=Hr(xi)H
⊤
r (xj)

= |{k|hk(xi) = hk(xj), 1 ≤ k ≤ r}|

− |{k|hk(xi) ̸= hk(xj), 1 ≤ k ≤ r}|

=r − 2 |{k|hk(xi) ̸= hk(xj), 1 ≤ k ≤ r}|

=r − 2DHr(xi,xj), (5.7)

where the symbol ◦ stands for the code inner product. Critically, eq. (5.7) reveals that

the Hamming distance and the code inner product is in one-to-one correspondence, hence

enabling equivalent optimization on code inner products.

Given the observation of Hr(xi) ◦ Hr(xj) ∈ [−r, r] and Sij ∈ [−1, 1], we let Hr(xi) ◦

Hr(xj)/r fit Sij as shown in Figure 5.3(c). This makes sense because Hr(xi) ◦Hr(xj)/r =

Sij = 1 leads to DHr(xi,xj) = 0 and Hr(xi)◦Hr(xj)/r = Sij = −1 leads to DHr(xi,xj) = r

by eq. (5.7). In a natural means, we propose a least-squares style objective function Q to

learn the codes of the labeled data Xl:

min
Bl∈{1,−1}l×r

Q =

∥∥∥∥1rBlB
⊤
l − S

∥∥∥∥2
F

, (5.8)

where Bl =


Hr(x1)

· · · · · ·

Hr(xl)

 denotes the code matrix of Xl, and ∥.∥F represents the Frobenius

norm.

We can generalize sgn() to take the elementwise sign operation for any vector or matrix
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input, and then express the code matrixBl as (given hk(x) = sgn(w⊤
k k̄(x)) = sgn(k̄⊤(x)wk))

Bl =


h1(x1), · · · , hr(x1)

· · · · · ·

h1(xl), · · · , hr(xl)

 =


sgn(k̄⊤(x1)w1), · · · , sgn(k̄⊤(x1)wr)

· · · · · ·

sgn(k̄⊤(xl)w1), · · · , sgn(k̄⊤(xl)wr)

 = sgn(K̄lW ), (5.9)

where K̄l = [k̄(x1), · · · , k̄(xl)]
⊤ ∈ Rl×m and W = [w1, · · · ,wr] ∈ Rm×r. After substituting

Bl in eq. (5.8) with eq. (5.9), we obtain an analytical form of the objective function Q with

respect to the projection matrix W :

min
W∈Rm×r

Q(W ) =

∥∥∥∥1r sgn(K̄lW )(sgn(K̄lW ))⊤ − S

∥∥∥∥2
F

. (5.10)

The novel objective function Q is simpler and more tractable than those of BRE [93] and

MLH [137], because it offers a clearer connection and easier access to the model parameter

W through manipulating code inner products.

In contrast, BRE and MLH optimize Hamming distances by pushing them close to raw

metric distances or larger/smaller than appropriately chosen thresholds, either of which

formulated a complicated objective function and incurred a tough optimization process, yet

cannot guarantee the optimality of its solution. For direct comparison, we list the formu-

lations of the objective functions used by BRE, MLH and KSH in Table 5.4. Importantly,

our objective Q fulfills an intuitive notion that the high-level (semantic or metric) similar-

ities revealed by the label matrix S are preserved into the low-level similarities, i.e., the

(normalized) code inner products.

5.4.3 Greedy Optimization

The separable property of code inner products allows us to solve the hash functions in an

incremental mode. With simple algebra, we rewrite Q in eq. (5.10) as

min
W

∥∥∥∥∥
r∑

k=1

sgn(K̄lwk)(sgn(K̄lwk))
⊤ − rS

∥∥∥∥∥
2

F

, (5.11)

where the r vectors wk’s, each of which determines a single hash function, are separated in

the summation. This inspires a greedy idea for solving wk’s sequentially. At a time, it only

involves solving one vector wk provided with the previously solved vectors w∗
1, · · · ,w∗

k−1.
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Table 5.4: The formulations of supervised hashing methods. Lossρ(x, s) = max(s(x− ρ) +

1, 0) (ρ is a hyperparameter) is a hinge loss function used in MLH.

Method Objective Function Goal

BRE [93] minHr

∑l
i,j=1

∥∥∥ 1
rDHr (xi,xj)− 1−Sij

2

∥∥∥2 DHr (xi,xj)→ 0 for Sij = 1

DHr (xi,xj)→ r for Sij = −1

MLH [137] minHr

∑l
i,j=1 Lossρ (DHr (xi,xj), Sij) DHr (xi,xj) ≤ ρ− 1 for Sij = 1

DHr (xi,xj) ≥ ρ+ 1 for Sij = −1

KSH minHr

∑l
i,j=1

∥∥ 1
rHr(xi)H

⊤
r (xj)− Sij

∥∥2 Hr(xi)H
⊤
r (xj)→ r for Sij = 1

(this chapter) Hr(xi)H
⊤
r (xj)→ −r for Sij = −1

Let us define a residue matrix Rk−1 = rS −
∑k−1

t=1 sgn(K̄lw
∗
t )(sgn(K̄lw

∗
t ))

⊤ (R0 = rS).

Then wk can be pursued by minimizing the following cost∥∥∥sgn(K̄lwk)(sgn(K̄lwk))
⊤ −Rk−1

∥∥∥2
F

=
(
(sgn(K̄lwk))

⊤sgn(K̄lwk)
)2

− 2(sgn(K̄lwk))
⊤Rk−1sgn(K̄lwk) + tr(R2

k−1)

=− 2(sgn(K̄lwk))
⊤Rk−1sgn(K̄lwk) + l2 + tr(R2

k−1)

=− 2(sgn(K̄lwk))
⊤Rk−1sgn(K̄lwk) + const. (5.12)

Discarding the constant term, we arrive at a cleaner cost

g(wk) = −(sgn(K̄lwk))
⊤Rk−1sgn(K̄lwk). (5.13)

A nice feature is that g(wk) is lower-bounded as eq. (5.12) is always nonnegative. However,

minimizing g is not easy to achieve because it is neither convex nor smooth. In what follows,

we develop two optimization methods to approximately minimize g.

Spectral Relaxation. Motivated by the spectral methods for hashing [191][117], we

apply the spectral relaxation trick to drop the sign functions involved in g, resulting in a

constrained quadratic problem

max
wk

(K̄lwk)
⊤Rk−1(K̄lwk)

s.t. (K̄lwk)
⊤(K̄lwk) = l (5.14)
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Figure 5.4: The sign function sgn(x) and the sigmoid-shaped function φ(x) = 2/(1 +

exp(−x))− 1.

where the constraint (K̄lwk)
⊤(K̄lwk) = l makes l elements in the vector K̄lwk fall into the

range of [−1, 1] roughly, so that the solution of the relaxed problem eq. (5.14) is in the similar

range to the original problem eq. (5.13). Eq. (5.14) is a standard generalized eigenvalue

problem K̄⊤
l Rk−1K̄lw = λK̄⊤

l K̄lw, and wk is thus sought as the eigenvector associated

with the largest eigenvalue. A proper scaling is conducted on the solved eigenvector, saved

as w0
k, to satisfy the constraint in eq. (5.14).

Although spectral relaxation results in fast optimization, it might deviate far away from

the optimal solution under larger l (e.g., ≥ 5,000) due to the amplified relaxation error (see

Section 5.5.2). It is therefore used as the initialization to a more principled optimization

scheme described below.

Sigmoid Smoothing. Since the hardness of minimizing g lies in the sign function, we

replace sgn() in g with the sigmoid-shaped function φ(x) = 2/(1 + exp(−x)) − 1 which is

sufficiently smooth and well approximates sgn(x) when |x| > 6, as shown in Figure 5.4.
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Afterward, we propose to optimize the smooth surrogate g̃ of g:

g̃(wk) = −(φ(K̄lwk))
⊤Rk−1φ(K̄lwk), (5.15)

where φ() operates elementwisely like sgn(). The gradient of g̃ with respect to wk is derived

as

∇g̃ = −K̄⊤
l ((Rk−1bk)⊙ (1− bk ⊙ bk)) , (5.16)

where the symbol ⊙ represents the Hadamard product (i.e., elementwise product), bk =

φ(K̄lwk) ∈ Rl, and 1 denotes a constant vector with l 1 entries.

Since the original cost g is lower-bounded, its smooth surrogate g̃ is lower-bounded

as well. Consequently, we are capable of minimizing g̃ using the regular gradient descent

technique [18]. Note that the smooth surrogate g̃ is still nonconvex, so it is unrealistic

to look for a global minima of g̃. For fast convergence, we adopt the spectral relaxation

solution a0
k as a warm start and apply Nesterov’s gradient method [134] to accelerate the

gradient decent procedure. In most cases we can attain a locally optimal w∗
k at which g̃(w∗

k)

is very close to its lower bound, which will be corroborated by the subsequent experiments

in Section 5.5.

Finally, we describe the whole flowchart of the presented supervised hashing approach

that we name Kernel-Based Supervised Hashing (KSH) in Algorithm 3. We also name an-

other approach KSH0 whose hash functions just use the initial spectral relaxation solutions

{w0
k}. Empirically, we find that when l is not big the spectral relaxation solutions (i.e.,

initial solutions) are good enough. Thereby, within each loop of Algorithm 3, we check if

the solutions found by gradient descent on the surrogate cost g̃ are surely better than the

initial solutions in terms of minimizing the original cost g.

5.4.4 Analysis

Our approaches KSH0 and KSH can both deal with semantic and metric supervision once

the definitions about similar and dissimilar pairs are offered to learning. For example, a

similar pair (xi,xj) is confirmed if xi and xj share at least one common semantic label or

are nearest neighbors to each other under a predefined metric (e.g., ℓ2); likewise, a dissimilar
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Algorithm 3 Kernel-Based Supervised Hashing (KSH)

Input: a training sample set X = {xi ∈ Rd}ni=1, a pairwise label matrix S ∈ Rl×l defined

on l samples Xl = {xi}li=1, a kernel function κ : Rd × Rd 7→ R, the number of anchor

points m (< l), and the number of hash bits r.

Preprocessing: uniformly randomly select m samples from X , and compute zero-

centered m-dim kernel vectors k̄(xi) (i = 1, · · · , n) using the kernel function κ according

to eq. (5.5).

Greedy Optimization:

initialize R0 = rS and Tmax = 500;

for k = 1, · · · , r do

solve the generalized eigenvalue problem

K̄⊤
l Rk−1K̄lw = λK̄⊤

l K̄lw,

obtaining the largest eigenvector w0
k such that (w0

k)
⊤K̄⊤

l K̄lw
0
k = l;

use the gradient descent method to optimize

minw−(φ(K̄lw))⊤Rk−1φ(K̄lw) with the initial solution w0
k and Tmax budget itera-

tions, achieving w∗
k;

h0 ←− sgn(K̄lw
0
k), h

∗ ←− sgn(K̄lw
∗
k);

if (h0)⊤Rk−1h
0 > (h∗)⊤Rk−1h

∗ then

w∗
k ←− w0

k, h
∗ ←− h0;

end if

Rk ←− Rk−1 − h∗(h∗)⊤;

end for

Coding: for i = 1, · · · , n, do

Hr(xi)←−
[
sgn(k̄⊤(xi)w

∗
1), · · · , sgn(k̄⊤(xi)w

∗
r)
]
.

Output: r hash functions {hk(x) = sgn(k̄⊤(x)w∗
k)}rk=1 as well as n hash codes

{Hr(xi)}ni=1.
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pair (xi,xj) is determined if xi and xj take different labels or are far away in the metric

space.

In the semantic case, one can easily achieve the full entries (either 1 or -1) of the label

matrix S since the implicated samples are all known to have semantic labels. But in the

metric case, one needs to pre-compute two distance thresholds, one for similar pairs and the

other for dissimilar pairs, to judge if two samples are metric neighbors or not by comparing

their distance with the thresholds [191][93][186]. For the metric supervision, most entries

in the label matrix S have 0 labels, which reveals that most distances fall into the middle

ground between the two thresholds. To reduce the potential false alarms, our approaches

implicitly push the Hamming distances of these 0-labeled pairs to r/2 as their code inner

products have been pushed to zeros (see eq. (5.7)), which is reasonable since such pairs are

not nearest neighbors in the metric space.

The time complexities for training KSH0 and KSH are both bounded by O((nm+ l2m+

m2l + m3)r) which scales linearly with n given n ≫ l > m. In practice, training KSH0

is very fast and training KSH is about two times faster than two competing supervised

hashing methods BRE and MLH. For each query, the hashing time of both KSH0 and KSH

is constant O(dm+mr).

As far as the relationship among hash bits is concerned, all of BRE, MLH, and our

proposed KSH0 and KSH yield correlated hash bits. MLH treats the needed hash bits as

interdependent latent variables. In BRE and our two approaches, the generated hash bits are

also interdependent because any new bit was sought so as to best reduce the reconstruction

residue caused by the previous bits. The other methods [108][61] stressing the necessity of

independence of hash bits minimized the Hamming distances between neighbor pairs with

the constraint that each bit of the learned hash functions should have maximum conditional

entropy with respect to any of the other bits. However, there is no convincing evidence that

independent hash bits will result in higher NN search accuracy. The empirical results

conveyed by Section 5.5 corroborate that interdependent hash bits are advantageous for the

supervised hashing task.
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5.5 Experiments

We run large-scale image retrieval experiments on two image benchmarks: CIFAR-10 [91]

and one million subset of the 80 million tiny image collection [174]. CIFAR-10 is a labeled

subset of the 80M tiny images, consisting of a total of 60K 32 × 32 color images from

ten object categories each of which contains 6K samples. Every image in this dataset is

assigned to a mutually exclusive class label and represented by a 512-dimensional GIST

feature vector [138]. The second dataset that we call Tiny-1M was acquired from [186],

which does not include any semantic label but has been partially annotated to similar and

dissimilar data pairs according to the ℓ2 distance. Each image in Tiny-1M is represented

by a 384-dimensional GIST vector.

We evaluate the proposed KSH0 and KSH, and compare them against ten state-of-the-

art methods including six unsupervised methods LSH [4], PCAH [186], SH [191], KLSH

[94], 1-AGH, and 2-AGH proposed in the previous chapter, one semi-supervised method

SSH (the nonorthogonal version) [186], and three supervised methods LDAH [163], BRE

[93], and MLH [137]. These methods cover both linear (LSH, PCAH, SSH, LDAH and

MLH) and nonlinear (SH, KLSH, 1-AGH, 2-AGH and BRE) hash schemes. We used the

publicly available codes of SH, KLSH, SSH, BRE and MLH. All our experiments are run

on a workstation with a 2.53 GHz Intel Xeon CPU and 48GB RAM.

Since KLSH, KSH0 and KSH refer to kernels, we feed them the same Gaussian RBF

kernel κ(x,y) = exp(−∥x−y∥/2σ2) and the same m = 300 anchor samples on each dataset.

The kernel parameter σ is tuned to an appropriate value on each dataset. It is noted that

we did not assume a specific kernel, and that any kernel satisfying the Mercer’s condition

can be used in KLSH, KSH0 and KSH. To run 1-AGH and 2-AGH, we set m = 300, s = 3

and assign 300 K-means clustering (5 iterations) centers to their used anchor points, so

the anchors implicated in AGH algorithms are different from what we use for KSH0 and

KSH. As the experiments conducted in Chapter 4, we follow two search procedures hash

lookup and Hamming ranking using 8 to 48 hash bits (this time we do not try 64 bits in

order to highlight the compact hashing performance with shorter hash codes). Hash lookup

consumes constant search time over a single hash table for each compared hashing method.

We carry out hash lookup within a Hamming radius 2 and report the search precision.
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Like Chapter 4, we also follow [186] to treat failing to find any hash bucket for a query as

zero precision, different from [191][93][137] which ignored the failed queries in computing

the mean hash lookup precision over all queries. As well, to quantify the failing cases, we

report the hash lookup success rate: the proportion of the queries resulting in successful

hash lookup in all queries. On the other side, Hamming ranking, that is fast enough with

short hash codes in practice, measures the search quality through ranking the retrieved

samples according to their Hamming distances to a specific query in the Hamming space.

5.5.1 CIFAR-10

This dataset is partitioned into two parts: a training set of 59,000 images and a test query

set of 1,000 images evenly sampled from ten classes. We uniformly randomly sample 100

and 200 images from each class respectively, constituting 1,000 and 2,000 labeled subsets for

training (semi-)supervised hashing methods SSH, LDAH, BRE, MLH, KSH0 and KSH. The

pairwise label matrices S are immediately acquired since the exact labels are available. To

run BRE and MLH that admit 1,0 labels, we assign the labels of similar pairs to 1 and those

of dissimilar pairs to 0. In terms of true semantic neighbors, we report the mean precision of

Hamming radius 2 hash lookup, the success rate of hash lookup, the mean average precision

(MAP) of Hamming ranking, and the mean precision-recall curves of Hamming ranking

over 1,000 query images. All of the evaluation results are shown in Tables 5.5 and 5.6 and

Figures 5.5, 5.6 and 5.7. For every compared method, we also report the training time for

compressing all database images into compact codes as well as the test time for coding each

query image.

As shown in Tables 5.5 and 5.6 and Figures 5.5, 5.6 and 5.7, KSH achieves the highest

search accuracy (hash lookup precision with ≤ 32 bits, MAP, and PR-curve) and the sec-

ond best is KSH0. We find that 1-AGH and 2-AGH already work well without using any

supervised information, and outperform the (semi-)supervised methods SSH and LDAH.

They even achieve higher hash lookup precision than KSH0 and KSH at 48 bits, as shown

in Figure 5.5(b). The gain in MAP of KSH ranges from 27% to 46% over the best com-

petitor except KSH0. The prominent superiority of KSH corroborates that the proposed

hashing objective Q and two optimization techniques including spectral relaxation and sig-



CHAPTER 5. SUPERVISED HASHING 126

Table 5.5: Hamming ranking performance on CIFAR-10 (60K). l denotes the number of

labeled examples for training (semi-)supervised hashing methods. Six unsupervised methods

LSH, PCAH, SH, KLSH, 1-AGH and 2-AGH do not use any labels. All training and test

time is recorded in second. At a fixed bit number, two highest MAP values achieved by

hashing are displayed in boldface type.

Method l = 1, 000

MAP Train Time Test Time

12 bits 24 bits 48 bits 48 bits 48 bits

ℓ2 Scan 0.1752 —

LSH 0.1133 0.1245 0.1188 0.5 0.8×10−5

PCAH 0.1368 0.1333 0.1271 1.5 0.9×10−5

SH 0.1330 0.1317 0.1352 3.0 4.0×10−5

KLSH 0.1212 0.1425 0.1602 1.6 4.3×10−5

1-AGH 0.1705 0.1805 0.1685 11.0 2.6×10−5

2-AGH 0.1776 0.1812 0.1842 11.4 3.2×10−5

SSH 0.1514 0.1595 0.1755 2.1 0.9×10−5

LDAH 0.1380 0.1334 0.1267 0.7 0.9×10−5

BRE 0.1817 0.2024 0.2060 494.7 2.9×10−5

MLH 0.1545 0.1932 0.2074 3666.3 1.8×10−5

KSH0 0.1846 0.2047 0.2181 7.0 3.3×10−5

KSH 0.2325 0.2588 0.2836 156.1 4.3×10−5
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Table 5.6: Hamming ranking performance on CIFAR-10 (60K). l denotes the number of

labeled examples for training (semi-)supervised hashing methods. All training and test time

is recorded in second. At a fixed bit number, two highest MAP values achieved by hashing

are displayed in boldface type.

Method l = 2, 000

MAP Train Time Test Time

12 bits 24 bits 48 bits 48 bits 48 bits

ℓ2 Scan 0.1752 —

SSH 0.1609 0.1758 0.1841 2.2 0.9×10−5

LDAH 0.1379 0.1316 0.1257 1.1 0.9×10−5

BRE 0.1847 0.2024 0.2074 1392.3 3.0×10−5

MLH 0.1695 0.1953 0.2288 3694.4 2.0×10−5

KSH0 0.2271 0.2461 0.2545 9.4 3.5×10−5

KSH 0.2700 0.2895 0.3153 564.1 4.5×10−5

Table 5.7: Comparison with SVM hashing on CIFAR-10. MAP of Hamming ranking is

reported for SVM hashing, KSH0 and KSH using 10 (the number of classes) hash bits.

MAP l = 1, 000 l = 2, 000

SVM hashing 0.1772 0.2202

KSH0 0.1832 0.2210

KSH 0.2290 0.2517
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Figure 5.5: The hash lookup results on CIFAR-10. Six (semi-)supervised hashing methods

use 1K labeled examples. (a)(b) Mean precision of Hamming radius 2 hash lookup; (c)(d)

hash lookup success rate.

moid smoothing are so successful that the semantic supervision information is maximally

utilized. For the hash lookup success rate, KSH is lower than LSH, 1-AGH and 2-AGH

but still superior to the others, as shown in Figures 5.5(c)(d). More notably, KSH with

only 48 binary bits and a limited amount of supervised information (1.7% and 3.4% labeled

samples) significantly outperforms ℓ2 linear scan (0.1752 MAP) in the GIST feature space,

accomplishing up to 1.8 times higher MAP. Compared to BRE and MLH, KSH0 (several

seconds) and KSH (several minutes) are much faster in supervised training. The test time

of KSH0 and KSH is acceptably fast, comparable to that of the nonlinear hashing methods
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Figure 5.6: Mean precision-recall curves of Hamming ranking with 48 bits on CIFAR-10.

SH, KLSH, 1-AGH, 2-AGH and BRE.

Incorporating twice (2,000) labeled examples for training (semi-)supervised hashing, we

further plot the mean precision of Hamming radius 2 hash lookup, the success rate of hash

lookup, and the mean precision-recall curves of Hamming ranking for six (semi-)supervised

hashing methods in terms of finding true semantic neighbors. All of the corresponding

results are shown in Figure 5.7. Again, we observe that KSH achieves the highest search

accuracy (hash lookup precision, Hamming ranking precision and recall) and the second

best is KSH0. For the hash lookup success rate, KSH is lower than SSH only at 48 bits.

Lastly, we do two additional groups of evaluations to further validate the success of

KSH. We first explicitly contrast AGH and KSH. The reported results in Table 5.5 indicate

that the GIST feature space did not present evident manifolds, so 2-AGH is only slightly

better than ℓ2 linear scan in MAP. Through taking full advantage of the given supervised

information, KSH breaks through the limited MAP, accomplishing 0.2836 up to 0.3153 MAP

with 48 bits and exceeding 2-AGH (0.1842 MAP) by 54% up to 71%. Second, we compare

against SVM hashing which takes the signs of SVM [149] classifiers as the hash functions.

Since the supervised information discussed in this subsection supplies sample-level labels,

we can immediately use the labeled samples to train 10 (the number of classes) standard

kernel SVMs in the one-versus-all fashion. Hence, we fairly compare KSH0 and KSH using

10 hash bits to SVM hashing. The MAP results are listed in Table 5.7 which clearly shows
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Figure 5.7: The results on CIFAR-10. Six (semi-)supervised hashing methods use 2K

labeled examples. (a) Mean precision of Hamming radius 2 hash lookup; (b) hash lookup

success rate; (c) mean precision-recall curves of Hamming ranking with 48 bits.
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Figure 5.8: 100 query images from the Tiny-1M dataset.

that both KSH0 and KSH are superior to SVM hashing. The reason is also very apparent.

KSH0 and KSH yield more discriminative hash codes and result in larger margin in the

Hamming space than SVM hashing, as KSH0 and KSH push differently labeled samples to

the Hamming distance r = 10 while SVM hashing only to the Hamming distance 1.

5.5.2 Tiny-1M

The one million subset of the 80 million tiny image benchmark [174], which has been

frequently utilized to evaluate hashing, was sampled to construct the training set and a

separate subset of 2,000 images was used as the test (query) set [186], the union of which is

called the Tiny-1M dataset. One hundred query images are displayed in Figure 5.8. The

10,000×10,000 pairwise pseudo label matrix S was constructed according to the ℓ2 distance.

Concretely, [186] randomly selected 10,000 images from the training set and computed their
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Table 5.8: Hamming ranking performance on Tiny-1M. l denotes the number of pseudo-

labeled examples for training (semi-)supervised hashing methods. Six unsupervised methods

LSH, PCAH, SH, KLSH, 1-AGH and 2-AGH do not use any labels. All training and test

time is recorded in second. At a fixed bit number, two highest MP values achieved by

hashing are displayed in boldface type.

Method l = 5, 000

MP/50K Train Time Test Time

12 bits 24 bits 48 bits 48 bits 48 bits

LSH 0.1107 0.1421 0.1856 3.0 0.3×10−5

PCAH 0.2371 0.2159 0.1954 7.1 0.4×10−5

SH 0.2404 0.2466 0.2414 47.1 3.3×10−5

KLSH 0.1834 0.2490 0.3008 9.9 2.6×10−5

1-AGH 0.3152 0.3405 0.3429 191.3 2.7×10−5

2-AGH 0.2921 0.3253 0.3426 201.3 3.2×10−5

SSH 0.1985 0.2923 0.3785 14.8 0.6×10−5

LDAH 0.2365 0.2208 0.2077 5.8 0.6×10−5

BRE 0.2782 0.3400 0.3961 18443.0 3.3×10−5

MLH 0.2071 0.2592 0.3723 4289.2 1.4×10−5

KSH0 0.1889 0.2295 0.2346 56.0 3.1×10−5

KSH 0.3164 0.3896 0.4579 2210.3 3.2×10−5

Euclidean distance matrix D from which S was obtained by using the rule: Sij = 1 if Dij

is within 5% of the whole one million distances and Sij = −1 if Dij is more than 95%.

The top 5% distances from a query were also used as the groundtruths of nearest metric

neighbors. As most entries in S are zeros, to follow [93] each 0 label is replaced by 1−D̂ij/2

in which 0 ≤ D̂ij ≤ 2 is the normalized ℓ2 distance. Like above experiments, we treat 1,-1

labels in S as 1,0 labels for running BRE and MLH.

In terms of ℓ2 metric neighbors (each query has 50,000 groundtruth neighbors), we

evaluate the mean precision of Hamming radius 2 hash lookup, the success rate of hash
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Table 5.9: Hamming ranking performance on Tiny-1M. l denotes the number of pseudo-

labeled examples for training (semi-)supervised hashing methods. All training and test time

is recorded in second. At a fixed bit number, two highest MP values achieved by hashing

are displayed in boldface type.

Method l = 10, 000

MP/50K Train Time Test Time

12 bits 24 bits 48 bits 48 bits 48 bits

SSH 0.1718 0.2767 0.3524 16.9 0.6×10−5

LDAH 0.2373 0.2238 0.2072 13.3 0.6×10−5

BRE 0.2762 0.3403 0.3889 27580.0 3.3×10−5

MLH 0.1875 0.2873 0.3489 4820.8 1.8×10−5

KSH0 0.1886 0.1985 0.2341 84.5 3.2×10−5

KSH 0.3216 0.3929 0.4645 2963.3 3.3×10−5

lookup, the mean top-50K precision (MP/50K) of Hamming ranking1, and the mean pre-

cision/recall curves of Hamming ranking. The results are shown in Tables 5.8 and 5.9 and

Figures 5.9, 5.10 and 5.11. To illustrate the overfitting phenomenon in (semi-)supervised

hashing methods, we inspect the half supervision, i.e., the 5,000 pseudo-labeled images, and

the full 10,000 labeled images, respectively. KSH refrains from overfitting, showing higher

MP when absorbing more supervision. On the contrary, LDAH remains MP but SSH, BRE,

MLH and KSH0 all suffer from overfitting to different extents – their MP drops faced with

increased supervision.

Consistent with the finding from the results on CIFAR-10, we can see that KSH con-

sistently attains the highest search accuracy (hash lookup precision with ≤ 32 bits, MP,

precision-curve, and recall-curve) and the same highest hash lookup success rate as LSH.

The gain in MP of KSH ranges from 13% to 19% over the best competitor. Referring to

Section 5.4.3, the spectral relaxation solutions employed by KSH0 might become poor when

1As computing MAP at the million scale is very slow, we instead compute MP over the scope of

groundtruth neighbors.
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Figure 5.9: The hash lookup results on Tiny-1M. Six (semi-)supervised hashing methods

use 5,000 pseudo-labeled examples. (a)(b) Mean precision of Hamming radius 2 hash lookup;

(c)(d) hash lookup success rate.

l is larger, which is verified in these experiments where KSH0 performs as poorly as LDAH.

It is noticeable that KSH with only 48 binary bits and a very limited amount of supervised

information (0.5% and 1% pseudo-labeled samples) can retrieve about 46% groundtruth ℓ2

neighbors (see Tables 5.8 and 5.9) and reach higher precision by using longer bits. There-

fore, we can say that KSH well preserves the ℓ2 metric similarities in the Hamming code

space by taking full advantage of the neighborhood structure captured into the supervised

label matrix S. From Table 5.8, we find that 1-AGH obtains MP close to KSH when using

≤ 24 bits but falls far behind KSH when using 48 bits.
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Figure 5.10: The Hamming ranking results on Tiny-1M. Six (semi-)supervised hashing

methods use 5,000 pseudo-labeled examples. (a)(b) Mean precision curves of Hamming

ranking with 48 bits; (c)(d) mean recall curves of Hamming ranking with 48 bits.
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(b) Hash lookup success rate vs. # bits
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Figure 5.11: The results on Tiny-1M. Six (semi-)supervised hashing methods use 10,000

pseudo-labeled examples. (a) Mean precision of Hamming radius 2 hash lookup; (b) hash

lookup success rate; (c) mean precision curves of Hamming ranking with 48 bits; (d) mean

recall curves of Hamming ranking with 48 bits.
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Figure 5.12: The average quadratic residues R = Q/l2 = ∥BlB
⊤
l /r−S∥/l2 of reconstructing

the pairwise label matrix S with the r-bit codes Bl learned by KSH0 and KSH, respectively.

(a) R of reconstructing 5,000×5,000 S with 5,000 binary codes; (b) R of reconstructing

10,000×10,000 S with 10,000 binary codes.

To inspect the performance with more supervised information, we plot the mean preci-

sion of Hamming radius 2 hash lookup, the success rate of hash lookup, the mean precision

curves of Hamming ranking, and the mean recall curves of Hamming ranking for six (semi-

)supervised hashing methods taking 10,000 pseudo-labeled examples. All of the results are

evaluated based on ℓ2 metric neighbors, and shown in Figure 5.11. Figure 5.11 displays that

KSH still achieves the highest search accuracy (hash lookup precision, Hamming ranking

precision and recall). For the hash lookup success rate, KSH is also the highest and almost

approaches the 100% success rate, as disclosed by Figure 5.11(b).

It is noticeable that the search performance of KSH0 drops on this dataset. We have

interpreted the reason in Section 5.4.3. Here we further investigate the solutions that

the spectral relaxation optimization scheme (used by KSH0) and the sigmoid smoothing

optimization scheme (used by KSH) result in. Respectively with respect to 5,000 and 10,000

pseudo-labeled data Xl, we save the final objective function values Q (that is formulated in

eq. (5.8)(5.10) in Section 5.4) with the optimal compact codes Bl of Xl solved by KSH0 and

KSH. Specifically, Figure 5.12 visualizes the normalized Q, that is, R = Q/l2 = ∥BlB
⊤
l /r−

S∥/l2. Actually, R is the average quadratic residue of reconstructing the l× l label matrix S

with the r-bit codes Bl. From Figure 5.12, we can clearly see that the reconstruction residues
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Figure 5.13: Top six neighbors of four query images, returned by SSH, BRE, MLH and KSH

using 5,000 pseudo-labeled training images and 48 binary bits on the Tiny-1M dataset.
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caused by KSH are significantly smaller than those of KSH0, indicating that the sigmoid

smoothing optimization is more stable and finer than the spectral relaxation optimization

though the former takes the latter as the initialization.

Besides the quantitative evaluations, Figure 5.13 showcases some exemplar query images

and their retrieved neighbors with 48 bits, where KSH still exhibits the best search quality

in visual relevance. To obtain the exact ranks of the retrieved neighbors, we perform ℓ2

linear scan in a short list of top 0.01% Hamming ranked neighbors like [93]. Such search

time is close to real time, costing only 0.005 second per query.

5.6 Summary and Discussion

We accredit the success of the presented KSH approach to three main aspects: (1) kernel-

based hash functions were exploited to handle linearly inseparable data; (2) an elegant

objective function designed for supervised hashing was skillfully formulated based on code

inner products instead of Hamming distances; and (3) a greedy optimization algorithm was

deployed to solve the hash functions efficiently. Extensive image retrieval results shown on

large image corpora up to one million have demonstrated that KSH surpasses the state-of-

the-art hashing methods by a large margin in searching both semantic neighbors and metric

neighbors. We thus believe that hashing via optimizing code inner products is a promis-

ing direction, generating hash codes superior to the prior methods relying on optimizing

Hamming distances. Furthermore, KSH does not need any special assumptions about the

data other than a predefined kernel function. For the datasets where the underlying mani-

folds may not exist or are not evident, KSH works better than AGH which depends on the

manifold assumption.

While in this chapter we select image retrieval as the testbed for the proposed hashing

approach, we want to emphasize that it is a general method and can be applied to a large

spectrum of computer vision and information retrieval problems such as duplicate image,

video and document detection, image matching, image classification, and so on. Because

of the high search accuracy reported in the experiments, we believe that KSH will become

a new criterion for compact hashing (with less than 100 hash bits), and that supervised



CHAPTER 5. SUPERVISED HASHING 140

hashing can achieve much higher accuracy than unsupervised and semi-supervised hashing

with moderate supervision. We thus suggest providing proper supervised information to

hashing, which crucially results in better performance than conventional hashing.

Till now, we have discussed two key paradigms for learning to hash: unsupervised

hashing in Chapter 4 and supervised hashing in this chapter. All of the proposed hashing

approaches exhibit appealing NN search performance on benchmark databases which vary

in size from 60,000 to one million. Training our approaches including both AGH and KSH

allows space and time complexities linear in the size of databases, so they can scale up to

larger databases conceivably reaching billions of samples due to their economical training

expenses.

There exist some other promising directions for hashing, such as (1) strategically con-

structing multiple hash tables [168][197], (2) designing particular hashing algorithms for

sparse data vectors such as the increasingly popularminwise hashing technology [19][20][106],

(3) devising rank-preserving hash functions [45][198], and (4) learning task-specific hash

functions [150][81][127] by incorporating query-specific supervised information. For direc-

tion (2), how to design a supervised version of the originally unsupervised minwise hashing

algorithms is very interesting and challenging. It will lead to widespread applications in

text and document retrieval. Directions (3) and (4) share a similar characteristic: pursuing

more informative search results where the exact ranks of returned neighbors are preferred.

How to adapt the proposed supervised hashing technique to incorporate broad types of su-

pervised information is also very important. For example, we can make supervised hashing

amenable to the relative rank orders over triplets {(qt,xi,xj)} in which qt is a query and

sample xi is more relevant to qt than sample xj .
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Chapter 6

Hyperplane Hashing

Distinct from the conventional hashing techniques and our proposed AGH and KSH all

of which address the problem of fast point-to-point nearest neighbor search, this chapter

studies a new scenario “point-to-hyperplane” hashing, where the query is a hyperplane

instead of a data point. Such a new scenario requires hashing the hyperplane query to near

database points, which is difficult to accomplish because point-to-hyperplane distances are

quite different from routine point-to-point distances in terms of the computation mechanism.

Despite the bulk of research on hashing, this special hashing paradigm is rarely touched.

However, hyperplane hashing, aiming at rapidly searching the database points near

a given hyperplane, is actually quite important for many applications such as large-scale

active learning with SVMs. In SVM-based active learning, the well proven sample selection

strategy is to search in the unlabeled sample pool to identify the sample closest to the current

hyperplane decision boundary, thus providing the most useful information for improving the

learning model - SVM. When making such active learning scalable to gigantic databases,

exhaustive search for the point nearest to the hyperplane is not efficient for the online sample

selection requirement, so novel hashing methods that can principally handle hyperplane

queries have been called for.

Unfortunately, the existing hyperplane hashing methods are randomized in nature and

need long hash codes to achieve reasonable search accuracy, thus suffering from reduced

search speed and large memory overhead. To this end, this chapter presents a novel hy-

perplane hashing technique, described in our recent work [118], which is able to yield high-
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quality compact hash codes. The core idea underlying our technique is the bilinear form

adopted in the proposed hash functions, which leads to a higher collision probability than

all of the existing hyperplane hash functions when using random projections. To further

increase the performance, we develop a learning based framework in which the bilinear func-

tions are directly learned from the input data. This results in short yet discriminative codes,

and significantly boosts the search performance compared to the prior random projection

based solutions. Large-scale active learning experiments carried out on two datasets of up

to one million samples demonstrate the overall superiority of the developed approach.

The hyperplane hashing technique presented in this chapter can also be considered as an

excellent bridge connecting the classification research explored in Part I of this thesis and

the hashing research investigated in Part II. We establish such a bridge through employing

the hashing technique to significantly speed up the search process of choosing the optimal

sample needed by active learning that incrementally refines the SVM classification model.

To that end, this chapter serves as a consummate one for ending the thesis.

In the remainder of the chapter, we introduce the problem background of hyperplane

hashing in Section 6.1, review the related work in Section 6.2, illustrate the notations that

we will use in Section 6.3, formulate the point-to-hyperplane search problem in Section

6.4, present our two approaches including the randomized version in Section 6.5 and the

learning-based version in Section 6.6, show the experimental results in Section 6.7, and

finally give our summary and discussion in Section 6.8.

6.1 Problem Background

Most of the existing hashing methods discussed in Chapter 4 and 5 try to solve the problem

of “point-to-point” nearest neighbor search. Namely, both queries and database items are

represented as individual points in some feature space. Considering complex structures of

real-world data, other forms of hashing paradigms beyond point-to-point search have also

been explored in the literature, e.g., “subspace-to-subspace” nearest neighbor search [8]. In

this chapter, we address a more challenging “point-to-hyperplane” search problem, where

queries come as hyperplanes in Rd, i.e., (d− 1)-dimensional subspaces, and database items
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Figure 6.1: Two distinct nearest neighbor search problems. (a) Point-to-point search, the

blue solid circle represents a point query and the red circle represents the found nearest

neighbor point. (b) Point-to-hyperplane search, the blue plane denotes a hyperplane query

Pw with w being its normal vector, and the red circle denotes the found nearest neighbor

point.

are conventional points. Then the search problem is formally defined as follows:

Given a hyperplane query and a database of points, return the database point which has

minimal distance to the hyperplane.

We plot Figure 6.1 to visually describe the two NN search problems discussed above.

In the literature, not much work has been done on the point-to-hyperplane search problem

except [75] which demonstrated the vital importance of such a problem in making SVM-

based active learning viable for massive data sets.

Let us include a brief review of active learning in order to elicit the hyperplane hashing

problem more naturally. Active learning (AL), also known as pool-based active learning,

circumvents the high cost of blind labeling by judiciously selecting a few samples to label.

In each iteration, a typical AL learner seeks the most informative sample from an unlabeled

sample pool, so that maximal information gain is achieved after labeling the selected sample.

Subsequently, the learning model is re-trained on the incrementally labeled sample set. The
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classical AL algorithms [173][148][22] used SVMs as learning models. Based on the theory

of “version spaces” [173], it was provably shown that the best sample to select is simply the

one closest to the current decision hyperplane if the assumption of symmetric version spaces

holds. Unfortunately, the active selection method faces serious computational challenges

when applied to gigantic databases. An exhaustive search to find the best sample is usually

computationally prohibitive. Hence, quickening point-to-hyperplane search methods are

strongly desired to scale up active learning on large real-world data sets.

In the early exploration aiming at expediting the active sample selection process, that

is the core of all active learning algorithms, either clustering or randomly subsampling of

the data pool [17][140] were used, both of which lack theoretical foundations. Recently,

two principled hashing schemes were proposed in [75] to specifically cope with hyperplane

queries. Compared with the brute-force scan through all database points, the schemes

proposed in [75] are significantly more efficient, while providing theoretical guarantees of

sub-linear query time and tolerable accuracy losses for retrieved approximate nearest neigh-

bors. Consequently, when applying hyperplane hashing to the sample selection task needed

by SVM-based active learning, one just needs to scan orders of magnitude fewer database

points than the linear scan to deliver the next active label request, thereby making active

learning scalable.

6.2 Related Work

Fast approximate nearest neighbor search arises commonly in a variety of domains and

applications due to massive growth in data that one is confronted with. An attractive

solution to overcome the speed bottleneck that an exhaustive linear scan incurs is the use

of algorithms from the Locality-Sensitive Hashing (LSH) family [52][27][39][4][94] which

use random projections to convert input data into binary hash codes. Although enjoying

theoretical guarantees on sub-linear hashing/search time and the accuracy of the returned

neighbors, LSH-related methods typically need long codes and a large number of hash

tables to achieve good search accuracy. This may lead to considerable storage overhead

and reduced search speed. Hence, in the literature, directly learning data-dependent hash
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functions to generate compact codes has become popular. Such hashing typically needs a

small number of bits per data item and can be designed to work well with a single hash table

and constant hashing time. The state-of-the-arts include unsupervised hashing [191][56][117]

(see more details in Chapter 4), semi-supervised hashing [186][128], and supervised hashing

[93][137][163][116] (see more details in Chapter 5).

Recently, two hyperplane hashing schemes were first proposed in [75] to tackle rapid

point-to-hyperplane search. Compared with the brute-force scan through all of the database

points, the two schemes are significantly more efficient, offering theoretical guarantees of

sub-linear query time and tolerable losses of accuracy for retrieved approximate nearest

neighbors. Using the simpler one of the two methods in [75], [180] successfully applied

hyperplane hashing to accelerate SVM active learning and showed promising SVM clas-

sification performance in the practical computer vision application, large-scale live object

detection.

More concretely, two families of randomized hash functions in [75] were proved locality-

sensitive to the angle between a database point and a hyperplane query; however, long hash

bits and plentiful hash tables are required to cater for the theoretical guarantees. Actually,

300 bits and 500 tables were adopted in [75] to achieve reasonable performance, which incurs

a heavy burden on both computation and storage. To mitigate the above mentioned issues,

this chapter develops a compact hyperplane hashing scheme which exploits only a single hash

table with several tens of hash bits to tackle point-to-hyperplane search. The thrust of our

hashing scheme is to design and learn bilinear hash functions such that nearly parallel input

vectors are hashed to the same bits whereas nearly perpendicular input vectors are hashed

to different bits. In fact, we first show that even without any learning, the randomized

version of the proposed bilinear hashing gives a higher near-neighbor collision probability

than the existing methods.

Next, we cast the bilinear projections in a learning framework and show that one can do

even better by using learned hash functions. Given a hyperplane query, its normal vector

is used as the input and the corresponding hash code is obtained by concatenating the

output bits from the learned hash functions. Then, the database points whose codes have

the farthest Hamming distances to the query’s code are retrieved. Critically, the retrieved
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points, called near-to-hyperplane neighbors, maintain small angles to the hyperplane fol-

lowing our learning principle. Experiments in Section 6.7 conducted on two large datasets

up to one million corroborate that our approach enables scalable active learning with good

performance. Finally, while in this chapter we select SVM active learning as the testbed for

hyperplane hashing, we want to highlight that the developed compact hyperplane hashing

is a general method and thus applicable to a large spectrum of machine learning problems

such as minimal tangent distance pursuit [195] and cutting-plane based maximum margin

clustering [207].

6.3 Notations

We first define the notations and symbols that will be needed in this chapter. All notations

as well as their definitions are listed in Tables 6.1 and 6.2.

6.4 Point-to-Hyperplane Search

First of all, let us revisit the well-known margin-based AL strategy proposed by [173]. For

the convenience of expression, we append each data vector with a 1 and use a linear kernel.

Then, the SVM classifier [149] becomes f(x) = w⊤x where vector x ∈ Rd represents a data

point and vector w ∈ Rd determines a hyperplane Pw passing through the origin. Figure

6.2(a) displays the geometric relationship between w and Pw, where w is the vector normal

to the hyperplane Pw. Given a hyperplane query Pw and a database of points X = {xi}ni=1,

the active selection criterion prefers the most informative database point

x∗ = argmin
x∈X

D(x,Pw), (6.1)

which has the minimum margin to the SVM’s decision boundary Pw. Note that D(x,Pw) =

|w⊤x|/∥w∥ is the point-to-hyperplane distance. To derive provable hyperplane hashing like

[75], this chapter focuses on a slightly modified “distance”
|w⊤x|
∥w∥∥x∥

which is the sine of the

point-to-hyperplane angle

αx,w =
∣∣∣θx,w − π

2

∣∣∣ = sin−1 |w⊤x|
∥w∥∥x∥

, (6.2)
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Table 6.1: Table of notations.

Notation Definition

n The number of database points

l The number of sampled points for training hashing

d The dimension of database or query points

i, i
′

The indices of database points

xi ∈ Rd The ith database point

X = {xi}ni=1 The data set

Xl = {xi}li=1 The sampled data set

w ∈ Rd The query normal vector

Pw The query hyperplane

h : Rd 7→ {1,−1} A hash function for a single bit

sgn(x) ∈ {1,−1} The sign function that returns 1 for x > 0 and -1 otherwise

f : Rd 7→ R A classification function

D(x,Pw) The point-to-hyperplane distance from x to Pw

αx,w ∈ [0, π/2] The point-to-hyperplane angle from x to Pw

θx,w ∈ [0, π] The angle between point x and the hyperplane normal w

x∗ ∈ Rd The most informative sample chosen for active learning

u,v ∼ N (0, Id×d) Two random projection vectors

U ∼ N (0, Id2×d2) A random projection vector in Rd2

V(A) The vectorial concatenation of input matrix A

z ∈ Rd An input vector for hash functions

hA : Rd 7→ {1,−1} A hash function from the Angle-Hyperplane Hash family

hE : Rd 7→ {1,−1} A hash function from the Embedding-Hyperplane Hash family

hB : Rd 7→ {1,−1} A hash function from the Bilinear-Hyperplane Hash family

Pr[A] ∈ [0, 1] The probability of an event A

E[x] ∈ R The mathematical expectation of a random variable x

D( , ) A distance function used in a LSH algorithm

r, ϵ > 0 Two parameters in a LSH algorithm

p1 > p2 > 0 Two probabilities in a LSH algorithm

ρ ∈ [0, 1] The exponent of query time nρ achieved by a LSH algorithm
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Table 6.2: Table of notations (continued).

Notation Definition

c ∈ N The natural number parameter in a LSH algorithm

e The base of the natural logarithm

k The number of hash bits

j The index of hash bits

hj : Rd 7→ {1,−1} The hash function for the jth bit

(uj ,vj) The jth projection pair

t1, t2 > 0 Two similarity thresholds

S = (Sii′ )i,i′ ∈ Rl×l The pairwise pseudo label matrix

H(x) = [h1(x), · · · , hk(x)] The k-bit binary code of sample x

Bl ∈ {1,−1}l×k The code matrix of the sampled data Xl

Q The objective (cost) function for optimizing (uj ,vj)
k
j=1

Rj−1 ∈ Rl×l The (j − 1)th residue matrix, j ∈ [1 : k]

g : Rd × Rd 7→ R The objective (cost) function for optimizing (uj ,vj)

g̃ : Rd × Rd 7→ R The smooth surrogate of g

φ(x) ∈ R The sigmoid-shaped function to approximate sgn(x)

bj ∈ {1,−1}l The jth column vector in the code matrix Bl

b̃j ∈ Rl The smooth surrogate of bj

where θx,w ∈ [0, π] is the angle between x and the hyperplane normal w. The angle measure

αx,w ∈ [0, π/2] between a database point and a hyperplane query can readily be reflected

into hashing.

As shown in Figure 6.2(b), the goal of hyperplane hashing is to hash a hyperplane query

Pw and the informative samples (e.g., x1,x2) with narrow αx,w into the same or nearby

hash buckets, meanwhile avoiding to return the uninformative samples (e.g., x3,x4) with

wide αx,w. Because αx,w =
∣∣θx,w − π

2

∣∣, the point-to-hyperplane search problem can be

equivalently transformed to a specific point-to-point search problem where the query is the

hyperplane normal w and the desirable nearest neighbor to the raw query Pw is the one

whose angle θx,w from w is closest to π/2, i.e., most closely perpendicular to w (we write

“perpendicular to w” as ⊥ w for convenience). This is very different from traditional point-

to-point nearest neighbor search which returns the most similar point to the query point.
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Figure 6.2: The point-to-hyperplane search problem encountered in SVM active learning.

Pw is the SVM’s hyperplane decision boundary, w is the normal vector to Pw, and x is

a data vector. (a) Point-to-hyperplane distance D(x,Pw) and point-to-hyperplane angle

αx,w. (b) Informative (x1,x2) and uninformative (x3,x4) samples for the margin-based

active sample selection criterion. The ideal neighbors of Pw are the points ⊥ w.
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If we regard | cos(θx,w)| =
|w⊤x|
∥w∥∥x∥

as a similarity measure between x and w, hyperplane

hashing actually seeks for the most dissimilar point to the query point w, which is because

x∗ = argmin
x∈X

αx,w

= argmin
x∈X

sin(αx,w)

= argmin
x∈X

sin(
∣∣∣θx,w − π

2

∣∣∣)
= argmin

x∈X
| cos(θx,w)|. (6.3)

On the contrary, the most similar points to w, such as w, 2w and −w, are certainly

uninformative for the active selection criterion, so they must be excluded.

6.5 Randomized Hyperplane Hashing

In this section, we first briefly review the existing linear function based randomized hyper-

plane hashing methods, then present our bilinearly formed randomized hashing approach,

and finally provide theoretic analysis for the proposed bilinear hash function which is novel

in the hashing field and exclusively attacks point-to-hyperplane search.

6.5.1 Background – Linear Hash Functions

Jain et al. [75] devised two distinct families of randomized hash functions to attack the

hyperplane hashing problem.

The first one is Angle-Hyperplane Hash (AH-Hash) A, of which one example is

hA(z) = [sgn(u⊤z), sgn(v⊤z)], z is a database point

[sgn(u⊤z), sgn(−v⊤z)], z is a hyperplane normal
(6.4)

where z ∈ Rd represents an input vector, and u and v are both drawn independently from

a standard d-variate Gaussian, i.e., u,v ∼ N (0, Id×d). Throughout this chapter, the sign

function sgn(x) returns 1 if x > 0 and -1 otherwise. In the same treatment as Chapter 4

and 5, we treat ‘0’ bit as ‘-1’ bit for formulation and training, and use ‘0’ bit back in the

implementations of data coding and hashing.
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Note that hA is a two-bit hash function which leads to the probability of collision for a

hyperplane normal w and a database point x:

Pr
[
hA(w) = hA(x)

]
=

1

4
−

α2
x,w

π2
. (6.5)

The probability monotonically decreases as the point-to-hyperplane angle αx,w increases,

ensuring angle-sensitive hashing.

The second is Embedding-Hyperplane Hash (EH-Hash) function family E of which one

example is

hE(z) =

 sgn
(
U⊤V(zz⊤)

)
, z is a database point

sgn
(
−U⊤V(zz⊤)

)
, z is a hyperplane normal

(6.6)

where V(A) returns the vectorial concatenation of matrix A, and U ∼ N (0, Id2×d2).

In particular, the EH hash function hE yields hash bits on an embedded space Rd2

resulting from vectorizing rank-one matrices zz⊤ and −zz⊤. Compared with hA, hE gives

a higher probability of collision for a hyperplane normal w and a database point x:

Pr
[
hE(w) = hE(x)

]
=

cos−1 sin2(αx,w)

π
, (6.7)

which also bears the angle-sensitive hashing property. However, it is much more expensive

to compute than AH-Hash.

It is important to note that both AH-Hash and EH-Hash are essentially linear hashing

techniques. On the contrary, in this work we introduce bilinear hash functions which allow

nonlinear hashing.

6.5.2 Bilinear Hash Functions

As a critically novel means of addressing hyperplane hashing, we propose a bilinear hash

function as follows

hB(z) = sgn(u⊤zz⊤v), (6.8)

where u,v ∈ Rd are two projection vectors. Our motivation for devising such a bilinear

form comes from the following two requirements: 1) hB should be invariant to the scale of

z, which is motivated by the fact that z and βz (β ̸= 0) hold the same point-to-hyperplane
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Figure 6.3: The single-bit outputs of the proposed bilinear hash function hB. Data vector

x1 is nearly parallel to the normal vector w, data vector x2 is closely ⊥ w, and data vector

x∗ ⊥ w is the ideal neighbor for the goal of angle-based hyperplane hashing. The blue “//

bin” is useless but the red “⊥” bin is imperative.

angle; and 2) hB should yield different hash bits for two perpendicular input vectors. The

former definitely holds due to the bilinear formulation. We show in Lemma 9 that the latter

holds with a constant probability when u,v are drawn independently from the standard

normal distribution.

In terms of formulation, the proposed bilinear hash function hB is correlated with yet

different from hA and hE . (1) hB produces a single hash bit which is the product of the

two hash bits produced by hA. (2) hB may be a rank-one special case of hE in algebra if we

write u⊤zz⊤v = tr(zz⊤vu⊤) and U⊤V(zz⊤) = tr(zz⊤U). (3) hB appears in a universal

form, while both hA and hE treat a query and a database item in a distinct manner. The

computation time of hB is Θ(2d) which is the same as that of hA and one order of magnitude

faster than Θ(2d2) of hE . Even though [75] developed a random subsampling trick to speed

up expensive inner product operations in Rd2 required by hE , a high expense of Θ(d2)+O(d)

is still needed.
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Figure 6.4: Enforcing multiple hash bits to refine the near neighbor region for point-to-

hyperplane search. (u1,v1) and (u2,v2) are projection pairs used by two bilinear hash

functions hB1 and hB2 , respectively.
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Figure 6.3 shows the single-bit outputs of the proposed bilinear hash function hB. By

employing valid projection directions u,v to design a good bilinear hash function, hB essen-

tially partitions the whole space Rd into two cone bins, as displayed in Figure 6.3. The //

bin that contains uninformative data points nearly parallel to the query normal w must be

excluded under nearest neighbor consideration, while the ⊥ bin that contains informative

data points nearly perpendicular to the normal w is exactly what we need. As far as the

produced hash bits are concerned, hB outputs the same bit for the query normal w and the

database points in the // bin (e.g., hB(w) = hB(x1) = 1), but different bits for w and the

points in the ⊥ bin (e.g., hB(w) = −hB(x2) = −hB(x∗)).

If a series of hash functions were used to generate more bits, we would obtain a much

more narrow ⊥ bin which is the intersection of multiple ⊥ bins each of which is determined

by a single hash function. Consequently, the search region for candidate near neighbors,

that are supposed to hold small point-to-hyperplane angles to the query hyperplane Pw,

becomes smaller, more accurate, and will converge to Pw itself when more and more hash

bits are exploited. Figure 6.4 reveals the effect of enforcing multiple hash bits.

To summarize, for the purpose of angle-based hyperplane hashing described in Section

6.4, the pivotal role of bilinear hash functions is to map the query point w (the hyperplane

normal) and the desirable most informative point (with θx,w = π/2) to bitwise different hash

codes, whereas map w and the undesirable most uninformative point (with θx,w = 0 or π)

to identical hash codes. Therefore, hyperplane hashing using our proposed bilinear hash

functions is implemented as finding the database points in X whose hash codes have the

farthest Hamming distances to the hash code of the query w. This is very different from

traditional hashing methods as well as the existing hyperplane hashing methods AH-Hash

and BH-Hash, all of which always seek the closest codes to the query’s code in the Hamming

space.
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6.5.3 Theoretic Analysis

Based on the bilinear formulation in eq. (6.8), we define a novel randomized function family

Bilinear-Hyperplane Hash (BH-Hash) as:

B =
{
hB(z) = sgn(u⊤zz⊤v), i.i.d. u,v ∼ N (0, Id×d)

}
. (6.9)

Here we prove several key characteristics of B. Specially, we define hB(Pw) = −hB(w) for

an easy derivation.

Lemma 9. Given a hyperplane query Pw with the normal vector w ∈ Rd and a database

point x ∈ Rd, the probability of collision for Pw and x under hB is

Pr
[
hB(Pw) = hB(x)

]
=

1

2
−

2α2
x,w

π2
. (6.10)

Proof. This probability is equal to the probability of hB(w) ̸= hB(x). Because the two

random projections u and v are independent,

Pr
[
hB(w) ̸= hB(x)

]
= Pr

[
sgn(u⊤w) = sgn(u⊤x)

]
Pr
[
sgn(v⊤w) ̸= sgn(v⊤x)

]
+Pr

[
sgn(u⊤w) ̸= sgn(u⊤x)

]
Pr
[
sgn(v⊤w) = sgn(v⊤x)

]
.

By exploiting the fact Pr
[
sgn(u⊤z) = sgn(u⊤z′)

]
= 1− θz,z′/π from [53],

Pr
[
hB(w) ̸= hB(x)

]
=

(
1− θx,w

π

)
θx,w
π

+
θx,w
π

(
1− θx,w

π

)
=2

(
1

2
−

θx,w − π
2

π

)(
1

2
+

θx,w − π
2

π

)
=
1

2
−

2(θx,w − π
2 )

2

π2

=
1

2
−

2α2
x,w

π2
,

(6.11)

which completes the proof.
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Lemma 9 shows that the probability of hB(w) ̸= hB(x) is 1/2 for perpendicular w and

x that hold θx,w = π/2 (accordingly αx,w = 0). It is important to realize that this collision

probability is twice of that from the linear AH hash function hA described in Section 6.5.1.

Theorem 10. The BH-Hash function family B is

(
r, r(1 + ϵ),

1

2
− 2r

π2
,
1

2
− 2r(1 + ϵ)

π2

)
-

sensitive to the distance measure D(x,Pw) = α2
x,w, where r, ϵ > 0.

Proof. By utilizing Lemma 9, for any hB ∈ B, when D(x,Pw) ≤ r we have

Pr
[
hB(Pw) = hB(x)

]
=

1

2
− 2D(x,Pw)

π2

≥ 1

2
− 2r

π2
= p1. (6.12)

Likewise, when D(x,Pw) > r(1 + ϵ) we have

Pr
[
hB(Pw) = hB(x)

]
=

1

2
− 2D(x,Pw)

π2

<
1

2
− 2r(1 + ϵ)

π2
= p2. (6.13)

This completes the proof.

Note that p1, p2 (p1 > p2) depend on 0 ≤ r ≤ π2/4 and ϵ > 0. We present the following

theorem by adapting Theorem 1 in [52] and Theorem 0.1 in the supplementary material of

[75].

Theorem 11. Suppose we have a database X of n points. Denote the parameters k =

log1/p2 n, ρ =
ln p1
ln p2

, and c ≥ 2. Given a hyperplane query Pw, if there exists a database

point x∗ such that D(x∗,Pw) ≤ r, then a BH-Hash algorithm is able to return a database

point x̂ such that D(x̂,Pw) ≤ r(1+ ϵ) with a probability at least 1− 1

c
− 1

e
by using nρ hash

tables of k hash bits each. The query time is dominated by O(nρ log1/p2 n) evaluations of

the hash functions from B and cnρ computations of the pairwise distances D between Pw

and the points hashed into the same buckets.

Proof. This theorem introduces the asymptotic computational complexity of our proposed

randomized bilinear hashing scheme BH-Hash. For self-contained consideration, here we
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provide the proof, which is basically following the technique previously used in the proof of

Theorem 1 in [52]. Recall that in Theorem 10, we have shown that BH-Hash is (r, r(1 +

ϵ), p1, p2)-sensitive. Particularly, we show that p1 =
1

2
− 2r

π2
and p2 =

1

2
− 2r(1 + ϵ)

π2
for

BH-Hash.

Denote the number of hash tables by L. For the l-th hash table, a BH-Hash algo-

rithm randomly samples k hash functions hBl,1, · · · , hBl,k with replacement from B, which

will generate a k-bit hash key for each input data vector x. We denote x’s hash code by

HB
l (x) = [hBl,1(x), · · · , hBl,k(x)]. The main observation is that using L = nρ independent

hash tables, a (1 + ϵ)-approximate nearest neighbor is achieved with a non-trivial constant

probability. Moreover, the query (search) time complexity is proved to be sub-linear with

respect to the entire data size n.

To complete the proof, we define the following two events F1 and F2. It suffices to prove

the theorem by showing that both F1 and F2 hold with a probability larger than 0.5. The

two events are defined as below:

F1: If there exists a database point x
∗ such thatD(x∗,Pw) ≤ r, thenHB

l (x
∗) = HB

l (Pw)

for some 1 ≤ l ≤ L.

F2: Provided with a false alarm set

S =
{
x̌ | x̌ ∈ X such that D(x̌,Pw) > r(1 + ϵ) and ∃l ∈ [1 : L], HB

l (x̌) = HB
l (Pw)

}
in which ϵ > 0 is the given small constant, then the set cardinality |S| < cL.

First, we prove that F1 holds with a probability at least 1− 1

e
.

Let us consider the converse case that HB
l (x

∗) ̸= HB
l (Pw) for ∀l ∈ [1 : L] whose

probability is

Pr
[
HB

l (x
∗) ̸= HB

l (Pw),∀l ∈ [1 : L]
]

=
(
Pr
[
HB

l (x
∗) ̸= HB

l (Pw)
])L

=
(
1−Pr

[
HB

l (x
∗) = HB

l (Pw)
])L

≤
(
1− pk1

)L
=

(
1− p

log 1
p2

n

1

)nρ

=
(
1− n−ρ

)nρ

=
((

1− n−ρ
)−nρ

)−1

≤1

e
, (6.14)
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where Inequality (6.14) follows from the inequality (1− n−ρ)
−nρ

≥ e. Herewith we derive

Pr
[
HB

l (x
∗) = HB

l (Pw),∃l ∈ [1 : L]
]

=1−Pr
[
HB

l (x
∗) ̸= HB

l (Pw),∀l ∈ [1 : L]
]

≥1− 1

e
.

Second, we prove that F2 holds with a probability at least 1− 1

c
.

For every false alarm point x̌ conforming to D(x̌,Pw) > r(1 + ϵ), in any hash table

l ∈ [1 : L] we have

Pr
[
HB

l (x̌) = HB
l (Pw)

]
<(p2)

k = (p2)
log 1

p2

n

=
1

n
.

Therefore the expected number of false alarm points, which fall into the same hash bucket

with the query Pw in hash table l, is smaller than n× 1/n = 1. Immediately, we conclude

E [|S|] < L. Subsequently, we further apply Markov’s inequality to derive the following

result:

Pr [|S| ≥ cL] ≤ E [|S|]
cL

<
L

cL
=

1

c
,

which leads to

Pr [|S| < cL] = 1−Pr [|S| ≥ cL] > 1− 1

c
.

Third, we prove that F1 and F2 simultaneously hold with a probability at least

1− 1

c
− 1

e
.

Let us deduce the conditional probability Pr
[
F2|F1

]
as follows

Pr
[
F2|F1

]
=

Pr
[
F2
∩
F1

]
Pr [F1]

≤
Pr
[
F2

]
Pr [F1]

=
1−Pr [F2]

Pr [F1]

<
1− (1− 1

c )

Pr [F1]

=
1

cPr [F1]
.
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Then, we derive

Pr
[
F1

∩
F2

]
= Pr [F2|F1]Pr [F1]

= (1−Pr
[
F2|F1

]
)Pr [F1]

> (1− 1

cPr [F1]
)Pr [F1]

= Pr [F1]−
1

c

≥ 1− 1

c
− 1

e
.

To sum up, the inequality Pr [F1
∩

F2] > 1 − 1

c
− 1

e
uncovers that with a constant

probability larger than 1− 1

c
− 1

e
, the BH-Hash algorithm is guaranteed to return at least

a database point x̂ conforming to D(x̂,Pw) ≤ r(1 + ϵ) by checking the first cL database

points that collide to the query Pw in either of the L hash tables. The algorithm terminates

when cL database points have been scanned. Since at most L hash tables are visited, at

most L · k = nρ log1/p2 n hash functions are evaluated. Accordingly, at most cL = cnρ

computations of the distance function D are needed to confirm the (1 + ϵ)-approximate

nearest neighbors. Complete the proof.

Theorem 11 indicates that the query time of a BH-Hash algorithm is essentially bounded

by O(nρ), in which the exponent 0 < ρ < 1 relies on both r and ϵ. In fact, it can be sim-

plified under additional assumptions. We present the following Corollary.

Corollary 12. If r ≥ γπ2/4 with 0 < γ < 1, then the query time of a BH-Hash algorithm

is bounded by O

(
n

ln(2/(1−γ))
ln 2+γ(1+ϵ)

)
.

Proof. Given a fixed ϵ > 0,

ρ =
ln p1
ln p2

=
ln
(
1
2 −

2r
π2

)
ln
(
1
2 −

2r(1+ϵ)
π2

) , (6.15)

which can be proved to be a monotonically decreasing function with respect to the variable

r. Then, if r ≥ γπ2/4,

ρ ≤
ln
(
1
2 −

γ
2

)
ln
(
1
2 −

γ(1+ϵ)
2

) =
ln
(
1−γ
2

)
ln (1− γ(1 + ϵ))− ln 2

≤
ln
(
1−γ
2

)
−γ(1 + ϵ)− ln 2

=
ln
(

2
1−γ

)
ln 2 + γ(1 + ϵ)

,
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Figure 6.5: Theoretical comparison of three randomized hash schemes. (a) p1 (probability

of collision) vs. r (squared point-to-hyperplane angle); (b) ρ (query time exponent) vs. r

for ϵ = 3.

where we use the inequality ln (1− γ(1 + ϵ)) ≤ −γ(1 + ϵ).

Thus the query time bound O(nρ) does not exceed O

(
n

ln(2/(1−γ))
ln 2+γ(1+ϵ)

)
. It completes the

proof.

Theorem 11 implies that if c ≥ 8 the probability of a “successful” sub-linear time scan,

that guarantees to find a (1+ϵ)-approximate nearest neighbor, is above 0.5. All of the query

time bounds of AH-Hash, EH-Hash and BH-Hash are O(nρ), yet with different parameters ρ.

To compare them deeply, for each of the three hash schemes we plot the collision probability

p1 and the query time exponent ρ under ϵ = 3 with varying r in Figures 6.5(a) and (b),

respectively.

Figure 6.5(a) shows that at any fixed r BH-Hash accomplishes the highest probability

of collision, which is twice p1 of AH-Hash. Though BH-Hash has slightly bigger ρ than

EH-Hash displayed in Figure 6.5(b), it has much faster hash function computation Θ(2dk)

than Θ(d2(k + 1)) of EH-Hash per hash table for each query or database point. Note that

the accelerated version of EH-Hash can reduce to Θ(d2) + O(dk) time but inevitably loses

theoretic guarantees. Even the reduced time complexity of EH-Hash is expensive for high-

dimensional data since it is still in quadratic dependence on the dimension d. In contrast,

both of AH-Hash and our proposed BH-Hash are very efficient, only linearly dependent on
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Table 6.3: Several key properties of three randomized hyperplane hashing methods AH-

Hash, EH-Hash and BH-Hash. r denotes the squared point-to-hyperplane angle α2
x,w,

k denotes the number of hash bits used in a single hash table, and d denotes the data

dimension. “Hashing Time” refers to the time of evaluating k hash functions to hash an

input (database point or query) into a single hash table.

Method Collision Probability p1 Hashing Time Search Strategy

AH-Hash [75]
1

4
− r

π2
Θ(2dk) nearest codes

EH-Hash [75]
cos−1 sin2(

√
r)

π
Θ(d2(k + 1)) nearest codes

BH-Hash (this chapter)
1

2
− 2r

π2
Θ(2dk) farthest codes

the data dimension. We list several key characteristics of the three hash schemes in Table

6.3 for direct comparison.

It is interesting to see that AH-Hash and our proposed BH-Hash have a tight connection

in the style of hashing database points. BH-Hash actually performs the XNOR operation

over the two bits that AH-Hash outputs, returning a composite single bit. As a relevant

reference, the idea of applying the XOR operation over binary bits in constructing hash

functions has ever been used in [106]. However, this is only suitable for the limited data

type, discrete sets (e.g., bag-of-words representation), and still falls into the point-to-point

search scenario.

6.6 Compact Hyperplane Hashing

6.6.1 Motivations

Despite the higher collision probability of the proposed BH-Hash than AH-Hash and EH-

Hash, it is still a randomized approach. The use of random projections in hB has three

potential issues. (i) The probability of colliding for parallel Pw and x with αx,w = 0

is not too high and only 1/2 according to Lemma 9. (ii) The hashing time is sub-linear

O(nρ log1/p2 n) in order to bound the approximation error of the retrieved neighbors, as

presented in Theorem 11. (iii) When the target nearest neighbor has very tiny point-to-

hyperplane angle (i.e., very small r), the sub-linear query time O(nρ) will degenerate to the
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brute-force linear scan O(n) because limr→0 ρ → 1, as disclosed by eq. (6.15) and Figure

6.5(b).

AH-Hash and EH-Hash also suffer from the three issues above. Even though these ran-

domized hyperplane hashing methods maintain bounded approximation errors on retrieved

neighbors, they require long hash codes and plenty (even hundreds) of hash tables to cater

for the accuracy guarantees. Hence, these solutions have tremendous computational and

storage costs which limit practical performance of hyperplane hashing on massive databases.

In addition, the time spent in generating hash codes also grows linearly with the numbers

of hash bits and hash tables.

To this end, we develop a Compact Hyperplane Hashing approach to further enhance the

power of bilinear hash functions such that, instead of being random, the bilinear projections

used in hash functions are learned from input data. Such learning yields compact yet

discriminative codes which index the data into a single hash table, leading to substantially

reduced computational and storage needs.

6.6.2 Learning Bilinear Hash Functions

Following the notion of learning to hash having executed in Chapter 4 and 5, we aim at

learning a group of bilinear hash functions {hj} to yield compact binary codes. Note that

hj is different from the randomized bilinear hash function hBj , and that we consistently

define hj(Pw) = −hj(w). We would like to learn hj such that smaller αx,w results in

larger hj(Pw)hj(x). Hence, we make hj(Pw)hj(x) to monotonically decrease as αx,w in-

creases. This is equivalent to the requirement that hj(w)hj(x) monotonically increases with

increasing sin(αx,w) = | cos(θx,w)|.

Suppose that k hash functions are learned to produce k-bit codes. We develop a hash

function learning approach with the goal that
∑k

j=1 hj(w)hj(x)/k ∝ | cos(θx,w)|. Further,

since
∑k

j=1 hj(w)hj(x)/k ∈ [−1, 1] and | cos(θx,w)| ∈ [0, 1], we specify the learning goal as

1

k

k∑
j=1

hj(w)hj(x) = 2| cos(θx,w)| − 1, (6.16)

which makes sense since θx,w = π/2 (αx,w = 0) causes hj(w) ̸= hj(x) or hj(Pw) = hj(x)

for any j ∈ [1 : k]. As such, the developed learning method achieves explicit collision for
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h(x) = sgn(u⊤xx⊤v) yields the same bit for nearly // inputs whereas different bits for

nearly ⊥ inputs.
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parallel Pw and x.

Enforcing eq. (6.16) tends to make {hj}kj=1 to yield identical hash codes for nearly

parallel inputs whereas bitwise different hash codes for nearly perpendicular inputs. Figure

6.6 shows the spirit of learning one bilinear hash function h(x) to satisfy the discriminative

requirement imposed on output bits.

At the query time, given a hyperplane query Pw, we first extract its k-bit hash code using

the k learned hash functions applied to the hyperplane normal vectorw. Then, the database

points whose codes have the largest Hamming distances to the query’s code are returned.

Thus, the returned points, called near-to-hyperplane neighbors, maintain small angles to

the hyperplane because such points and the hyperplane normal are nearly perpendicular.

In our learning setting, k is typically very short, no more than 30, so we can retrieve the

desirable near-to-hyperplane neighbors via constant time hashing over a single hash table.

Now we describe how we learn k pairs of projections (uj ,vj)
k
j=1 so as to construct k

bilinear hash functions {hj(z) = sgn(u⊤
j zz

⊤vj)}kj=1. Since the hyperplane normal vectors

come up only during the query time, we cannot access w during the training stage. Instead,

we sample a few database points for learning projections. Without the loss of generality,

we assume that the first l (k < l ≪ n) samples saved in the matrix Xl = [x1, · · · ,xl] are

used for learning. To capture the pairwise relationships among them, we define a matrix

S ∈ Rl×l as

Sii′ =


1, | cos(θxi,xi′ )| ≥ t1

−1, | cos(θxi,xi′ )| ≤ t2

2| cos(θxi,xi′ )| − 1, otherwise

(6.17)

where 0 < t2 < t1 < 1 are two thresholds. For any sample x, its k-bit hash code is written as

H(x) = [h1(x), · · · , hk(x)], and
∑k

j=1 hj(xi)hj(xi′) = H(xi)H
⊤(xi′). By taking advantage

of the learning goal given in eq. (6.16), we formulate a least-squares style objective function

Q to learn Xl’s binary codes as

min
Bl∈{1,−1}l×k

Q =

∥∥∥∥1kBlB
⊤
l − S

∥∥∥∥2
F

, (6.18)
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where Bl =


H(x1)

· · · · · ·

H(xl)

 represents the code matrix of Xl and ∥.∥F denotes the Frobenius

norm.

The defined matrix S is akin to the pseudo pairwise label matrix S that we have defined

in Chapter 5 and was computed from metric-based supervision. The difference is that this

time we introduce “soft” labels instead of 0 labels previously used. As well, the objective

function Q proposed in eq. (6.18) for learning the code matrix Bl is exactly the same as the

objective function eq. (5.8) we have proposed in Chapter 5. This confirms our expectation,

made in Section 5.6 of Chapter 5, that optimizing code inner products will have significant

impact on learning to hash.

The thresholds t1, t2 used in eq. (6.17) have an important role. When two inputs are

prone to being parallel so that | cos(θxi,xi′ )| is large enough (≥ t1), minimizing Q drives

each bit of their codes to collide, i.e., H(xi)H
⊤(xi′)/k = 1; when two inputs tend to be

perpendicular so that | cos(θxi,xi′ )| is small enough (≤ t2), minimizing Q tries to make their

codes bit-by-bit different, i.e., H(xi)H
⊤(xi′)/k = −1.

Let us follow the optimization flowchart presented in Section 5.4.3 of Chapter 5 to solve

eq. (6.18). With simple algebra, one can rewrite Q as

min
(uj ,vj)kj=1

∥∥∥∥∥∥
k∑

j=1

bjb
⊤
j − kS

∥∥∥∥∥∥
2

F

s.t. bj =


sgn

(
u⊤
j x1x

⊤
1 vj

)
· · · · · ·

sgn
(
u⊤
j xlx

⊤
l vj

)
 . (6.19)

Every bit vector bj ∈ {1,−1}l in Bl = [b1, · · · , bk] determines one hash function hj param-

eterized by one projection pair (uj ,vj). Note that bj ’s are separable in the summation,

which inspires a greedy idea for solving bj ’s sequentially. At a time, it only involves solving

one bit vector bj(uj ,vj) given the previously solved vectors b∗1, · · · , b∗j−1. Let us define

a residue matrix Rj−1 = kS −
∑j−1

j′=1 bj′b
⊤
j′ with R0 = kS. Then, bj can be pursued by
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minimizing the following cost∥∥∥bjb⊤j −Rj−1

∥∥∥2
F
=
(
b⊤j bj

)2
− 2b⊤j Rj−1bj + tr(R2

j−1)

=− 2b⊤j Rj−1bj + l2 + tr(R2
j−1)

=− 2b⊤j Rj−1bj + const. (6.20)

Discarding the constant term, the final cost is given as

g(uj ,vj) = −b⊤j Rj−1bj . (6.21)

Note that g(uj ,vj) is lower-bounded as eq. (6.20) is always nonnegative. However, minimiz-

ing g is not easy because it is neither convex nor smooth. Below we propose an approximate

optimization algorithm like what we have done in Chapter 5.

Since the hardness of minimizing g lies in the sign function, we replace sgn() in bj with

the sigmoid-shaped function φ(x) = 2/(1 + exp(−x)) − 1 which is sufficiently smooth and

well approximates sgn(x) when |x| > 6. Subsequently, we propose to optimize a smooth

surrogate g̃ of g defined by

g̃(uj ,vj) = −b̃⊤j Rj−1b̃j , (6.22)

where the vector

b̃j =


φ
(
u⊤
j x1x

⊤
1 vj

)
· · · · · ·

φ
(
u⊤
j xlx

⊤
l vj

)
 . (6.23)

We derive the gradient of g̃ with respect to [u⊤
j ,v

⊤
j ]

⊤ as follows

∇g̃ = −

XlΣjX
⊤
l vj

XlΣjX
⊤
l uj

 , (6.24)

where Σj ∈ Rl×l is a diagonal matrix whose diagonal elements come from the l-dimensional

vector (Rj−1b̃j)⊙ (1− b̃j ⊙ b̃j). Here the symbol ⊙ represents the Hadamard product (i.e.,

elementwise product), and 1 denotes a constant vector with l 1 entries. Since the original

cost g in eq. (6.21) is lower-bounded, its smooth surrogate g̃ in eq. (6.22) is lower-bounded

as well. We are thus able to minimize g̃ using the regular gradient descent technique. Note
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that the smooth surrogate g̃ is still nonconvex, so it is unrealistic to look for a global minima

of g̃. For fast convergence, we adopt a pair of random projections (u0
j ,v

0
j ), which were used

in hBj , as a warm start and apply Nesterov’s gradient method [134] to accelerate the gradient

decent procedure. In most cases we attain a locally optimal (u∗
j ,v

∗
j ) at which g̃(u∗

j ,v
∗
j ) is

very close to its lower bound.

The final optimized bilinear hash functions are given as
{
hj(z) = sgn

(
(u∗

j )
⊤zz⊤v∗

j

)}k

j=1
.

Although, unlike the randomized hashing, it is not easy to prove their theoretical properties

such as the collision probability, they result in a more accurate point-to-hyperplane search

than the randomized functions
{
hBj

}
, as demonstrated by the subsequent experiments in

Section 6.7.

Now we can present a compact hyperplane hashing algorithm using the learned bilinear

hash functions H = [h1, · · · , hk]. With H in hand, we implement the proposed hyperplane

hashing by simply treating ‘-1’ bit as ‘0’ bit. In the preprocessing stage, each database point

x is converted into a k-bit hash code H(x) and stored in a single hash table with k-bit hash

keys as addresses. To perform search at the query time, given a hyperplane normal w, the

hashing algorithm

1) extracts its hash key H(w) and executes the bitwise NOT operation to obtain the

key H(w);

2) looks up hash buckets by addressing H(w) up to a small Hamming radius into the

hash table, obtaining a short list L whose points are retrieved from the found hash buckets;

3) scans the short list L and then returns the database point x∗ = argminx∈L |w⊤x|/∥w∥.

In fact, searching within a small Hamming ball centered at the flipped code H(w) is

equivalent to searching the codes that have largest possible Hamming distances to the code

H(w) in the Hamming space.

6.7 Experiments

6.7.1 Datasets

We conduct experiments on two publicly available datasets including the 20 Newsgroups

textual corpus [126] and the 1.06 million subset, called Tiny-1M, of the 80 million tiny
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image collection [174]. The first dataset is the version 2 [21] of 20 Newsgroups. It is

comprised of 18,846 documents from 20 newsgroup categories. Each document is represented

by a 26,214-dimensional tf-idf feature vector that is ℓ2 normalized. The Tiny-1M dataset

is a union of CIFAR-10 [91] and one million tiny images sampled from the entire 80 million

tiny image set. CIFAR-10 is a labeled subset of the 80 million tiny image set, consisting

of a total of 60,000 color images from ten object categories each of which has 6,000 samples.

The other one million images do not have annotated labels. In our experiments, we treat

them as the “other” class besides the ten classes appearing in CIFAR-10, since they were

sampled as the farthest one million images to the mean image of CIFAR-10. Each image

in Tiny-1M is represented by a 384-dimensional GIST [138] feature vector. Note that

this Tiny-1M data set is new and different from what we have used in the experiments

conducted in Chapter 5, because its one million unlabeled images are not necessarily the

same as the one million unlabeled images included in the old Tiny-1M dataset.

For each dataset, we train a linear SVM in the one-versus-all setting with an initially

labeled set which contains randomly selected labeled samples from all classes, and then run

active sample selection for 300 iterations. The initially labeled set for 20 Newsgroups

includes 5 samples per class, while for Tiny-1M includes 50 samples per class. For both

datasets, we try 5 random initializations. After each sample selection is made, we add it to

the labeled set and re-train the SVM. We use LIBLINEAR [46] for running linear SVMs.

All our experiments are run on a workstation with a 2.53 GHz Intel Xeon CPU and 48GB

RAM.

6.7.2 Evaluations and Results

We carry out SVM active learning [173] using the minimum-margin based sample selection

criterion for which we apply hyperplane hashing techniques to expedite the selection pro-

cedure. To validate the actual performance of the discussed hyperplane hashing methods,

we compare them with two baselines: random selection where the next label request is

randomly made, and exhaustive selection where the margin criterion is evaluated for all

currently unlabeled samples. We compare four hashing methods including two randomized

linear hash schemes AH-Hash and EH-Hash [75], the proposed randomized bilinear hash
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Figure 6.7: Results on 20 Newsgroups using 16 hash bits. (a) Learning curves of MAP

averaged over 20 classes and 5 runs; (b) minimum-margin curves of active sample selection

averaged over 20 classes and 5 runs; (c) the number of queries (≤ 300) receiving nonempty

hash lookups across 20 classes averaged over 5 runs; and (d) the number of database points

visited in the found hash buckets per query averaged over 5 runs.
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Figure 6.8: Results on Tiny-1M using 20 hash bits. (a) Learning curves of MAP averaged

over 10 classes and 5 runs; (b) minimum-margin curves of active sample selection averaged

over 10 classes and 5 runs; (c) the number of queries (≤ 300) receiving nonempty hash

lookups across 10 classes averaged over 5 runs; and (d) the number of database points

visited in the found hash buckets per query averaged over 5 runs.
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scheme BH-Hash, and the proposed learning-based bilinear hash scheme that we call LBH-

Hash. Notice that we use the same random projections for AH-Hash, BH-Hash, and the

initialization of LBH-Hash to shed light on the effect of bilinear hashing which is equivalent

to XNOR two bits. We also follow the dimension subsampling trick in [75] to accelerate

EH-Hash’s heavy computations in evaluating hash functions. In order to train our proposed

LBH-Hash, we randomly sample 500 and 5,000 database points from 20 Newsgroups and

Tiny-1M, respectively. The two thresholds t1, t2 used for implementing explicit collision

are acquired according to the following rule: compute the absolute cosine matrix C between

the l sampled points {xi}li=1 and all data points, average the top 5% values among Ci.’s

across i = 1, · · · , l as t1, and average the bottom 5% values as t2.

So as to make the referred four hashing methods work under a compact hashing mode

for fair comparison, we employ a single hash table with short code length. Concretely, on

20 Newsgroups we use 16 hash bits for EH-Hash, BH-Hash, and LBH-Hash, and 32 bits

for AH-Hash because of its dual-bit hashing spirit. When applying each hashing method in

an AL iteration, we perform hash lookup within Hamming radius 3 in the corresponding

hash table and then scan the points in the found hash buckets, resulting in the neighbor

near to the current SVM’s decision hyperplane. Likewise, we use 20 bits for EH-Hash,

BH-Hash, and LBH-Hash, and 40 bits for AH-Hash on Tiny-1M; the Hamming radius for

hash lookup is set to 4. It is possible that a hashing method finds all empty hash buckets

in the small Hamming ball. In that case, we apply random selection as a supplement.

We evaluate the performance of four hyperplane hashing methods in terms of:

1) the average precision (AP) which is computed by ranking the current unlabeled

sample set with the current SVM classifier at each AL iteration;

2) the minimum margin (the smallest point-to-hyperplane distance |w⊤x|/∥w∥) of the

neighbor returned by a hyperplane hashing algorithm at each AL iteration;

3) the number of queries among a total of 300 for every class that receive nonempty

hash lookups;

4) the number of database points that a hyperplane hashing algorithm visit in the found

hash buckets per query.

The former two results are averaged over all classes and 5 runs, and the latter two are
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Table 6.4: Results on 20 Newsgroups using 8 and 12 hash bits. All preprocessing and

search time is recorded in second. At a fixed bit number, two highest MAP values achieved

by hashing are displayed in boldface type.

single hash table 8 bits 12 bits

Method MAP Preprocess Search MAP Preprocess Search

Time Time Time Time

AH-Hash 0.7142 0.07 0.07 0.7047 0.13 0.05

EH-Hash 0.7588 383.0 3.41 0.7580 384.1 3.38

BH-Hash 0.8140 0.06 0.16 0.7892 0.10 0.10

LBH-Hash 0.8184 326.8 0.17 0.8162 506.7 0.10

Random 0.6999 – – —

Exhaustive 0.8426 – 0.52 —

averaged over 5 runs. We report such results in Figure 6.7 and Figure 6.8, which clearly

show that:

1) LBH-Hash achieves the highest mean AP (MAP) among all compared hashing meth-

ods, and even outperforms exhaustive selection at some AL iterations;

2) LBH-Hash accomplishes the minimum margin closest to that by exhaustive selection;

3) LBH-Hash enjoys almost all nonempty hash lookups (AH-Hash gets almost all empty

lookups).

The superior performance of LBH-Hash corroborates that the proposed bilinear hash

function and the associated learning technique are successful in utilizing the underlying data

information to yield compact yet discriminative hash codes. The higher collision probability

accrues to the randomized BH-Hash which already works well and outperforms the existing

randomized methods AH-Hash and EH-Hash in most situations.

Finally, we report the computational efficiency in Tables 6.4, 6.5, 6.6 and 6.7 which again

corroborate both accuracy and speed advantages of LBH-Hash. We keep a single hash table

and adopt varying hash code length, ranging from 8 bits to 20 bits, for each of four compared

hyperplane hashing methods. To perform hash lookups, we set the Hamming radius to 1,

2, 3, and 4 for 8, 12, 16, and 20 hash bits, respectively. In Tables 6.4-6.7, mean average
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Table 6.5: Results on 20 Newsgroups using 16 hash bits. All preprocessing and search

time is recorded in second. Two highest MAP values achieved by hashing are displayed in

boldface type.

single hash table 16 bits

Method MAP Preprocess Search

Time Time

AH-Hash 0.7074 0.17 0.05

EH-Hash 0.7346 385.2 3.33

BH-Hash 0.7752 0.14 0.07

LBH-Hash 0.8011 677.2 0.06

Random 0.6999 – –

Exhaustive 0.8426 – 0.52

precision (MAP) ([0, 1]) is the mean of the SVM’s average precision after 300 AL iterations

over all classes and 5 runs; “Preprocess Time” (in second) refers to the preprocessing time

for a hashing method to compress all of the database points to hash codes (for LBH-Hash,

such time includes the time spent on learning the hash functions from the training data);

“Search Time” (in second) refers to the average search time per query. Unlike the other

methods, AH-Hash always uses twice hash bits to comply with its dual-bit hashing theme.

Let us consider the reported MAP first. Tables 6.4 and 6.5 reveal that on 20 News-

groups,

Random < AH−Hash < EH−Hash < BH−Hash < LBH−Hash < Exhaustive

where < means inferior MAP. On Tiny-1M, Tables 6.6 and 6.7 indicate that

Random ≈ AH−Hash < EH−Hash < BH−Hash < LBH−Hash < Exhaustive

when using bits smaller than 20, and

Random ≈ AH−Hash < BH−Hash < EH−Hash < Exhaustive < LBH−Hash

when using 20 bits. LBH-Hash consistently surpasses the other three hashing methods in

MAP.
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Table 6.6: Results on Tiny-1M using 8 and 12 hash bits. All preprocessing and search

time is recorded in second. At a fixed bit number, two highest MAP values achieved by

hashing are displayed in boldface type.

single hash table 8 bits 12 bits

Method MAP Preprocess Search MAP Preprocess Search

Time Time Time Time

AH-Hash 0.2488 1.0 0.12 0.2417 1.4 0.10

EH-Hash 0.3182 577.2 0.98 0.3147 884.1 0.54

BH-Hash 0.3213 1.2 0.86 0.3208 1.4 0.58

LBH-Hash 0.3252 296.6 1.38 0.3313 419.4 0.98

Random 0.2440 – – —

Exhaustive 0.3356 – 14.2 —

Second, it is observed that AH-Hash and BH-Hash are both efficient considering pre-

processing time, while EH-Hash and LBH-Hash need much longer preprocessing time. The

preprocessing time of EH-Hash is O(d2n+ dkn) due to the O(d2+ dk)-complexity EH hash

function computation for each database point. The preprocessing time of LBH-Hash is

O(2dkn+ (dl + l2)Tk) in which l (≪ n) is the number of the sampled training points and

T is the number of optimization iterations. It is noted that EH-Hash’s time is quadratic

in the data dimension d (k ≪ d) while LBH-Hash’s time is linear in d. For those really

large scale data collections with O(103) or even higher dimension, the quadratic dimension

dependence of EH-Hash will trigger unaffordable computational costs, but our proposed

hashing approaches including both BH-Hash and LBH-Hash will enjoy the linear depen-

dence on dimension. For example, EH-Hash’s preprocessing time is about twice longer than

LBH-Hash’s on the Tiny-1M dataset.

Although LBH-Hash takes longer preprocessing time than BH-Hash as shown in Tables

6.4-6.7, the reported time is mostly spent on offline training and indexing. In practice, the

online search (query) time is more critical. Considering the search time, all of the compared

hashing methods except EH-Hash are much faster than exhaustive search. AH-Hash is

fastest, but it incurs many empty hash lookups, as disclosed in Figures 6.7(c) and 6.8(c).
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Table 6.7: Results on Tiny-1M using 16 and 20 hash bits. All preprocessing and search

time is recorded in second. At a fixed bit number, two highest MAP values achieved by

hashing are displayed in boldface type.

single hash table 16 bits 20 bits

Method MAP Preprocess Search MAP Preprocess Search

Time Time Time Time

AH-Hash 0.2404 1.6 0.10 0.2444 1.7 0.09

EH-Hash 0.3094 1058.1 0.22 0.3075 1343.6 0.15

BH-Hash 0.3141 1.8 0.16 0.3010 2.0 0.12

LBH-Hash 0.3341 586.5 0.95 0.3469 883.7 0.88

Random 0.2440 – – —

Exhaustive 0.3356 – 14.2 —

On 20 Newsgroups that is very high-dimensional (over 20,000 dimensions), EH-Hash is

slowest due to the above-mentioned high time complexity of its hash function computation,

and even slower than exhaustive search. On 20 Newsgroups, BH-Hash and LBH-Hash

demonstrate almost the same fast search speed; on Tiny-1M, LBH-Hash is slower than

BH-Hash but is acceptably fast for online search.

6.8 Summary and Discussion

We have addressed a seldom studied problem, hyperplane hashing, by proposing a novel

bilinear hash function which allows efficient search of database points near a hyperplane

query. Even using random projections, the proposed hash function enjoys a higher probabil-

ity of collision than the existing randomized methods. By learning the projections further,

we can improve a set of bilinear hash functions collaboratively for multiple bits. Better

than the randomized hash functions, these learning-based hash functions yield compact

yet discriminative codes which permit substantial savings in both storage and time needed

during nearest neighbor search. Large-scale active learning experiments carried out on one

document database and one image database have demonstrated the superior comprehensive

performance of the developed compact hyperplane hashing approach.
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For future work, it will be nice to develop theoretical guarantees first for the learned

bilinear hash functions despite the difficulty. Second, by means of appropriate adjustments

(e.g., design a novel hash function like h(x) = sgn
(∑k

j=1 u
⊤
j xx

⊤vj

)
), our proposed bi-

linear hash function is not only suitable for dealing with point-to-hyperplane search but

also capable of resolving many intricate search problems such as point-to-subspace search,

subspace-to-subspace search, and so on. In addition, it will be very interesting to integrate

traditional linear hash functions and bilinear hash functions into a hierarchical hashing

framework which could tackle some complicated search problems involving both point-to-

point and point-to-hyperplane searches.
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Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis is dedicated to developing scalable machine learning techniques for large-scale

classification and nearest neighbor search over gigantic databases. We have focused on two

groups of techniques: scalable classification with graphs, presented in Part I, and nearest

neighbor search with hashing, covered in Part II.

We have demonstrated, both in theory and practice, effective and efficient solutions

with clear performance gains in large-scale experiments. Specifically, we have developed

the following methods for classification.

a1. Large Graph Construction: The prior graph-based semi-supervised learning

(GSSL) methods scale poorly with the data size because of the quadratic time complexity

for exact neighborhood graph construction, which prevents wide adoption of GSSL. We have

presented approximate neighborhood graphs, called Anchor Graphs, which can be efficiently

constructed in linear time. Our experiments have shown that Anchor Graphs exhibit high

fidelity to conventional kNN graphs yet with much shorter construction time. Based on

Anchor Graphs, we have developed a simple GSSL algorithm Anchor Graph Regularization

(AGR) which has demonstrated promising performance gains compared to the state-of-the-

art GSSL algorithms. Both time and memory needed by AGR grow linearly with the data

size. The proposed Anchor Graphs can be readily applied to other general graph-driven

machine learning problems, such as dimensionality reduction, clustering, manifold-based
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ranking, etc.

a2. Large-Scale Semi-Supervised Learning: The proposed Anchor Graphs also

enable us to develop a novel solution for learning scalable semi-supervised kernel classifiers.

Kernel machines are known to be more robust than the linear counterparts due to their

ability in separating practical data points that are mostly linearly inseparable, but training

nonlinear kernel machines is often costly. Using the idea of Anchor Graphs, we have devel-

oped several low-rank kernel generation methods which result in a very simple linearization

process of the original nonlinear kernel, thereby transforming the expensive kernel machine

training task to a standard linear SVM training task. Since training nonlinear kernel ma-

chines in semi-supervised settings can be reduced to training linear SVMs in supervised

settings, the computational cost for classifier training is substantially reduced, only costing

O(l) time where l is the number of labeled examples and much smaller than the total data

size n. The low-rank kernels bear closed-form expressions, taking linear time O(n) to gener-

ate them. Our experiments have manifested that a linear SVM using a linearized low-rank

kernel exhibits superior classification accuracy over state-of-the-arts and also outperforms

AGR.

In the second part of the thesis, we focus on large-scale nearest neighbor search us-

ing hashing techniques. Specifically, we have proposed new theories and algorithms for

unsupervised hashing, supervised hashing, and hyperplane hashing.

b1. Unsupervised Hashing: We have developed a practical graph-based unsuper-

vised hashing approach which respects the underlying manifold structure of the input data

to capture semantic neighborhoods on manifolds and return meaningful nearest neighbors

for a query. We further showed that Anchor Graphs can overcome the computationally

prohibitive steps of building and manipulating large graph Laplacians by approximating

graph adjacency matrices with low-rank matrices. As such, the hash functions can be effi-

ciently obtained by thresholding the lower (smoother) eigenfunctions of the Anchor Graph

Laplacian in a hierarchical fashion. Experimental comparison showed that the proposed An-

chor Graph Hashing (AGH) enjoys significant performance gains over the state-of-the-art

hashing methods in finding semantically similar neighbors.

b2. Supervised Hashing: We have developed a kernel-based supervised hashing
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(KSH) approach to incorporate supervised information in availability. We summarize the

success of KSH to three main aspects: (1) kernel-based hash functions were exploited to

handle linearly inseparable data; (2) an elegant objective function designed for supervised

hashing was skillfully formulated based on code inner products instead of Hamming dis-

tances; and (3) a greedy optimization algorithm was deployed to solve the hash functions

efficiently. Large-scale image search experiments have demonstrated that KSH surpasses

our unsupervised method AGH and state-of-the-arts by a large margin in searching both

semantic neighbors and metric neighbors. In theory, KSH does not need any special as-

sumptions about the data other than a predefined kernel function. In practice, we have

found that on some datasets where manifolds are not evident, KSH works better than AGH

which depends on the manifold assumption.

b3. Hyperplane Hashing: We have addressed the seldom studied problem hyper-

plane hashing which aims at speeding up the point-to-hyperplane search process. We have

designed a specialized bilinear hash function which allows efficient search of database points

near a hyperplane query. Even when using random projections, the proposed hash func-

tion enjoys a higher probability of collision than the existing randomized hash functions.

By learning the projections further, we can achieve a series of meaningful bilinear hash

functions. Better than randomized hash functions, these hash functions via learning yield

compact yet discriminative codes which permit substantial savings in both storage and

time needed during nearest neighbor search. Large-scale active learning experiments have

demonstrated the superior comprehensive performance of the developed compact hyper-

plane hashing approach.

As a bridge connecting Part I and Part II, our compact hyperplane hashing approach

described in Chapter 6 can directly benefit classification in an active learning environment.

7.2 Future Work

Despite the significant progress made in this thesis, there remain several open exciting

challenges for large-scale machine learning. In the following, we discuss some promising

topics that we will proceed to on our future research agenda.
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c1. Ensemble Anchor Graphs: We have found in Chapter 2 that an increased

number of anchors lead to a sparser Anchor Graph. Hence, the number of anchors used

in the implementations may control the quality of the resulting Anchor Graph. However,

incorporating more anchors into the construction of an Anchor Graph will inevitably lead to

a higher computational complexity. One preliminary idea is to construct a group of Anchor

Graphs in parallel and let each Anchor Graph account for only a subset of the whole data

set. The subsequent interesting issue is how to merge these Anchor Graphs in a principled

way. We call this approach Ensemble Anchor Graphs and will address this in the future

work.

c2. Large-Scale Supervised Learning: Although there has been progress in training

large-scale linear classifiers efficiently, linear classifiers suffer from limited discriminating

power. However, training nonlinear classifiers at a large scale is usually computationally

difficult although it could result in higher classification accuracy. To this end, we will address

the scalability issue of supervised nonlinear classifier training by generalizing the anchor idea

used in this thesis to develop a hierarchical classification model Anchor Vector Machine

(AVM). The proposed AVM model consists of two layers, in which the first layer aims at

incorporating a priori kernel by running sparse Gaussian process regression using the anchor

vectors in the low-level feature space. The second layer performs Local Anchor Coding

(LAC) in the high-level semantic space by exploiting the Gaussian process regression outputs

and the class labels of the anchor vectors. The first layer helps achieve the complexity

reduction, while the second layer can compensate for the performance loss incurred in the

first layer due to the use of the sparse approximation to the full-size Gaussian process

regression.

c3. Subspace-to-Subspace Hashing: Till now, we have discussed two key paradigms

for hashing: point-to-point hashing presented in Chapter 4 and Chapter 5, and point-to-

hyperplane hashing presented in Chapter 6. We believe that the bilinear hash function

proposed in Chapter 6 is not only suitable for dealing with point-to-hyperplane search

but also capable of resolving many intricate search problems such as point-to-subspace

search, subspace-to-subspace search, and so on, if we make appropriate adjustments to the

bilinear hash function. For example, we may design a novel hash function like h(x) =
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sgn
(∑k

j=1 u
⊤
j xx

⊤vj

)
, which can handle subspace queries with rank k. Then, we may

adopt randomized or learning-based hashing algorithms to seek the required projection

vectors {(uj ,vj)} which can then be used to fulfill subspace-to-subspace hashing.
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