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ABSTRACT

Advanced Techniques for Semantic Concept
Detection in (General Videos

Wei Jiang

The automatic analysis and indexing of multimedia content in general domains are im-
portant for a variety of multimedia applications. This thesis investigates the problem of
semantic concept detection in general videos focusing on two advanced directions: multi-
concept learning and multi-modality learning.

Semantic concept detection refers to the task of assigning an input video sequence one
or multiple labels indicating the presence of one or multiple semantic concepts in the video
sequence. Much of the prior research work deals with the problem in an isolated manner,
i.e., a binary classifier is constructed using feature vectors from the single visual modality
to classify whether or not a video contains a specific concept. However, multimedia videos
comprise of information from multiple modalities (both visual and audio). Each modality
brings some information about the other and their simultaneous processing can uncover
relationships that are otherwise unavailable when considering the modalities separately. In
addition, real-world semantic concepts do not occur in isolation. The context information
is useful for enhancing detection of individual concepts.

This thesis explores multi-concept learning and multi-modality learning to improve se-
mantic concept detection in general videos, i.e., videos with general content and are captured
in uncontrolled conditions. For multi-concept learning, we propose two methods with the
frameworks of two-layer Context-Based Concept Fusion (CBCF) and single-layer multi-label
classification, respectively. The first method represents the inter-conceptual relationships
by a Conditional Random Field (CRF). The inputs of the CRF are initial detection prob-
abilities from independent concept detectors. Through inference with concept relations in

the CRF we get updated concept detection probabilities as outputs. To avoid the difficulty



of designing compatibility potentials in the CRF, a discriminative cost function aiming at
class separation is directly minimized. Also, we further extend this method to study an
interesting “20 questions problem” for semantic concept detection, where user’s interaction
is incorporated to annotate a small number of key concepts for each data, which are then
used to improve detection of the remaining concepts. To this end, an active CBCF approach
is proposed that can choose the most informative concepts for the user to label. The second
multi-concept learning method does not explicitly model concept relations but optimizes
multi-label discrimination for all concepts over all training data through a single-layer joint
boosting algorithm. By sharing “good” kernels among different concepts, accuracy of in-
dividual detectors can be improved; by joint learning of common detectors across different
classes, required kernels and computational complexity for detecting individual concepts
can be reduced.

For multi-modality learning, we develop methods with two strategies: global fusion
of features or models from multiple modalities, and construction of the local audio-visual
atomic representation to enforce a moderate-level audio-visual synchronization. Two al-
gorithms are developed for global multi-modality fusion, i.e., the late-fusion audio-visual
boosted CRF and the early-fusion audio-visual joint boosting. The first method is an exten-
sion of the above two-layer CBCF multi-concept learning approach where the inputs of the
CRF include independent concept detection probabilities obtained by using both visual and
audio features, individually. The second method is an extension of the above single-layer
multi-label classification approach, where both visual-based kernels and audio-based ker-
nels are shared by multiple concepts through the joint boosting multi-label concept detector.
These two proposed methods naturally combines multi-modality learning and multi-concept
learning to exert the power of both for enhancing semantic concept detection. To analyze
moderate-level audio-visual synchronization in general videos, we propose to generate a local
audio-visual atomic representation, i.e., the Audio-Visual Atom (AVA). We track visually
consistent regions in the video sequence to generate visual atoms. At the same time we lo-
cate audio onsets in the audio soundtrack to generate audio atoms. Then visual atoms and
audio atoms are combined together to form AVAs, on top of which joint audio-visual code-

books are constructed. The audio-visual codebooks capture the co-occurring audio-visual



patterns that are representative to describe different individual concepts, and accordingly
can improve concept detection.

The contributions of this thesis can be summarized as follows. (1) An in-depth study of
jointly detecting multiple concepts in general domains, where concept relationships are hard
to compute. (2) The first system to explore the “20 questions” problem for semantic concept
detection, by incorporating users’ interactions and taking into account joint detection of
multiple concepts. (3) An in-depth investigation of combining audio and visual information
to enhance detecting generic concepts. (4) The first system to explore the localized joint
audio-visual atomic representation for concept detection, under challenging conditions in

general domains.
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Chapter 1

Introduction

In this thesis, we propose several new methods to detect generic semantic concepts in gen-
eral videos, by exploiting information from multiple modalities, and by jointly considering

multiple concepts.

1.1 Background

With the prevalent use of digital video capturing devices and online search engines, most
users are now accustomed to simple and intuitive interfaces when interacting with large
video sources. Since multimedia videos comprise of unstructured information that usu-
ally is not described by associated text keywords, semantic concept detection (also called
semantic-level indexing or high-level feature extraction in some literatures) is needed to ex-
tract high-level information from raw video data. Semantic concept detection is defined as
the task of assigning an input video one or multiple labels indicating the presence of one or
multiple semantic concepts in the video sequence. Such semantic concepts can be anything
of users’ interest that are visually observable, such as objects (e.g., “car” and “people”), ac-
tivities (e.g., “running” and “laughing”), scenes (e.g., “sunset” and “beach”), events (e.g.,
“birthday” and “graduation”), etc. Semantic concept detection systems enable automatic
indexing and organization of massive multimedia information, which provide important
supports for a broad range of applications such as content or keyword-based multimedia

search, content-based video summarization, robotic vision, and so on.
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Development of large-scale semantic concept detection systems requires several critical
components. First, an ontology is needed to define a list of important concepts and the
relations among the concepts. Such ontologies may be constructed based on formal user
studies or data mining of user interaction logs with online systems. Second, a large corpus
consisting of realistic data is needed for training and evaluation. An annotation process is
also needed to obtain the labels of the defined concepts over the corpus. Third, multimedia
processing and machine learning tools are needed to develop robust classifiers (also called
models or concept detectors) that can be used to detect the presence of each concept in a

video. Fig. 1.1 describes the framework of a typical semantic concept detection system.

%Ontology

Concept Detection
Input Video Feature Extraction w Outputs
Visual Feature Classifier - fnd
i = N . Color I naex
= ~ Texture g ® Anchor
= t T h E Snow
—_— - ¢ Local (e.g., SIFT) ¢ = . ¢ m Soccer ¢
x @ Building
O Outdoor
~ —m e Hh i
il spectrogram : ] Concept Search %

Figure 1.1: The framework of a semantic concept detection system.

As will be shown in detail in Chapter 2, researchers have developed many concept detec-
tion systems for various applications. These approaches can be categorized into two broad
categories: one for detecting concepts at the object or region level, the other detecting
concepts in the whole images/videos. In this thesis, we focus on methods that belong to
the second category, due to their compatibility and flexibility in handling a broad range
of concepts and videos. Methods in the first category detect and locate either individual
objects/regions (e.g., “car”, “boat”, “people”, and “sky”), actions of objects (e.g., “people
walking” and “arm lifting”), or dynamic events that comprise of multiple objects and their
interactions in the video (e.g., “car exiting the parking lot”, and “a person leaving his/her
baggage”). Although accurate detection of objects, regions, their actions and interactions

are useful towards the total understanding of images and videos, the tasks are very chal-
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lenging. This is because of the difficulties in determining the locations and scales of target
objects/regions, the variability produced by scene conditions like illumination, background,
clutter and occlusion, and the difficulty in obtaining the object-level label annotation. As
a result, detection in general videos, i.e., videos with general content and are captured in
uncontrolled conditions, is still far from satisfactory. Object-level approaches usually work
only in controlled videos or surveillance applications with fixed (or almost fixed) cameras
and stable backgrounds. For the purpose of detecting generic concepts in general videos,
the global detection methods are relatively more realistic and thus adopted as the focus of

this thesis.

1.2 Our Approach

Traditional concept detection approaches classify images and videos in an isolated manner.
That is, to classify whether an image or video contains a specific concept, a binary classifier
is trained using some feature vectors from a single modality (e.g., visual data alone) and
some statistic recognition models so that a probabilistic judgement can be made for a test
image or video.

Videos comprise of information from multiple modalities, both visual and audio. Each
modality brings information complementary with the others and simultaneous processing
of such sources can uncover relationships that are otherwise unavailable. The need of
integrating multi-model information is confirmed in human perception systems also [3, 45,
69]. As a result, audio-visual multimedia data analysis has received more interest in recent
years [7, 33, 89, 113, 142].

In addition, in the real world semantic concepts usually do not occur in isolation. Such
context information has been shown important for enhancing concept detection accuracy
(102, 162, 192, 198, 238]. For example, a confident detection of one concept (e.g., “car”)
may provide a strong cue about the high likelihood of detecting another concept (e.g.,
“road”) [61, 112]. In this thesis, we will develop several novel methods for improving the
performance of detecting generic concepts in general videos, by focusing on the approaches

of multi-concept learning and multi-modality learning.
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1.2.1 Multi-Concept Learning

In previous literatures (see Section 2.6 for a detailed review), there are different levels
of contexts that have been used for multimedia content analysis. For example, context
can model the local smoothness of pixel labels, the spatial relationship among image re-
gions and objects (e.g., a boat is usually on top of water), and the co-occurrence of ob-
jects (e.g., a computer usually co-occurs with a keyboard). Such context information
has been successfully used in object-level and region-level detection [61, 112, 209, 222,
224]. In addition, context can model the relationship (e.g., causal, co-occurrence, etc.)
among semantic concepts. Since we focus on detection of concepts from the whole image
or video instead of object localization, the context describing relationships among semantic

concepts is the main focus of our work in this thesis.

1.2.1.1 Two-Layer Context-Based Concept Fusion

Recently, a Context-Based Concept Fusion (CBCF) framework has been proposed (first by
Naphade et al. in [162]) for semantic concept detection in general videos. CBCF has a
two-layer learning structure. In the first layer, independent concept detectors are applied
to get posterior probabilities of individual concepts of a given image or video. Then in the
second layer detection results of individual concepts are updated through a context-based
model by treating detection confidence scores of all concepts as contexts. Earlier CBCF
approaches use pre-defined concept relations such as the ontology hierarchy [246] and the
Bayesian networks (manually constructed in most cases) [179], which can only be used in
specific domains with prior knowledge about the structure of ontology. On the other hand,
the wector model approach does not explicitly model concept relationships [214]. Instead,
initial concept detection scores are used as representation features, on top of which discrim-
inative classifiers such as Support Vector Machines (SVMs) [230] are constructed to model
the proximity relation among concepts. In recent years, the graph-based approach has be-
come popular, where graphical models are used to encode the context information, such as
[162] and [102], with nodes representing concepts, the single-node potentials corresponding
to concept detection scores, and the two-node compatibility potentials reflecting the pair-

wise conceptual relations, e.g., the co-occurrence statistical relationships of concepts. The
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concept detection results are then refined through graph inference.

CBCF, especially the graph-based approach, provides an intuitive framework for in-
corporating inter-conceptual relationships with significant flexibility, e.g., to adopt various
classifiers as single-node concept detectors and to incorporate different types of prior knowl-
edge in building graph structures. The main issue of graph-based CBCF methods, however,
lies in the difficulty of designing appropriate compatibility potentials. Previous methods
use co-occurrence statistics of concepts to approximate pairwise concept relations. Such ap-
proximations become unreliable when we only have limited training data. It is difficult to
obtain accurate co-occurrence statistics involving diverse generic concepts in general videos.
In this case, the errors from the inaccurate approximation of concept correlation will easily
amount to major performance drop.

In this thesis, we develop a multi-concept learning algorithm, namely Boosted CRF-
Concept Fusion (BCRF-CF), under the framework of CBCF [97]. We model the inter-
conceptual relationships by a Conditional Random Field (CRF) [114], which models the
conditional distribution of concept labels given the initial detection probabilities from inde-
pendent concept detectors. To avoid the difficulty of designing compatibility potentials in
CRF, a discriminative cost function aiming at class separation is directly minimized. That
is, we do not use the co-occurrence statistics of concepts to estimate compatibility poten-
tials. Instead, we transfer the problem of learning compatibility potentials into modeling
the proximity relation among concepts, by learning a discriminative classifier using initial
concept detection scores from independent detectors. The idea is similar to the vector model
approach with the difference that we enforce a CRF graph structure to encode pairwise con-
cept relations. Thus our BCRF-CF inherits the intuitiveness and flexibility of graph-based
CBCF in incorporating inter-conceptual relationships while avoiding designing compatibil-
ity potentials explicitly. Fig. 1.2 illustrates the three multi-concept learning strategies in
CBCF. Specifically we minimize a cost function derived from the CRF targeting at discrim-
ination for all concepts over all training data. Additionally, the Real AdaBoost algorithm
[59] is incorporated to iteratively refine concept detection performance. We propose a sim-
ple but effective criterion to predict which concepts will benefit from CBCF, based on both

information theoretic and heuristic rules. This criterion takes into consideration both the
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strength of relationships between a concept and its neighborhood and the robustness of
detections of this neighborhood. Such prediction scheme allows us to use CBCF wisely,

applying it only when it is likely to be effective.
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Figure 1.2: The three strategies of multi-concept learning using context-based concept

fusion.

Based on the CBCF framework, we further study an interesting active learning scenario:
the “20 questions problem” in semantic concept detection [96]. In this scenario, user’s input
is used to annotate a small subset of concepts per image, which are then used to improve
detection of a large number of remaining concepts. To this end, we propose a new paradigm,
called Active Context-Based Concept Fusion (Active CBCF), to adaptively select the right
concepts, different for each image, for user annotation. This is in contrast to conventional
passive methods where users are asked to annotate all concepts or a subset of arbitrarily

chosen concepts.
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1.2.1.2 Single-Layer Multi-Label Classification

Although CBCF provides a flexible and intuitive framework to incorporate inter-conceptual
relationships, the two-layer framework may suffer from the following potential problems:
detection errors of independent detectors in the first layer can accumulate through learning
of the context-based model in the second layer; and we need to split the training set into two
subsets for learning independent detectors and context-based fusion model, respectively. To
address these issues, Qi et al. [192] have developed a correlative multi-label method where
concept relations are modeled by a Gibbs random field, and the graph structure and concept
detectors are learned together in a single step. However, due to the high complexity (at
least quadratic to the number of concepts), this method becomes infeasible for practical
applications when the number of concepts is large (e.g., dozens or hundreds).

Following the idea of using a single step to learn multi-concept detectors, we also de-
velop a multi-label classification method based on kernel sharing and joint learning [98].
Like the approach of BCRF-CF, we do not explicitly model concept relations but optimize
multi-label discrimination for all concepts over all training data. The motivation is clear:
by sharing visual cues or similarity kernels from multiple related concepts, each individual
concept can be enhanced by adding the descriptive power from others. For instance, as
illustrated in Fig. 1.3, “wedding” is usually hard to detect due to the diverse object appear-
ances and the lacking of strong visual cues. Reliable visual cues may be obtained from the
data subset labeled with “park” to describe the green grass, which can be shared by the
data subset labeled with “wedding” and can be used to separate the combined “wedding”
and “park” set from data of the other concepts. Similarly, the reliable visual cues extracted
from the “crowd” class can be shared by the “wedding” class and can be used to separate the
combined “wedding” and “crowd” set from others. With the help of sharing common clas-
sifiers and kernels among different concepts, the “wedding” concept can be better classified
by the multi-label concept detector. By sharing “good” kernels among different concepts,
accuracy of individual detectors can be improved; by joint learning of common detectors
across different classes, the overall computational complexity for detecting concepts can be

reduced.
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Figure 1.3: Sharing features and classifiers to help detect individual concepts. (a) Visual
cues (describing grass) obtained from the “park” data are shared by the “wedding” data and
are used to separate “wedding” and “park” from other concepts. (b) Visual cues (describing
people) obtained from the “crowd” data are shared by the “wedding” data and are used to

separate “wedding” and “crowd” from other concepts.

Specifically, in this approach we propose a new kernel construction algorithm, Vocabulary-
Spatial Pyramid Matching (VSPM ), which constructs multi-resolution visual vocabularies

by hierarchical clustering of local visual features over interest points and computes similarity
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kernels based on spatial matching. VSPM combines the power of multi-resolution spatial
matching and multi-layer vocabulary fusion. Such a combined method is used to generate
multiple vocabularies/kernels for each concept, which are further aggregated and shared
by all concepts. To jointly learn kernel-based detectors and to share kernels from different
concepts, we propose a joint boosting algorithm to automatically select the optimal kernels

and the subsets of sharing concepts in an iterative boosting process.

1.2.2 Multi-Modality Learning

Physiological evidence and analysis of biological systems also show that fusion of audio-
visual information is useful to enhance human perception [3, 45, 69]. As will be shown in
detail in Section 2.5, several works combine the audio information with the visual cues for
speech /speaker recognition and object localization in videos. For example, visual features
obtained by tracking the movement of lips, mouths, and faces can be combined with audio
features describing acoustic speech for improved speech and speaker recognition [92, 141].
However, most of the previous multi-modality approaches cannot be easily applied to
detect generic semantic concepts in general videos, due to several reasons. First, both object
detection and tracking are difficult in general videos. There exist uneven lighting, clutter,
occlusions, and complicated motions of multiple objects and the camera. As a result, it is
hard to segment objects with satisfactory accuracy. Second, blind sound source separation,
especially in real-world outdoor scenes, remains challenging. Finally, the synchronization
between sounds and visual objects that make sounds cannot be observed most of the time.
Objects may make sounds without large movements, and often some objects making sounds

do not appear in the video.

1.2.2.1 Global Multi-Modal Fusion

Due to the above challenging conditions, the current concept detection methods (as will be
shown in Section 2.5.3 in detail) take the global fusion strategies to use both audio and visual
information, which avoid object-level visual and audio analysis or synchronization. In early
fusion, features from different modalities are concatenated to make a long feature vector

to train classifiers [245]. In late fusion, individual classifiers are built for each modality,
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and their predictions are combined to make the final decision [90, 130]. Although the
fusion frameworks are simple to use, there are several issues limiting the performance.
Early fusion methods usually suffer from the “curse of dimensionality”, as the concatenated
multi-modal feature can have very high dimensionality (e.g., thousands of dimensions). In
addition, different modalities may contribute to the classification task unevenly, i.e., some
modalities may be more important than others in detecting a specific concept. Dimension
reduction and feature selection are usually required in practice, which are still unsolved in
most practical cases. As for late fusion, how to select the appropriate classifier combination
strategy remains a basic machine learning problem [108, 189] and the best combination
strategy depends much on the particular problem in hand.

In this thesis, we develop two multi-modality fusion approaches [24]. The first method
is a late fusion approach, where the above mentioned BCRF-CF algorithm proposed for
multi-concept learning is extended to an Audio- Visual Boosted Conditional Random Field
(A-V Boosted CRF') method to incorporate both audio and vidual-based detectors for en-
hanced classification. In the first layer of CBCF, individual concept detectors are built
over visual and audio features, respectively, which are then applied to get visual-based and
audio-based probabilistic estimations of concept labels, respectively. All these visual-based
and audio-based initial estimation results are used as inputs in the second layer, and the de-
tection results of each individual concept can be updated through the context-based model.
Late fusion through our A-V Boosted CRF provides a natural way to combine individual
judgements from the visual channel and audio channel. Instead of choosing combination
strategies explicitly, predictions from different modalities are fused together through pur-
suing discriminative class separation.

The second method is an early fusion approach, where we extend the above mentioned
kernel and classifier sharing algorithm in Section 1.2.1.2 to an Audio- Visual Joint Boosting
(A-V Joint Boosting) method. In this extended approach, both the visual-based VSPM
kernels and the audio-based kernels from acoustic analysis are put together into a big kernel
pool, on top of which the SVM-based joint boosting algorithm can be used to select the
optimal subset of kernels to share among various concepts. Instead of using direct feature

concatenation, our A-V Joint Boosting method selects and fuse the optimal types of kernels
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generated from multiple modalities for enhanced classification.

Both A-V Boosted CRF and A-V Joint Boosting can be considered as natural combina-
tions of multi-modality learning and multi-concept learning, and are flexible to incorporate
other modalities (e.g., textual). For instance, textual features can be used either to train
individual concept detectors as additional inputs for the CRF or to build additional kernels

to be shared by joint boosting.

1.2.2.2 Local Audio-Visual Atoms

Despite promising performance improvements, the fusion methods (either early or late fu-
sion) have limitations in capturing joint audio-visual local patterns. The joint representation
of local visual and audio features captures the correlations between audio and video fea-
tures that are unique for videos of a certain concept. For example, the joint pattern of a
cake object and the birthday music is an intuitive joint audio-visual cue for the “birthday”
concept, while the joint pattern of a cake object and the wedding music strongly implies
the “wedding” concept. Additionally, the joint pattern of smoke and the siren sound may
suggest an explosion/fire incident, while the busy highway and the siren sound may indi-
cate some traffic accidents. However, such audio-visual patterns have never been explored
in general video analysis before.

As discussed before, object-level audio and visual analysis and audio-visual synchro-
nization are difficult in general videos. In this thesis, we propose to capture interesting
audio-visual cues by extracting localized Audio-Visual Atoms (AVAs) in videos [99]. AVAs
provide a balanced choice for exploring audio-visual correlation in general videos. Com-
pared to the tight audio-visual synchronization methods focusing on object detection and
tracking in both audio and video, AVAs do not rely on precise object extraction. Instead, we
track visually consistent regions in video and locate audio onsets in the audio soundtrack,
respectively. Then we generate an audio-visual atomic representation in which a moderate
level of synchronization is enforced between local region tracks and local audio onsets. The
audio-visual correlation we capture is based on co-occurrence in a short-time window, e.g.,
the co-occurrence of a cake and the birthday music or that of smoke and the siren sound.

This is in contrast to the precise synchronization between tracked visual objects and audio
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sources in the sound track.

Specifically, we track automatically segmented regions based on the visual appearance
within a short video slice (e.g., 1 second), and then connect visually similar short-term
region tracks from adjacent short-term video slices into long-term region tracks, called
visual atoms. At the same time we locate audio energy onsets from the corresponding
audio soundtrack by decomposing the audio signal into most prominent bases from a time-
frequency representation, and then extract audio features from the reconstructed audio
signal within a short window around each local energy onset. Such reconstructed short-term
audio signals around energy onsets are called audio atoms. Then visual atoms and audio
atoms are combined together to form joint audio-visual atomic representations, i.e., AVAs.
Based on these AVAs, joint audio-visual codebooks are constructed, and the codebook-based

features are used for concept detection.

1.3 Unique Contributions

The contributions of this thesis can be summarized as follows. (1) An in-depth study of
jointly detecting multiple concepts in general domains, where concept relationships are hard
to determine. (2) The first system to explore the “20 questions” problem for semantic con-
cept detection, by incorporating users’ interactions and taking into account joint detection
of multiple concepts. (3) An in-depth investigation of combining audio and visual informa-
tion to enhance detecting generic concepts. (4) The first system to explore the localized
joint audio-visual atomic representation for concept detection, under challenging conditions
in general domains.

We evaluate the proposed approaches over two large-scale realistic data sets in the gen-
eral domain: the TRECVID 2005 news video set [170], and Kodak’s consumer benchmark
video set [137]. Both data sets are among the largest and the most challenging ones ex-
isting for evaluating video concept detection methods. The experimental results can be
summarized as follows.

The multi-concept approaches are evaluated over the TRECVID 2005 news video set.

Experimental results confirm the effectiveness of the proposed BCRF-CF and the method
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predicting when it will work. That is, out of 39 evaluated concepts 26 are automatically
chosen by our prediction method to use BCRF-CF, among which 21 actually get perfor-
mance improvements; the overall MAP on these 26 concepts is improved by 6.8% compared
to the baseline independent detectors. In addition, the Active CBCF paradigm can indeed
improve concept detection by using user’s annotation. For example, the MAP of Active
CBCF on the selected 26 concepts outperforms BCRF-CF by 3.4%, and outperforms the
baseline individual detectors by 9.2%. As for the proposed multi-concept approach with
feature and classifier sharing, experimental results also demonstrate significant performance
gains, i.e., 10% in MAP and up to 34% AP for some concepts like “maps”, “building”, and
“boat-ship”.

The multi-modality approaches are evaluated over Kodak’s consumer benchmark video
set. Results show that compared with using individual visual or audio features alone, by
combining audio and visual aspects using multi-modality fusion (A-V Boosted CRF or
A-V Joint Boosting) we can get significant performance improvements, e.g., a 10% MAP
gain. For the localized joint audio-visual atomic representation, experiments confirm that
it can capture frequently co-occurring audio-visual patterns unique to individual concepts,
and achieve a significant performance improvement. For example, compared with single-
modality approaches, the overall MAP is improved by 8.5%, and more than 20% AP gains
are obtained for many concepts like “animal”, “beach”, “boat”, “dancing”, “museum”, and

“playground”.

1.4 Thesis Overview

The remainder of the thesis is organized as follows. In Chapter 2, we provide a survey
of research works related to semantic concept detection in images and videos and state-
of-the-art solutions using multi-modality and/or multi-concept learning. In later parts of
Chapter 2, we describe the experimental setup used throughout the whole thesis. Specifi-
cally we present Kodak’s consumer benchmark video set. As far as we know, this is the first
systematic work in the consumer video domain aimed at the definition of a large lexicon,

construction of a large benchmark data set, and annotation of videos in a rigorous fashion.
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After that, we introduce the TRECVID 2005 news video set, the performance evaluation
metrics, the visual features we will use for most of our methods, as well as the baseline
approach we will use for comparison.

In Chapter 3 we introduce the proposed BCRF-CF algorithm for multi-concept learn-
ing, under the framework of CBCF. In addition, we study the “20 questions problem” for
semantic concept detection by developing the Active CBCF approach.

In Chapter 4 we describe the details of sharing kernels and classifiers through the con-
struction of a multi-label concept detector by joint boosting. Our method automatically
selects optimal kernels and subsets of sharing concepts in an iterative boosting process,
which is also flexible in incorporating any type of kernel.

In Chapter 5 we introduce our multi-modality fusion algorithms: A-V Boosted CRF
and A-V Joint Boosting. They incorporate both audio and visual signals for enhanced
classification by extending, respectively, the BCRF-CF algorithm proposed in Chapter 3
and the kernel/classifier sharing method proposed in Chapter 4.

In Chapter 6 we describe our approach to discover joint audio-visual patterns in general
videos. We extract atomic representations, i.e., AVAs, based on which joint audio-visual
codebooks are constructed to capture salient audio-visual patterns for effective concept
detection.

Finally, in Chapter 7 we present the conclusions and future research work.
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Chapter 2

Review of Concept Detection in

Images and Videos

In this chapter we will provide an overview of research related to semantic concept detection
for both static images and dynamic video sequences. These include image classification
based on the global images; recognition of regions or objects in images; object or region-
level action detection in video sequences; and concept detection over entire video sequences.
In addition, we will review previous works exploring multi-modality learning that use both
visual and audio information, and works that use context information for improving content
analysis accuracy. We will also describe the data sets used in experiments, including Kodak’s
consumer video benchmark data set developed by us [137], the TRECVID news video set

[170], and the performance metrics associated with these data sets.

2.1 Terminology

As shown in Fig. 2.1, a video concept detection task may be formulated as follows. Let
v denote a video that is partitioned into K consecutive video segments ui,...,ux with
fixed-length intervals or shot segmentation boundaries (shots are smooth video segments
between transitions). A set of frames I ,i, e ,fg are uniformly sampled (e.g., 30 frames per
second) from each video segment uy. In addition, representative keyframes are extracted

from each video segment ug, e.g., one keyframe I for each segment ug. Assume that there
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are M semantic concepts, C',...,CM. Let yx denote the concept labels of an data x,
yx = [yL, ..., yM], with ™ =1 or —1 indicating the presence or absence of concept C™ in
data x. Data x can be a frame I, a keyframe I, a video segment u, or an entire video v.
Let F¥ (F®) denote a certain feature space describing the visual (audio) characteristics of

videos, and f¥(x) (f*(x)) is the feature vector of data x in the feature space F¥ (F?).

video segment: u
I !

individual frame: J keyframe: /

concept label: y,

video v

Figure 2.1: Data structure of a video concept detection task.

Video concept detection can be achieved in many different ways. We can classify individ-
ual image keyframes or classify the entire video sequence. Static image-based classification
is a popular way for video concept detection [2, 24, 25, 170, 248, 249]. In this approach, clas-
sifiers are applied to static image keyframes sampled from video segments, which estimate
likelihoods of the presence of concepts in each keyframe. Over the entire video segment,
these concept occurrence likelihoods over individual keyframes are aggregated to generate
the overall concept detection results. Since only keyframes are processed instead of the en-
tire sequence of frames, the static image-based approaches are relatively fast. However, the
temporal information is ignored, which limits the capabilities of these methods in modeling
temporal-related concepts, such as events or object actions. To address such issues, several
approaches have been proposed to incorporate temporal information [36, 44, 107, 117, 151,
205, 263]. However, due to the large scene variations in illumination, background, clutter
and occlusion, these methods are only used in staged videos or surveillance applications

with fixed (or almost fixed) cameras and stable backgrounds.
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In the following sections we will review state-of-the-art concept detection techniques of
classifying static images and dynamic video sequences. Specifically, we group the methods
to two categories: those classifying entire images or video sequences globally, and others

recognizing local object/regions or their actions.

2.2 Related Works on Image Classification

To classify whether a concept is present in an image, the following two elements are required.
A set of visual descriptors (or features) are needed to describe the visual characteristics of
images. Then a machine learning classifier is needed to predict concept presence using these

visual descriptors.

2.2.1 Visual Descriptors

There have been many different types of visual descriptors developed to capture various
visual characteristics. In this subsection we briefly summarize some of the most commonly
used features for detecting generic visual concepts. These descriptors can be categorized as

global ones over entire images or local ones over local patches.

2.2.1.1 Global Descriptors

Global descriptors such as color, texture, or edge histograms [167, 173, 190, 204, 217,
227], coherence vectors [183, 184, 227], correlograms [88, 136, 143], textures from band-pass
filters [148, 149], and color moments [248, 249], have been frequently used in classifying
large-scale image and video collections [2, 24, 248, 249]. To better use the spatial informa-
tion in image, several features have been developed recently, such as the layout histogram
and multi-resolution histogram [70], the Markov Stationary Features (MSF) [127], and the
contextualized histogram [166]. For example, MSF adopts Markov chain models to charac-
terize spatial relationship between histogram bins. It treats the bins as states in Markov
chain models, and interprets the bin co-occurrence as the transition probability between
states.

The main drawback of global visual features is their inability to model the individual ob-
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jects in images. As a result, 