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ABSTRACT

Advanced Techniques for Semantic Concept
Detection in General Videos

Wei Jiang

The automatic analysis and indexing of multimedia content in general domains are im-

portant for a variety of multimedia applications. This thesis investigates the problem of

semantic concept detection in general videos focusing on two advanced directions: multi-

concept learning and multi-modality learning.

Semantic concept detection refers to the task of assigning an input video sequence one

or multiple labels indicating the presence of one or multiple semantic concepts in the video

sequence. Much of the prior research work deals with the problem in an isolated manner,

i.e., a binary classifier is constructed using feature vectors from the single visual modality

to classify whether or not a video contains a specific concept. However, multimedia videos

comprise of information from multiple modalities (both visual and audio). Each modality

brings some information about the other and their simultaneous processing can uncover

relationships that are otherwise unavailable when considering the modalities separately. In

addition, real-world semantic concepts do not occur in isolation. The context information

is useful for enhancing detection of individual concepts.

This thesis explores multi-concept learning and multi-modality learning to improve se-

mantic concept detection in general videos, i.e., videos with general content and are captured

in uncontrolled conditions. For multi-concept learning, we propose two methods with the

frameworks of two-layer Context-Based Concept Fusion (CBCF) and single-layer multi-label

classification, respectively. The first method represents the inter-conceptual relationships

by a Conditional Random Field (CRF). The inputs of the CRF are initial detection prob-

abilities from independent concept detectors. Through inference with concept relations in

the CRF we get updated concept detection probabilities as outputs. To avoid the difficulty



of designing compatibility potentials in the CRF, a discriminative cost function aiming at

class separation is directly minimized. Also, we further extend this method to study an

interesting “20 questions problem” for semantic concept detection, where user’s interaction

is incorporated to annotate a small number of key concepts for each data, which are then

used to improve detection of the remaining concepts. To this end, an active CBCF approach

is proposed that can choose the most informative concepts for the user to label. The second

multi-concept learning method does not explicitly model concept relations but optimizes

multi-label discrimination for all concepts over all training data through a single-layer joint

boosting algorithm. By sharing “good” kernels among different concepts, accuracy of in-

dividual detectors can be improved; by joint learning of common detectors across different

classes, required kernels and computational complexity for detecting individual concepts

can be reduced.

For multi-modality learning, we develop methods with two strategies: global fusion

of features or models from multiple modalities, and construction of the local audio-visual

atomic representation to enforce a moderate-level audio-visual synchronization. Two al-

gorithms are developed for global multi-modality fusion, i.e., the late-fusion audio-visual

boosted CRF and the early-fusion audio-visual joint boosting. The first method is an exten-

sion of the above two-layer CBCF multi-concept learning approach where the inputs of the

CRF include independent concept detection probabilities obtained by using both visual and

audio features, individually. The second method is an extension of the above single-layer

multi-label classification approach, where both visual-based kernels and audio-based ker-

nels are shared by multiple concepts through the joint boosting multi-label concept detector.

These two proposed methods naturally combines multi-modality learning and multi-concept

learning to exert the power of both for enhancing semantic concept detection. To analyze

moderate-level audio-visual synchronization in general videos, we propose to generate a local

audio-visual atomic representation, i.e., the Audio-Visual Atom (AVA). We track visually

consistent regions in the video sequence to generate visual atoms. At the same time we lo-

cate audio onsets in the audio soundtrack to generate audio atoms. Then visual atoms and

audio atoms are combined together to form AVAs, on top of which joint audio-visual code-

books are constructed. The audio-visual codebooks capture the co-occurring audio-visual



patterns that are representative to describe different individual concepts, and accordingly

can improve concept detection.

The contributions of this thesis can be summarized as follows. (1) An in-depth study of

jointly detecting multiple concepts in general domains, where concept relationships are hard

to compute. (2) The first system to explore the “20 questions” problem for semantic concept

detection, by incorporating users’ interactions and taking into account joint detection of

multiple concepts. (3) An in-depth investigation of combining audio and visual information

to enhance detecting generic concepts. (4) The first system to explore the localized joint

audio-visual atomic representation for concept detection, under challenging conditions in

general domains.
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Chapter 1

Introduction

In this thesis, we propose several new methods to detect generic semantic concepts in gen-

eral videos, by exploiting information from multiple modalities, and by jointly considering

multiple concepts.

1.1 Background

With the prevalent use of digital video capturing devices and online search engines, most

users are now accustomed to simple and intuitive interfaces when interacting with large

video sources. Since multimedia videos comprise of unstructured information that usu-

ally is not described by associated text keywords, semantic concept detection (also called

semantic-level indexing or high-level feature extraction in some literatures) is needed to ex-

tract high-level information from raw video data. Semantic concept detection is defined as

the task of assigning an input video one or multiple labels indicating the presence of one or

multiple semantic concepts in the video sequence. Such semantic concepts can be anything

of users’ interest that are visually observable, such as objects (e.g., “car” and “people”), ac-

tivities (e.g., “running” and “laughing”), scenes (e.g., “sunset” and “beach”), events (e.g.,

“birthday” and “graduation”), etc. Semantic concept detection systems enable automatic

indexing and organization of massive multimedia information, which provide important

supports for a broad range of applications such as content or keyword-based multimedia

search, content-based video summarization, robotic vision, and so on.
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Development of large-scale semantic concept detection systems requires several critical

components. First, an ontology is needed to define a list of important concepts and the

relations among the concepts. Such ontologies may be constructed based on formal user

studies or data mining of user interaction logs with online systems. Second, a large corpus

consisting of realistic data is needed for training and evaluation. An annotation process is

also needed to obtain the labels of the defined concepts over the corpus. Third, multimedia

processing and machine learning tools are needed to develop robust classifiers (also called

models or concept detectors) that can be used to detect the presence of each concept in a

video. Fig. 1.1 describes the framework of a typical semantic concept detection system.

Video

time

Info. Extraction Detection

ClassifierVisual Feature
Color

Texture

Local (e.g., SIFT)

Audio Feature
spectrogram

Input Video Feature Extraction

Ontology

Concept Detection

Outputs

Index

Concept Search

Figure 1.1: The framework of a semantic concept detection system.

As will be shown in detail in Chapter 2, researchers have developed many concept detec-

tion systems for various applications. These approaches can be categorized into two broad

categories: one for detecting concepts at the object or region level, the other detecting

concepts in the whole images/videos. In this thesis, we focus on methods that belong to

the second category, due to their compatibility and flexibility in handling a broad range

of concepts and videos. Methods in the first category detect and locate either individual

objects/regions (e.g., “car”, “boat”, “people”, and “sky”), actions of objects (e.g., “people

walking” and “arm lifting”), or dynamic events that comprise of multiple objects and their

interactions in the video (e.g., “car exiting the parking lot”, and “a person leaving his/her

baggage”). Although accurate detection of objects, regions, their actions and interactions

are useful towards the total understanding of images and videos, the tasks are very chal-
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lenging. This is because of the difficulties in determining the locations and scales of target

objects/regions, the variability produced by scene conditions like illumination, background,

clutter and occlusion, and the difficulty in obtaining the object-level label annotation. As

a result, detection in general videos, i.e., videos with general content and are captured in

uncontrolled conditions, is still far from satisfactory. Object-level approaches usually work

only in controlled videos or surveillance applications with fixed (or almost fixed) cameras

and stable backgrounds. For the purpose of detecting generic concepts in general videos,

the global detection methods are relatively more realistic and thus adopted as the focus of

this thesis.

1.2 Our Approach

Traditional concept detection approaches classify images and videos in an isolated manner.

That is, to classify whether an image or video contains a specific concept, a binary classifier

is trained using some feature vectors from a single modality (e.g., visual data alone) and

some statistic recognition models so that a probabilistic judgement can be made for a test

image or video.

Videos comprise of information from multiple modalities, both visual and audio. Each

modality brings information complementary with the others and simultaneous processing

of such sources can uncover relationships that are otherwise unavailable. The need of

integrating multi-model information is confirmed in human perception systems also [3, 45,

69]. As a result, audio-visual multimedia data analysis has received more interest in recent

years [7, 33, 89, 113, 142].

In addition, in the real world semantic concepts usually do not occur in isolation. Such

context information has been shown important for enhancing concept detection accuracy

[102, 162, 192, 198, 238]. For example, a confident detection of one concept (e.g., “car”)

may provide a strong cue about the high likelihood of detecting another concept (e.g.,

“road”) [61, 112]. In this thesis, we will develop several novel methods for improving the

performance of detecting generic concepts in general videos, by focusing on the approaches

of multi-concept learning and multi-modality learning.
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1.2.1 Multi-Concept Learning

In previous literatures (see Section 2.6 for a detailed review), there are different levels

of contexts that have been used for multimedia content analysis. For example, context

can model the local smoothness of pixel labels, the spatial relationship among image re-

gions and objects (e.g., a boat is usually on top of water), and the co-occurrence of ob-

jects (e.g., a computer usually co-occurs with a keyboard). Such context information

has been successfully used in object-level and region-level detection [61, 112, 209, 222,

224]. In addition, context can model the relationship (e.g., causal, co-occurrence, etc.)

among semantic concepts. Since we focus on detection of concepts from the whole image

or video instead of object localization, the context describing relationships among semantic

concepts is the main focus of our work in this thesis.

1.2.1.1 Two-Layer Context-Based Concept Fusion

Recently, a Context-Based Concept Fusion (CBCF ) framework has been proposed (first by

Naphade et al. in [162]) for semantic concept detection in general videos. CBCF has a

two-layer learning structure. In the first layer, independent concept detectors are applied

to get posterior probabilities of individual concepts of a given image or video. Then in the

second layer detection results of individual concepts are updated through a context-based

model by treating detection confidence scores of all concepts as contexts. Earlier CBCF

approaches use pre-defined concept relations such as the ontology hierarchy [246] and the

Bayesian networks (manually constructed in most cases) [179], which can only be used in

specific domains with prior knowledge about the structure of ontology. On the other hand,

the vector model approach does not explicitly model concept relationships [214]. Instead,

initial concept detection scores are used as representation features, on top of which discrim-

inative classifiers such as Support Vector Machines (SVMs) [230] are constructed to model

the proximity relation among concepts. In recent years, the graph-based approach has be-

come popular, where graphical models are used to encode the context information, such as

[162] and [102], with nodes representing concepts, the single-node potentials corresponding

to concept detection scores, and the two-node compatibility potentials reflecting the pair-

wise conceptual relations, e.g., the co-occurrence statistical relationships of concepts. The
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concept detection results are then refined through graph inference.

CBCF, especially the graph-based approach, provides an intuitive framework for in-

corporating inter-conceptual relationships with significant flexibility, e.g., to adopt various

classifiers as single-node concept detectors and to incorporate different types of prior knowl-

edge in building graph structures. The main issue of graph-based CBCF methods, however,

lies in the difficulty of designing appropriate compatibility potentials. Previous methods

use co-occurrence statistics of concepts to approximate pairwise concept relations. Such ap-

proximations become unreliable when we only have limited training data. It is difficult to

obtain accurate co-occurrence statistics involving diverse generic concepts in general videos.

In this case, the errors from the inaccurate approximation of concept correlation will easily

amount to major performance drop.

In this thesis, we develop a multi-concept learning algorithm, namely Boosted CRF–

Concept Fusion (BCRF-CF ), under the framework of CBCF [97]. We model the inter-

conceptual relationships by a Conditional Random Field (CRF) [114], which models the

conditional distribution of concept labels given the initial detection probabilities from inde-

pendent concept detectors. To avoid the difficulty of designing compatibility potentials in

CRF, a discriminative cost function aiming at class separation is directly minimized. That

is, we do not use the co-occurrence statistics of concepts to estimate compatibility poten-

tials. Instead, we transfer the problem of learning compatibility potentials into modeling

the proximity relation among concepts, by learning a discriminative classifier using initial

concept detection scores from independent detectors. The idea is similar to the vector model

approach with the difference that we enforce a CRF graph structure to encode pairwise con-

cept relations. Thus our BCRF-CF inherits the intuitiveness and flexibility of graph-based

CBCF in incorporating inter-conceptual relationships while avoiding designing compatibil-

ity potentials explicitly. Fig. 1.2 illustrates the three multi-concept learning strategies in

CBCF. Specifically we minimize a cost function derived from the CRF targeting at discrim-

ination for all concepts over all training data. Additionally, the Real AdaBoost algorithm

[59] is incorporated to iteratively refine concept detection performance. We propose a sim-

ple but effective criterion to predict which concepts will benefit from CBCF, based on both

information theoretic and heuristic rules. This criterion takes into consideration both the
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strength of relationships between a concept and its neighborhood and the robustness of

detections of this neighborhood. Such prediction scheme allows us to use CBCF wisely,

applying it only when it is likely to be effective.
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Figure 1.2: The three strategies of multi-concept learning using context-based concept

fusion.

Based on the CBCF framework, we further study an interesting active learning scenario:

the “20 questions problem” in semantic concept detection [96]. In this scenario, user’s input

is used to annotate a small subset of concepts per image, which are then used to improve

detection of a large number of remaining concepts. To this end, we propose a new paradigm,

called Active Context-Based Concept Fusion (Active CBCF), to adaptively select the right

concepts, different for each image, for user annotation. This is in contrast to conventional

passive methods where users are asked to annotate all concepts or a subset of arbitrarily

chosen concepts.
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1.2.1.2 Single-Layer Multi-Label Classification

Although CBCF provides a flexible and intuitive framework to incorporate inter-conceptual

relationships, the two-layer framework may suffer from the following potential problems:

detection errors of independent detectors in the first layer can accumulate through learning

of the context-based model in the second layer; and we need to split the training set into two

subsets for learning independent detectors and context-based fusion model, respectively. To

address these issues, Qi et al. [192] have developed a correlative multi-label method where

concept relations are modeled by a Gibbs random field, and the graph structure and concept

detectors are learned together in a single step. However, due to the high complexity (at

least quadratic to the number of concepts), this method becomes infeasible for practical

applications when the number of concepts is large (e.g., dozens or hundreds).

Following the idea of using a single step to learn multi-concept detectors, we also de-

velop a multi-label classification method based on kernel sharing and joint learning [98].

Like the approach of BCRF-CF, we do not explicitly model concept relations but optimize

multi-label discrimination for all concepts over all training data. The motivation is clear:

by sharing visual cues or similarity kernels from multiple related concepts, each individual

concept can be enhanced by adding the descriptive power from others. For instance, as

illustrated in Fig. 1.3, “wedding” is usually hard to detect due to the diverse object appear-

ances and the lacking of strong visual cues. Reliable visual cues may be obtained from the

data subset labeled with “park” to describe the green grass, which can be shared by the

data subset labeled with “wedding” and can be used to separate the combined “wedding”

and “park” set from data of the other concepts. Similarly, the reliable visual cues extracted

from the “crowd” class can be shared by the “wedding” class and can be used to separate the

combined “wedding” and “crowd” set from others. With the help of sharing common clas-

sifiers and kernels among different concepts, the “wedding” concept can be better classified

by the multi-label concept detector. By sharing “good” kernels among different concepts,

accuracy of individual detectors can be improved; by joint learning of common detectors

across different classes, the overall computational complexity for detecting concepts can be

reduced.
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parkcrowd

wedding

share grassland

share visual cues

describing “grass”

wedding

parkcrowd

classifier boundary

(a)

park

wedding

crowd

share crowded people

wedding

parkcrowd

share visual cues describing

“crowded people”
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(b)

Figure 1.3: Sharing features and classifiers to help detect individual concepts. (a) Visual

cues (describing grass) obtained from the “park” data are shared by the “wedding” data and

are used to separate “wedding” and “park” from other concepts. (b) Visual cues (describing

people) obtained from the “crowd” data are shared by the “wedding” data and are used to

separate “wedding” and “crowd” from other concepts.

Specifically, in this approach we propose a new kernel construction algorithm, Vocabulary-

Spatial Pyramid Matching (VSPM ), which constructs multi-resolution visual vocabularies

by hierarchical clustering of local visual features over interest points and computes similarity
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kernels based on spatial matching. VSPM combines the power of multi-resolution spatial

matching and multi-layer vocabulary fusion. Such a combined method is used to generate

multiple vocabularies/kernels for each concept, which are further aggregated and shared

by all concepts. To jointly learn kernel-based detectors and to share kernels from different

concepts, we propose a joint boosting algorithm to automatically select the optimal kernels

and the subsets of sharing concepts in an iterative boosting process.

1.2.2 Multi-Modality Learning

Physiological evidence and analysis of biological systems also show that fusion of audio-

visual information is useful to enhance human perception [3, 45, 69]. As will be shown in

detail in Section 2.5, several works combine the audio information with the visual cues for

speech/speaker recognition and object localization in videos. For example, visual features

obtained by tracking the movement of lips, mouths, and faces can be combined with audio

features describing acoustic speech for improved speech and speaker recognition [92, 141].

However, most of the previous multi-modality approaches cannot be easily applied to

detect generic semantic concepts in general videos, due to several reasons. First, both object

detection and tracking are difficult in general videos. There exist uneven lighting, clutter,

occlusions, and complicated motions of multiple objects and the camera. As a result, it is

hard to segment objects with satisfactory accuracy. Second, blind sound source separation,

especially in real-world outdoor scenes, remains challenging. Finally, the synchronization

between sounds and visual objects that make sounds cannot be observed most of the time.

Objects may make sounds without large movements, and often some objects making sounds

do not appear in the video.

1.2.2.1 Global Multi-Modal Fusion

Due to the above challenging conditions, the current concept detection methods (as will be

shown in Section 2.5.3 in detail) take the global fusion strategies to use both audio and visual

information, which avoid object-level visual and audio analysis or synchronization. In early

fusion, features from different modalities are concatenated to make a long feature vector

to train classifiers [245]. In late fusion, individual classifiers are built for each modality,
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and their predictions are combined to make the final decision [90, 130]. Although the

fusion frameworks are simple to use, there are several issues limiting the performance.

Early fusion methods usually suffer from the “curse of dimensionality”, as the concatenated

multi-modal feature can have very high dimensionality (e.g., thousands of dimensions). In

addition, different modalities may contribute to the classification task unevenly, i.e., some

modalities may be more important than others in detecting a specific concept. Dimension

reduction and feature selection are usually required in practice, which are still unsolved in

most practical cases. As for late fusion, how to select the appropriate classifier combination

strategy remains a basic machine learning problem [108, 189] and the best combination

strategy depends much on the particular problem in hand.

In this thesis, we develop two multi-modality fusion approaches [24]. The first method

is a late fusion approach, where the above mentioned BCRF-CF algorithm proposed for

multi-concept learning is extended to an Audio-Visual Boosted Conditional Random Field

(A-V Boosted CRF ) method to incorporate both audio and vidual-based detectors for en-

hanced classification. In the first layer of CBCF, individual concept detectors are built

over visual and audio features, respectively, which are then applied to get visual-based and

audio-based probabilistic estimations of concept labels, respectively. All these visual-based

and audio-based initial estimation results are used as inputs in the second layer, and the de-

tection results of each individual concept can be updated through the context-based model.

Late fusion through our A-V Boosted CRF provides a natural way to combine individual

judgements from the visual channel and audio channel. Instead of choosing combination

strategies explicitly, predictions from different modalities are fused together through pur-

suing discriminative class separation.

The second method is an early fusion approach, where we extend the above mentioned

kernel and classifier sharing algorithm in Section 1.2.1.2 to an Audio-Visual Joint Boosting

(A-V Joint Boosting) method. In this extended approach, both the visual-based VSPM

kernels and the audio-based kernels from acoustic analysis are put together into a big kernel

pool, on top of which the SVM-based joint boosting algorithm can be used to select the

optimal subset of kernels to share among various concepts. Instead of using direct feature

concatenation, our A-V Joint Boosting method selects and fuse the optimal types of kernels
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generated from multiple modalities for enhanced classification.

Both A-V Boosted CRF and A-V Joint Boosting can be considered as natural combina-

tions of multi-modality learning and multi-concept learning, and are flexible to incorporate

other modalities (e.g., textual). For instance, textual features can be used either to train

individual concept detectors as additional inputs for the CRF or to build additional kernels

to be shared by joint boosting.

1.2.2.2 Local Audio-Visual Atoms

Despite promising performance improvements, the fusion methods (either early or late fu-

sion) have limitations in capturing joint audio-visual local patterns. The joint representation

of local visual and audio features captures the correlations between audio and video fea-

tures that are unique for videos of a certain concept. For example, the joint pattern of a

cake object and the birthday music is an intuitive joint audio-visual cue for the “birthday”

concept, while the joint pattern of a cake object and the wedding music strongly implies

the “wedding” concept. Additionally, the joint pattern of smoke and the siren sound may

suggest an explosion/fire incident, while the busy highway and the siren sound may indi-

cate some traffic accidents. However, such audio-visual patterns have never been explored

in general video analysis before.

As discussed before, object-level audio and visual analysis and audio-visual synchro-

nization are difficult in general videos. In this thesis, we propose to capture interesting

audio-visual cues by extracting localized Audio-Visual Atoms (AVAs) in videos [99]. AVAs

provide a balanced choice for exploring audio-visual correlation in general videos. Com-

pared to the tight audio-visual synchronization methods focusing on object detection and

tracking in both audio and video, AVAs do not rely on precise object extraction. Instead, we

track visually consistent regions in video and locate audio onsets in the audio soundtrack,

respectively. Then we generate an audio-visual atomic representation in which a moderate

level of synchronization is enforced between local region tracks and local audio onsets. The

audio-visual correlation we capture is based on co-occurrence in a short-time window, e.g.,

the co-occurrence of a cake and the birthday music or that of smoke and the siren sound.

This is in contrast to the precise synchronization between tracked visual objects and audio
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sources in the sound track.

Specifically, we track automatically segmented regions based on the visual appearance

within a short video slice (e.g., 1 second), and then connect visually similar short-term

region tracks from adjacent short-term video slices into long-term region tracks, called

visual atoms. At the same time we locate audio energy onsets from the corresponding

audio soundtrack by decomposing the audio signal into most prominent bases from a time-

frequency representation, and then extract audio features from the reconstructed audio

signal within a short window around each local energy onset. Such reconstructed short-term

audio signals around energy onsets are called audio atoms. Then visual atoms and audio

atoms are combined together to form joint audio-visual atomic representations, i.e., AVAs.

Based on these AVAs, joint audio-visual codebooks are constructed, and the codebook-based

features are used for concept detection.

1.3 Unique Contributions

The contributions of this thesis can be summarized as follows. (1) An in-depth study of

jointly detecting multiple concepts in general domains, where concept relationships are hard

to determine. (2) The first system to explore the “20 questions” problem for semantic con-

cept detection, by incorporating users’ interactions and taking into account joint detection

of multiple concepts. (3) An in-depth investigation of combining audio and visual informa-

tion to enhance detecting generic concepts. (4) The first system to explore the localized

joint audio-visual atomic representation for concept detection, under challenging conditions

in general domains.

We evaluate the proposed approaches over two large-scale realistic data sets in the gen-

eral domain: the TRECVID 2005 news video set [170], and Kodak’s consumer benchmark

video set [137]. Both data sets are among the largest and the most challenging ones ex-

isting for evaluating video concept detection methods. The experimental results can be

summarized as follows.

The multi-concept approaches are evaluated over the TRECVID 2005 news video set.

Experimental results confirm the effectiveness of the proposed BCRF-CF and the method
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predicting when it will work. That is, out of 39 evaluated concepts 26 are automatically

chosen by our prediction method to use BCRF-CF, among which 21 actually get perfor-

mance improvements; the overall MAP on these 26 concepts is improved by 6.8% compared

to the baseline independent detectors. In addition, the Active CBCF paradigm can indeed

improve concept detection by using user’s annotation. For example, the MAP of Active

CBCF on the selected 26 concepts outperforms BCRF-CF by 3.4%, and outperforms the

baseline individual detectors by 9.2%. As for the proposed multi-concept approach with

feature and classifier sharing, experimental results also demonstrate significant performance

gains, i.e., 10% in MAP and up to 34% AP for some concepts like “maps”, “building”, and

“boat-ship”.

The multi-modality approaches are evaluated over Kodak’s consumer benchmark video

set. Results show that compared with using individual visual or audio features alone, by

combining audio and visual aspects using multi-modality fusion (A-V Boosted CRF or

A-V Joint Boosting) we can get significant performance improvements, e.g., a 10% MAP

gain. For the localized joint audio-visual atomic representation, experiments confirm that

it can capture frequently co-occurring audio-visual patterns unique to individual concepts,

and achieve a significant performance improvement. For example, compared with single-

modality approaches, the overall MAP is improved by 8.5%, and more than 20% AP gains

are obtained for many concepts like “animal”, “beach”, “boat”, “dancing”, “museum”, and

“playground”.

1.4 Thesis Overview

The remainder of the thesis is organized as follows. In Chapter 2, we provide a survey

of research works related to semantic concept detection in images and videos and state-

of-the-art solutions using multi-modality and/or multi-concept learning. In later parts of

Chapter 2, we describe the experimental setup used throughout the whole thesis. Specifi-

cally we present Kodak’s consumer benchmark video set. As far as we know, this is the first

systematic work in the consumer video domain aimed at the definition of a large lexicon,

construction of a large benchmark data set, and annotation of videos in a rigorous fashion.
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After that, we introduce the TRECVID 2005 news video set, the performance evaluation

metrics, the visual features we will use for most of our methods, as well as the baseline

approach we will use for comparison.

In Chapter 3 we introduce the proposed BCRF-CF algorithm for multi-concept learn-

ing, under the framework of CBCF. In addition, we study the “20 questions problem” for

semantic concept detection by developing the Active CBCF approach.

In Chapter 4 we describe the details of sharing kernels and classifiers through the con-

struction of a multi-label concept detector by joint boosting. Our method automatically

selects optimal kernels and subsets of sharing concepts in an iterative boosting process,

which is also flexible in incorporating any type of kernel.

In Chapter 5 we introduce our multi-modality fusion algorithms: A-V Boosted CRF

and A-V Joint Boosting. They incorporate both audio and visual signals for enhanced

classification by extending, respectively, the BCRF-CF algorithm proposed in Chapter 3

and the kernel/classifier sharing method proposed in Chapter 4.

In Chapter 6 we describe our approach to discover joint audio-visual patterns in general

videos. We extract atomic representations, i.e., AVAs, based on which joint audio-visual

codebooks are constructed to capture salient audio-visual patterns for effective concept

detection.

Finally, in Chapter 7 we present the conclusions and future research work.
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Chapter 2

Review of Concept Detection in

Images and Videos

In this chapter we will provide an overview of research related to semantic concept detection

for both static images and dynamic video sequences. These include image classification

based on the global images; recognition of regions or objects in images; object or region-

level action detection in video sequences; and concept detection over entire video sequences.

In addition, we will review previous works exploring multi-modality learning that use both

visual and audio information, and works that use context information for improving content

analysis accuracy. We will also describe the data sets used in experiments, including Kodak’s

consumer video benchmark data set developed by us [137], the TRECVID news video set

[170], and the performance metrics associated with these data sets.

2.1 Terminology

As shown in Fig. 2.1, a video concept detection task may be formulated as follows. Let

v denote a video that is partitioned into K consecutive video segments u1, . . . , uK with

fixed-length intervals or shot segmentation boundaries (shots are smooth video segments

between transitions). A set of frames Ĩ1
k , . . . , Ĩ

T
k are uniformly sampled (e.g., 30 frames per

second) from each video segment uk. In addition, representative keyframes are extracted

from each video segment uk, e.g., one keyframe I for each segment uk. Assume that there
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are M semantic concepts, C1, . . . , CM . Let yx denote the concept labels of an data x,

yx = [y1
x, . . . , y

M
x ], with ym

x = 1 or −1 indicating the presence or absence of concept Cm in

data x. Data x can be a frame Ĩ, a keyframe I, a video segment u, or an entire video v.

Let Fv (Fa) denote a certain feature space describing the visual (audio) characteristics of

videos, and fv(x) (fa(x)) is the feature vector of data x in the feature space Fv (Fa).

video segment: u

individual frame:

. . .

video v

I%

...

keyframe: I

... ... ...

concept label: y
I

Figure 2.1: Data structure of a video concept detection task.

Video concept detection can be achieved in many different ways. We can classify individ-

ual image keyframes or classify the entire video sequence. Static image-based classification

is a popular way for video concept detection [2, 24, 25, 170, 248, 249]. In this approach, clas-

sifiers are applied to static image keyframes sampled from video segments, which estimate

likelihoods of the presence of concepts in each keyframe. Over the entire video segment,

these concept occurrence likelihoods over individual keyframes are aggregated to generate

the overall concept detection results. Since only keyframes are processed instead of the en-

tire sequence of frames, the static image-based approaches are relatively fast. However, the

temporal information is ignored, which limits the capabilities of these methods in modeling

temporal-related concepts, such as events or object actions. To address such issues, several

approaches have been proposed to incorporate temporal information [36, 44, 107, 117, 151,

205, 263]. However, due to the large scene variations in illumination, background, clutter

and occlusion, these methods are only used in staged videos or surveillance applications

with fixed (or almost fixed) cameras and stable backgrounds.
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In the following sections we will review state-of-the-art concept detection techniques of

classifying static images and dynamic video sequences. Specifically, we group the methods

to two categories: those classifying entire images or video sequences globally, and others

recognizing local object/regions or their actions.

2.2 Related Works on Image Classification

To classify whether a concept is present in an image, the following two elements are required.

A set of visual descriptors (or features) are needed to describe the visual characteristics of

images. Then a machine learning classifier is needed to predict concept presence using these

visual descriptors.

2.2.1 Visual Descriptors

There have been many different types of visual descriptors developed to capture various

visual characteristics. In this subsection we briefly summarize some of the most commonly

used features for detecting generic visual concepts. These descriptors can be categorized as

global ones over entire images or local ones over local patches.

2.2.1.1 Global Descriptors

Global descriptors such as color, texture, or edge histograms [167, 173, 190, 204, 217,

227], coherence vectors [183, 184, 227], correlograms [88, 136, 143], textures from band-pass

filters [148, 149], and color moments [248, 249], have been frequently used in classifying

large-scale image and video collections [2, 24, 248, 249]. To better use the spatial informa-

tion in image, several features have been developed recently, such as the layout histogram

and multi-resolution histogram [70], the Markov Stationary Features (MSF) [127], and the

contextualized histogram [166]. For example, MSF adopts Markov chain models to charac-

terize spatial relationship between histogram bins. It treats the bins as states in Markov

chain models, and interprets the bin co-occurrence as the transition probability between

states.

The main drawback of global visual features is their inability to model the individual ob-
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jects in images. As a result, global visual features may not give satisfactory performance in

classifying object-oriented concepts, such as “bike”, “dog”, “car”, etc. The major advantage

of global descriptors, however, is their simplicity and efficiency since region segmentation

or object extraction is not needed. Thus, global descriptors are still widely used for image

classification, especially in scenarios involving a large number of images.

2.2.1.2 Local Descriptors

In recent years, local descriptors have become very popular for image classification and

object recognition. Typically, a local descriptor is extracted from a local region or patch

centered on a local interest point. The local interest point is an image pattern that differs

from its neighborhood and is usually associated with a change of certain image properties

such as intensity, color, and texture.

Tuytelaars and Mikolajczyk [226] categorize local interest points into three broad cate-

gories based on their possible usage. The first type has specific semantic interpretations in

some restricted application context. For instance, edges detected in aerial images often cor-

respond to roads; blob detection can be used to identify impurities in some inspection tasks;

etc. The second type is the well localized and individually identifiable anchor points, whose

location can be determined accurately and in a stable manner over time. For instance, the

features used in the KLT tracker [207] minimize intensity dissimilarity for tracking under

the assumption of affine transformation. Finally the third type is the interest points intro-

duced for robust image representation and recognition without the need for segmentation.

They do not have to be localized precisely, since the goal is not to match them on an

individual basis, but rather to analyze their statistics in the local neighborhood of these

points. The last type has become popular in recent image classification and object recog-

nition research, including interest points based on image intensity, e.g., Hessian points [11,

153, 154], Harris points [9, 73, 133, 154], Maximally Stable Extreme Regions (MSER) [152,

156], and Laplacian-of-Gaussian (LoG) or Difference-of-Gaussian (DoG) points [138, 200],

and those based on image color, e.g., salient points based on color distinctiveness [229] and

Harris color points [157]. Different interest points emphasize different aspects of invariance

of image properties. For example, LoG/DoG and Hessian detects target at blobs with lo-
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cal maxima/minima in the intensity or color channels. The Harris Laplace detector finds

corner points, specifically, points with large variation of autocorrelation at different scales.

Detailed description and discussion about these interest points can be found at [132, 226,

228].

Given the detected interest points, a large number of local descriptors can be calculated

over the local regions that emphasize different image properties like pixel intensities, color,

texture, edges, etc. The Scale Invariant Feature Transform (SIFT) descriptor proposed by

Lowe [138] has been very popular for image matching and object recognition. The SIFT

descriptor is represented by a 3D histogram of gradients (typically with 128 dimensions)

computed from the local neighborhood based on locations and orientations. The invariance

property of SIFT is usually inherited from the invariant interest points. For instance,

SIFT is scale-invariant over DoG minima/maxima that are applied in scale-space to a series

of smoothed and resampled images1, and is affine-invariant over Harris-affine or Hessian-

affine points that define affine neighborhoods by the affine adaptation process based on

the second moment matrix. The quantization of gradient locations and orientations makes

SIFT robust to small geometric distortions and small errors in region detection. Similar to

the SIFT descriptor, the edge-based shape context proposed in [12] is a 3D histogram of edge

point locations and orientations, which has been successfully used, for example, for shape

recognition of drawings where edge features are reliable. However, this edge-based descriptor

is very sensitive to image blur. Lazebnik et al. [118] propose an invariant descriptor

called spin image, which is a histogram of pixels based on quantized locations and intensity

values. They show that the region-based spin image is very effective in texture classification.

However this descriptor is sensitive to illumination changes. The Gradient Location and

Orientation Histogram (GLOH) descriptor proposed in [155] extends the location grid of

SIFT and uses PCA to reduce the feature size, where the covariance matrix for PCA is

estimated on local image regions collected from some training images. A comprehensive

empirical comparison of several local descriptors is conducted by Mikolajczyk and Schmid

and can be found in [155].

With the development of the large variety of local descriptors that have shown promising

1Dominant orientation is assigned to each local interest point to make SIFT rotation-invariance in [138].
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performance, the Bag-of-Features (BoF ) representation [54, 100, 235, 259] has attracted

much attention in recent years. The BoF method treats an image as a collection of unordered

local descriptors extracted from local regions, quantizes them into instances of discrete

visual words defined in a visual vocabulary that is often constructed by an unsupervised

clustering method like K-means. Many works have been done to improve the traditional

BoF model, such as generative methods in [16, 18, 125, 193] for modeling the co-occurrence

of the codewords, discriminative codebook learning in [50, 103, 158, 253] instead of standard

unsupervised clustering, and Spatial Pyramid Matching (SPM) [119] for modeling the spatial

layout of the local features. Among these extensions, SPM has been shown quite successful

in the evaluation of several benchmarks like Caltech-101 [124] and Caltech-256 [67]. Also, a

linear SPM is recently proposed by Yang et al. [252] based on SIFT sparse codes to further

reduce the computational complexity.

2.2.2 Kernel-based Classification

Among various approaches for image classification, kernel-based discriminative learning

methods, e.g., the Support Vector Machine (SVM) [230], have been demonstrated effective

for detecting generic concepts in many works [2, 17, 64, 65, 67, 85, 110, 119, 171, 259]. In

this thesis, all of our proposed algorithms will also use kernel-based discriminative learning

methods, specifically, SVM-based algorithms, for video concept detection.

2.2.2.1 SVM Classifier

The target of SVM [230] is to learn a classifier based on a set of labeled training data X =

{xn, yxn}, n = 1, . . . , N . Each training data xn is represented as a point in a d-dimension

feature space and is associated with label yxn , where yxn =±1. SVM finds the classifier

as an optimal separating hyperplane that gives a low generalization error while separating

the positive and negative training samples. Given a data point xn, SVM determines its

corresponding label by the sign of a linear decision function: f(xn)=wT xn+b. For learning

non-linear classification boundaries, a mapping function φ is introduced to embed data

vector xn into a high dimensional feature space as φ(xn), and the corresponding class label

is given by the sign of f(xn)=wTφ(xn)+b. In the SVM classifier, this optimal hyperplane
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is determined by giving the largest margin of separation between different classes, i.e., by

solving the following problem:

min
w,b,ǫ

Q = min
w,b,ǫ

{

1

2
||w||22 + C

N
∑

n=1

ǫi

}

,

s.t. yxn(wTφ(xn) + b) ≥ 1− ǫn, ǫn ≥ 0,∀ (xn, yxn) ∈ X (2.1)

where ǫ=ǫ1, . . . , ǫN are the slack variables assigned to training samples, and C controls the

scale of the empirical error loss the classifier can tolerate.

By introducing non-negative Lagrange multipliers α= α1, . . . , αN and µ= µ1, . . . , µN ,

we have:

∂Q

∂w
= 0⇒ w =

∑N

n=1
αnyxnφ(xn)

∂Q

∂b
= 0⇒

∑N

n=1
αnyxn = 0,

∂Q

∂ǫn
= 0⇒ C − αn − µn = 0, n = 1, . . . , N

And then we can get the dual problem of Eqn. (2.1) as follows:

max
α

Qdual = max
α

N
∑

n=1

αn −
1

2

N
∑

n=1

N
∑

m=1

αnαmyxnyxmφ
T (xn)φ(xm) (2.2)

Through defining k(xn,xm) = φT (xn)φ(xm) as a kernel, we can solve the Quadratic Pro-

gramming (QP) problem in Eqn. (2.2).

There are several advantages of using SVM for image classification. SVM provides

non-linear classification and avoids explicit definition of the function class for non-linear

mapping. SVM has good generalization ability and can get reasonable performance with

limited training data. In addition, SVM is flexible to incorporate a large variety of kernels

from which we can select appropriate ones for solving different problems. More theoretic

discussion and analysis about SVM can be found in [230].

2.2.2.2 Kernel Construction

The kernel trick [1] is adopted in SVM to enable the use of a linear classifier to solve a non-

linear problem by mapping the original non-linear observations into a high-dimension space.

With Mercer’s theorem, a continuous, symmetric, positive semi-definite kernel function
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k(xn,xm) can be expressed as an inner product in a high-dimension space: k(xn,xm) =

φ(xn) · φ(xm). In practice, a large variety of kernels that satisfy Mercer’s conditions have

been applied to different types of features for image classification2. These include traditional

kernels such as Radial Basis Function (RBF), pyramid matching kernel [64], spatial pyramid

matching kernel [119], proximity distribution kernel [134], chi-square kernel [17], etc.

The proliferation of the large variety of kernels has also motivated researchers to explore

combinations of kernels. In [64, 119] multiple-levels of histogram intersection kernels are

linearly combined, resulting in some of the best image classification performances. Although

the fixed weighting makes sense intuitively, a more rigorous way to find optimal weighting

is necessary. De la Torre et al. [38] learn the positive combination weights of normalized

kernels using gradient descent search. Bosch et al. [17] learn weighting parameters using a

validation set, over which an exhaustive search for the optimal weighting is pursued. Both

methods cannot scale to a large number of kernels due to the complexity of the computation

overhead.

To further improve the classification performance, recently researchers have started to

explore the more general Multiple Kernel Learning (MKL) problem: how to effectively

combine heterogeneous kernels constructed from different feature spaces; how to select the

appropriate kernels for different tasks; how to determine the optimal weights to combine

kernels; and finally, if possible, how to simultaneously learn an optimal kernel combination

and the associated classifier. Some methods [5, 34, 110, 116] formulate the objective of

learning a sparse combination of kernels as a convex, quadratically constrained quadratic

problem, which can be efficiently solved, for example, by using semidefinite programming

or sequential minimal optimization techniques. To incorporate information from unlabeled

data, semi-supervised kernel matrix learning methods have also been developed [81, 264].

2.2.3 Evaluation

There are several data sets widely used to evaluate generic image classification, including

Caltech-101 [124], Caltech-256 [67], the PASCAL Visual Object Detection Challenge (VOC)

2Some kernels that do not satisfy Mercer’s condition have also been used in some applications, such as

the image matching kernel in [19] for object recognition.
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[182], Corel data sets [22] (e.g., Corel5K [47] and Corel30K [126]), etc. The Caltech-101 data

set [124] consists of images from 101 object categories and an additional background class.

The images were collected by choosing a set of object categories, downloading data from

Google Image and then manually screening out images that did not fit the category. The

data set contains some variations in color, pose and lighting. Caltech-256 [67] was collected

in a similar manner to Caltech-101, where the number of categories was increased to 256,

the minimum number of images in each category was increased, the artifacts due to image

rotation were avoided, and a new and larger clutter category was introduced for testing

background rejection. Images in both Caltech-101 and Caltech-256 are often uniform in

presentation, well aligned, and usually not occluded. As a result, the images are often quite

different from real-world cases where there often exist clutter, occlusion, and variance in

position, size, and orientation of objects and backgrounds [187].

The PASCAL VOC data consists of a few thousand images annotated with bounding

boxes for objects of twenty categories (e.g., “car”, “bus”, “airplane”). The classification

challenge is the following: for each of the twenty classes, predict the presence/absence of

any instance of the class in the test image. The participants will generate the confidence

score of the predicted class for each test image during evaluation. Compared to Catelch-101

or Caltech-256, PASCAL VOC has a smaller number of categories. However, the number

of images in each categories is larger, and there is much more intra-class variation. So

far, the state-of-the-art image classification performances are achieved by using multiple

types of local descriptors in the form of BoF, including information about spatial layout

of local descriptors, and learning good combinations of multiple kernels [67, 119, 124, 182,

258].

2.3 Related Works on Object/Region Recognition in Images

Detection and localization of specific objects or regions can be very helpful for image clas-

sification. For instance, if one has a good object detector, it becomes easy to predict image

categories when some objects are successfully detected. In this subsection we summarize

state-of-the-art object and region-based recognition methods from two different perspec-
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tives: object localization and multi-class image segmentation, both of which have attracted

great attention during the recent years in the computer vision field.

2.3.1 Object Localization

The objective of object localization is to determine if one or more objects of a category

are present in an image and, if so, find the locations of such objects in the image. This

is a challenging issue due to appearance variations, scene clutter, viewpoint changes, and

deformations of the objects.

In object localization, various approaches have been proposed to locate objects in the

scene by matching object models to the observations, including pictorial structures [53],

constellation models [54], implicit shape models [121]. Search for the optimal matching is

usually done either of the following methods: sliding windows [31, 35, 55, 234] and voting

methods based on the Hough transform [86].

Sliding windows scan over possible locations and scales, evaluate a binary classifier, and

use post-processing such as non-max suppression to detect objects. Sliding window classi-

fiers are well suited for detecting rigid objects and have been widely used for detection of

faces [178, 234], pedestrians [35, 159], cars [180], etc. The computational burden of this

procedure is in general large although various techniques have been proposed to alleviate

the complexity issue, such as cascaded classification [232, 234], branch-and-bound [115],

and efficient classifier evaluation [144]. For example, cascades have several computational

limitations: the training process is slow, and a cascade usually reduces the overall perfor-

mance. In addition, as discussed in [68] the sliding window approaches differ significantly

from the nature of human visual detection, where attention is directed to certain locations

based on low-level salience rather than uniformly to all locations. Nonetheless, due to its

simplicity, the siding window approach remains to be the most popular one for locating

objects in scenes.

Hough voting [86] parametrizes the object hypothesis (e.g. the location of the object

center), lets each part of the object model vote for a point in the hypothesis space, and

finally chooses the hypothesis with the highest number of votes. The Hough transform has

been used for various problems including shape detection [6], instance registration [138], and
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category recognition [145, 177, 208]. Hough transform is much faster than sliding windows

(e.g., analogous to linear sliding windows in [120]), while sliding windows methods are more

flexible. That is, Hough transform only works on constrained models, e.g., detecting certain

shapes like lines, while sliding windows can work over discriminatively learned models.

One key issue for Hough voting is how to find a local estimate of the scale, for which

various approaches have been proposed in earlier years [104, 138]. However, recent works

obtain good performance by sampling features densely over a large range of scales [16,

51]. When the Hough transform is extended to estimate both location and scale, each local

feature casts votes that form lines through the hypothesis space instead of a single point as

in most current voting methods [56, 122, 177]. Ideally, all points on an object would yield

lines that intersect in a single point. Due to intra-class variation and background clutter,

the points of intersection are degraded into scattered clouds. In [175] an effort has been

made to search for these object clusters through a weighted pairwise clustering of local

votes. However, finding these clusters is quite difficult due to the unknown cluster number

(that corresponds to the number of objects in the scene) and the difficulty in assigning votes

to objects.

2.3.2 Evaluation of Object Localization

Two most popularly used data sets to evaluate object detection algorithms are the PASCAL

VOC data set [182] and the MSRC data set [210]. Again, the PASCAL VOC set consists

of a few thousand images annotated with bounding boxes for objects of twenty categories.

The detection challenge is the following: predict the bounding box and label of each object

belonging to any of the target classes in a test image. Each bounding box has a confidence

value, which is used to generate a precision-recall graph for each class during performance

evaluation. Detections are considered true or false positives based on their overlap with

ground truth bounding boxes. The overlap between a proposed bounding box R and the

ground-truth box Q is computed as: area|Q∩R|
area|Q∪R| . An overlap of 50% or greater is labeled as

true positive. Any additional overlapping bounding box (duplicate detections) are rejected

as false positives. Performance is then measured by the average precision. More details of

the challenge can be found in [182]. The MSRC data set [210] consists of 591 photographs
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of 21 object classes: “building”, “grass”, “tree”, etc. The training images are hand-labeled

with the distinct object classes. The data set consists of general lighting conditions, camera

viewpoint, scene geometry, object pose and articulation. More details can be found in

[210]. So far, similar to the case of image classification, the state-of-the-art performance

of object localization is achieved by using BoF with multiple types of local descriptors,

including spatial layout information of local descriptors. More detailed discussion of the

state-of-the-art performance over the PASCAL VOC challenge can be found at [52].

2.3.3 Multi-Class Image Segmentation

Segmenting an entire image into distinct recognizable regions is a central challenge in com-

puter vision that has received increasing attention in recent years. Unlike object localization

methods that aim to find a particular object, multi-class image segmentation (also called

multi-class image labeling) methods aim at concurrent multi-class object recognition and

attempt to classify all pixels in an image.

A number of methods have been proposed to address this problem [63, 75, 109, 194, 210,

239, 240]. Typically these algorithms construct Conditional Random Field (CRF) [114] de-

fined over the pixels (or small coherent regions called superpixels) with local class predictors

based on pixel appearance and a pairwise smoothness term to prefer consistent labels over

neighboring pixels (i.e., classifying visually-contiguous regions consistently). Optimizing

the energy defined by this CRF is then equivalent to finding the most probable segmenta-

tion. The superpixel representations are usually obtained from unsupervised segmentation

algorithms, and such representations have the benefit that features computed from con-

stituent pixels in the segment can be computed and used for classification. Furthermore,

it is also faster as inference only needs to be performed over a small number of superpixels

rather than all the pixels in the image.

Due to imperfect segmentation, image segments are usually inconsistent with object

boundaries. To alleviate these problems [82] and [199] use multiple segmentations of the

image (instead of only one) hoping that although most segmentations are inaccurate, some

are correct and thus useful for recognition. The recognition results of the multiple seg-

mentations are merged using heuristic algorithms. In [109], higher order CRFs are used
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whose potentials are defined on sets of pixels (image segments) as a generalization of the

commonly used pairwise smoothness potentials. The graph cut based algorithms are then

used to conduct inference under such a framework.

Besides object detection and multi-class image labeling, there are some interesting works

targeting at high-level holistic scene understanding. The aim is to jointly reason about

objects, regions and 2D geometry of a scene, hoping that the errors from separate tasks can

be reduced through the holistic modeling. An important step towards the goal of holistic

scene understanding is to decompose the scene into regions that are semantically labeled and

placed relative to each other within a coherent scene geometry. The global scene information

has been incorporated in several works for improving object recognition or detection [83,

161, 218, 225]. New developments include the recent work of Tu [224] where a scene is

decomposed into regions, text and faces using an innovative data driven MCMC approach

on a generative model of the scene; the work of Li and Li [128] where a graphical model of

events (e.g., badminton or sailing) in images is proposed to describe each event as a latent

factor conditioning the generation of objects and scene categories; and the latest work of

Li et al. [129] where a hierarchical generative model is used to classify the overall scene,

recognize and segment object components, and annotate the image with a list of tags.

Researchers have used many different data sets to evaluate multi-class image segmen-

tation algorithms, including the MSRC data set [210], the 7-class Corel and Sowerby data

sets [75], the 3-class GC data set [84], etc. However, there still lacks systematic evaluation

to compare different multi-class image segmentation algorithms over a unified benchmark.

This is partly because of the difficulty in acquiring a large amount of ground-truth data

for evaluation, where images need to be fully segmented and image regions need to be

annotated, both manually.

2.4 Related Works on Classifying Dynamic Video Sequences

In order to detecting temporal-related events and object actions, many methods have been

proposed to incorporate temporal information from dynamic video sequences. Similar to

static image-based classification, these methods can be roughly categorized into those recog-
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nizing object-level actions (e.g., “people walking”, “car exiting” and “people carrying a

luggage”) or others classifying global video sequences into generic semantic categories (such

as “parade” and “wedding”).

2.4.1 Object-Level Action Recognition

Robust detection and recognition of object-level actions is very useful for video content

description, since it provides unique object-level dynamic information. As summarized

in [165], actions may involve dynamic textures (e.g., “flowing water”), activities that are

temporally periodic and spatially restricted (e.g., “people walking”), or motion events that

do not repeat (e.g., “people smiling”). Object-level action recognition is a challenging task,

not only because of the scene variability in illumination, background, occlusion, but also

because of object motion, deformation, and interaction among objects. In the following

we briefly review previous object action recognition approaches. These methods have been

widely used in the surveillance, indoor and office environments, and sports domains, in

which videos are often captured by fixed (or almost fixed) cameras.

Earlier works for object action detection are constrained to well-controlled environ-

ments. For example, Bobick and Davis [15, 37] derive the temporal template representation

from background subtracted images. They can handle a variety of choreographed actions

across different subjects and views, but require two stationary cameras and a stationary

background. Blank et al. [14] represent actions by describing the spatio-temporal shape

of silhouettes. Their approach relies on background subtraction to obtain a silhouette of

the moving subject. Izumi and Kojiama [93] propose an approach to generate natural

language descriptions of human behavior. A hierarchy of actions called a case frame is

developed for each body part and each object. Zelnik-Manor and Irani [256] use mar-

ginal histograms of spatio-temporal gradients at several temporal scales to cluster and

recognize video events. Rao et al. [197] use the motion curvature of objects and con-

duct dynamic object segmentation in space and time. The time, location and sign of

the curvature are matched to templates for action recognition. Ramanan et al. [196,

206] track objects through time and generate a trace of model parameters, which is then

compared with the trace of the target spatio-temporal pattern to determine whether the
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observed event is of interest. Efros et al. [49] study the actions in sports games with rel-

atively simple backgrounds. Ke et al. [107] proposed the volumetric features to correlate

spatio-temporal shapes to segmented video clips. Albeit intuitively reasonable, these meth-

ods have difficulty in applying to videos where camera motion cannot be robustly removed

and clean foreground objects cannot be extracted.

Recently, spatio-temporal interest points have become popular in the action recognition

community. Both generative and discriminative methods have been developed. For example,

Dollár et al. [43] model neighborhoods of interest points as cuboids and construct histograms

based on normalized pixel intensity, brightness gradient and windowed optic flow. Li et

al. [169, 201] propose a generative action recognition model using (unsupervised) Latent

Dirichlet Allocation (LDA) or probabilistic Latent Semantic Analysis (pLSA) latent topic

models and features proposed in [43] as well as correlograms. Hu et al. [87] address human

action recognition in complex scenes where they employ the multiple instance learning SVM

algorithm to alleviate the ambiguity problem where both spatial location and time period

of the action cannot be precisely located. Laptev et al. [117] use spatio-temporal grids

extracted at multiple scales to compute the Histogram of Oriented Gradient (HOG) [36] and

the Histogram of Optic Flow (HOF) within each volumetric cell, based on a spatio-temporal

BoF representation. Many efforts have been made to augment spatio-temporal interest

points with additional information, e.g., hierarchical structures [95], implicit shapes [242],

local contexts [244], 3D spin images [135], 3D cube [255], and scene descriptors from object

detection [72]. For example, in [72] the bag-of-detector scene descriptors are introduced for

human action recognition, which encode presence/absence and structural relations between

object parts and complement existing low-level video features. In general, spatio-temporal

interest points capture distinctive local patterns in the spatio-temporal space where the

difficult task of spatio-temporal object segmentation can be avoided. Also, the sparsity

of interest points and their resulting computational efficiency is very appealing. However,

spatio-temporal interest points focus on the local attributes at the risk of ignoring global

information (such as global motion), and the detection of such interest points in complex

scenes often fail in cluttered backgrounds.
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2.4.2 Evaluation of Action Recognition

There are several public data sets generally used for evaluating object action recognition

algorithms. The earlier action data sets, such as KTH [205], Weizmann [14], and the

UCSD mice behavior [43] data, were collected in well-controlled environments, with clean

backgrounds. Each video clip in these data sets involves only one type of action (e.g.,

“eating”, “running” or “jogging”) and only one object, repeating the same action within the

whole video clip. The CMU action videos [107] are also widely used for action recognition,

where the videos were captured with a hand-held camera in crowded environments with

moving people or cars in the backgrounds. There are five different types of human actions

in the database, including “jumping jacks”, “pick-up”, “two-handed wave”, “one-handed

wave” and “pushing elevator buttons”. There are relatively large variations in the actions

performed by the subjects, with cluttered backgrounds and occluded actions. However,

there exists a considerable gap between these staged samples and real-world scenarios where

there are cluttered backgrounds or occluded crowds and the actions usually happen only

once within a short duration. In real-world scenarios, it is very difficult to locate objects

precisely, and it is hard to decide the start or end point of object actions of interest, or

even the duration of each action. Recently several realistic data sets have been developed.

One frequently used data set is introduced by Laptev et al. [117]: the Hollywood-1 movie

data set, which is significantly more difficult than the previous data sets. This film data

set contains eight different action classes: “answering the phone”, “getting out of the car”,

“hand shaking”, “hugging”, “kissing”, “sitting down”, “sitting up”, and “standing up”.

These actions were collected from 32 Hollywood movies. Lately, the Hollywood-1 Movie

data set is further enlarged to Hollywood-2 movie data set [151] where four new actions are

added: “driving car”, “eating”, “fighting person” and “running”. Twelve action classes are

extracted from 69 Hollywood movies, where the total length of action samples is about 600

thousand frames. Each action clip usually lasts for a few seconds. In general, the current

state-of-the-art performance for action recognition is achieved by fusing BoF representations

built from multiple types of 2D and 3D local descriptors.
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2.4.3 Generic Concept Detection by Classifying Video Sequences

Most of the above mentioned research on object-level action recognition is limited to videos

captured by fixed (or almost fixed) cameras in surveillance applications or highly constrained

videos. A more challenging problem is to recognize generic concepts in general domains,

such as broadcast news videos, consumer videos like the ones on the internet (e.g., on the

YouTube web sharing site). In such cases, there are often fast moving small objects, large

camera motion, articulate motions, significant clutter and object occlusion, and the event of

interest may involve high-level semantic (e.g., presidential campaign or wedding ceremony).

There are some existing works, though limited, trying to address this challenging issue.

Ebadollahi et al. [48] propose to treat each frame in a video clip as an observation and

apply HMM to model the temporal evolution patterns of mid-level concepts in news videos.

Dong and Chang [44] use kernel-based discriminative classification to detect a large variety

of generic events in news videos, where the kernel is defined based on the BoF representation

of temporal streams, with similarity metric computed using multi-level temporal matching.

Zhou et al. [263] propose a SIFT-Bag based framework where each video clip is encoded as a

bag of SIFT feature vectors, and the distribution of each video clip is modeled by Gaussian

Mixture Models (GMMs). Then a SIFT-Bag kernel is calculated based on Kullback-Leibler

(KL) distances of video GMMs that are used for discriminative classification. All these

methods avoid object detection and tracking that are very difficult in these general videos,

and optimize the detection accuracy directly by discriminative learning.

2.5 Related Works on Multi-Modality Learning

In the previous sections, we have briefly reviewed works related to classifying concepts in sta-

tic images or dynamic video sequences. Most of these methods are developed based on visual

descriptors that capture the visual characteristics of images and videos. Videos comprise of

information from multiple modalities, both visual and audio. Each modality brings some

information complementary with the other and their joint processing can help uncover rela-

tionships that are otherwise unavailable. Also, physiological evidence and studies of biolog-

ical systems show that fusion of audio and visual information is key to human perception [3,
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45, 69]. Thus, combining evidences from both visual and audio modalities has been con-

sidered increasingly important in recent years. In this section, we summarize methods that

fuse audio and visual information in several tasks, such as speech and speaker recognition,

object localization, and video classification.

2.5.1 Audio-Visual Speech and Speaker Recognition

Audio-visual speech and speaker recognition are among the earliest areas for joint audio-

visual video analysis. In audio-visual speech recognition [46, 78, 92, 106, 191] or speaker

recognition [60, 141, 237, 254], visual features obtained by tracking the movement of lips,

mouths, and faces, are combined with audio features extracted from acoustic speech signals.

Both early fusion (i.e., feature fusion) and late fusion (i.e., decision fusion) have been stud-

ied. Early fusion methods train a single classifier on the concatenated features, sometimes

with additional transformation. Late fusion combines the output of classifiers separately

developed using audio and visual modalities respectively.

2.5.2 Audio-Visual Synchronization for Localization

The task of multimodal localization can be described as follows: within the signal streams

originating from one modality, localize the components that best correlate with the other

modality in sapce, time, or both. For example, we would like to localize visual events

corresponding to special sound events in the soundtrack, or identify the specific objects

that produce the sound.

Many earlier works require the use of several microphones (e.g., the “two-microphone

and one camera” configuration), where stereo triangulation indicates the spatial location of

the sounding sources [10, 28, 105, 203, 233, 265, 266]. A typical scenario is a known environ-

ment (mostly indoor), augmented with fixed cameras and microphones. Then moving sound

sources (e.g., persons) can be located by using both the audio signal time delays among the

microphones and the spatial trajectories performed by the objects. These methods have

achieved some success in several applications such as speaker localization in teleconferencing

settings. However, in general scenarios videos are captured with a single camera where a

video stream is associated with only a single sound track. In such cases, audio spatializa-
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tion is no longer explicitly recoverable, and alternatively solutions are needed to correlate

audio events with video objects. A common localization approach is to project each modal-

ity into a 1-D subspace [7, 79, 123, 212] and then correlate the 1-D representations. For

example, Hershey et al. [79] localize the sound source in the video (i.e., the speaker) by

tagging the region of the image that has high temporal correlation with the audio infor-

mation. The audio-visual synchrony is measured by the mutual information between the

audio signal and individual pixels in the video modeled by a joint multivariate Gaussian

process. Slaney and Covell [212] optimize temporal alignment between audio and visual

tracks using canonical correlations. Under the assumption that fast moving pixels make big

sounds, Barzelay and Schechner [7] locate sounding pixels by maximizing the correlation

between the audio and visual temporal patterns that encode significant changes in the audio

and visual signals, respectively. Later on, Fisher and Darrell [58] propose a more general

approach, where they use the probabilistic multimodal generation model to measure mutual

information between audio and visual signals based on non-parametric statistical density.

Smaragdis and Casey [213] treat both the audio and visual streams as one set of data, from

which independent components in some subspace are extracted. Ideally, these components

correspond to objects in the scene that have simultaneous audio-visual presence. In [33]

by visual and audio background/foreground (BG/FG) modeling, separate visual and audio

patterns can be detected from a scene. Then the audio-visual integration is performed by

studying audio-visual synchrony to detect audio-visual events such as “make a call” and

“enter an empty lab”.

2.5.3 Multi-Modal Fusion for Video Classification

Most of the above mentioned multi-modality learning approaches cannot be easily applied

to general videos due to several reasons. Visual object detection and tracking are known

to be extremely difficulty in general videos. As a result, it is very hard to segment objects

with satisfactory accuracy based on the current visual analysis techniques. Also, blind sound

source separation, especially in real-world outdoor scenes, remains to be a challenging issue.

The mixed sound track of general videos are usually generated by multiple sound sources

under severe noises. Using the current audio analysis techniques, it is very difficult to extract
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individual sounds. In addition, the audio-visual synchronization cannot be observed most

of the time. Multiple objects usually make sounds together in the video (e.g., orchestra

performance), with or without large movements, and often some objects making sounds are

not visible in the video.

As a result, most existing methods for concept detection do not use direct correlation

or synchronization across modalities. Instead, multi-modal fusion methods like those men-

tioned in Section 2.5.1 are used. For example, early fusion is used in [245] to concatenate

features into long vectors. However, this approach usually suffers from the “curse of dimen-

sionality”, as the concatenated multi-modal feature can be very long. In addition, different

modalities may contribute to the classification task unevenly, i.e., some modalities may

be more important than others. Dimension reduction and feature selection are required in

practice. It remains an open issue how to construct suitable joint feature vectors comprising

of features from different modalities with different time scales and different distance metrics.

In late fusion, individual classifiers are built for each modality separately, and their

judgements are combined to make the final decision. Several combination strategies have

been used to combine the individual judgements, e.g., majority voting, linear combination,

winner-take-all methods, HMM-based combination [90], super-kernel nonlinear fusion [245],

or SVM-based meta-classification combination [130, 131]. However, classifier combination

remains to be a basic machine learning problem [108, 189] and the best strategy depends

much on the particular problem.

2.6 Related Works on Multi-Concept Learning

Traditional concept detection methods classify individual concepts independently. That is,

an individual detection model (based on single modality or multiple modalities) is built for

each concept to distinguish this concept from others. However, in the real world, semantic

concepts do not occur in isolation. Such inter-concept context information can be used

to enhance classification of individual concepts. For example, a confident detection of

the “car” concept provides the evidence that increases the likelihood of detecting another

concept “road” [61, 112]. Context information has been used by many previous works for
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image labeling, object localization, and for classifying generic concepts. In the following

we review such methods in two broad categories: approaches for object and region-based

recognition, and those for classifying images and videos.

2.6.1 Object and Region-based Recognition with Context Information

Context has been widely used for image labeling and object localization [21, 32, 74, 76, 83,

112, 161, 195, 211, 222]. There are different levels of contexts that can be used. For example,

in the image labeling problem, context can model the local smoothness of pixel labels and

the spatial relationships among image regions (e.g., sky usually above water). For object

localization, context can help model the co-occurrence relationship among objects (e.g., a

computer co-occurs with a keyboard) and the spatial relationship of objects (e.g., a cup on

top of a table).

2.6.1.1 Contextual Modeling for Image Labeling

An early work in [211] by Singhal et al. labels each region in the scene sequentially based

on the labels of the previous regions. In recent years, approaches based on CRFs [114] have

become popular [74, 111, 112, 160, 209, 210, 222, 224]. These methods typically treat the

problem as finding a joint labeling for a set of pixels, superpixels, or image segments and

are formulated as a CRF. Such CRFs for pixel or segment labeling use single-node potential

features that capture local distributions of color, texture, or visual words. Compatibility

potentials incorporate the labelings of neighboring pixels or segments. In particular, the

two-layer hierarchical formulation proposed in [112] exploits different levels of context infor-

mation, each layer being modeled as a CRF. Both the pixelwise smoothness context as well

as the spatial relationships between image regions are modeled explicitly. Learning such

complicated potentials is difficult and recent works mostly rely on boosting [209, 210, 222,

224] to select potential functions from a large space. For instance, Tu [224] proposes an

auto-context algorithm addressing the posterior probability directly in a supervised manner,

where the image appearance and context information are integrated by learning a series of

classifiers.
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2.6.1.2 Contextual Modeling for Object Localization

There are several types of context information that can be used to help object localization.

The basic idea is that a confident detection of one object (e.g., a car) provides the evidence

that increases the likelihood of detecting another object (e.g., road) [61, 112]. In addition,

context information can be used within an object category, e.g., a crowd of pedestrians

reinforcing each other’s detection. A recent paper [42] presents an empirical evaluation of

the role of context in object detection.

Context can be used to model scene properties of the entire image [83, 220], the relation-

ships between objects [21, 112], or the background surrounding the candidate objects [32].

For example, some works explore the co-occurrence of different objects in a scene [195, 221],

explicitly learn the spatial relationships between objects [57, 61, 241], or learn the spatial re-

lationships between an object and its neighboring regions [32, 76]. Using the co-occurrence

context, Rabinovich et al. [195] show that the presence of a certain object class in an image is

probabilistically related to the presence of another object class. Torralba et al. [221] assume

that certain objects occur more frequently in certain scenes, e.g., “tables” are more likely

to be found in an “office” than on a “street”. Many approaches explore the spatial relation-

ships between objects. For example, Wolf et al. [241] detect objects using a descriptor with

a large support range, allowing the detection of the object to be influenced by surrounding

image pixels. Fink and Perona [57] use the output of boosted detectors for other concepts as

additional features for the detection of a given concept. Murphy et al. [161] use the global

“gist” feature to estimate the statistical priors on the locations of objects within the context

of specific scenes. Another approach for modeling spatial relationships is to use the random

fields such as the CRF to explicitly encode preferences for certain spatial relations [21, 112].

Despite the improvements by contextual modeling, the general problem remains to be

a challenging one. Context information can be ambiguous and unreliable, and may not

always be useful for object detection, especially when test data is from sources different

from the training set where context information is obtained. In a recent work, Zheng et al.

[261] attempt to use a discriminative maximum margin model to predict the effectiveness

of context and to selectively apply context. However, how to evaluate the usefulness of

different types of context information in a robust manner is still challenging.
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2.6.2 Image and Video Classification with Context Information

In view of the difficulty in object segmentation in general videos, a holistic representation is

usually preferred instead of the object/region-level approaches. Therefore, context models

that capture the relationship among semantic concepts have been shown to be promising.

Several context-based algorithms have been proposed to classify generic concepts in

large-scale general videos, such as TRECVID news videos [170] and Kodak’s consumer

videos [137]. An important branch of such methods is CBCF that usually has two layers. In

the first layer, independent concept detectors are applied to extract posteriors of individual

class labels on a given data, and then in the second layer detection results of individual

concepts are updated through a context-based model that considers detection confidences of

related concepts and the inter-conceptual relationships. Earlier CBCF approaches use pre-

defined concept relations to improve the detection accuracy of individual classifiers such as

the ontology hierarchy in [246] and the Bayesian networks in [179]. In [214], the vector model

method does not explicitly model concept relationships. Instead, initial concept detection

probabilities are used to form a concept space, within which discriminative classifiers are

learned to refine detection results. The most popular choice is the graph-based methods

where graphical models are used to encode the context information. Typically, graph nodes

are concepts, the single-node potentials are independent concept detectors, and the two-node

compatibility potentials reflect the pairwise conceptual relations, e.g., the co-occurrence

statistical relationships of concepts. The concept detection results can be refined through

graph inference. For example, the Multinet method [162] uses a factor graph where the co-

occurrence statistics of concepts are used as compatibility potentials. Posterior probabilities

of concepts are updated by loopy probability propagation. Yan et al. [247] use several

graphical models including directed and undirected ones (e.g., Bayesian network, Markov

Random Field, CRF, etc.), where co-occurrence statistics of concepts are used to compute

compatibility potentials. Jiang et al. [102] propose a Domain Adaptive Semantic Diffusion

(DASD) algorithm, to exploit semantic conceptual context while considering the change of

context across domains. An affinity graph is constructed based on concept co-occurrences.

Then semantic diffusion and graph adaptation are performed through alternatively updating

concept affinity relations and detection results. An interesting perspective of DASD is that
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the contextual concept relations can be adaptively updated using the test data without

relying on training data from the old domain. Similar to graph-based CBCF methods,

there are some approaches that use graphical models to encode inter-conceptual relations,

with the difference that the graph structure and concept detectors are learned together in

a single step. For example, Qi et al. [192] propose a correlative multi-label method where

concept relations are modeled by a Gibbs random field. However, due to the complexity of

the learning algorithm (at least quadratic to the number of concepts), this method becomes

infeasible for practical applications when the number of concepts is large (e.g., dozens or

hundreds).

CBCF, especially the graph-based approach, provides an intuitive and general frame-

work for incorporating inter-conceptual relationships. It can be used to include diverse types

of classifiers as single-node detectors and different types of prior knowledge in building graph

structures. The main issue of graph-based CBCF methods, however, lies in the difficulty of

designing appropriate compatibility potentials. Previous methods use co-occurrence statis-

tics of concepts to approximate pairwise relations. Such approximations become unreliable

when we only have limited training data. It is especially difficult to obtain accurate co-

occurrence statistics of a diverse pool of generic concepts for general videos, due to the

lack of prior knowledge about the concept ontology and insufficient annotation in practice.

The error associated with the inaccurate approximation often leads to poor results in graph

inference.

2.7 Data Sets and Performance Measures

In the thesis, we use two general video sets to evaluate different algorithms, namely, Kodak’s

consumer benchmark video set developed by us [137] and the TRECVID 2005 news video

set [170]. In this section, we introduce these two data sets, followed by the performance

evaluation metrics, and the baseline approach we use for comparison.
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2.7.1 Construction of Kodak’s Benchmark Consumer Video Set

To provide a sound foundation for developing and evaluating large-scale learning-based

semantic indexing techniques, it is important to apply systematic procedures to establish

large-scale concept lexicons and annotated benchmark video data sets. Recently, significant

developments for such purposes have been made in several domains. For example, NIST

TRECVID [170] has provided an extensive set of evaluation video data set in the broadcast

news domain. Caltech-101 [124] and Caltech-256 [67] include images downloaded from the

web to evaluate performances of image classification techniques. ImageCLEF [91] includes

a large set of medical images and web images for evaluating image retrieval methods.

However, for consumer videos, to the best of our knowledge, there has been little effort

so far to develop large-scale concept lexicons and benchmark data sets. Although automatic

consumer video classification has been reported in the literature, most of the prior research

deals with few concepts and limited data sets only. To contribute to the research of consumer

video indexing and annotation, we have developed Kodak’s consumer video benchmark

data set, including a significant number of videos (a few thousand) from actual users who

participated in an extensive user study over a one-year period. It also includes a lexicon

with more than 100 semantic concepts and the annotations of a subset of concepts over the

entire video data set. The concepts have been chosen in a systematic manner, considering

various criteria discussed below. As far as we know, this is the first systematic work in

the consumer domain aimed at the definition of a large lexicon, construction of a large

benchmark video set, and annotation of videos in a rigorous fashion.

It is non-trivial to determine the appropriate lexicon of semantic concepts for consumer

videos, as the correct lexicon may depend highly on the application. To fulfill the needs

of actual users, we adopt a user-centric principle in designing the lexicon. The concepts

are chosen based on findings from user studies confirming the usefulness of each concept.

In addition, we consider the feasibility of automatic detection and concept observability in

manual annotation. Our lexicon is broad and multi-categorical, including concepts related

to activity, occasion, people, object, scene, sound, and camera operation. It also includes

concepts manifested by multi-modal information. That is, our concepts may be visual-

oriented and audio-oriented. To ensure the quality of annotation, we adopt a multi-tier
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annotation strategy for different classes of concepts. Some concepts use keyframe-based

approaches to maximize the annotation throughput. For others, playback of an entire video

clip is required to judge the presence of the concepts.

2.7.1.1 Lexicon and Concepts

The lexicon used in Kodak’s consumer video benchmark data set was constructed based

on an ontology derived from a user study conducted by Eastman Kodak Company. The

ontology consists of 7 categories: subject activity, orientation, location, traditional subject

matter, occasion, audio, and camera motion. Under these categories, over 100 concepts are

defined based on feedback from user studies confirming the usefulness of each concept. The

full list of categories and concepts can be found in [250]. This ontology has been chosen

through three steps. First, an earlier user study based on a large collection of consumer

photos has been conducted by Eastman Kodak Company to discover concepts interesting

to users in practical applications. These concepts are used to form the initial candidate

lexicon for the consumer video data set. Second, the initial concept list was refined based

on a smaller-scale user study to find interesting concepts for consumer videos. A relatively

smaller collection of video data, compared to the photo collection, was used. Finally, the

availability of each selected concept (the number of videos we may obtain from users for

each concept) is investigated, and the rare concepts are excluded.

Because of the limitation of both the annotation and the computation resources, 25

concepts are further selected from Kodak’s ontology based on 3 main criteria: (1) visual

or audio detectability – whether the concept is likely to be detected based on the visual or

audio features; (2) usefulness – whether the concept is useful in practical consumer media

application; (3) observability – whether the concept is observable by the third-person human

annotators through viewing the audio-video data only. In addition, we also consider one

additional criterion, availability, i.e., the number of video clips we may expect to acquire for

a concept from actual users. To estimate the availability of a concept, we conduct searches

using concept names as keywords against YouTube and AltaVista, two popular sites for

sharing user-generated videos. The number of returned videos in the search results is used

to approximate the availability of a concept.
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The final lexicon used in Kodak’s consumer video benchmark data set contains 25 con-

cepts as shown in Table 2.1. Note these concepts are multi-modal in nature – some are

primarily manifested by the visual aspect (e.g., “night”, “sunset”), some are audio-oriented

(e.g., “music”, “singing”), and others involve both visual and audio information (e.g., “wed-

ding” and “dancing”).

2.7.1.2 Video Data Set and Keyframes

Kodak’s video data set was donated by actual users to Eastman Kodak Company for re-

search purposes. The majority of the videos were recorded by either the Kodak EasyShare

C360 zoom digital camera or the Kodak EasyShare V570 dual lens digital camera. The

videos were collected over the period of one year from about 100 users, thus spanning all

seasons and a wide variety of occasions. It is also geographically diverse as the majority

of users took videos outdoors and away from home, including trips across the US and also

overseas. These users were volunteers who participated in typically three-week-long camera

handouts. They represent different consumer groups (e.g., proactive sharers, conservative

sharers, prints-for-memory makers, digital enthusiasts, and just-the-basics users) and were

identified through a web-based survey. Female users slightly outnumbered male users. A

unified video format, MPEG-1, is used to allow easy handling of videos. The videos whose

original format is QuickTime movie or AVI format were transcoded to MPEG-1 format

according to original bit rates. Other detailed information is shown in Table 2.2.

From the videos, we sample keyframes based on a uniform time interval, i.e., 1 keyframe

per 10 seconds. Based on the experience obtained from the user study, we consider the 10-sec

sampling interval to be a good tradeoff between computation requirements and indexing

accuracy. For static concepts (e.g., locations and occasions), we assume that the video

content will not change much in each 10-sec interval. In such a case, keyframes are sufficient

for analyzing the concept. However, for other concepts (e.g., “dancing”), information in

the temporal dimensions (object movements and dynamics) needs to be considered. In this

case, features need to be extracted from image frames at a much higher rate. In other words,

the above-mentioned coarsely sampled keyframes are more intended for analyzing the static

concepts only. Concepts involving strong temporal information need to be analyzed using
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Table 2.1: Selected concepts and definitions.

wedding
Videos of the bride and groom, cake, decorated cars, reception,
bridal party, or anything relating to the day of the wedding

dancing One or more people dancing

singing
One or more people singing. Singer(s) both visible and
audible. Solo or accompanied, amateur or professional

birthday
This event is typically portrayed with a birthday cake,
balloons, wrapped presents, and birthday caps. Usually with
the famous song

graduation Caps and gowns visible

picnic
Video taken outdoors, with or without a picnic table, with or
without a shelter, people, and food in view

ski Emphasize people in action (vs. standing)

show Concerts, recitals, plays, and other events

parade Processing of people or vehicles moving through a public place

sports
Focus initially on the big three: soccer, baseball/softball,
and football

playground Swings, slides, etc. in view

park Some greenery in view

museum
Video is taken indoors and is of exhibitions of arts, crafts,
antiques, etc.

activities

occasions

sunset
The sun needs to be in front of the camera (although not
necessarily in view)

beach

Largely made up (1/3 of the frame or more) of a sandy beach
and some body of water (e.g., ocean, lake, river, pond). Note
“beach” should be explicitly called out. In a more strict
definition, a “beach” scene contains at least 10% each of
water, sand, and sky, and was taken from land. Pictures taken
primarily of water from a boat should be called “open water”

night The video is taken outdoors at night (after sunset)

scenes

people-1 One person: the primary subject includes only one person

people-2 Group of two: the primary subject includes two people

people-3
Group of three or more: the primary subject includes three
or more people. This description applies to the primary
subject and not to incidental people in the background

animal

Pets (e.g., dogs, cats, horses, fish, birds, hamsters), wild
animals, zoos, and animal shows.  Animals are generally
“live” animals. Those stuffed or mounted (taxidermy) may
qualify depending on how “lively” they look

boat Boat in the water

objects

crowd
The primary subject includes a large number of people in
the distance

baby Infant, approximately 12 months or younger

people

music
Clearly audible professional or quality amateur music in the
soundtrack (which may also include vocals and other
instruments). There is emphasis on the quality of the music

cheer
One or more people cheering - shouts of
approval, encouragement, or congratulation

sound

Concept Definition
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Table 2.2: Information of Kodak’s video data set.

Total Number of Video Clips 1358

Total Number of Keyframes 5166

Length of Videos

min

Resolution

0.1 s

max

avg

393.1 s

31.1 s

640 x 480 or 320 x 240 (pixels)

Video Format MPEG-1

Frame Rate 30 frames / second

Audio Sampling Rate 44100 Hz

Bit Rate (Audio + Visual)

min 280 kb/s

max

avg

19.115 kb/s

7.99 kb/s

the video clips. Note for audio-based analysis, typically the soundtrack of the entire video

clip is used, rather than just audio signals associated with the keyframes. However, in

practice we may extract audio signals just near the keyframe time point in order to combine

the local audio cues with the visual cues found near the keyframe time point. To ensure

quality of the extracted keyframes, we deliberately insert an initial time offset to the sample

schedule. An offset of 1 second is applied at the beginning because the first frames (time =

0) of some video clips are totally black or blurred. In other words, keyframes are extracted

at the following time points: 1 s, 11 s, 21 s, 31 s, etc. In addition, to avoid missing important

content, if the duration of a video clip is less than 11 s, the final frame of the clip will be

included automatically. Although we could have used an automatic keyframe-extracting

algorithm, we did not do so because the algorithm has not been fully evaluated and does

not always produce consistent results. Using the simple temporal subsampling technique

described above at least ensures consistency.

2.7.1.3 Annotation

The concept labels for Kodak’s video data set are manually annotated by students at

Columbia University. To increase the throughput of the annotation process and ensure

good quality of the resulting labels, we employed a multi-tier annotation strategy. For

visual-oriented concepts (e.g., activities, occasions, scenes, people, objects), we always ob-
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Table 2.3: The number of positive and negative keyframes and video clips in Kodak’s

consumer video data set.

wedding

dancing 226

singing

birthday

graduation

picnic

ski

Concept # Positive Keyframes

show

parade

sports

playground

park

museum

sunset

beach

night

one person

people-2

people-3

animal

boat

crowd

baby

music

cheer

# Negative Keyframes # Positive Videos # Negative Videos

4940 48 1310

99 5067 50 1308

186 4980 69 1289

54 5112 15 1343

15 5151 3 1355

433 4733 151 1207

22 5144 13 1345

321 4845 54 1304

103 5063 25 1333

54 5112 21 1337

78 5088 24 1334

407 4759 150 1208

52 5114 18 1340

141 5025 27 1331

74 5092 37 1321

240 4926 87 1271

1054 4112 374 984

437 4729 171 1187

689 4477 246 1112

198 4968 61 1297

96 5070 39 1319

448 4718 144 1214

140 5026 38 1320

N/A N/A 206 1152

N/A N/A 175 1183

tain annotations of individual keyframes using keyframe-based annotation tools. Such an

approach is sufficient for most static concepts. For concepts that involve information in

the temporal dimension, we further employ video playback tools to verify the correctness

of the label. We do this in an incremental manner; namely, only those keyframes receiving

positive labels in the first step are included in the video-based verification process. During
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the verification step, an annotator plays back each candidate video clip and marks the

presence or absence of the concept. Keyframes corresponding to negative videos (where

the concept is absence) are corrected as negative. In this case, it is possible that only a

subset of keyframes of a video receive positive labels, while the remainder are negative. We

use the above incremental procedure to avoid the high workload involved in using video

playback to annotate every clip. Based on our experience, the keyframe-based annotation

process is much faster than the video-based process. On average, the throughput of the

keyframe-based annotation process is about 1-3 seconds per keyframe, while the throughput

for the video-based annotation is about 30-60 seconds per video. Finally, for audio-oriented

concepts (e.g., “music”, “cheer”, and “singing”), we use the video-based annotation process

to label every video clip. Binary labels are assigned for each concept, indicating its presence

or absence. Table 2.3 shows the number of positive and negative keyframes and videos for

each concept in the ground-truth annotation. Fig. 2.2 shows the example keyframes of

different semantic concepts.

animal baby beach birthday boat crowd

dancing

group_3+

group_2 museum night one_person

parade

park

sunset

picnic playground

show sports wedding ski

Figure 2.2: Example keyframes for Kodak’s consumer benchmark video set corresponding

to different semantic concepts.

2.7.2 TRECVID 2005 Data Set

We also carry out experiments over the challenging TRECVID 2005 news video set [170].

This video set contains 137 (with 80+ hours) broadcast news videos from multilingual
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broadcast news channels like BBC, NBC, CCTV etc. This is one of the largest and most

challenging data sets existing to evaluate concept detection. A common set of concepts

has been defined by a Large-Scale Concept Ontology for Multimedia (LSCOM) developed

in [163], which includes 834 concepts jointly selected by news analysts, librarians, and

researchers. A subset of these concepts (449) has been annotated through an exhaustive

manual process over the entire 2005 TRECVID development set [139]. Large-scale baseline

automatic classifiers for LSCOM concepts, such as Columbia374 [248] and MediaMill 491

[243], have been developed and broadly disseminated in the research community. More

details about this data set can be found at [170].

In our experiments, the news videos are divided to shots and 60000+ keyframes are

extracted from these shots. The keyframes are labeled with 39 concepts from LSCOM-

Lite ontology [139], e.g., “car”, “outdoor”, etc. In both Kodak’s consumer videos and the

TRECVID news videos, an annotated keyframe can belong to different semantic concepts.

That is, both are multi-label data sets.

2.7.3 Performance Evaluation Metric

The experiments presented in this thesis use the Average Precision (AP) and Mean Average

Precision (MAP) as performance measurements. AP is an official TRECVID performance

metric, which is related to multi-point average precision value of a precision-recall curve

[170]. To calculate AP for a concept Ci, we first rank the test data according to the

classification posteriors of concept Ci. Then from top to bottom, the precision after each

positive sample is calculated. These precisions are averaged over the total number of positive

samples for Ci. AP favors highly ranked positive samples and combines precision and recall

values in a balanced way. MAP is calculated by averaging APs across all concepts.

2.7.4 Global Visual Features and Baseline Models

In the thesis we compare most of the proposed algorithms with the following SVM-based

baseline method, which has been proven to be state-of-the-art for generic concept detection

in general videos [2, 27, 170, 248]. Three types of global visual features are extracted:

Gabor texture (GBR), Grid Color Moment (GCM ), and Edge Direction Histogram (EDH ).
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These features have been successfully used for generic video concept detection in [170,

248]. The GBR feature is used to estimate the image properties related to structures and

smoothness; GCM approximates the color distribution over different spatial areas; and

EDH is used to capture the salient geometric cues like lines. A detailed description of these

features can be found in [249].

Using these global visual features, one SVM classifier is trained over each of the three

features individually. Then the detection scores from all different SVM classifiers are aver-

aged to generate the baseline visual-based concept detector. The SVMs are implemented

using LIBSVM (Version 2.81) [23] with the RBF kernel k(x1, x2) = exp{−γ||x1−x2||
2}. To

learn each SVM classifier, we need to determine the parameter setting for both the RBF

kernel (i.e., parameter γ) and the SVM model (i.e., parameter C in Section 2.2.2). Here

we employ a multi-parameter set model instead of cross-validation so that we can reduce

the degradation of performance in the case that the distribution of the validation set is

different from the distribution of the test set. Such multi-parameter set model has been

shown effective by previous experiments in [24]. Instead of choosing the best parameter set

from cross-validation, we average the scores from the SVM models with 25 different pairs

of C and γ:

C ∈
{

20, 22, 24, 26, 28
}

γ ∈
{

2k−4, 2k−2, 2k, 2k+2, 2k+4
}

where k = ROUND (log2 (1/|Df |)) and |Df | is the dimensionality of the feature vector

based on which the SVM classifier is built (γ = 2k is the recommend parameter in [23]).

The multi-parameter set approach is applied to each of the three features mentioned above.

Note the scores (i.e., distances to the SVM decision boundary) generated by each SVM are

normalized by a standard sigmoid function 1
1+e−(·) before averaging.

2.7.5 BoF over Kodak’s Consumer Benchmark Videos

As discussed in earlier part of this chapter, the BoF representation generated from un-

ordered local descriptors has become increasingly popular for generic concept detection.

State-of-the-art classification results are achieved over large-scale public benchmarks, e.g.,
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TRECVID videos [170] and PASCAL VOC data [182], by generating multiple BoF repre-

sentations over different local descriptors extracted from various interest keypoints, and by

using various matching strategies for kernel construction.

In this subsection, we apply the state-of-the-art BoF-based approaches to Kodak’s con-

sumer benchmark video set [137]. Such comparison provides additional information to help

analyze consumer videos as well as guide future research to construct efficient consumer

concept detectors.

2.7.5.1 Local Descriptors

There have been many research efforts to develop various local descriptors extracted from

different interest keypoints for image and video classification. The recent activities in PAS-

CAL VOC and NIST TRECVID have suggested several types of SIFT-based features as

well as local interest keypoints [101, 170, 182, 228], which are described below.

• As suggested by Van de Sande et al. in [228], the following SIFT-based descriptors can

generate reliable performance over both the PASCAL VOC image benchmark data

and the TRECVID video benchmark data.

– The SIFT descriptor proposed by Lowe [138], which is shift-invariant and scale-

invariant to light intensity. However, the SIFT descriptor is not invariant to

color changes, because the intensity channel is a combination of the R, G and B

channels.

– The HSV-SIFT descriptor developed by Bosch et al. in [18]. HSV-SIFT computes

SIFT descriptors over all three channels of the HSV color space, which gives a

3x128-dimension feature. The HSV-SIFT descriptor has no invariance properties

due to the combination of the HSV channels.

– The Opponent-SIFT descriptor computed in [228]. It calculates SIFT descriptors

over all three channels of the opponent color space. Opponent-SIFT is shift-

invariant and scale-invariant to light intensity. However, it is not invariant to

color changes.
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– The C-SIFT descriptor proposed in [20]. C-SIFT uses the C-invariant [62] that

can be intuitively seen as the normalized opponent color space. C-SIFT is only

scale-invariant to light intensity.

– The rgSIFT descriptor computed in [228]. It calculates SIFT descriptors over the

r and g chromaticity components of the normalized RGB color model, which gives

2x128-dimension feature. rgSIFT is also only scale-invariant to light intensity.

– The Transformed color SIFT descriptor computed in [228]. It calculates SIFT

descriptors over all three normalized R, G, and B color channels. The descriptor

is invariant to both light intensity and color changes.

These descriptors are all extracted over the scale-invariant keypoints obtained with the

Harris-Laplace point detector on the intensity channel. This detector uses the Harris

corner detector to find potential scale-invariant points, and then selects a subset of

these points for which the Laplacian-of-Gaussians reaches a maximum over scale.

• As suggested by Chang et al. in [25], the intensity-based SIFT descriptors extracted

over interest keypoints found by the following detectors are effective for detecting

multimedia concepts in the TRECVID video benchmark data: the DoG detector

[138]; the Hessian Affine detector [154]; and the MSER detector [152].

The BoF method treats an image as a collection of unordered local descriptors, and

then quantizes them into discrete visual words coming from a visual vocabulary. In this

subsection, the K-means algorithm is applied to construct a visual vocabulary on top of

each type of SIFT-based local descriptors described above (9 visual vocabularies in total),

where each visual vocabulary contains 1000 visual codewords.

2.7.5.2 BoF with Different Spatial Layouts

After getting visual vocabularies, the next step of the BoF method is to compute a histogram

feature for each image based on each visual vocabulary, where each bin in the histogram

corresponds to a visual word in the vocabulary.

Following the approaches in [25, 228], we use four different spatial partitions of images to

generate four BoF histograms with each visual vocabulary, as shown in Fig. 2.3. For each
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visual vocabulary, within each partitioned block, the corresponding local descriptors are

mapped to this visual vocabulary to generate a histogram using the soft-weighting strategy

proposed in [101]. The final BoF histogram is obtained by concatenating the histograms

from different blocks together. So in the end we have in total of 9 × 4 BoF histograms to

describe images.

1x1 2x2 1x3 3x1

Figure 2.3: Four spatial partitions of images to generate BoF histograms.

2.7.5.3 Kernels and Classification

Using each BoF histogram feature, various kernel matrices can be constructed to use SVM

for concept detection. Following the suggestions from [101] as well as considering the exper-

iments in Section 2.7.4, four different RBF kernels are computed using the following four

types of distances:

k(x1,x2) = exp{−γd(x1,x2)} (2.3)

where

d(x1,x2) =































∑

i (x1,i − x2,i)
2

∑

i |x1,i − x2,i|
∑

i

√

|x1,i − x2,i|
∑

i
(x1,i−x2,i)

2

x1,i+x2,i

(2.4)

x1,i and x2,i are the i-th entry of x1 and x2, respectively.

In addition, the multi-parameter set approach described in Section 2.7.4 is used. That

is, we set γ to five different values (the error control parameter C in SVM is set to be 1 as

suggested in [23]):

γ =

(

1

|Df |

)g

, g =
1

4
,

1

2
, 1, 2, 4 (2.5)

Finally, we have in total of 9× 4× 4× 5 SVM classifiers trained to detect each semantic

concept based on the BoF representations.
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2.7.5.4 Experimental Results

We compare the above BoF-based classifiers with the SVM classifiers using global image-

level visual features. In the global approach, the three visual features, i.e., GBR, GCM,

and EDH described in Section 2.7.4, are concatenated into a long feature vector to train

one SVM classifier for detecting each semantic concept.

Fig. 2.4 shows the AP and MAP comparison between the global approach and the local

approach with SIFT descriptors used in [25] (i.e., SIFT over DoG, Hessian Affine, and MSER

interest keypoint detectors). Fig. 2.5 gives the AP and MAP comparison between the global

approach and the local approach using various SIFT-based descriptors with the Harris-

Laplace interest keypoint detector (i.e., SIFT, C-SIFT, HSV-SIFT, rgSIFT, Opponent-

SIFT, and Transformed color SIFT), as suggested in [228]. Finally, Fig. 2.6 shows the

comparison between global and combinations of local approaches.
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Figure 2.4: Performance comparison: global features versus local SIFT over different interest

keypoints.
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From these figures, global visual features are quite effective in detecting consumer con-

cepts over Kodak’s videos in terms of both accuracy and computation (taking only about

10 seconds to compute per image). In comparison, individual types of local descriptors,

although having been proved effective in detecting objects and scenes in other large-scale

benchmarks, can not compete with global features in general over this consumer video set.

For example, it takes about 2 minutes to compute a SIFT-based descriptor over an im-

age. Specifically, local descriptors can outperform global features over some objects and

scenes involving man-made structures, such as “animal”, “baby”, “boat”, “museum”, and

“playground”, while global features win over natural scenes like “night”, “park”, “ski”,

and “sunset” where the visual appearance of global background is important. On average,

color-based local descriptors (in Fig. 2.5) work better than intensity-based ones (in Fig. 2.4).
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Figure 2.5: Performance comparison: global features versus different SIFT-based descriptors

over the Harris-Laplace detector.

In Fig. 2.6 when we aggregate classifiers learned over various local descriptors, we can

get better detection precision than using individual local descriptors. For example, the

“SIFT+ColorSIFT (Harris-Laplace)” approach has similar MAP with the global method,
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and the “SIFT (DoG+Hessian-Affine+MSER)” approach, although still performs worse

than the global method, gives better MAP than individual SIFT features over DoG, Hessian-

Affine, or MSER. Finally when we combine all various local descriptors together (the “Local

All” approach), the BoF-based local method outperforms the global method by a small

margin. Specifically, the “Local All” method wins over 10 concepts compared with the global

method, i.e., “animal”, “baby”, “beach”, “birthday”, “dancing”, “group 3+”, “museum”,

“show”, “sports”, and “wedding”. Most of these concepts are object/scene-oriented.
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Figure 2.6: Performance comparison: global features versus local descriptors. “SIFT

(DoG+Hessian-Affine+MSER)” combines classification results using the three SIFT de-

scriptors over DoG, Hessian Affine, and MSER interest keypoints. “SIFT+ColorSIFT

(Harris-Laplace)” combines classification results using SIFT, C-SIFT, HSV-SIFT, rgSIFT,

Opponent SIFT, and Transformed color SIFT over Harris-Laplace interest keypoints. “Lo-

cal All” combines all different SIFT-based descriptors together.

The experimental results obtained in this experiment are different from those in some
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other literatures such as [25, 228] where local descriptors generally outperform global visual

features in detecting objects in images from other domains (e.g., Internet and Broadcast).

This is because of the challenging conditions of detecting generic concepts in the consumer

domain. The visual content of general consumer videos can be very diverse, with very

little repetition of objects or scenes in different videos, even those from the same concept

class. For example, Vivian’s birthday party may be totally different from John’s birthday

party in terms of human subjects, room setting, etc. In such a case, it is hard to leverage

the advantage of local descriptors like SIFT for local point matching/registration. This is

quite different from other benchmarks like PASCAL VOC images [182] or TRECVID videos

[170] where similar objects or scenes repetitively occur in many different images/videos. In

addition, many general consumer videos have various problems such as out of focus, ill-

posed camera, very small/large objects, etc. This is quite different from PASCAL VOC

images or TRECVID videos. In such situations, neither global nor local descriptors can

really describe the object of interest, and in comparison global features can capture robust

background setting and may perform better. Fig. 2.7 gives some examples to illustrate the

challenging conditions in general Kodak’s consumer videos.

Parade video Parade video

Figure 2.7: Example of Kodak’s consumer videos illustrating the challenging conditions for

concept detection: little repetition of objects or scenes; very small/large objects; ill-posed

camera; etc.
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Chapter 3

Multi-Concept: Context-Based

Concept Fusion

3.1 Introduction

As discussed in Section 1.2.1, in the real-world scenario, semantic concepts usually do not

occur in isolation. For example, knowing the contextual information (e.g., “outdoor”) of

an image is expected to help detection of other concepts (e.g., “car”). In this chapter we

study new methods of multi-concept learning where the inter-conceptual relationships are

used to enhance classification of each individual concept.

In Section 2.6 we have introduced previous works utilizing context to help object or

region recognition or to enhance image and video concept classification. The two-layer

CBCF framework is particularly useful for detecting generic video concepts. In the first layer

of CBCF, independent concept detectors are applied to estimate posteriors of concept labels

in a given image. In the second layer detection results of individual concepts are updated

by taking into account detection confidences of other concepts and the inter-conceptual

relationships.

Several CBCF methods have been proposed, including the Multinet method [162],

the Bayesian network method [179], the SVM-based Discriminative Model Fusion (DMF)

method [214], etc. However, results reported so far [2, 215] have indicated that not all

concepts benefit from CBCF learning. The lack of consistent performance gain could be
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attributed to several reasons: 1) insufficient data for learning reliable relations among con-

cepts, and 2) unreliable individual concept detectors in the first layer.

In this chapter we model the inter-conceptual relationships by a CRF [114] (as shown

in Fig. 3.1). For each image I, CRF takes as inputs the detection results, hI = [P̂ (y1
I =

1|I), . . . , P̂ (yM
I = 1|I)]T (yi

I is the label for concept Ci in image I), from M independent

concept detectors, and produces updated marginal probabilities P (yi
I =1|I) of each concept

Ci. CRF directly models the conditional distribution P (yI |hI) of class label yI given

input observation hI , while the generative methods (e.g., Multinet [162]) model the joint

distribution P (yI ,hI). When the training set is limited, the discriminative CRF can better

use the sample resources to model the distribution relevant to the discriminative concept

detection task than the generative approach.
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Fully Connected Graph

Output Refinement Layer

Input Observation Layer

Figure 3.1: The CRF that models relationships among M concepts C1, . . . , CM . Concepts

are related to each other, so the graph is full connected. The CRF takes as input (black

nodes) detection results, P̂ (y1
I = 1|I), . . . , P̂ (yM

I =1|I), from M independent concept de-

tectors, and produces updated marginal probabilities P (yi
I = 1|I) (gray nodes) of each Ci.

yI =[y1
I , . . . , y

M
I ] is the vector of concept labels.

With the two-layer CBCF framework and the CRF context modeling, we develop multi-

concept learning algorithms to enhance semantic concept detection performance. Our con-
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tributions can be summarized into three aspects.

• First, to avoid the difficulty of designing compatibility potentials in CRF, a discrim-

inative cost function aiming at class separation is directly optimized. This is in con-

trast to the previous graph-based CBCF methods [162, 247] that use co-occurrence

statistics of concepts to construct compatibility potentials. With limited training

data, the unreliable co-occurrence statistics will make performance suffer. To opti-

mized the discriminative cost function, we adopt the Boosted CRF framework [222],

and use the Real AdaBoost algorithm [59] to iteratively improve concept detection.

SVM is used as the weak learner for boosting because of its state-of-the-art perfor-

mance in detecting semantic concepts over general videos, e.g., consumer videos [24,

137] or TRECVID videos [2, 170]. The proposed algorithm is called Boosted CRF–

Concept Fusion. As will be shown in Section 3.2 the traditional DMF [214] corresponds

to the initial stage of BCRF-CF. We will also show that the extended iterative steps

introduced in our method can further improve the performance.

• Second, to address the problem of inconsistent performance gain by CBCF, we pro-

pose a simple but effective criterion to predict which concepts will benefit from CBCF,

based on both information theoretic and heuristic rules. This criterion takes into con-

sideration both the strength of relationships between a concept and its neighborhood

and the robustness of detections of this neighborhood. The accurate prediction scheme

allows us to use CBCF in practice, applying it only when it is likely to be effective.

• Third, based on the BCRF-CF algorithm, we further study the interesting “20 ques-

tions” problem in semantic concept detection. We propose the Active CBCF algorithm

to effectively exploit semantic context and active user input to enhance concept detec-

tion. We develop a concept selection method by considering the mutual information

between concepts (representing how much a concept can help), and the accuracy of

the concept detector as well as its confidence of prediction over a specific image (repre-

senting how much a concept needs help). A set of image-varying concepts are actively

selected for the user to label so that user’s annotation can optimally help detect all

concepts overall.
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In our experiments, we evaluate the proposed BCRF-CF and Active CBCF algorithms

over the TRECVID 2005 development set. Out of the 39 LSCOM-Lite concepts, 26 are

automatically chosen to use the context-based fusion. Among these 26 concepts, 21 con-

cepts get noticeable performance gains by using BCRF-CF, and 24 concepts get noticeable

performance gains by using Active CBCF. In other words, the accuracy of prediction is 81%

for BCRF-CF and 92% for Active CBCF, respectively. Also, the Active CBCF approach

can consistently outperform the passive CBCF method where randomly selected concepts

are provided for the user to label.

3.2 Boosted CRF Concept Fusion

As mentioned above, in the CBCF scenario, for each image I the observations (system

inputs) are the posteriors hI =[h1
I , . . . , h

M
I ]T , hi

I = P̂ (yi
I = 1|I), namely, the classification

scores of independent concept detectors. Our goal is to feed these inputs into an inferencing

model to get improved posterior probability P (yI |I) by taking into account inter-conceptual

relationships.

The posterior P (yI |hI) can be modeled by a CRF [114] as:

P (yI |hI) =
1

Z
exp
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Z is a normalizing constant; φi(y
i
I ,hI) and ψij(y

i
I , y

j
I ,hI) are the local and compatibility

potentials respectively. One issue of CRF modeling is the design of potential functions.

φi(y
i
I ,hI) is a local decision term that influences the posteriors of concept Ci independent

of its neighbors. Compatibility potentials ψij(y
i
I , y

j
I ,hI) are generally used to specify con-

straints for relationships between pairs of nodes, e.g., spatially smoothing constraints in

image segmentation [114]. In [247], the same CRF-based CBCF framework is used to refine

concept detection, where co-occurrence statistics of different concepts are used to construct

compatibility potentials. However, the co-occurrence statistics can be unreliable when we

only have limited training data, and it is difficulty to design relationships among concept

nodes other than co-occurrence statistics. Different from [247], to avoid designing compati-

bility potentials in this work we incorporate the Boosted CRF framework proposed in [222]
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that directly optimizes a discriminative cost function based on CRF. In the next subsections

we will introduce the Boosted CRF framework [222], followed by our BCRF-CF algorithm.

3.2.1 Boosted CRF

After the inference with CRF the belief biI on each node Ci is used to approximate the

posterior: P (yi
I =±1|I) ≈ biI(±1). The aim of CRF modeling is to minimize the total loss

L for all concepts over all training data:

L= −
∏

(I,yI)∈D

M
∏

i=1

biI(+1)(1+yi
I)/2biI(−1)(1−yi

I )/2 (3.1)

If we assume that the local potential has the following form:

φi(y
i
I ,hI) = [eF

i
I/2; e−F i

I/2]

where F i
I is a discriminant function (e.g., a logistic regression stump) of input hI =[h1

I , . . . , h
M
I ]T ,

then we have the following belief [222]:

biI(+1) =
1

1 + e−(F i
I
+Gi

I)
(3.2)

And then the logarithm of Eqn. (3.1) can be written as:

logL =
∑

(I,yI)∈D

M
∑

i=1

log
[

1+e−yi
I
(F i

I
+Gi

I
)
]

=

M
∑

i=1

log L̃i (3.3)

where

logL̃i =
∑

(I,yI)∈D

log[1 + e−yi
I
(F i

I
+Gi

I
)]

Gi
I is a discriminant function of belief bi

I = [b1I(+1), . . . , bi−1
I (+1),bi+1

I (+1), . . . , bMI (+1)]T .

Note the belief term biI is now included in Gi
I , and thus Gi

I can be considered as contextual

belief of biI . The derivation is straightforward: when yi
I =1, log[1+e−yi

I
(F i

I
+Gi

I
)]=log biI(+1),

and when yi
I = −1, since biI(−1) = 1 − biI(+1) = 1/[1 + e(F i

I
+Gi

I)], log[1 + e−yi
I(F i

I+Gi
I )] =

log biI(−1).

The loss function logL described in Eqn. (3.3) can be iteratively minimized by the

LogitBoost algorithm [59]. That is, F i
I and Gi

I are represented as additive models: F i
I (T )=
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∑T
t=1 f

i
I(t), Gi

I(T ) =
∑T

t=1 g
i
I(t). f i

I(t) and gi
I(t) are two classifiers learned during each

boosting iteration, which are combined to generate the weak learner for boosting. f i
I(t) is

the logistic regression stump over input hI =[h1
I , . . . , h

M
I ]T and gi

I(t) is the logistic regression

stump over the current beliefs bi
I(t)=[b1I(+1, t), . . . , bi−1

I (+1, t),bi+1
I (+1, t), . . . , bMI (+1, t)]T .

3.2.2 Boosted CRF–Concept Fusion

Motivated by the work of [222] we avoid designing the compatibility potentials (that are very

difficult to obtain in our problem) by optimizing the discriminative cost function Eqn. (3.3)

with a BCRF-CF algorithm. Mainly two modifications are made to apply the Boosted CRF

framework.

(1) SVM classifiers are used instead of logistic regression stumps. SVM performs rea-

sonably well in semantic concept detection for general videos [2, 24, 215], because of

its good generalization ability with limited training data. Also the training data is

usually highly biased (the positive training samples for a concept is much less than

the negative ones), and SVM is more suitable for such unbalanced situations than

logistic regression because of the use of support vectors. There is another reason that

logistic regression may not work well in our CBCF problem. As discussed in [222]

linear regression would work well when the CRF graph was densely connected, i.e.,

there were a large number of nodes (image pixels in [222]). But the number of nodes

(concepts) in our graph is small. Thus the linear approximation of the discriminant

function Gi
I made in [222] may be not valid anymore 1. More complex function should

be assumed for Gi
I , e.g., the nonlinear discriminant function from kernel-based SVM.

(2) The Real AdaBoost algorithm is used instead of LogitBoost. LogitBoost uses logistic

regression stumps as weak learners, and we need to adopt the general Real AdaBoost

algorithm that can use any weak learner. The solution of minimizing log L̃ coincides

1In dense graphs with weak and symmetrical connections, the message of any single node passing to

another node is not informative. In such a case term G
i
I (the influence of other nodes to a specific node)

may be simplified as a linear combination of their beliefs [222].



CHAPTER 3. MULTI-CONCEPT: CONTEXT-BASED CONCEPT FUSION 61

with the solution of minimizing the following cost function Q [59]:

Q =

M
∑

i=1

∑

(I,yI)∈D

e−yi
I
Γi

I , Γi
I =

F i
I +Gi

I

2
(3.4)

Eqn. 3.4 is exactly the cost function of Real AdaBoost [59], where we have the following

additive model:

Γi
I(T ) =

T
∑

t=1

γi
I(t)

γi
I(t) =

f i
I(t) + gi

I(t)

2

That is, the Real AdaBoost algorithm can be used to minimize Eqn. 3.4 iteratively.

During each boosting iteration t, f i
I(t) is the discriminant function generated by an

SVM learned over the input hI ; gi
I(t) is the discriminant function generated by an

SVM built on top of the current beliefs bi
I(t); and γi

I(t) is the overall discriminant

function, obtained by averaging f i
I(t) and gi

I(t).

The detailed BCRF-CF algorithm is given in Fig. 3.2. The initial step of BCRF-CF

is exactly the DMF approach proposed in [214]. As we will see in the experiments, this

DMF method can get performance improvements over some concepts while degrading the

performance over many other concepts, and our boosting process can avoid this problem

and achieve more consistent improvements.

3.3 Which Concepts to Update

Not all concepts can benefit from the CBCF learning. For example, the experiment in [2]

has shown that only 8 out of the 17 concepts they evaluated gained performance. Although

experiments in [215] showed improvements on 80 out of 101 concepts, our baseline indepen-

dent detectors are stronger than theirs. For example, our baseline detector get 61% AP on

“car”, while theirs get only 25%. Starting with stronger baseline independent detectors, it

is more difficult to achieve significant improvement using CBCF. Therefore, it is worthwhile

to study the problem – when will CBCF help and which target concepts should we focus

on when applying CBCF?
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Input: training set D, and posteriors hI =[h1
I , . . . , h

M
I ]T from independent concept detec-

tors, hi
I = P̂ (yi

I =1|I). I is an input image and i is the index of concepts.

• Initialization:

For each concept Ci:

– Train an SVM classifier H i(0) based on hI , and compute p0(yi
I = 1|I) based on

the classifier score.

– Set γi
I(0)← 1

2 log
p0(yi

I=1|I)

1−p0(yi
I
=1|I)

; Γi
I(0) = γi

I(0); biI(+1, 0) = 1

1+e
−Γi

I
(0)

;

wi
I(0) = exp[−yi

Iγ
i
I(0)].

• For t = 1, . . . , T :

For each concept Ci:

– Form a new training data set D̃ with size |D| by sampling the original set D

according to sample weights wi
I(t− 1).

– Train SVM classifiers H i
f (t) and H i

g(t) with D̃ as training data, hI and bi
I(t−1)=

[b1I(+1, t− 1), . . . , bi−1
I (+1, t− 1), bi+1

I (+1, t− 1), . . . , bMI (+1, t− 1)]T as features,

respectively. Get the corresponding class probability estimation pt
f (yi

I = 1|I)

and pt
g(yi

I = 1|I), and also get:

pt(yi
I = 1|I) =

pt
f (yi

I = 1|I) + pt
g(yi

I = 1|I)

2

– f i
I(t) + gi

I(t)← log
pt(yi

I=1|I)

1−pt(yi
I
=1|I)

; γi
I(t) =

f i
I(t)+gi

I (t)
2 .

– Update Γi
I(t) = Γi

I(t− 1) + γi
I(t); biI(+1, t) = 1/(1 + e−2Γi

I
(t));

wi
I(t)← wi

I(t− 1) e(−yi
I
γi

I
(t)), and re-normalize to make

∑

(I,yI)∈D w
i
I(t) = 1.

Figure 3.2: The BCRF-CF algorithm.

Intuitively, two reasons may cause performance deterioration using CBCF: (1) the con-

cept has weak relations with other concepts; (2) the related concepts have poor detectors

that tend to generate unreliable information. In the first case, ideally such a concept will
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not influence or be affected by other concepts. However, in reality the limited training re-

sources may be wasted on learning context-based detector for such a concept. For example,

such an independent concept will contribute a noisy dimension to influence learning the gi
I

term in the BCRF-CF algorithm. This suggests an intuitive criterion: a concept Ci should

use CBCF learning when Ci is strongly related to other concepts, and the performance of

detectors of the related concepts is in general strong. In other words, if a concept has a

strong independent detector and poor neighborhood, it is not a good candidate for using

CBCF. The relationship between Ci and Cj can be measured by their mutual information

I(Ci;Cj), which reflects how much information one concept can get from another. The

detection error Ei of the detector for Ci estimates its robustness. It can be approximated

by evaluation over a separate validation data set. Then our criterion for applying CBCF

learning to concept Ci is:

Ei > λ or

∑

j:j∈Ni
I(Ci;Cj)Ej

∑

j:j∈Ni
I(Ci;Cj)

< β (3.5)

The statistical co-occurrence of ground-truth labels of concepts Ci and Cj in the training

set is calculated to approximate the probability P (Ci, Cj), based on which mutual infor-

mation is computed. Note that concept co-occurrence is a very rough approximation of

P (Ci, Cj), especially with limited data samples. Actually this usually makes the statis-

tical inferencing methods [162] suffer because during inference the error from inaccurate

approximation will accumulate. However this approximation may be sufficient for the sim-

ple concept prediction criterion in Eqn. (3.5), since the individual classifier learning does

not depend on such approximation.

3.4 Experiments: BCRF-CF

Experiments are carried out on the TRECVID 2005 development set [26, 170], which con-

tains 137 broadcast news videos and has been labeled with 39 concepts from the LSCOM-

Lite ontology [164] (see Section 2.7.2 for details). It is separated into two training sets T1,

T2 and one test set, as shown in Table 3.1. The independent concept detectors used here are

the baseline detectors describe in Section 2.7.4, i.e., the SVM-based classifiers over simple
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image features such as GCM and GBR, extracted from the keyframes of videos. Outputs

of SVMs are converted into probabilities through a standard sigmoid function 1/(1 + e−(·)).

Table 3.1: The data sets for experiments to evaluate BCRF-CF.

Name Size Usage

training set T1 41837 keyframes train independent detectors

training set T2 13547 keyframes train Boosted CRF model

test set 6507 keyframes evaluation

3.4.1 Performance Evaluation

First, we empirically set λ = 0.95, η = 0, β = 0.7 in the concept prediction criterion

Eqn. (3.5). These parameters are determined by 3-fold cross validation over training set

T2. A number of 26 semantic concepts are automatically selected (shown in Fig. 3.3) to

use the BCRF-CF method. Fig. 3.3 gives the MAP (defined in Section 2.7.3) comparison

of BCRF-CF, DMF, and original independent detectors, through 10 iterations over the

selected 26 concepts. The figure indicates that both CBCF methods, i.e., BCRF-CF and

DMF, improve the overall MAP. DMF corresponds to the initial stage of our BCRF-CF and

can achieve 4.2% performance gain. Our BCRF-CF can further enhance the initial DMF

performance in successive boosting iterations with 2.6% MAP gain after 10 iterations. The

performance improvement in MAP obtained by our BCRF-CF is 6.8% compared with the

baseline independent detectors. As we can see in detailed AP comparisons later, due to

the challenging conditions of this data set, concept detectors generally perform unevenly

over different concepts (from less than 10% AP over “corporate leader” to over 90% AP

over “person”). The overall MAP is dominated by some concepts with high APs. A 6.8%

overall MAP gain as well as the fact that 81% concepts can get noticeable performance

improvement can be considered as significant.

Fig. 3.4 gives individual AP of our BCRF-CF, the DMF and the independent detectors

(after 10 iterations) over the selected 26 concepts. DMF obtains performance improvements

over 19 concepts, while degrading detection results on the other 7 concepts. The perfor-

mance deterioration over several concepts are severe, e.g., 8.1% in “vegetation” and 23.6%
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Figure 3.3: The MAP of BCRF-CF, DMF, and independent concept detectors. The results

are averaged over 26 selected concepts.

in “walking-running”. Our BCRF-CF algorithm can achieve performance improvement over

21 concepts and avoid significant performance degradation seen in the DMF results. As an

example, Fig. 3.5 shows the AP of BCRF-CF over “vegetation” and “walking-running” re-

spectively, evolving through 10 iterations. The figures indicate that BCRF-CF can further

improve the performance of DMF. Compared with independent detectors, significant AP

improvement is achieved over several concepts by BCRF-CF, e.g., 1221% over “office”.

3.4.2 Evaluation with Different Parameters

Here we evaluate the performance of detection with different β in Eqn. (3.5), since we

find that β is the most sensitive parameter for concept prediction. By varying β different

concepts are selected to use BCRF-CF. Here we define the precision of the concept selection

as the percentage of selected concepts that actually have performance gain after applying

BCRF-CF. Table 3.2 shows the precision and MAP gain of BCRF-CF after 10 iterations

over the selected concepts with β = 1, 0.7, 0.4 respectively. Such results are promising

and can be used to achieve the highest performance-cost ratio. If we don’t do concept

selection (i.e., all concepts are included), only 59% of the concepts are improved. With

concept selection, computational resources can be allocated to enhance concepts that have

good chance to gain improvement. Note that from Fig. 3.3 and Fig. 3.5, the BCRF-CF
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Figure 3.4: The individual AP comparison of our BCRF-CF, DMF, and the baseline inde-

pendent detector.

algorithm converges quick to a local minimum in general within the first 2 or 3 iterations.

This phenomenon indicates the potential overfitting problem over this data set, which will

be seen again in the next chapter (Section 4.4.2). This may be attributed to the small

positive training set for many concepts, e.g., 254 positive samples out of 41847 training

samples for “boat-ship”.

Table 3.2: Performance of detection with different β.

β precision MAP gain # of selected concepts

1 59% 2.2% 39

0.7 81% 6.8% 26

0.4 91% 10.4% 11
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Figure 3.5: Examples of performance evolution.

3.5 20 Questions Problem: Active CBCF

In this section, we consider an interesting active learning scenario, where we use the se-

mantic context and active user input to enhance concept detection. We propose a new

fusion paradigm, called Active CBCF, to effectively exploit the contextual relations among

concepts. We observe that in several applications, users may be willing to be involved in

the annotation process. That is, given an input image the user may be willing to answer a

few simple questions such as annotating whether the image contains some specific concepts.

The human annotated concepts are then used to help infer and improve detection of other

concepts. Human assisted annotation is not new in the literature. But a new, interesting

question arises in the active paradigm – if a user is to annotate only a very small number
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of concepts e.g., 1∼3 concepts, which concepts should we ask him/her to annotate? We

propose an active system that adaptively selects the best concepts, different for each image,

for user annotation. We call this problem the “20 Questions Problem” for semantic concept

detection. The goal is to be “smart” in asking the right questions for each image so that

the overall accuracy in predicting all concepts can be optimized. In contrast, conventional

methods are passive. Users are asked to annotate all concepts or a subset of arbitrarily

chosen concepts.

Based on the statistical principles, our method considers the mutual information between

concepts, the estimated performance of individual concept detectors, and the confidence of

detection of each concept for a given image. Experiments over TRECVID 2005 data show

that our Active CBCF approach can consistently outperform the passive CBCF method

where randomly selected concepts are provided for the user to label. For example, when

one concept is labeled by the user over each image, Active CBCF achieves 6.2% improvement

in terms of MAP compared with passive CBCF.

3.5.1 The Active CBCF approach

The work flow of the Active CBCF method is illustrated in Fig. 3.6. In Active CBCF the

user is willing to label a small number of concepts, and the labeled information is utilized

to help detection of other concepts as follows. For a test image I, the user labels a set of

n concepts C∗={C∗1, . . . , C∗n}. The labeled ground truth P̂g(y∗1I = 1|I), . . . , P̂g(y∗nI = 1|I)

are used to replace the corresponding hypotheses P̂ (y∗1I = 1|I), . . . , P̂ (y∗nI = 1|I) from

initial individual detectors to generate a mixed feature vector. In the mixed feature vector,

the entries corresponding to the labeled concepts are the labeled ground truth from user,

and the other entries are still the estimated hypotheses from individual detectors. This

mixed feature vector is provided to the CBCF algorithm to get a new classification result

PACBCF (yi
I = 1|I). Since the labeled ground truth provides accurate inputs instead of the

machine-predicted hypotheses, PACBCF (yi
I = 1|I) is expected to be better than the original

P (yi
I = 1|I) learned from the original inputs. Note that in this version of our work, user

provides binary labels, i.e., P̂g(y∗iI = 1|I)=1 or 0. Soft scores provided by the user can also

be adopted here.
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Figure 3.6: The work flow of Active CBCF.

Different from passive labeling that randomly selects concepts, our Active CBCF actively

selects concepts for users’ annotation. In the following subsections, we present a statistical

criterion to select concepts based on mutual information between concepts, and the error

rate and entropy of individual detection results.

3.5.2 Maximizing Mutual Information

The average Bayes classification error for concept detection is E = 1
M

∑M
i=1E(Ci), where

E(Ci) is the error rate for concept Ci. The problem is to find an optimal C∗ with a small

size n so that the labeled information can minimize E of the rest of concepts. Directly

searching for C∗ to minimize E is practically infeasible. Instead, we try to minimize the

upper bound of E , which can be derived as [77]:

E ≤
1

2M

∑

i
H(Ci)−

1

2M

∑

i
I(Ci;C∗(1:n)) (3.6)

where C∗(1:n) = {C∗1, . . . , C∗n}. Minimizing the upper bound equals maximizing the mu-

tual information
∑

i I(Ci;C∗(1:n)). I(Ci;C∗(1:n)) can be written as [231]:

I(Ci;C∗(1:n)) =

n
∑

k=1

I(Ci;C∗k)−

n
∑

k=2

[

I(C∗k;C∗(1:k−1))− I(C∗k;C∗(1:k−1)|Ci)
]
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The above expression can be further simplified as follows:

I(C∗k;C∗(1:k−1))− I(C∗k;C∗(1:k−1)|Ci) = H(Ci) +H(C∗k)

So maximizing
∑

i I(Ci;C∗(1:n)) equals maximizing:

∑

i

n
∑

k=1

I(Ci;C∗k)−
∑

i

n
∑

k=2

H(C∗k) (3.7)

With the objective function of Eqn. (3.7), we can implement a sequential concept selection

process as follows:

1. Select the 1st optimal C∗1 with largest g∗1 =
∑

i I(Ci;C∗1)

2. Select the k-th optimal C∗k, k > 1, with largest g∗k =
∑

i

[

I(Ci;C∗k)−H(C∗k)
]

=

−
∑

iH(C∗k|Ci)

The selection criteria listed above are actually quite intuitive – the best concept has the

highest total mutual information with the rest of concepts, and the next optimal concepts

are those having low conditional entropy (i.e., high correlations with the rest of concepts).

3.5.3 Further Consideration

When g∗k is large, accurate labels for concept C∗k are desired to better estimate the rest of

the concepts. However if C∗k can be accurately detected, user’s labeling will not make a big

difference. In this case, it will be more beneficial to ask user to label a different concept that

has low detection accuracy. Thus we need to take into consideration the robustness of the

individual detectors. Furthermore, if an individual detector is known to be reliable through

validation, we may assume that the estimated label of this detector is close to the true label.

Then user’s labeling will not make big difference either. Those informative concepts whose

individual detectors are not confident about their estimations should get higher priorities

for user annotation.

From validation, we get the validation error rate EI(Ci) of the individual detector for

every concept Ci, which estimates the robustness of the individual detector. The confidence

of an individual detector about its hypothesis can be measured by the entropy of its output:

HI(Ci|x) = −P (yi
I = 1|I) log P (yi

I = 1|I)− P (yi
I = 0|I) log P (yi

I = 0|I) (3.8)
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Note that this measure is computed for each image, and thus it is image dependent. Let

g̃∗k be the normalized version of g∗k (normalized to [0,1]). To take into consideration the

mutual information among concepts as well as the robustness and confidence of individual

detectors, our criterion selects “key” concepts as follows: select C∗k with the largest Gk
∗,

where

Gk
∗ = αg̃∗k + (1−α)EI(Ck∗)HI(C∗k|I) (3.9)

Note the inclusion of the last term makes the selection criterion image-dependent. This is

consistent with intuition – we should ask users different questions for different images.

3.6 Experiments: Active CBCF

We use the TRECVID 2005 development set [170] again to evaluate our algorithm. The

whole data set is separated into five subsets for training independent detectors, training

CBCF models, parameter selections, and final testing (shown in Table 3.3). The pairwise

co-occurrences of concepts in the keyframes are counted based on the training set, valida-

tion set, selection set 1 and selection set 2, according to which the mutual information is

calculated. Again, our individual concept detectors are SVM-based classifiers over simple

image features extracted from keyframes of videos. The outputs of the SVM classifiers are

transformed into probabilities through a sigmoid function.

Table 3.3: The data sets for experiments to evaluate Active CBCF.

Name Size Usage

Training Set 41837 keyframes train independent SVMs

Validation Set 4515 keyframes learn RBF kernel for SVM

Selection Set 1 6021 keyframes learn CBCF detectors

Selection Set 2 3011 keyframes learn β in Eqn. (3.9)

Test Set 6506 keyframes performance evaluation

To show the effectiveness of our Active CBCF method, it is compared with three other

methods: the passive labeling (that randomly selects concepts for user to label), the baseline
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CBCF without active labeling, and the individual detector without concept fusion. Note

that with user’s interaction, some keyframes are labeled for each concept. If we calculate

precision or recall based on all the test keyframes, the comparison will be unfair to the

algorithms without user labeling. To avoid this problem, we compare the algorithms as

follows: for each concept Ci, those keyframes selected to be labeled by either our Active

CBCF or random labeling are taken out, and the rest keyframes are included for calculating

precision or recall.

From the previous experiments (i.e., Table 3.2), we select 26 semantic concepts from

the 39 LSCOM-Lite concepts to evaluate our Active CBCF algorithm. Fig. 3.7 gives the

individual AP over each of the selected 26 concepts and the overall averaged MAP. The

figure shows that out of the selected 26 concepts, 24 have performance improvements using

our Active CBCF. Furthermore, the improvements for most concepts are significant, e.g.,

20% for “building”, 2549% for “government-leader”, 1054% for “corporate-leader”, 19% for

“military”, 24% for “mountain”, 1026% for “office”, 25% for “people-marching”, 23% for

“road”, 17% for “sky”, 16% for “urban”, and 11% for “waterscape-waterfront”, on a relative

basis. The MAP of Active CBCF on the entire 26 concepts is 50.9%, which outperforms

random labeling by 6.2%, outperforms baseline CBCF by 3.4%, and outperforms the indi-

vidual detector by 9.2%. Moreover the Active CBCF yields more stable results than both

random labeling and CBCF. For example, over some of the selected concepts (e.g., “air-

plane”, “computer-tv-screen”, and “crowd”) the CBCF performance deteriorates severely.

In comparison, the proposed Active CBCF remains effective consistently across all selected

concepts.

In addition, we evaluate the performance when different numbers of concepts are labeled

by the user for each keyframe. The MAPs on the selected 26 concepts are given in Fig. 3.8,

which shows that compared with random labeling, Active CBCF is consistently superior

when more and more concepts are labeled by the user. Also, on the test set, when 1

concept is labeled for each keyframe, outdoor is selected to be labeled for 67% of keyframes.

When 2 concepts are labeled, besides “outdoor”, “airplane” is the second most popular

concept selected for 42% of keyframes. When 3 concepts are labeled, besides “outdoor”

and “airplane”, “court” is selected for 36% of keyframes as the third most popular concept.
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Figure 3.7: Performance with 1 concept labeled for each keyframe.

Fig. 3.9 gives some example keyframes where our algorithm can effectively select the most

informative concepts for the user to label. For example, for the “airplane” image, our

algorithm selects “outdoor” and “airplane” for the user to label.

3.7 Unique Contributions

In this chapter we propose to model the inter-conceptual relations by a CRF that takes as

input detection results from independent detectors and computes updated marginal proba-

bilities as improved detection results. A Boosted CRF framework is developed to optimize

the discriminative cost function and avoid the difficulty of designing compatibility poten-

tials. A concept selection criterion is developed to predict which concepts will benefit from

CBCF. In addition, we study the interesting “20 questions problem” for semantic concept
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Figure 3.9: Example images where Active CBCF can effectively select the most informative

concepts for the user to label.

detection. We incorporate user’s interaction to annotate a small number of key concepts per

image, which are then used to improve detection of other concepts. We propose a simple

yet accurate method to choose the most informative concepts for the user to label. Ex-

periments over the TRECVID 2005 development data set have confirmed the effectiveness

of our BCRF-CF method and the concept prediction method, and that the Active CBCF

paradigm can further improve the concept detection performance by effectively using users’

annotation.
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Chapter 4

Multi-Concept: Sharing Kernels

and Classifiers

4.1 Introduction

In the previous chapter, we explore multi-concept learning by modeling the inter-conceptual

relationships through a CBCF framework. In this chapter we develop a novel multi-class

concept detection method based on kernel sharing and joint learning. By sharing “good”

kernels among different concepts, accuracy of individual detectors can be improved; by joint

learning of common detectors across different classes, required kernels and computational

complexity for detecting individual concepts can be reduced.

As discussed in Section 2.2, among various approaches for concept detection, kernel-

based discriminative methods, e.g., classifiers based on SVM [230], have been demonstrated

effective for detecting generic concepts in many previous works [2, 64, 65, 85, 119, 171].

A large variety of kernels can be constructed based on different descriptors extracted from

images, e.g., color descriptor [257], texture descriptor [176], SIFT descriptor [64], or the BoF

representation [54, 100, 235, 259]. In BoF, images are represented by a visual vocabulary

constructed by clustering the original local descriptors into a set of visual words. Based

on these representations, recently, the pyramid matching algorithms [64, 65, 119] have also

been proposed to fuse information from multiple resolutions in the spatial domain or feature

space. In these approaches, vocabularies constructed from the positive training data of each
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concept are used to compute kernels for different concepts, and detectors for each individual

concept are independently learned in an one vs. all manner.

In this chapter, instead of building independent binary one vs. all concept detectors,

we explore the multi-label concept detection problem based on joint learning of shared

vocabularies/kernels and shared detectors. Different kernels designed for individual concepts

are shared by multiple concept detectors, and common detectors for multiple concepts are

jointly learned. The motivation is as follows: concepts are generally related to each other,

e.g., the “boat-ship” concept is related to the “waterscape-waterfront” concept. By sharing

vocabularies/kernels from interrelated concepts, each individual concept can be enhanced

by incorporating the descriptive power from others. For example, as shown in Fig. 4.1, the

“boat-ship” concept is very difficult to recognize, due to its diverse visual appearances and

thus the lack of strong visual words. Kernels computed using such low-quality vocabularies

from “boat-ship” itself usually do not have adequate discriminative power and thus yield

unsatisfactory recognition performance. On the other hand, images from “waterscape-

waterfront” have good consistency in visual appearances, and high quality vocabularies

can be learned to describe the characteristics of waterscape. Kernels calculated using the

good vocabularies from “waterscape-waterfront” can be used to help detect the “boat-ship”

images which often co-occur with the “waterscape-waterfront” concept. Moreover, common

classifiers among different concepts can be built by aggregating limited training data from

individual classes. As will be shown in Section 4.3 and 4.4, the complexity in building

classifiers can be greatly reduced by such sharing.

To jointly learn kernel-based detectors and to share kernels from different concepts,

we propose a joint boosting algorithm to automatically select the optimal kernels and the

subsets of sharing concepts in an iterative boosting process. We modify the traditional

JointBoost algorithm [223] to incorporate the general Real AdaBoost method [59], so that

kernel-based classifiers can be applied for joint learning. Our framework is flexible where

any type of kernel can be incorporated for multi-class concept detection.

In addition, we propose a new kernel construction algorithm, namely Vocabulary-Spatial

Pyramid Matching (VSPM), which constructs multi-resolution visual vocabularies by hier-

archical clustering and computes kernels based on multi-resolution spatial matching. This
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is essentially an extension of the previous spatial-pyramid matching [119] and vocabulary-

guided pyramid matching [65] methods. Although impressive performance has been ob-

tained individually by these two previous approaches, there are some issues as indicated

in [119] and our experiments. It is difficult for spatial pyramid matching to automatically

choose an appropriate vocabulary resolution for each specific concept. Vocabulary-guided

pyramid matching does not consider the spatial layout of local features [119, 174]. In our

work, we combine multi-resolution spatial matching and multi-layer vocabulary fusion to

generate multiple vocabularies/kernels for each concept.

. . . 0

A
V

1,1

A
v 1,2

A
v

22, 1

A

n
v −

2

A
V

0

B
V

2

B
V

22,

B

n
v

00,

B

n
v. . .

example images from concept
B
C

00,

A

n
v0,1

A
v

11,

A

n
v

2,1

A
v

2,2

A
v

22,

A

n
v

1

A
V

1

B
V

1,1

B
v

2,1

B
v

1,2

B
v

2,2

B
v

0,1

B
v

11,

B

n
v

kernel

0

A
K

2

A
K

0

B
K

2

B
K

1

A
K

1

B
K

multi-resolution

vocabulary (level 0,…,2)
example images from

concept       -- “boat-ship”A
C

22, 1

B

n
v −

  -- “waterscape-waterfront”

Figure 4.1: Examples of vocabulary/kernel construction. For each concept, e.g., CA, SIFT

features are extracted from uniform grids over each training image from this concept. Hier-

archical clustering is applied to construct vocabularies with different resolutions: VA
1 , . . . ,V

A
L

(L is vocabulary resolution and L=2 in this example), where VA
l consists of nl visual words

{vA
l,1, . . . , v

A
l,nl
}. Then vocabulary-spatial pyramid match kernels KA

0 , . . . ,K
A
L are computed

(see Section 4.2.2 for details), one kernel for each vocabulary.

We evaluate our method in detecting 12 concepts (objects, scenes, etc.) over the

TRECVID 2005 data set [170]. Significant performance gains are achieved – 10% in MAP
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and up to 34% AP for some concepts like “maps”, “building”, and “boat-ship”. Extensive

analysis of the results also reveals interesting and important underlying relations among

object classes. In addition, we avoid the linear increase of complexity at run time as the

number of concepts grows, by sharing detectors among concepts.

4.2 Construction of Vocabulary/Kernel Pool

We use the same terminology as those in Section 2.1: C1, . . . , CM are M semantic concepts;

D={I,yI} is the data set, where yI =[y1
I , . . . , y

M
I ] is ground-truth concept labels of image

I, with yi
I =1 or −1 representing the presence or absence of concept Ci in image I; F is a

feature space (e.g., the 128 dimensional SIFT feature space used in [119]). In the following

subsection, we will introduce the procedure of constructing multi-resolution vocabularies,

followed by the details of our VSPM kernels.

4.2.1 Vocabulary Construction

The BoF representation provides an effective framework for partitioning the original fea-

ture space F to establish a vocabulary of prototypical image features [54, 100, 235, 259].

These prototypes are called visual words. Recently, in [65] multi-resolution vocabularies are

constructed by hierarchical clustering. Images are represented with multi-level histograms

defined over multiple vocabularies. Kernel matching between images is computed based

on histogram intersection. As discussed in [65], vocabularies established from hierarchical

clustering take advantage of the underlying structure of the feature space.

In this work, we adopt the hierarchical vocabulary construction procedure and further

apply the pyramid matching process in the spatial domain. We incorporate the spatial

layout of local descriptors that have been shown to be effective for generic concept detection

[119, 174]. As shown in Fig. 4.1, for each concept Ci, the local descriptors from the positive

training samples are aggregated together, and hierarchical clustering is applied to generate

L+1 vocabularies that partition the feature space F into a pyramid of non-uniformly shaped

regions. Let V i
l = {vi

l,1, . . . , v
i
l,nl
} denote the vocabulary at level l, 0 ≤ l ≤ L, where vi

l,g

represents the g-th visual word in vocabulary V i
l . Based on these multi-level vocabularies,
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in the next subsection, a VSPM method will be developed to construct multi-resolution

kernels for each individual concept.

4.2.2 Kernel Construction

For each concept Ci, with each vocabulary V i
l , we construct a VSPM kernel based on

spatial matching. We adopt the spatial pyramid matching algorithm proposed in [119],

which computes correspondences between images by repeatedly subdividing images into

spatial pyramids and computing histogram intersections at multiple spatial resolutions.

This method achieves robust performance for generic scene detection by incorporating the

spatial layout information of local descriptors [119]. In this work, we extend the original

spatial pyramid matching to incorporate multi-resolution vocabularies. As both evidenced

by experiments in [119] and our experiments in Section 4.4 (i.e., Table 4.1 and Fig. 4.5),

different concepts favor different resolutions of vocabularies, and it is generally difficult

to determine one optimal resolution for detecting all concepts. In our proposed method,

we construct a pool of vocabularies over multiple resolutions and develop an automatic

mechanism for selecting the optimal ones.

Specifically, given a concept Ci and a vocabulary V i
l , the spatial pyramid matching

method [119] hierarchically quantizes the spatial coordinates of images to S + 1 different

scales, with 4s discrete blocks at each scale s, 0 ≤ s ≤ S. Then for each image I, an

nl-dimension histogram H i
s,l,k(I) = [hi

s,l,k,1(I), . . . , hi
s,l,k,nl

(I)] is calculated from block k at

spatial scale s, using a certain vocabulary V i
l , where hi

s,l,k,g(I) is the element bin corre-

sponding to visual word vi
l,g. The number of matches at spatial scale s between two images

Ip and Iq is computed by histogram intersection:

I i
s,l(Ip, Iq) =

4s
∑

k=1

nl
∑

g=1

min
{

hi
s,l,k,g(Ip), hi

s,l,k,g(Iq)
}

Since the matches found at scale s include all the matches at scale s+ 1, when we go down

from fine (scale s + 1) to coarse (scale s), the new matches found is given by Is − Is+1,

0 ≤ s ≤ S−1. Assume that each scale s is associated with a weight 1
2S−s , which favors

matches found in finer cells because they involve increasingly similar features. The final
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VSPM kernel defined by vocabulary V i
l is given by:

Ki
l(Ip, Iq) = I i

S,l(Ip, Iq) +

S−1
∑

s=0

I i
s,l(Ip, Iq)− I i

s+1,l(Ip, Iq)

2S−s

=
1

2S
I i

0,l(Ip, Iq) +

S
∑

s=1

1

2S−s+1
I i

s,l(Ip, Iq) (4.1)

For each concept Ci, we have L+ 1 VSPM kernels Ki
0, . . . ,K

i
L defined by L+ 1 vocabu-

laries. Instead of training one vs. all detectors independently, we propose to share various

kernels from different concepts across multiple detectors. Specifically, all VSPM kernels

from different concepts are aggregated together to generate a kernel pool K. In the next

section, a joint boosting algorithm is developed, which provides a systematic data-driven

framework to select optimal kernels from K to be shared and the optimal sets of concepts

that share them.

Note that it is also possible to use these VSPM kernels in the one vs. all manner similar

to traditional concept detection approaches [65, 119] (as shown in Fig. 4.2 (a)). One method

is to combine the L+1 kernels Ki
0, . . . ,K

i
L from each Ci into one ensemble kernel:

Ki(Ip, Iq) =

L
∑

l=0

ωlK
i
l(Ip, Iq) (4.2)

Weight ωl can be heuristically defined as in [65]. Then this ensemble kernel can be used to

train one vs. all classifiers to detect concept Ci independently from other concepts. Another

way is to directly apply traditional boosting algorithms (e.g., Real AdaBoost [59]) to train

one vs. all detectors for each individual concept Ci by selecting appropriate kernels from

Ki
0, . . . ,K

i
L through boosting iterations. In our experiments in Section 4.4, we will use these

two approaches as baselines to compare with our joint boosting algorithm.

4.3 Joint Learning with Joint Boosting

The idea of joint boosting is to share features and classifiers over multiple categories. Most

of the existing concept detection approaches [54, 64, 65, 119, 176] treat each individual

concept Ci independently from other concepts. As shown in Fig. 4.2 (a), these one vs.

all detectors train a binary classifier to detect each concept Ci, based on VSPM kernels
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Ki
0, . . .,K

i
L derived from training data associated with Ci only. While in joint boosting

(shown in Fig. 4.2 (b)), multi-class concepts are detected simultaneously by sharing a kernel

pool consisting of all kernels from various concepts and sharing classifiers during boosting

iterations. For example, in Fig. 4.2 (b) we first use a kernel K∗(1) (an optimal kernel chosen

from K) to learn a binary classifier to separate CA, CB from the background, i.e., CA and

CB share this classifier and kernel. Then using K∗(2), a binary classifier further picks out

CA. In the next subsections, we will describe the boosting framework followed by our joint

boosting method.

4.3.1 Learning with Boosting

The multi-class concept detection problem can be formulated as minimizing a multi-class

cost function:

L =

M
∑

i=1

∑

(I,yI)∈D

wi
Ie

−yi
IQi

I (4.3)

where yi
I is the ground-truth label of concept Ci for image I, and wi

I is the sample weight of

image I for concept Ci. Qj
I is a discriminative function (the classification result) we want

to learn. In one vs. all independent detection methods, the multi-class concept detection

problem is converted into a set of binary classification problems. That is, L is approximately

optimized by minimizing the following Li for each concept Ci independently:

Li =
∑

(I,yI)∈D

wi
Ie

−yi
I
Qi

I (4.4)

In contrast, in the joint learning scenario, we optimize L jointly by training a multi-

class classifier. Since concepts are usually related to each other, joint learning exploits such

correlations and can better optimize L than independent training approaches.

The well-known boosting framework effectively combines many weak classifiers to form a

powerful ensemble classifier. In the training stage, training samples are re-weighted accord-

ing to the training error from previous weak learners, and classifiers trained later are forced

to focus on harder samples with higher weights. The boosting procedure is formulated by

assuming an additive model for Qi
I :

Qi
I(T ) =

∑

t

qi
I(t) (4.5)



CHAPTER 4. MULTI-CONCEPT: SHARING KERNELS AND CLASSIFIERS 82

. . .

A
C

0

A
K

A

L
K

1

A
K

. . .

0

B
K

B

L
K

1

B
KB

C
+

+

+
+

+
++

-

-

--

--

-
-

-

-

-

--

+
+

+

+

+ +

+
+

+
+

++

+
-

-

--

--

-
-

-

-

-

--

classifier for concept A
C classifier for concept B

C

(a) one vs. all detector for individual concepts

(1)
*

K

K

+

+

+
+

+
++

-

-

--

--

-
-

-

-

-

--

+
+

+

+

+ +

+
+

+ +

++

+
-

-

--

--

-
-

-

-

-

--

(2)*
K

{ , }A B
C C

-

-
-

-

-

-

--

--

-
-

-

-

-

--

-
- -

--

+

+
+++

+

+
-

-

--

--

-
-

-

-

-

--

A
C vs. background classifier

multi-class

concept detector
. . .

vs. background classifier

. . .

0

A
K

A

L
K

1

A
K . . .

0

B
K

B

L
K

1

B
K

(b) multi-class joint detector for kernel and classifier sharing

Figure 4.2: Illustration of learning procedures. (a) one vs. all detectors treat each individual

concept independently, e.g., CA is classified only based on kernels KA
0 , . . . ,K

A
L derived from

training data associated with this concept, independently from other concepts. (b) in

joint boosting, a kernel pool K (including kernels from all concepts) is shared by different

detectors.

where each qi
I(t) is the hypothesis generated by the t-th weak learner in iteration t. Several

variants of boosting algorithm have been developed, such as AdaBoost [202], Real AdaBoost

[59], GentleBoost [59], LogitBoost [59], and boosting feature selection [100, 219]

The original boosting algorithm is designed for binary classification, and several multi-

class learning algorithms, e.g., AdaBoost.MO, AdaBoost.MH and AdaBoost.MR [202], have

been proposed as extensions. In [223] a JointBoost algorithm is proposed based on Gen-

tleBoost. This method tries to find the common feature axes and the corresponding weak

learners that can be shared across multiple classes. In [177] the JointBoost algorithm is
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extended into a Joint-AdaBoost approach that enables incremental additions of new classes.

4.3.2 Joint Boosting and Kernel Sharing

Motivated by the work of [177, 223], in this work we develop our joint boosting algorithm

based on Real AdaBoost due to its flexibility for incorporating the powerful kernel-based

classifiers for concept detection and its compatibility for our proposed strategy to share ker-

nels in the iterative boosting steps. Specifically, during each iteration t, our joint boosting

method selects the optimal subset of concepts C∗(t) and the corresponding optimal kernel

K∗(t). Positive training samples from any concept in C∗(t) are treated as positive, and a bi-

nary classifier is learned based on K∗(t) to separate these positive data from the background

negative data (samples not belonging to any concept in subset C∗(t)). The optimal C∗(t)

and K∗(t) are chosen by sequentially searching from every possible subset C(t) of concepts

using every possible kernel K(t) in the kernel pool K so that the corresponding classifier

has the smallest error on the weighted training set for all concepts.

In the Real AdaBoost formulation [59], during each iteration t, we want to minimize the

cost function L in Eqn. (4.3) with respect to qi
I(t), C(t) and K(t) as follows:

L(qi
I(t), C(t),K(t)) =

M
∑

i=1

∑

(I,yI)∈D

wi
I(t)e−yi

I(Qi
I
(t−1)+qi

I
(t)) (4.6)

where qi
I(t) has the following form:

qi
I(t) =







1
2 log

pt(yi
I
=1|I)

pt(yi
I
=−1|I)

, Ci∈C(t)

ki
c(t) , others

(4.7)

pt(yi
I = 1|I) is the posterior probability of the positive detection of concept Ci generated

by the binary weak classifier that separates the positive training samples from the subset

C(t) and the background samples. All concepts Ci ∈ C(t) share this binary classifier and

have the same pt(yi
I = 1|I) value. ki

c(t) is a constant for concept Ci that is not selected to

share the weak learner in iteration t. A natural choice of ki
c(t) is to use the prior, namely:

pt(yi
I = 1|I) =

∑

(I,yi)∈D
wi

I(t)δ(yi
I = 1)

∑

(I,yI)∈D w
i
I(t)

(4.8)
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where δ(·) is the indicator function. Then ki
c(t) is given by:

kj
c(t) =

1

2
log

∑

(I,yI)∈D w
i
I(t)δ(yi

I = 1)
∑

(I,yI)∈D w
i
I(t)δ(yi

I = −1)
(4.9)

kj
c(t) depends on the empirical counts of the positive and negative training samples of Ci

only, rather than the kernel-based classifier shared with other concepts.

Any type of classifier can be used to generate the posterior probability pt(yi
I = 1|I) for

concepts in C(t). In this work, we use the SVM classifier for concept detection. To conduct

sample re-weighting for the SVM classifier, we use the random sampling method. That is,

during each iteration t, for each concept Ci, we form a new training set D̃i(t) generated by

randomly sampling training data from the original training set D with a frequency according

to the sample weights wi
I(t).

The detailed joint boosting algorithm is summarized in Fig. 4.3. Originally, we need to

search all possible N(2M−1) combinations of concepts and kernels, where M is the number

of concepts, and N is the number of kernels in K. To reduce the computational complexity,

during each iteration t, we adopt the forward selection procedure from [223]: in the first

step, we try every concept using every possible kernel in the kernel pool, and then select the

best pair of kernel K∗(t) and concept C∗
1 (t) that has the smallest cost based on Eqn. (4.6).

Then in the next step, we set C1(t)={C∗
1 (t)}, and for r=2, . . . ,M , a concept C∗

r (t) is added

to Cr−1(t) to form Cr(t) = Cr−1(t) ∪C∗
r (t) so that the joint detector of subset Cr(t) has the

smallest cost among all possible Cr(t). Finally CM (t) will include all concepts. Then from

the M candidate subsets C1(t), . . . , CM (t), we select C∗(t) with the smallest cost. Note that

since our weak learners generate hypotheses according to Eqn. (4.7) and samples are re-

weighted in the same way as the original Real AdaBoost: wi
I(t)=wi

I(t−1)e−yi
Iqi

I(t), our joint

boosting algorithm inherits the convergence property of the Real AdaBoost algorithm [59].

In other words, the multi-class cost function is guaranteed to improve in every iteration.

The major difference between our joint boosting algorithm and the original JointBoost

[223] is that we use Real AdaBoost for sharing kernels, while the original JointBoost uses

GentleBoost [59] for sharing feature axes. GentleBoost is a “gentle” version of Real Ad-

aBoost, where the “gentle” Newton stepping is used to improve the cost function L in each

step. In contrast, for Real AdaBoost exact optimization of the cost function is performed
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in each step. GentleBoost uses logistic regression as the weak learner, which has simpler

structure but less flexibility (in terms of weak learner) than Real AdaBoost where any type

of classifier can be adopted to generate the hypotheses. To incorporate the powerful kernel-

based discriminative classifiers for detecting generic concepts, we build our joint boosting

algorithm based on the general Real AdaBoost method.

4.4 Experiments

We use the TRECVID 2005 data set [170] to evaluate our algorithm. Similar to [119],

SIFT descriptors are extracted from each 16x16 block over a grid with spacing of 8 pixels.

For each concept, the SIFT features from the positive training samples are aggregated and

k-means clustering is applied to get a visual vocabulary V0 at level l = 0, consisting of 100

visual words (n0 = 100). Then hierarchical clustering is applied to generate the finer level

vocabularies as follows: for each word vi
l , 0 ≤ l ≤ L − 1, we perform k-means clustering

to divide this word to two sub visual words vi
l+1,2i and vi

l+1,2i+1
1. That is, the sizes of

vocabularies have nl = 2nl−1. In our implementation we have three levels in total, i.e.,

L = 2. So the maximum size of vocabulary is n2 = 400.

From the 39 LSCOM-Lite concepts [164], we use 12 concepts to evaluate our algorithm,

including objects (e.g., “flag-us” and “boat-ship”), locations (e.g.,“urban”), and scenes

(e.g., “waterscape-waterfront” and “vegetation”). One concept, “government-leader”, is

also included as a semantically outlier. Although recognition of such highly specific semantic

concept seems very difficult, it is made more feasible by the consistent visual scenes (like

press conference rooms) often seen in images including government leaders. The concepts

were not chosen to specifically optimize the performance gains by the proposed method.

Instead, they are chosen to cover diverse semantic concepts and reasonable detection accu-

1This is a top-down hierarchical clustering algorithm by k-means. Other hierarchical clustering algorithms

can also be used to generate visual vocabularies, such as the bottom-up algorithm to gradually combine

similar data into clusters. One advantage of this top-down hierarchical clustering is the easy control of the

vocabulary size.
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algorithm: Joint Boosting

Input: The data set D={I,yI}, and the kernel pool: K =
{

K1
0, . . . ,K

1
L, . . . ,K

M
0 , . . . ,KM

L

}

(M concepts, and L multi-resolution kernels for each individual concept).

• Initialization: ∀i, set wi
I(0) = 1, Qi

I(0) = 0.

• For iteration t = 1, . . . , T

– get training set D̃i(t) for each concept Ci by randomly sampling D with a fre-

quency according to weights wi
I(t).

– select the optimal kernel K∗(t) and subset of concepts C∗(t) in a greedy forward

selection procedure:

∗ find the optimal pair of kernel K∗(t) and concept C∗
1 (t) to minimize the cost

in Eqn. (4.6) by searching from all possible pairs.

∗ set C1(t) = {C∗
1 (t)}

∗ Repeat for r = 2, . . . ,M

Get Cr(t)= Cr−1(t)∪C∗
r (t) by finding the optimal C∗

r (t) from all possible

Cr(t) /∈ Cr−1(t) to minimize the cost in Eqn. (4.6).

∗ Select the optimal C∗(t) from all candidate subsets C1(t), . . . , CM (t).

– Train an SVM classifier for C∗(t) and compute qi
I(t).

– For each concept Ci:

∗ re-weight samples: wi
I(t) = wi

I(t− 1)e{−yi
Iqi

I(t)}.

∗ Update decision: Qi
I(t) = Qi

I(t− 1) + qi
I(t).

Figure 4.3: The joint boosting algorithm based on Real AdaBoost.

racy. The selected 12 concepts have moderate performances (not too high or too low)

[2, 170], which makes them suitable for comparing various concept detection algorithms

described in this chapter. Example keyframes for the 12 concepts are shown in Fig. 4.4.

The training set consists of at most 2000 positive keyframes for each concept and 1000
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“background” keyframes (not belonging to any of the 12 concepts). All keyframes are

randomly sampled from 90 training videos. 16 videos from the remaining set are randomly

selected as the test data. In total, there are 11952 keyframes for training and 6507 keyframes

for evaluation.

Vegetation

Building

Car

Court

Maps

Government-leader

RoadUrban

Boat-Ship

Charts

Waterscape

Flag-Us

Figure 4.4: The list of 12 concepts and associated example keyframes for evaluating the

proposed kernel/classifier sharing method.

4.4.1 Comparison between Different Kernels

First, we evaluate our VSPM kernel using a baseline approach (called VSPM baseline in the

following experiments), where for each concept Ci, an ensemble kernel is generated based on

Eqn. (4.2) and an one vs. all SVM classifier is trained using the ensemble kernel to detect
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this concept (as discussed in Section 4.2.2). We compare this baseline with a state-of-the-art

approach [119]: SVM classifiers based on the spatial pyramid match kernel using a single

vocabulary. Table 4.1 shows the MAP comparison, and Fig. 4.5 shows the per-concept AP

performance. From the results, the VSPM baseline slightly outperforms single-vocabulary

kernels in terms of MAP, and performs best for 5 concepts in terms of AP, while kernels

with single-vocabulary wins over the remaining 7 concepts. Also, no single vocabulary

setting outperforms others over all concepts. The single-vocabulary kernel at different levels,

l = 0, 1, 2, achieves the best performance for 1, 2, and 4 concepts respectively. These results

show that different concepts favor different resolutions of kernels, and the VSPM baseline

that averages multi-resolution kernels with predefined weights result in slight performance

gains.

Table 4.1: MAP: VSPM baseline vs. single-vocabulary kernels (with varying numbers of

levels used in the spatial pyramid).

single-vocabulary kernel

l=0 l=1 l=2
VSPM baseline

0.213 0.219 0.242 0.248

4.4.2 Vocabulary Sharing with Joint Boosting

In this experiment, we compare our joint boosting with two baseline approaches: the VSPM

baseline presented above, and the regular boosting approach where Real AdaBoost is di-

rectly applied to detect individual concepts independently (as discussed in Section 4.2.2).

Fig. 4.6 shows the AP performance over each of the 12 concepts. The regular boosting uses

120 weak classifiers (10 iterations for each concept) and joint boosting uses 100 weak clas-

sifiers (100 iterations for joint boosting). From the figure we can see that regular boosting

actually hurts the performance over most of the concepts. This phenomenon indicates that

severe overfitting occurs by using regular boosting due to the small positive training set

for many concepts, e.g., only 254 positive samples out of 41847 training samples for “boat-

ship”. As demonstrated in [41], with such few and noisy positive training samples, regular
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Figure 4.5: Per-concept AP: VSPM baseline vs. single-vocabulary kernels. l indicates the

vocabulary resolution level.

boosting usually overfits greatly. Compared with the baselines, our joint boosting method

consistently achieves superior performance for most of the concepts even with the limited

training data. This phenomenon is consistent with previous literatures. As shown in [177,

223], when the number of training samples are reduced, joint boosting can still get good

performance, since through sharing weak learners and kernels among different concepts

the required training kernels and samples are reduced for detecting each individual con-

cept [223]. On average, the overall MAP improvement of joint boosting is 24% and 10%,

respectively, compared with regular boosting and VSPM baseline. The performance im-

provements over many concepts are significant, e.g., compared with VSPM baseline, joint

boosting achieves the following AP gains: “building” by 30%, “maps” by 34%, “urban” by

10%, “boat-ship” by 17%, “vegetation” by 19%, and “government-leader” by 11%.

In addition, Fig. 4.7 shows the evolution of the MAP performance during boosting itera-

tions. When more weak classifiers are added, joint boosting can achieve better performance,

confirming the convergence property of the joint boost algorithm. Note in the current ex-
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Figure 4.6: Per-concept AP of joint boosting and two baseline approaches: VSPM baseline

and regular boosting.

periment, we stop at 100 weak learners, and the performance curve is still rising. This

is in contrast to the regular boosting algorithm, where the performance keeps decreasing

throughout the iterations.

4.4.3 Exploring Concept Relations

In this subsection, we explore the relationships between the 12 concepts in TRECVID data

through analysis of the experimental results from joint boosting. There are 36 kernels in

the kernel pool, 3 kernels for each concept (due to 3 levels of k-means clustering used in

codebook construction). Only 19 kernels are selected to be used by the joint boosting

algorithm. Fig. 4.8 shows the frequency of the usage for each kernel. From the figure,

kernels of some concepts, e.g., “maps” and “boat-ship”, are seldom used. These concepts

are either rare concepts (i.e., very few positive samples), or the supporting keyframes have

large diversity in visual appearances (e.g., “boat-ship” as shown in Fig. 4.1). Thus the

quality of visual vocabularies from these concepts are poor. This result is consistent with
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Figure 4.7: Performance evolution of joint boosting and regular boosting with different

numbers of weak classifiers.

above experiments that these concepts can benefit a lot using kernels from other concepts,

and joint boosting has significant performance improvement for “maps” and “boat-ship”

compared with independent detectors.

Fig. 4.9 gives the details about the usage of kernels by each concept. The figure clearly

shows the sharing of vocabularies across different concepts. For example, “boat-ship”

uses the kernels from “waterscape-waterfront” frequently in addition to its own kernels,

and “maps” uses the kernels from many other concepts such as “charts”, “flag-us”, etc.

This is because of the high correlation between “boat-ship” and “waterscape-waterfront”,

and between “maps” and “charts” etc. Since keyframes from “waterscape-waterfront” or

“charts” etc. have high consistency, the high-quality visual words extracted for ‘waterscape-

waterfront” or “charts” etc. provide important semantic cues for detecting “boat-ship” or

“maps” respectively. In addition, Fig. 4.10 shows the AP evolution of the “boat-ship” and
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Figure 4.8: Usage of individual kernels by 100 weak classifiers. The horizontal axis shows

kernels from different concepts, where numbers 0,1,2 represent multiple resolutions, i.e., l.

Kernels from “maps” and “boat-ship” are seldom used. Interestingly, these two concepts are

enhanced significantly in joint boosting by leveraging kernels from other related concepts.

“maps” during 100 iterations, where the kernels corresponding to big performance changes

are also listed. Note the same kernel may be used multiple times throughout the itera-

tive process. Fig. 4.10 further confirms that the performance of “boat-ship” and “maps”

are helped significantly by sharing kernels from “waterscape-waterfront” and “charts” etc.,

respectively.

4.4.4 Computational Complexity

The test stage of joint boosting is very fast, while its training stage needs more computa-

tional time than regular boosting or VSPM baseline without boosting. However, training

can be done offline. During the test stage, joint boosting only needs T SVM classification,

one for each iteration, to classify M concepts simultaneously. While regular boosting needs

M ·T SVM classification. In the training stage, for each iteration, joint boosting needs to
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Figure 4.9: Sharing of kernels among different concepts. Each bar gives the frequency a

kernel is used in building weak classifiers over 100 iterations for a concept.

train M ·N+
∑M−1

i=1 i= (M−1)M
2 +MN classifiers for finding the optimal kernel and subset

of concepts, where N is the total size of the kernel pool K. This is larger than the number

needed for regular boosting – M ·L classifiers during each iteration.
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Figure 4.10: Evolution of AP performance through iterations.

4.5 Discussion

In this chapter we propose a novel multi-class concept detection framework based on kernel

sharing and joint learning. By sharing “good” kernels among concepts, accuracy of individ-
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ual detectors can be improved; by joint learning of common detectors across different classes,

required kernels and computational complexity for detecting individual concepts can be re-

duced. We demonstrate our approach by developing an extended JointBoost framework,

which automatically selects optimal kernels and subsets of sharing concepts in an iterative

boosting process. Our joint boosting method can be applied for multi-class concept detec-

tion using any type of kernel. In this work, we propose a VSPM kernel for each individual

concept based on the BoF representation. Our method constructs multi-level kernels over

multi-resolution visual vocabularies and multi-resolution spatial coordinates. We test our

method in detecting 12 concepts over broadcast news videos from the TRECVID 2005 cor-

pus. Clear performance gains are achieved – 10% in MAP and up to 34% AP for some

concepts like “maps”, “building”, and “boat-ship”. Extensive analysis of the results also

reveals interesting relations among concepts. Our results also confirm the great potential

of the proposed direction – leveraging strong visual words constructed from some concepts

to help detection of challenging categories.
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Chapter 5

Multi-Modal Concept Detection by

Direct Fusion

5.1 Introduction

Semantic video concepts are usually manifested through both visual and audio cues. For

example, “dancing” is usually associated with human body motions together with back-

ground “music”. Each modality brings complementary information about the other and

their simultaneous processing can uncover relationships that are otherwise unavailable when

considering the signals separately. By intuition, combining evidence from multiple modali-

ties can lead to improved performance. In Section 2.5.3 of Chapter 2, we have introduced

many related works using both visual and audio information to help video concept de-

tection, where straightforward multi-modality fusion approach is widely adopted [90, 130,

131, 245]. This is because of the difficulty in object-level visual analysis and audio separa-

tion, and the fact that multimodal synchronization may not exist. Such fusion approaches

avoid explicit multimodal correlation or synchronization, but directly combine features or

classifiers that are separately extracted or trained based on individual modalities.

As illustrated in Fig. 5.1, both early fusion and late fusion can be used to directly

combine audio and visual signals in a manner of coarse synchronization. That is, some

visual feature space Fv is constructed based on the image keyframe I, and some audio

feature space Fa is generated from the audio soundtrack corresponding to the video segment
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u where keyframe I comes from. Then such visual and audio features can be considered as

coarsely synchronized since they describe the visual and audio characteristics of the same

video segment u. Intuitively, the visual feature vector fv(u) (that represents u as a data

point in Fv) and the audio feature vector fa(u) (that represents u as a data point in Fa)

can be directly combined together by either early fusion or late fusion. In early fusion, fv(u)

and fa(u) are concatenated to make a long feature vector to train classifiers. In late fusion,

individual classifiers are built for each fv(u) and fa(u), respectively, and their judgements

are combined to make the final decision. The general issues that influence the performance of

such direct fusion are the high dimensionality in early fusion, and the classifier combination

strategy in late fusion. It is still an open issue how to construct appropriate joint feature

vectors comprising of features from different modalities with different time scales, different

distance metrics and different dynamic structures. Also, classifier combination remains to

be nontrivial [108, 189] and the best combination strategy depends much on the particular

problem.

visual feature

e.g., color, texture,

local features

audio feature

e.g., MFCC
+

concatenate

audio-visual feature

Classification

concept
no concept

Early Fusion

audio feature

e.g., MFCC

final audio-visual

classification result

Classification

concept
no concept

Late Fusion

concept
no concept

fusion

visual result

audio result

visual feature

e.g., color, texture,

local features

Figure 5.1: Early fusion and late fusion of audio and visual modalities for concept detection.

In this chapter, to exploit the power of both visual and audio cues for concept detection,

we develop two multi-modality fusion approaches. We extend the BCRF-CF algorithm
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proposed in Chapter 3 to an A-V Boosted CRF method, which is a late fusion approach

to incorporate both audio and vidual aspects for enhanced classification. Also, we extend

the kernel/classifier sharing method proposed in Chapter 4 to an early fusion approach,

namely, AV Joint Boosting. Late fusion through A-V Boosted CRF provides a natural

way to combine the individual judgements from visual channel and audio channel. Through

sharing kernels constructed from multiple modalities with joint boosting, our early fusion A-

V Joint Boosting automatically selects the optimal features in classifying different concepts,

and can alleviate the problem of “curse of dimensionality”. In addition, both A-V Boosted

CRF and A-V Joint Boosting can be considered as natural combinations of multi-modality

learning and multi-concept learning, and are flexible to incorporate other modalities (e.g.,

textual) in the future.

We evaluate the proposed multi-modality fusion algorithms over Kodak’s consumer

benchmark video set [137]. Experimental results show that compared with using individual

visual or audio features alone, by combining audio and visual aspects we can get significant

performance improvements, e.g., about 10% in terms of MAP. In the following part of this

chapter we first introduce an independent audio-based concept detection method, followed

by the late fusion A-V Boosted CRF and early fusion A-V Joint Boosting.

5.2 Audio-based Concept Detector

We use the audio classifier we developed in [24]. The soundtracks of each video are described

and classified by two techniques, single Gaussian modeling, and pLSA [80] of GMM com-

ponent occupancy histograms, both described below. All systems start with the same basic

representation of the audio, as 25 Mel-Frequency Cepstral Coefficients (MFCCs) extracted

from frequencies up to 7 kHz over 25-ms frames evaluated every 10 ms. Since each video

has a different duration, it will result in a different number of feature vectors; these are

collapsed into a single video-segment-level feature vector by the two techniques described

below. Finally, these fixed-size features are used to compute a similarity kernel matrix

(pairwise similarity among a training set consisting of positive and negative samples), and

used to train an SVM classifier for each concept.
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5.2.1 Single Gaussian Modeling

After the initial MFCC analysis, each soundtrack is represented as a set of d = 25 dimen-

sional feature vectors, where the total number depends on the length of the original video.

To describe the entire dataset in a single feature vector, we ignore the time dimension and

treat the set as samples from a distribution in the MFCC feature space, which we fit with a

single 25-dimensional Gaussian by measuring the mean and (full) covariance matrix of the

data. This approach is based on common practice in speaker recognition and music genre

identification, where the distribution of cepstral features, ignoring time, is found to be a

good basis for classification.

To calculate the distance between two distributions, as required in computing the kernel

matrix needed in learning the SVM, two approaches were used. One is to use the KL

divergence between the two Gaussians. That is, if a video segment ul has a set of MFCC

features, described by a mean vector µl and a covariance matrix Σl, then the KL distance

between video segments ul and uk is:

DKL(ul, uk)2 = (µl − µk)T (Σ−1
l + Σ−1

k )(µl − µk) + tr(Σ−1
l Σk + Σ−1

k Σl)− 2d

The second approach simply treats the d-dimensional mean vector µl concatenated with

the d(d + 1)/2 unique values of the covariance matrices Σl as a point in a new (25+325

dimensional) feature space, normalizes each dimension by its standard deviation across the

entire training set, and then builds a gram matrix from the Euclidean distance between

these normalized feature statistic vectors.

5.2.2 Probabilistic Latent Semantic Analysis

The Gaussian modeling assumes that different activities are associated with different sounds

whose average spectral shape, as calculated by the cepstral feature statistics, will be suffi-

cient to discriminate categories. However, a more realistic assumption is that each sound-

track consists of a mixture of many different sounds, each contributing to the sound with

a different mixture proportion, leading to variations in the global statistics. If, however,

we could decompose the soundtrack into separate descriptions of those specific sounds, we

might find that the particular palette of sounds, but not necessarily their exact proportions,
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would be a more useful indicator of the content. Some sounds (e.g., background noise) may

be common to all classes, whereas some sound classes (e.g., a baby’s cry) might be very

specific to particular classes of video.

To build a model able to capture this idea, we first train a large Gaussian mixture

model, containing M = 256 Gaussian components, on a subset of MFCC frames chosen

randomly from the entire training set. The number of mixtures was optimized in some

validation experiments. Such Gaussian mixture model over MFCCs has been successfully

used for music classification in previous works [4, 147]. These 256 mixtures are considered as

underlying sound classes from which each individual soundtrack is assembled – the analogues

of words in document modeling. Then, we classify every MFCC frame in a given soundtrack

to one of the mixture components, and describe the overall soundtrack with a histogram

of how often each of the 256 Gaussians is present. Note that this representation also

ignores temporal structure, but it is able to distinguish nearby points in the cepstral space,

depending on how densely a specific neighborhood of feature space is represented, and

thus how many Gaussian components it received. The idea of using histograms of acoustic

tokens to represent the entire soundtrack is also similar to that used in constructing visual

vocabulary histograms for image representation.

We could use this histogram directly, but to remove redundant structure and to give

a more compact description, pLSA [80] is further used to summarize the large number of

Gaussians into a much more compact representation. This approach, originally developed

to model the distributions of words in documents of different topics, models the histogram

as a mixture of a smaller number of “topic” histograms, giving each document a compact

representation in terms of a small number of topic weights. The individual topics are

defined automatically to maximize the ability of the reduced-dimension model to match

the original set of histograms. During training, the topic definitions are driven to a local

optimum by using the EM algorithm. Specifically, the pLSA representation estimates the

probability p(g|u) that a particular component, g, is used in video segment u as the sum

of the distributions of for various topic z, p(g|z), weighted by the specific contributions of
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each topic to video segment u, p(z|u), i.e.,

p(g|u) =
∑

z

p(g|z)p(z|u)

The topic profiles p(g|z) (that are shared among all video segments), and the per-video-

segment topic weights p(z|u), are optimized by EM. The number of distinct topics deter-

mines how accurately the individual distributions can be matched, and also provides a way

to smooth over irrelevant minor variations in the use of certain Gaussians. We tuned it

empirically on the development data, and found that around 160 topics is the best number

for our task. Representing a test item similarly involves finding the best set of weights

to match the observed histogram as a combination of the topic profiles; we match in the

sense of minimizing the KL distance, which requires an iterative solution. Finally, each

video segment is represented by its vector of topic weights, and the SVM’s gram matrix (re-

ferred to as kernel Kaudio) is calculated using the Mahalanobis (i.e., covariance-normalized

Euclidean) distance in that 160-dimensional space.

5.3 Audio-Visual Boosted CRF

In this section, we will introduce a late fusion framework to combine the audio-based and

visual-based concept prediction results from models that are trained separately. The BCRF-

CF algorithm is proposed in Chapter 3 as an efficient context-based fusion method for

concept detection. This BCRF-CF algorithm has a two-layer framework. In the first layer,

independent visual-based concept detectors are applied to get a set of initial posterior

probabilities of concept labels on a given image. Then in the second layer the detection

results of each individual concept are updated through a context-based model by considering

the detection confidence of the other concepts. Here we extend the BCRF-CF method to

include models from both visual and audio modalities.

For each video segment u (with corresponding image keyframe I), the input observations

are the initial posterior probabilities hI generated from concept detectors trained using

individual visual and audio features,

hI =
[

hvisual
I ,haudio

I

]T
=

[

hvisual,1
I , . . . , hvisual,M

I , haudio,1
I , . . . , haudio,M

I

]T
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where hvisual
I =

[

hvisual,1
I , . . . , hvisual,M

I

]T
includes visual-based independent detection re-

sults over every concept Ci (i = 1, . . . ,M), and haudio
I =

[

haudio,1
I , . . . , haudio,M

I

]T
includes

audio-based independent detection results. Then these inputs are fed into the CRF to get

the improved posterior probabilities P (yI |I) through inference based on the inter-conceptual

relationships. Similar to the original BCRF-CF, A-V Boosted CRF detectors can be learned

using the algorithm described in Fig. 3.2 where hI =
[

hvisual
I ,haudio

I

]T
.

5.4 Audio-Visual Joint Boosting

Instead of training independent detectors based on visual features and audio features sep-

arately, the visual kernels and audio kernels can be jointly used to learn concept detectors.

To this end, we adopt the joint boosting and kernel sharing framework developed in the

previous Chapter 4 that utilizes a two-stage framework: (1) the kernel construction stage;

and (2) the kernel selection and sharing stage. In the first stage, concept-specific kernels

such as the VSPM kernels described in Section 4.2, are constructed to capture the most

representative characteristics of the visual content for each concept individually. Then in

the second stage, these kernels are shared by different concepts through a joint boosting

algorithm that can automatically select the optimal kernels from the kernel pool to learn a

multi-class concept detector jointly. This two-stage framework can be directly generalized

to incorporate audio-based kernels. That is, in the first stage, based on acoustic analysis

various kernels can be constructed (such as the audio vocabulary and kernel described in

Section 5.2.2), and these kernels can be added into the rich kernel pool together with all

the visual-based kernels, and in the second stage the optimal subset of kernels are selected

and shared through the joint boosting algorithm.

5.5 Experiments

We evaluate the performance of features, models, and fusion methods described earlier

using Kodak’s benchmark consumer video set [137]. Among the 25 concepts annotated over

the entire video set, we use 21 visual-dominated concepts to evaluate the performance of
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visual methods and impact of incorporating additional methods based on audio features 1.

The visual-based baseline approach is the SVM classifiers trained using global grid-based

color moments, Gabor texture, and edge direction histogram, as described in Section 2.7.4.

The audio-based baseline approach is the SVM classifier trained using the global audio

feature described in Section 5.2. The A-V Boosted CRF algorithm uses the audio and

visual baseline detectors as initial audio and visual independent detectors. The A-V Joint

Boosting algorithm shares the SIFT-based VSPM kernels (described in Chapter 4) and the

audio kernel (described in Section 5.2) to learn the multi-concept detector.

Each concept detection algorithm is evaluated in five runs and the average performances

over all runs are reported. The data sets in the runs are generated as follows: the entire data

set D is randomly split to 5 subsets D1, . . . ,D5 of approximately equal size. By rotating

these 5 subsets, we generate the training set, validation set, and test set for each run. That

is, for run 1, training set = {D1,D2}, validation set = D3, test set = {D4,D5}. Then we

switch one subset for run 2, where training set = {D2,D3}, validation set = D4, test set =

{D5,D1}. Other runs are prepared in a similar fashion. For each run, all algorithms are

trained over the training set and evaluated over the test set, except for the A-V Boosted CRF

algorithm in which the validation set is used to learn the joint boosting model that fuses

individual detectors learned using the training set separately. In addition, we compare our

multi-modality fusion methods with a straightforward ensemble method where we simply

average independent visual-based and audio-based detection results.

Fig. 5.2 shows the per-concept AP of different audio-visual fusion algorithms, where

“All” corresponds to the method that we further average the posteriors from A-V Boosted

CRF and A-V Joint Boosting. From the figure, the A-V Boosted CRF algorithm improves

the performance of visual baseline by more than 10%. The improvements over many con-

cepts are significant, e.g., 40% over “animal”, 51% over “baby”, 228% over “museum”, 35%

over “dancing”, and 21% over “parade”. These results confirm the power of incorporating

inter-concept relations as well as multiple modalities into the fusion model.

1The three audio-dominated concepts, i.e., “singing” “music”, and “cheer”, are not used since we do not

have their keyframe-level labels (only labels for the entire videos are available). The “graduation” concept

is not used because we do not have enough samples to reasonably evaluate detectors for this concept.
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Figure 5.2: Comparison of different audio-visual fusion algorithms.

Compared to straightforward averaging of audio and visual models for each concept, the

A-V Boosted CRF context-based fusion method shows more consistent improvement over

the diverse set of concepts. Most importantly, it avoids the problem of large performance

degradation by averaging models over a few concepts (“sunset” and “museum”), where

models from one modality are significantly worse than the others. In other words, by fusing

multi-modality models over a large pool of concepts, the stability of the detectors can be

greatly improved.

Fig. 5.3 gives an example of the top 20 detected video segments for the “parade” concept

(ranked based on the detection scores in descending order) using both A-V Boosted CRF

and visual-based baseline. Many irrelevant videos (marked by red rectangles) are included

in the top result when using only the visual-based baseline. This is because most of these

irrelevant videos contain crowd in the outdoor scene and the visual appearances are similar



CHAPTER 5. MULTI-MODAL CONCEPT DETECTION BY DIRECT FUSION 105

Top 20 video clips detected by visual baseline model

Top 20 video clips detected by A-V Boosted CRF

Figure 5.3: Top 20 video segments from the “parade” concept. The irrelevant videos are

marked by red rectangles. Video segments are ranked based on the detection scores in

descending order.



CHAPTER 5. MULTI-MODAL CONCEPT DETECTION BY DIRECT FUSION 106

to those of “parade” keyframes. By using A-V Boosted CRF, such irrelevant videos are

removed largely because of the help from the audio models. Parade scenes are usually

accompanied by noisy sound from the crowd and loud music. The visual appearances plus

audio together can distinguish “parade” videos from visually confusing cases more effectively

than only using a single type of feature.

In addition, sharing both audio and visual features among concepts by using A-V Joint

Boosting does not result in improved performance on the average. This indicates that the

use of audio features and feature sharing in A-V Joint Boosting is not as effective as inter-

concept context modeling (via A-V Boosted CRF) for detecting concepts in this data set.

This could also be attributed to the difference between local SIFT-based visual features

and global visual features in detecting semantic concepts in this Kodak’s consumer video

set. However, A-V Joint Boosting does provide complementary benefits – by combining

A-V Joint Boosting and A-V Boosted CRF, we achieve further improvements over many

concepts, e.g., 10% over “animal”, 12% over “baby”, 7% over “beach”, 7% over “crowd”,

7% over “one person”, etc. It is interesting to see that most concepts benefiting from feature

sharing (A-V Joint Boosting) overlap with concepts benefiting from context fusion (A-V

Boosted CRF). More research is needed to better understand the mechanism underlying

this phenomenon, and develop techniques that may automatically discover such concepts.

Analysis of the results from the A-V Joint Boosting models also allows us to investigate

the relative contributions of features extracted from videos of individual concepts, and how

they are shared across classifiers of multiple concepts. Fig. 5.4 shows the frequency of

individual kernels used by the A-V Joint Boosting algorithm in simultaneously detecting 21

concepts through 200 iterations. Only 25 out of the total 64 kernels (3 visual-based kernels

for each concept and 1 audio kernel for all concepts) are selected by the feature selection

and sharing procedures. It’s surprising to see that single audio kernel turns out to be the

most frequently used kernel, more than any other kernels constructed from visual features.

This again confirms the importance of multi-modality fusion – despite the lower accuracy

achieved by the audio models (compared to their visual counterparts), the underlying audio

features play an important role in developing multi-modality fusion models. Furthermore,

the feature selection and sharing process used in A-V Joint Boosting is useful in pruning
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the feature pool in order to make the models more compact. For example, visual kernels

computed from training data of “birthday”, “museum”, and “picnic” are discarded because

of their relatively poor quality. Images from these concepts have highly diverse visual

content and thus the learned visual vocabularies and associated kernels can not capture

meaningful characteristics of these concepts.
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Figure 5.4: Frequency of kernels used by the A-V Joint Boosting algorithm throughout

200 iterations.

5.6 Discussion

In this chapter we develop two multi-modality fusion methods to incorporate both the

visual modality and the audio modality for enhanced concept classification. An early fusion

approach, A-V Joint Boosting, is proposed to share visual-based and audio-based kernels

and classifiers for constructing multi-class concept detectors. An late fusion approach,

A-V Boosted CRF, is developed to combine independent audio-based and visual-based

concept detection results, by incorporating inter-conceptual relationships. Experiments over

Kodak’s consumer benchmark video set demonstrate that both audio and visual features

contribute significantly to the robust detection performance by achieving a satisfactory
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detection accuracy as high as 83% over diverse semantic concepts. The results also confirm

the feasibility of semantic classification of consumer videos and suggest interesting future

directions.
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Chapter 6

Multi-Modality: Mid-Level A-V

Atoms

6.1 Introduction

In the previous chapter, we have discussed the multi-modal fusion approaches, where visual

features over global image keyframes and audio features from the global audio signal in the

same video segment where keyframes come from are directly combined by either early fusion

or late fusion to enhance classification. These fusion methods have shown promising results

with performance improvements. However, the global visual and audio representations

have certain limitation in describing the object-level information, and the disjoint process

of extracting audio and visual features limits the ability to generate joint audio-visual

patterns that are useful for concept detection. For example, as illustrated in Fig. 6.1,

the joint pattern of a birthday cake region and the birthday music is an intuitive strong

audio-visual cue for the “birthday” concept but has never been explored in prior works.

On the other hand, as mentioned in Chapter 2, Section 2.5, there are many recent works

exploring audio-visual analysis for audio-visual speech/speaker recognition, object localiza-

tion, object detection and tracking. Such object-based joint audio-visual analysis methods

have shown interesting results in analyzing videos in a controlled or simple environment

where good foreground/background separation can be obtained in general. However, both

object detection and tracking (especially for generic objects) are known to be extremely
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An Audio-Visual Atom in a“birthday”video slice

time
. . .

An Audio-Visual Atom in an“animal”video slice

time
. . .

Figure 6.1: Examples of audio-visual atoms. The region track of a birthday cake and the

background birthday music form a salient audio-visual cue to describe “birthday” videos.

The region track of a horse and the background horse running footstep sound give a salient

audio-visual cue for the “animal” concept.

difficult in general videos. There usually exist uneven lighting, clutter, occlusions, and

complicated motions of both multiple objects and camera. In addition, the basic assump-

tion for tight audio-visual synchronization at the object level may not be valid in practice.

Multiple objects may make sounds together in a video without large movements, and some-

times the objects making sounds do not show up in the video.

In this chapter, we investigate the challenging issue of joint audio-visual analysis in

general videos aiming at detecting generic concepts. We propose a novel representation, the

AVA, by extracting atomic representations over video segments. We track automatically

segmented regions based on the visual appearance within a short video slice (e.g., 1 second).

Regional visual features (e.g., color, texture, and motion) can be extracted from such short-

term region tracks. Then based on the visual similarity short-term region tracks from
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adjacent short-term video slices are connected into long-term region tracks that are called

visual atoms. At the same time we locate audio energy onsets from the corresponding

audio soundtrack by decomposing the audio signal into the most prominent bases from a

time-frequency representation. Audio features (e.g., spectrogram) can be obtained from

reconstructed audio signals within a short window around each local energy onset. Such

reconstructed short-term audio signals around energy onsets are called audio atoms. Then

visual atoms and audio atoms are combined together to form a joint audio-visual atomic

representation, i.e., AVAs. Based on AVAs, joint audio-visual codebooks can be constructed,

and the codebook-based features can be used for concept detection.

Our method provides a balanced choice for exploring audio-visual correlation in general

videos: compared to the previous audio-visual fusion approach in Chapter 5 using coarsely

aligned concatenation of global features, we generate an atomic representation in which a

moderate level of synchronization is enforced between region tracks and local audio onsets;

compared to the tight audio-visual synchronization framework focusing on object detec-

tion and tracking, we do not rely on precise object extraction. Compared to alternative

methods using static image frames without temporal tracking, less noisy atomic patterns

can be found by the short-term tracking characteristics of AVAs. As illustrated by the

AVA examples in Fig. 6.1, the temporal region track of a birthday cake associated with the

background birthday music gives a representative audio-visual atomic cue for describing

“birthday” videos. Similarly, the temporal horse region track together with the horse run-

ning footstep sound form a joint audio-visual atomic cue that is salient for describing the

“animal” concept. Fig. 6.1 also indicates that the joint audio-visual correlation captured

by our AVA is based on co-occurrence, e.g., frequent co-occurrence between a birthday cake

and the birthday music. Accordingly, the audio-visual codebooks constructed from salient

AVAs can capture the representative audio-visual patterns to describe different individual

concepts, and significant detection performance improvements can be achieved.
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Figure 6.2: The overall framework of the proposed joint audio-visual analysis approach.

6.2 Overview of Our Approach

Fig. 6.2 shows the framework of our system. We will briefly summarize our work in this

section. More details about the visual and audio processes can be found in Section 6.3 and

Section 6.4, respectively.

In the visual aspect, we propose a hierarchical framework to extract visual atoms from

general videos. In the first step, we develop an effective algorithm, named Short-Term Re-

gion tracking with joint Point Tracking and Region Segmentation (STR-PTRS ), to extract

short-term region tracks within short windows. STR-PTRS accommodates the challenging

conditions in general videos by: conducting temporal tracking within short-term video slices

(e.g., 1 second); spatially localizing meaningful regions by image segmentation based on the

color and texture appearance; and jointly using interest point tracking and region segmen-

tation to obtain short-term region tracks. The short-term region tracks are not restricted

to foreground objects. They can be foreground objects or backgrounds, or combinations of

both, all of which carry useful information for detecting various concepts. For example, the

red carpet alone or together with the background wedding music are important for classi-

fying the “wedding” concept. Visual features such as color, texture, and spatial location

can be generated from the short-term region tracks. Then in the second step, we connect
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short-term region tracks from adjacent short-term video slices into long-term visual atoms

according to the visual similarities calculated using visual features.

With temporal tracking in short-term video slices, better visual atomic patterns can

be found compared to the static-region-based alternatives where no temporal tracking is

involved. Tracking of robust regions can reduce the influence of noisy regions. Such noise

usually comes from imperfect segmentation, e.g., over segmentation or wrong segments due

to sudden changes of motion or illumination. By finding trackable visual regions and using

such region tracks as whole units to form the final visual atoms, the influence of erroneous

segments from a few frames can be alleviated through averaging across the good segments

as majorities.

The audio descriptors are based on a Matching Pursuit (MP) representation of the audio

data. MP [146] is an algorithm for sparse signal decomposition from an over-complete set

of basis functions, and MP-based audio features have been used successfully for classifying

ambient environmental sounds [30]. MP basis functions correspond to concentrated bursts of

energy localized in time and frequency and span a range of time-frequency tradeoffs, allowing

us to describe an audio signal with the basis functions that most efficiently explain its

structure. The sparseness of the representation makes this approach robust to background

noise, since a particular element will remain largely unchanged even as the surrounding noise

level increases; this is related to a highly robust audio fingerprinting approach explored in

[172]. The composition of an MP representation should allow discrimination among the

various types of structured (e.g. speech and music) and unstructured audio elements that

are relevant to concept detection. We extract the audio atoms from the audio soundtrack

corresponding to the video window where visual atoms are tracked. Each video window

is decomposed into its most prominent elements, and energy onsets are located from the

audio signal. Audio atoms are generated as the reconstructed audio sounds within the short

windows around energy onsets and are described as spectrogram features.

Visual atoms and audio atoms from the same video window are associated with each

other to generate AVAs. Based on the AVA representation, we construct discriminative

audio-visual codebooks using the Multiple Instance Learning (MIL) technique [150] to cap-

ture the representative joint audio-visual patterns that are most salient for detecting in-
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dividual concepts. Precise object detection and tracking are helpful but not required for

our approach. This enables us to conduct audio-visual analysis in general videos, different

from the previous methods focusing on audio-visual object detection and tracking. We ex-

tensively evaluate our algorithm over the challenging Kodak’s consumer benchmark video

data set from real users [137]. Our method is compared with two state-of-the-art static-

region-based image categorization approaches that also use MIL: the DD-SVM algorithm

[29] where visual codebooks are constructed by MIL based on static regions and codebook-

based features are generated for SVM classification; and the ASVM-MIL algorithm [251]

where asymmetrical SVM classifiers are directly built using static regions under the MIL set-

ting. Experiments demonstrate significant improvements achieved by our joint audio-visual

codebooks, e.g., over 120% MAP gain (on a relative basis) compared to both DD-SVM and

ASVM-MIL. In addition, the joint audio-visual features outperform visual features alone by

an average of 8.5% (in terms of AP) over 21 concepts, with many concepts achieving more

than 20%.

6.3 Visual Atom Extraction

Detecting and tracking generic objects in general videos are known to be difficult. As

can be seen in the example frames from consumer videos in Fig. 2.2 (Chapter 2), there

exist dramatic clutter, occlusions, change of shape and angle, and motions of both camera

and multiple objects. Most previous tracking algorithms, both blob-based trackers [181,

188, 216, 236] and model-based trackers [8, 71, 94, 185], can not work well. Specifically,

blob-based approaches rely on silhouettes derived from variants of background substraction

methods, while in general videos due to the complex motions from both objects and camera,

and the occlusion of multiple objects, it is very hard to obtain satisfactory silhouettes.

On the other hand, most model-based algorithms rely on manual initialization, while for

automatic semantic concept detection, such manual initialization is not available. Object

detectors can be used to initialize a tracking process [168] but are restricted to tracking

some specific objects like human body or vehicle, since it is unrealistic to train a detector

for any arbitrary object.
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We propose an effective hierarchical framework to extract visual atoms from general

videos. In the first step, we temporally track consistent short-term visual regions by an

STR-PTRS method. Tracking is conducted within short-term video slices (e.g., 1 second)

to accommodate general videos, since only during a short period of time, the changes and

movements of the camera and objects are relatively small and there is a high chance to

find consistent parts in the frames that can be tracked well. To obtain meaningful regions

from a video slice, we use the image segmentation algorithm (that relies on the static

color and texture appearance) instead of the background substraction or spatial-temporal

segmentation methods [39] that rely on motion. This is because it is very hard to separate

camera motion from object motion in general videos and the overall motion is very unstable.

In addition, for semantic concept detection not only foreground objects but also backgrounds

are useful.

Within each short-term video slice, we jointly use interest point tracking and region

segmentation to obtain short-term region tracks. Robust points that can be locked-on well

are tracked through the short-term video slice, and based on point linking trajectories,

image regions from adjacent frames are connected to generate region tracks. Compared to

other possible alternatives, e.g., connecting regions with the similarity over the color and/or

texture appearance directly, our approach is more effective in both speed and accuracy: to

track a foreground/background region, matching with raw pixel values is not as reliable as

matching with robust interest points, due to the change of lighting, shape, and angle; and

extracting higher-level color/texture visual features for region matching is quite slow.

The next subsection will describe the detailed STR-PTRS. Now let’s formulate our

problem. The terminology is consistent with that in Section 2.1. v denotes a video which is

partitioned in to some video segments u1, . . . , uL. Each video segment u (we omit index l in

the rest subsections without loss of generality since visual atoms are extracted within each

video segment independently) is further partitioned into K consecutive short-term video

slices v1, . . . , vK (e.g., each vk has 1-sec length). A set of frames Ĩ1
k , . . . , Ĩ

T
k are uniformly

sampled from each video slice vk with a relatively high frequency, e.g., 30 frames per second

or 10 frames per second. Our task is to extract visual atoms from the video segment u.
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6.3.1 Short-Term Point Track

Image features (corners etc.) that can be easily locked-on are automatically found [207] and

then tracked by using the Kanade-Lucas-Tomasi (KLT) Tracker [13] for every short-term

video slice v (again, we omit index k for short-term video slices in this subsection and the

next one without loss of generality since short-term region tracks are extracted within each

short-term video slice independently). The result is a set of Np feature tracks, and each

feature track has a trajectory P t
j = (x1

t
j, x2

t
j), where t= 1, . . . , T is the temporal index (in

the unit of frames), j is the index of feature tracks, and x1, x2 are the image coordinates.

The KLT tracker is used because of its potent to balance reliability and speed. The

KLT tracker defines a measure of dissimilarity that quantifies the change of appearance of a

feature between the first and the current image frame, allowing for affine image changes. At

the same time, a pure translation model of motion is used to track the selected best features

through the sequence. In addition, the maximum inter-frame displacement is limited to

improve the reliability and the processing speed. Alternative methods such as tracking

with SIFT-based registration [260, 262] generally have limitations in dealing with a large

amount of videos (e.g., 1358 videos with 500,000+ frames in our experiments in Section 6.7)

due to the speed problem.

In practice, we initiate the KLT tracker with 3000 initial points. In the next subsection,

the extracted point tracking trajectories are used to generate short-term region tracks.

6.3.2 Short-Term Region Track

Each frame Ĩt is segmented into a set of nt
r homogeneous color-texture regions rt

1, . . . , r
t
nt

r
by

the JSeg tool developed in [40]. Then from each short-term video slice v , we generate a set of

Nr short-term region tracks r1, . . . , rNr by the algorithm described in Fig. 6.4. Each region

track rj contains a set of regions {rt
j}, where t=1, . . . , T is the temporal index (in the unit

of frames). The basic idea is that if two regions from the adjacent frames share lots of point

tracking trajectories, these two regions are considered as matched regions. To accommodate

inaccurate segmentation (where a region from the frame at time t may be separated into

several regions at time t+1, or several regions from time t may be merged at time t+1),

we use a replication method to keep all the possible region tracks as illustrated in Fig. 6.3.
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Such an approach not only retains all possible region tracks to provide rich information

for constructing AVA-based codebooks in later sections, but also helps to reduce the noise

from inaccurate segmentation. By treating the short-term region track as a whole unit,

the influence of wrong segments from the few frames can be reduced by averaging across

good segments as majorities. Finally many replications will have similar visual features and

their influences in building the audio-visual codebook will be merged through the further

clustering process in later parts of this section.

No further action is taken at this point to fix the inaccurate segmentation. This is

because for the purpose of codebook construction in general videos like the ones we deal

with there hardly exist universally effective methods in refining the inaccurate segmentation

results. However, good refinement of region segments is still favorable and can further

improve the quality of the final audio-visual codebook.

. . .

. . .

Figure 6.3: An example of region track replication. In the 2nd frame the horse is separated

to two parts by inaccurate segmentation. We keep both two possible region tracks.

Note that the above STR-PTRS algorithm may miss some region tracks that enter into

the screen in the middle of a short-term video slice. However such regions will still be found

in the next video slice as long as they stay in the screen long enough. For those regions that

enter and exit the screen very fast (e.g., within a video slice), they are negligible in most

general videos for the purpose of semantic concept detection. Similarly, if a shot transition

happens within a video slice, most region tracks during the transition may be thrown away,

and the final detection performance will hardly be affected. In addition, our STR-PTRS

can be extended by adding a backward checking process to overcome this problem. This is
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also one of our future works.

Input: A set of frames Ĩ1, . . . , ĨT from a short-term video slice v. Regions rt
1, . . . , r

t
nt

r
for each frame

Ĩt. A set of Np point tracks P t
j , j=1, . . . , Np, t=1, . . . , T .

1. Initialization: set R=φ, Nr =0.

2. Iteration: for t=1, . . . , T

• Set U=φ.

• Calculate:

M
t|t+1
k,g =

Np
∑

j=1

I(P t
j ∈ r

t
k)I(P t+1

j ∈ rt+1
g )

for each pair of regions rt
k∈ Ĩ

t, rt+1
g ∈ Ĩt+1.

• For each region rt
k∈ Ĩ

t:

– If M
t|t+1
k,l∗ >Hlow (l∗=arg maxg M

t|t+1
k,g ), add matched region pair (rt

k, rt+1
l∗ ) to U .

– If M
t|t+1
k,l >Hhigh (l 6= l∗), add matched region pair (rt

k, rt+1
l ) to U .

• Iteration: for the set of mt region pairs (rt
k, r

t+1
g1

), . . . , (rt
k, r

t+1
gmt

) in U that all start with the

same region rt
k:

– If there exist mr region tracks r1, . . . , rmr , rj ∈ R that end with rt
k, replicate each

region track rj by mt times, and extend each region track replication by appending

rt+1
g1

, . . . , rt+1
gmt

to the end of each replication respectively. Set Nr = Nr +mt ×mr.

– Else, create new tracks rNr+1, . . . , rNr+mt starting with rt
k and ending with each

rt+1
g1

, . . . , rt+1
gmt

respectively. Set Nr = Nr +mt.

3. Remove region tracks in R with lengths shorter than Hlong. Output the remaining region tracks.

Figure 6.4: The algorithm to generate short-term region tracks. I(·) is the indicator func-

tion. In practice, we empirically set Hlong = 1
2T , Hlow = 10, Hhigh = 1

2M
t|t+1
k,l∗ .

To select the appropriate length for short-term video slices, we need to consider two

aspects. The video slice needs to be short so that a good amount of point tracking tra-

jectories can be found to get region tracks. On the other hand, the longer the video slice

is the better information it retains about temporal movements in visual and audio signals.

Fig. 6.5 gives average numbers of point tracking trajectories with changed lengths of video
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slices. From the figure 1-sec length gives a balanced choice and is used in practice.

Length (s)

N
u
m
b
e
r

0.5        1          2          3         4          5          6         7          8         9         10
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300

200

100

0

Figure 6.5: Numbers of point tracking trajectories with changing lengths of the short-term

video slice. 1-sec length gives a balanced choice and is used in practice.

The appropriate length for short-term region tracking is also related to the degree of

content change and motion in the corresponding video. The 1-sec length we take is good

for most of the consumer videos we experiment on, which have moderate-level motions. For

some special videos, such as sports videos, where lots of fast motions exist, shorter video

slices may be needed to capture the fast moving regions. Fig. 6.6 gives some examples of

such fast moving objects that can only be captured when we track at 30 fps rate within

0.3-sec video slices. How to design a selection strategy to determine the appropriate length

to use according to different videos is one of our future works.

6.3.3 Visual Features over Region Tracks

In this subsection we generate visual feature representations for the short-term region track

rj . First, several types of visual features are extracted from each region rt
j ∈ rj , including

color moments in the HSV space (9-dim), Gabor texture (48-dim), and edge direction

histogram (73-dim). These features have been shown effective in detecting generic concepts

[249]. We concatenate these features into a 130-dim feature vector f̃ t
j,vis and then average

f̃ t
j,vis across time t= 1, . . . , T to obtain a 130-dim feature vector fj,vis for the region track

rj . fj,vis describes the overall visual characteristics of rj . In addition, optical flow vectors
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0.27 sec

Object 1

Object 2

Object 3

Object 4

...

...

...

...

0.3 sec

0.27 sec

0.3 sec

Figure 6.6: Examples of fast moving objects that can only be captured when we track visual

regions at 30 fps within 0.3-sec video slices. These objects can not be consistently tracked

with 1-sec video slices at 10 fps. The number (e.g., 0.27 sec) below each region track shows

the length the track lasts.

are calculated over every pixel of each frame Ĩt
j using the Lucas-Kanade algorithm [140],

where for a pixel (x1
t
j, x2

t
j) a motion vector [m1(x1

t
j, x2

t
j),m2(x1

t
j , x2

t
j)] is obtained. Then

for each region rt
j ∈rj, a 4-dim feature vector f̃ t

j,mt is computed, where each bin corresponds

to a quadrant in the 2D motion space and the value for this bin is the average speed of

motion vectors moving along directions in this quadrant. For example, the first item in f̃ t
j,mt

is computed as:

1

R

∑

(x1
t
j ,x2

t
j)∈rt

j :m1(x1
t
j ,x2

t
j)>0,m2(x1

t
j ,x2

t
j)>0

√

m2
1(x1

t
j , x2

t
j) +m2

2(x1
t
j , x2

t
j)

where R is the total size of region rt
j. Then we average f̃ t

j,mt across t=1, . . . , T to obtain a

motion feature vector fj,mt for the region track rj. fj,mt describes the overall moving speed

and direction of rj . The coarse 4-bin granularity is empirically chosen since for the purpose
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of semantic concept detection fine granularity of motion directions can be very noisy, e.g.,

an animal can move towards any direction. The coarse description of motion speed and

direction gives relatively robust performance in general.

In addition, we generate a spatial feature vector fj,loc describing the spatial location

information for each short-term region track rj . fj,loc has three dimensions, corresponding

to the horizontal and vertical coordinates of the center of rj and the size of rj , all being the

averaged results across the tracked regions in rj .

Note that more visual features can be extracted to describe short-term region tracks,

such as local descriptors like SIFT [138] and HOG [35]. In our experiments, we construct

the BoF histogram fj,sift for the region track rj based on a codebook generated by cluster-

ing SIFT features from a set of training videos, following the recipe of [64]. These SIFT

descriptors are calculated over interest points detected with the Hessian-Affine algorithm

[153]. However, for concept detection over our consumer videos, in general local SIFT can

not compete with the global regional visual feature fj,vis, as will be demonstrated in the ex-

periments. This phenomenon intuitively confirms how challenging this consumer collection

is. Due to the large diversity in the visual content, there is very little repetition of objects or

scenes in different videos, even those from the same concept class. In such a case, it is hard

to exert the advantage of local descriptors like SIFT for local point matching/registration.

Nonetheless, local features can still be used as additional descriptors to complement the

global regional visual features.

6.3.4 Long-term Linking to Generate Visual Atoms

By now, for an input video segment u, over each short-term video slice vk, k = 1, . . . ,K, we

have a set of Nk
r short-term region tracks rk

1, . . . , r
k
Nk

r
. In this subsection, we connect these

short-term region tracks from adjacent video slices together into long-term visual atoms.

Such linking is based on the low-level visual feature fk
j,vis and the location information fk

j,loc

of each region track rk
j . Fig. 6.7 gives the algorithm used for long-term linking.

Fig. 6.8 shows some example visual atoms generated after long-term linking. From the

examples we can see that over some consistent large regions we can get pretty good visual

atoms extracted that capture salient regions in general videos. Actually, over the ex-
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Input: A set of short-term video slices v1, . . . , vK from an input video segment u. A set of Nk
r

short-term region tracks rk
1 , . . . , r

k
Nk

r
for each short-term video slice vk. Visual feature fk

j,vis and

spatial feature fk
j,loc associated with each region track rk

j .

1. Initialization: set R=φ, Nvis =0.

2. Iteration: for k=1, . . . ,K

• Set U=φ.

• Calculate the pairwise distanceDvis(rk
i , r

k+1
j ) andDloc(rk

i , r
k+1
j ) between region tracks rk

i ∈ vk

(i = 1, . . . , Nk
r ) and region tracks rk+1

j ∈ vk+1 (j = 1, . . . , Nk+1
r ) over the visual feature fvis

and spatial feature floc, respectively.

• For each region track rk
i ∈ vk:

– If Dvis(rk
i , r

k+1
l∗ ) < H low

vis & Dloc(rk
i , r

k+1
l∗ ) < Hloc (where l∗ = arg minj Dvis(rk

i , r
k+1
j )),

add matched pair of region tracks (rk
i , r

k+1
l∗ ) to U .

– If Dvis(rk
i , r

k+1
l ) < Hhigh

vis & Dloc(rk
i , r

k+1
l ) < Hloc (l 6= l∗), add matched pair of region

tracks (rk
i , r

k+1
l ) to U .

• Iteration: for the set of mk pairs of region tracks (rk
j , r

k+1
g1

), . . . , (rk
j , r

k+1
g

mk
) in U that all start

with the same region track rk
j :

– If there exist ma visual atoms Avis
1 , . . . ,Avis

ma , Avis
i ∈ R that end with region track rk

j ,

replicate each visual atom Avis
i by mk times, and extend each visual atom replication by

appending region tracks rk+1
g1

, . . . , rk+1
g

mk
to the end of each replication respectively. Set

Nvis = Nvis +mk ×ma.

– Else, create new visual atoms Avis
Nvis+1, . . . ,A

vis
Nvis+mk starting with region track rk

j and

ending with each rk+1
g1

, . . . , rk+1
g

mk
respectively. Set Nvis = Nvis +mk.

3. Output the visual atoms in R.

Figure 6.7: The algorithm for long-term linking to generate visual atoms. We empirically

set Hhigh
vis =0.25, H low

vis =0.2, Hloc=0.15|Ig| where |Ig| is the size of a video frame. Note that

parameters Hhigh
vis , H low

vis , and Hloc may change according to different types of videos.
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ample “wedding” video, there are over 100 visual atoms extracted in total, and in the figure

we only show a few of them. About 80% of the remaining visual atoms are relatively short

(e.g., lasting for two to three seconds). This is due to the dramatic content change and

motion in such general consumer videos.

... ...

100 sec

... ...

100 sec

... ...

70 sec

Visual Atom

Visual Atom

Visual Atom

Figure 6.8: Examples of the final visual atoms extracted from a “wedding” video. There are

over 100 visual atoms extracted in total, and here we only show a few example. About 81%

of the remaining visual atoms are relatively short (e.g., lasting for two to three seconds),

due to the dramatic content/motion change in such general consumer videos.

6.3.5 Refinement through Clustering

For each input video segment u, we have a set of Nvis visual atoms extracted asAvis
1 , . . . ,Avis

Nvis
.

Each visual atom corresponds to a set of visual regions that are spatially continuous with

consistent visual appearances through time. The visual atoms can capture individual ob-

jects, parts of objects, or combinations of multiple objects, through time. However, such

representation is not temporally complete, i.e., a visual atom may only capture a consistent

region over discontinued time windows. As illustrated in Fig. 6.9, we track the groom’s face

for a while, then the track is lost, and later on we track his face for another while again.

Such incomplete tracking results can be attributed to the challenging conditions for visual

tracking in general videos. In this subsection, we refine the extracted raw visual atoms
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through a clustering process, where we try to group visually similar visual atoms together

as one entity for later usage. The goal is that such clustered groups can merge visual

atoms that describe the same visual regions (but are tracked separately at different times)

together. In practice, the hierarchical clustering algorithm is used to cluster visual atoms

according to visual features fvis. Fig. 6.10 shows some examples of the clustering results.

As shown in the figure, such similar visual atoms can be consistent regions separated by

inconsistent tracking or similar regions resulting from over segmentation. This process has

the effect of de-noising the visual atoms and removing the redundant visual atoms.

... ...

... ...

70 sec

Visual Atom Tracked at Time Window #1

30 sec

Visual Atom Tracked at Time Window #2

Figure 6.9: Illustration of incomplete visual tracking. The visual atoms may only capture

a consistent region over discontinued time windows.

6.4 Audio Atom Extraction

In this section, we describe the process to extract audio atoms from the sound track corre-

sponding to each video segment u where visual atoms are generated.

6.4.1 Extracting Time-Frequency Bases

We represent the audio sound using a matching pursuit decomposition [146]. The bases used

for MP are Gabor functions, which are Gaussian-windowed sinusoids. The Gabor function

is evaluated at a range of frequencies covering the available spectrum, scaled in length (trad-

ing time resolution for frequency resolution), and translated in time. The created functions

form a dictionary, which possesses a continuum of time-frequency localization properties.
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...

...

...

...

Figure 6.10: Examples of clustered visual atoms. Through clustering we can group similar

visual atoms together, including consistent regions separated by inconsistent tracking and

similar regions resulting from over segmentation.

The length scaling creates long functions with narrowband frequency resolution, and short

functions (well-localized in time) with wideband frequency resolution. This amounts to a

modular Short-Time Fourier Transform (STFT) representation, with analysis windows of

variable length. During MP analysis, functions are selected in a greedy fashion to maximize

the energy removed from the signal at each iteration, resulting in a sparse representation.

This process has the effect of de-noising the signal while retaining information about the

most important parts of the signal. The Matching Pursuit Toolkit [66], an efficient im-

plementation of the algorithm, is used. The dictionary contains functions at eight length

scales, incremented by powers of two. For data sampled at 16 kHz, this corresponds to

durations ranging from 2 to 256 ms. These are each translated in increments of one eighth

of the function length, over the duration of the signal.

To ensure coverage of the audio activity in each short-term window, we extract a fixed

number of functions (500) from each window. We then prune this set of functions with post-
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processing based on psychoacoustic masking principles [186]. This emulates the perceptual

effect by which lower energy functions close in frequency to higher-energy signal cannot be

detected by human hearing. We retain the 70% of the functions with the highest perceptual

prominence relative to their local time-frequency neighborhood. This emphasizes the most

salient functions, and removes less noticeable ones. Fig. 6.11 shows the original audio signal

and the extracted time-frequency bases.

Figure 6.11: An example of the original audio signal and the corresponding extracted time-

frequency bases.

6.4.2 Locate Audio Onsets

Using a detection function built from the positions, lengths, and amplitudes of the extracted

time-frequency bases, we determine a set of times at which we think an onset of energy

probably occurred in the audio. To do this we sum the envelopes of all the functions that

are retained after the pruning process; this is our onset detection function. We then use two

different approaches to select peaks from this function. First we select all peaks from the
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detection function and keep those that are above a threshold (some percentage above the

local mean). This detects most sharp onsets. To detect softer but still significant onsets,

we smooth the original detection function by low-pass filtering, and then repeat the peak-

picking process. The two sets of potential onset times are then combined. Additionally, we

prune the final set of onset times by requiring that onsets be no closer together than 50 ms.

We therefore remove small peaks that are closer to a larger peak than 50 ms.

6.4.3 Audio Atoms and Features

For each energy onset, we collect all those time-frequency bases whose center times fall

within a short window around the onset time, and we throw away all other time-frequency

bases from the audio signal. Then we reconstruct the audio signal around each onset

separately, using only those remaining few time-frequency bases. After that, we generate a

coarsely-binned mel-frequency spectrogram representation of the short time window around

each onset. Compared to conventional features like MFCCs, these new features are designed

to be relatively invariant to background noise and to variations in acoustic channel char-

acteristic, due to the focus on energy onsets. Such audio features around energy onsets

provide a natural domain for segmenting the representation into portions associated with

distinct objects. This ability gives the opportunity to study moderate-level audio-visual

correlation.

6.4.4 Refinement through Clustering

We perform PCA on the audio spectrograms collected from all onsets from all training

videos and keep the first 20 principle components. Then for each video segment u, we

cluster the extracted audio atoms in the 20-dim PCA space. The centers of the few largest

clusters are used as the final audio atoms to correlate with the visual atoms. Fig. 6.12 shows

some examples of the audio spectrograms over reconstructed audio signals around onsets.

It also illustrates the clustering process to obtain the refined audio atoms.
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PCA

Figure 6.12: Example of clustered audio atoms.

6.5 Joint Audio-Visual Codebook Construction

So far for each input video segment u, we have a set of Nvis visual atoms Avis
1 , . . . ,Avis

Nvis

and a set of Naud audio atoms Aaud
1 , . . . ,Aaud

Naud
. We associate each audio atom with each

visual atom and generate a cross-product number of AVAs: Avis−aud
i , i = 1, . . . , Nvis×Naud.

As illustrated in Fig. 6.13, each AVA Avis−aud
i contains a long-term region track associated

with a global visual feature vector fi,vis (dvis dimensions), a local SIFT feature vector fi,sift

(dsift dimensions), a spatial feature vector fi,loc (dloc dimensions), a motion feature vector

fi,mt (dmt dimensions), and an audio feature vector fi,audio (daudio dimensions). We can

concatenate different types of features into various multi-modal vectors, based on which

different multi-modal codebooks can be constructed.

As described in Chapter 2, Fig. 2.1, a video concept detection task usually has the

following formulation: keyframes are sampled from each video segment and are annotated

with binary labels. In our experiment, one keyframe Il is sampled from each video segment
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Audio-Visual Atom (AVA)

f
vis

:  d
vis 
dimensions

f
sift

:  d
sift
 dimensions

(visual color/texture/edge)

(BoF over local SIFT)

f
audio

:  d
audio 

dimensions (spectrogram over onsets)

f
mt

:  d
mt 
dimensions (visual motion)

f
loc

:  d
loc 
dimensions (location information)

Figure 6.13: Structure of the AVAs in our implementation. This structure can be easily

extended to accommodate other types of features.

ul. A binary label ym
Il

=1 or −1 is assigned to each keyframe Il to indicate the occurrence or

absence of a concept Cm (m = 1, . . . ,M) in the video segment ul. Based on this structure,

we extract a set of AVAs over each video segment, and then we use the extracted AVAs to

construct a discriminative joint audio-visual codebook for each concept Cm.

Each video segment ul can be treated as a “bag-of-AVAs”, i.e., it consists of a set of AVAs

generated from the previous sections, and each AVA is an instance in the video-segment

bag. Thus yI is the label over the bag rather than over instances. For a semantic concept

Cm, it is sensible to assume that a “positive” bag ul (with ym
Il

= 1) must have at least

one of its instances being “positive”, e.g., a positive video segment for concept “animal”

must have at least one “animal” AVA. On the other hand, a “negative” bag ul (with

ym
Il

= −1) does not have any “positive” instance. This formulation is known as MIL [29,

150, 251] in the literature.

With different concatenations of fi,vis, fi,loc, fi,sift, fi,mt, and fi,audio, various multi-modal

features can be generated to describe an AVA Avis−aud
i . Assume that we have a combined

d-dim feature space. For each concept Cm, we repeat an MIL-type procedure Pm-times

in order to obtain Pm discriminative prototypes (fm
p

∗,wm
p

∗), p= 1, . . . , Pm, consisting of a

prototype point (or centroid) fm
p

∗ = [fm
p1

∗, . . . , fm
pd

∗]T in the d-dim feature space, and the

corresponding weights for each dimension wm
p

∗ =[wm
p1

∗, . . . , wm
pd

∗]T .

Among the flavors of MIL objective functions, the Diverse Density (DD) is one that

fits our intuitive objective above and also with efficient inference algorithm available [29]

via EM. In the rest of Section 6.5, we omit subscripts m, p without loss of generality, as



CHAPTER 6. MULTI-MODALITY: MID-LEVEL A-V ATOMS 130

each f∗ will be independently optimized for different concepts over different video segment

bags l∈{1, . . . , L} and different instances j∈{1, . . . , Nl} in each bag ul. The DD objective

function for one bag ul can be simply written as:

Ql =
1 + yIl

2
− yIl

∏Nl

j=1
(1− e−||flj−f∗||2

w
∗ ) (6.1)

where flj is the feature vector of the j-th AVA instance, and ||f ||w is the weighted 2-norm

of vector f by w, i.e., ||f ||w = (
∑d

i=1(fiwi)
2)

1
2 . For a positive bag ul, Ql will be close to

1 when f∗ is close to any of its instances, and Ql will be small when f∗ is far from all its

instances. For a negative bag ul, Ql will be large when f∗ is far from all its instances. By

aggregating Eqn. (6.1) over all bags the optimal f∗ will be close to instances in the positive

bags and far from all of the instances in the negative bags.

For each positive video segment bag ul, there should be at least one AVA to be treated

as a positive sample to carry the label of that bag. This instance, denoted by J(ul), is

identified as the closest instance to the prototype f∗ and is given by Eqn. (6.2). For each

negative bag ul (with yIl
= −1), on the other hand, all instances are treated as negative

samples, whose contributions to Ql are all preserved.

J(ul) = arg maxNl

j=1{exp[−||flj−f∗||2w∗ ]} (6.2)

This leads to the max-ed version of Eqn. (6.1) on positive bags:

Ql =







e−||flJ(ul)
−f∗||2

w
∗ , yIl

= 1
∏Nl

j=1(1− e−||flj−f∗||2
w

∗ ) , yIl
= −1

(6.3)

The DD function in Eqn. (6.3) is used to construct an objective function Q over all bags,

Q=
∏L

l=1Ql. Q is maximized by an EM algorithm [29].

We use each instance in each positive bag to repeatedly initiate the DD-optimization

process presented above, and prototypes with DD values smaller than a threshold Hdd (that

equals to the mean of DD values of all learned prototypes) are excluded. Such a prototype

learning process is conducted for each semantic concept independently, and the final learned

prototypes construct a codebook to describe the discriminative multi-modal characteristics

of each individual concept.
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In practice, since the number of negative bags is usually much larger than that of positive

bags, we maintain a balanced number of positive and negative bags for prototype learning

by sampling the negative ones. Specifically, the negative bags that come from the same

videos as positive bags are all used, and at least one negative bag is randomly selected from

the remaining videos.

6.6 Classification with Joint A-V Codebooks

For each semantic concept Cm, the learned prototypes form a codebook to describe its

discriminative characteristics, each prototype corresponding to a codeword. These code-

words span a codebook-based feature space to represent AVAs. For an AVA with a long-

term region track rj and a feature fj , it can be mapped to each prototype codeword

(fm
p

∗,wm
p

∗) by the weighted norm-2 distance ||fj − fm
p

∗||2wm
p

∗ . Accordingly, each video

segment u can be mapped to each prototype codeword by using the minimum distance

D(u, fm
p

∗)wm
p

∗ = minrj∈u

{

||fj − fm
p

∗||2wm
p

∗

}

. Then the video segment u can be represented by

a codebook-based feature Dm(u) =
[

D(u, fm
1

∗)wm
1

∗ , . . . ,D(u, fm
Pm

∗)wm
Pm

∗

]T
, base on which

classifiers like SVMs [230] can be trained for concept detection.

By using different combinations of fvis, fsift, floc, fmt, and faudio, various codebooks

can be generated in different multi-modal feature spaces. In general, different types of

codebooks have uneven advantages at detecting different concepts. We selectively choose

the optimal types of codebooks to use by adopting a boosting feature selection framework

similar to [219]. The Real AdaBoost method [59] is used where during each iteration, an

optimal codebook is selected to construct an SVM classifier as the weak learner, and the final

detector is generated by adding up weak learners from multiple iterations. The boosting

algorithm is summarized in Fig. 6.14.

6.7 Experiments

We evaluate our algorithm over Kodak’s consumer benchmark video set [137]. As described

in Chapter 2, Section 2.7.1, the data set contains 1358 videos from real consumers. 5166

keyframes are uniformly sampled from the videos for every 10 seconds, and are labeled to
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Input: Training set D = {(u1, yI1), . . . , (uL, yIL
)}. Each video segment ul is represented by several

types of codebook-based features learned with different combinations of fvis, fmt, fsift, floc, and

faudio.

1. Initialization: set sample weights σ1
l =1/2L+ or 1/2L− for yIl

= 1 or −1, respectively, where L+

(L−) is the number of positive (negative) samples; set final decisions H1(ul) = 0, l = 1, . . . , L.

2. Iteration: for τ = 1, . . . ,Γ

• Get training set D̃τ by sampling D according to weights στ
l .

• Train an SVM over set D̃τ by using the k-th type of feature. Get the corresponding qτ
k (ul) =

pτ
k(yIl

= 1|ul), l = 1, . . . , L.

• Set hτ
k(ul) = 1

2 log
qτ

k (ul)
1−qτ

k
(ul)

.

• Choose the optimal hτ,∗(·) = hτ
k(·) with the minimum error ǫτ,∗ = ǫτk, ǫτk =

∑N

l=1 σ
τ
l e

−yIl
(Hτ (ul)+hτ

k(ul)), ǫτk < ǫτj if j 6= k.

• Update weights: στ+1
l =στ

l e
−yIl

hτ,∗(ul), l=1, . . . , L, and re-normalize so that
∑L

l=1σ
τ+1
l = 1.

• Update Hτ+1(ul) = Hτ (ul) + hτ,∗(ul) for l = 1, . . . , L.

Figure 6.14: The algorithm to construct concept detectors by selectively using different

codebooks. 10 iterations are empirically taken in our experiments (Γ=10).

21 semantic concepts that are of great interest based on real user study 1. We separate

the entire data set into two subsets: 60% videos, i.e., 813 videos, are randomly sampled as

the training data; and the rest 40% videos are used for testing. One-vs.-all classifiers are

trained for detecting each individual concept. The AP and MAP are used as performance

evaluation metrics.

To extensively evaluate the proposed audio-visual analysis framework, we experiment

on two different concept detectors using the audio-visual atomic representation: (1) Visual

Atoms with MIL codebook construction (VA-MIL), where the visual-codebook-based features

are directly used to train SVM detectors; and (2) AVA with MIL codebook construction

and Boosting feature selection (AVA-MIL-Boosting), where different types of codebooks are

generated and selectively used via Boosting. In addition, we compare VA-MIL with two

1The same 21 semantic concepts used in the previous experiments in Chapter 5



CHAPTER 6. MULTI-MODALITY: MID-LEVEL A-V ATOMS 133

state-of-the-art static-region-based image categorization approaches that also use MIL, i.e.,

DD-SVM [29] and ASVM-MIL [251]. For static-region-based methods, each video-segment

bag u contains a set of static regions that come from the center frame of each short-term

video slice v in this bag. DD-SVM learns visual codebooks with static bags using MIL for

individual concepts, and codebook-based features are generated to train SVMs. ASVM-

MIL directly builds an asymmetrical SVM over the static regions under the MIL setting.

No temporal tracking is involved in both of these two approaches.

6.7.1 Codebook Visualization

We first show examples of the discriminative prototypes learned in various types of code-

books. Such visualization helps us to subjectively and intuitively evaluate different ap-

proaches. To get the AVAs to visualize, for each prototype (f∗,w∗) we calculate the dis-

tances between all training AVA instances and this prototype. Then the AVA with the

minimum distance is considered as the most appropriate example to visualize this proto-

type. In addition, prototypes learned for each concept can be ranked according to the DD

values Q in descending order. The higher rank a prototype has, the better the prototype

describes the discriminative characteristics of this concept. Fig. 6.15 gives some example

prototypes (ranked within top 50) extracted based on audio-visual atoms. From Fig. 6.15,

the audio-visual-atom-based prototypes are very reasonable. For example, in the Location

category we get water, sand, and beach facility as representative patterns to describe the

“beach” concept; in the Activity category, we get the white snow, bald white trees, and the

athlete as representative patterns to describe the “ski” concept; in the Occasion category,

we get wedding gown, black suit, and wedding candles as representative patterns to describe

the “wedding” concept; and in the Object category we get the baby face, baby hand, and

baby toys as representative patterns to describe the “baby” concept.

In comparison, Fig. 6.16 gives some example prototypes learned by the static-region-

based DD-SVM algorithm. In later experiments we will see that our method significantly

outperforms static-region-based approaches. The prototype visualization helps to explain

such results. The static DD-SVM gets very noisy prototypes in general, e.g., many fragments
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Occasions

Birthday

Parade

Wedding

Objects

Animal

Baby

Boat

Figure 6.15: Example prototypes learned with audio-visual atoms for concepts of several

broad categories, i.e., Locations, Activities, Scenes, Occasions, and Objects. Doted blue

boxes show the corresponding region track prototypes, where images on the left show ex-

ample frames where region tracks are extracted.
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Beach

Birthday

Wedding

Figure 6.16: Examples of learned static region prototypes by DD-SVM. The static codebook

contains lots of noise, e.g., fragments of human clothes, which causes severe degradation of

the concept detection performance.

of human clothes are extracted as representative patterns. Although some good prototypes

can also be obtained, the performance suffers from the noisy ones a lot. The results also

confirm our motivation that the region tracks are more noise-resistent for video concept

detection than static regions.

By adding audio features to visual atoms, salient audio-visual patterns can be discovered

by the audio-visual codebook for concepts that are expected to have strong cues in both

audio and visual aspects. Fig. 6.17 gives some example prototypes learned by using AVAs

with the concatenation of fvis and faudio. These prototypes are salient for concept detection,
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Wedding

Birthday

Dancing

Figure 6.17: Example prototypes learned with audio-visual atoms for concepts that are

expected to have strong cues in both audio and visual aspects. These prototypes are not

discovered by visual-only codebooks. For example, the salient patterns about the tableware

with birthday cake inside can be found by considering audio and visual features jointly but

are not learned by using visual features alone. This is because tableware also appears in

many other videos visually, and only when combined with the background birthday music

can the tableware generate a salient audio-visual pattern for “birthday” concept.

but are not captured by visual-atom-based codebooks. For example, those salient patterns

about the tableware with a piece of birthday cake inside can be discovered by considering
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audio and visual features jointly but can not be extracted by using visual features alone.

This is because tableware also appears in many other videos visually, and only when com-

bined with the background birthday music can the tableware generate salient audio-visual

cues to describe “birthday” videos. Similarly, body parts of a dancing person can be dis-

covered by using audio-visual atoms but are missed by using visual features alone, since

only when combined with background music can the body parts form salient audio-visual

cues to describe “dancing” videos.

6.7.2 Performance of Concept Detection

In this section, we compare AP and MAP of different algorithms for semantic concept

detection. All algorithms use the RBF kernel k(x1,x2) = exp{−γ||x1 − x2||
2}, and the

multiple-parameter technique [24]. That is, the error control parameter C in SVM [230]

takes values C=2s, s={0, 1, 2, 3, 4}, and γ takes values γ = (1/d)2
t
, t= {−3,−2,−1, 0, 1}

(d is the dimension of the data point x). This gives 25 parameter settings with different

combinations of C and γ, based on which 25 SVM classifiers can be constructed and then

averagely fused to generate the final classification result. We use this multi-parameter

technique instead of tuning parameters by cross-validation due to the findings in [24], i.e.,

over this challenging consumer video set, parameter tuning tends to over fit resulting from

the large diversity of the video content.

6.7.2.1 Region Tracks vs. Static Regions

As described in Section 6.6, each visual atom is associated with a visual feature vector fvis.

For a static region, we can also extract a visual feature fvis. Fig. 6.18 shows the per-concept

AP and MAP comparison of VA-MIL, DD-SVM, and ASVM-MIL, by using fvis. The

results from random guess are also shown for comparison. From the figure, our VA-MIL

consistently outperforms other methods over every concept, and significant performance

improvements, i.e., over 120% MAP gain on a relative basis, can be achieved compared to

both DD-SVM and ASVM-MIL. This phenomenon confirms that static regions segmented

from general videos are very noisy. Our visual atoms can significantly reduce the noise by

not only extracting robust and trackable regions, but also averaging out the outlier noise
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through the entire tracked sequence.
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Figure 6.18: Comparison of visual atoms with static-region-based methods.

6.7.2.2 AVA-MIL with Multi-Modal Features

Fig. 6.19 gives the performance comparison of our AVA-MIL by using different codebooks

generated from individual fvis, fmt, fsift, floc, and faudio. From the result, fmt performs badly

because of the low-quality motion in general videos and the lack of discriminative power

of motion alone for concept detection. For example, the moving speed and direction of a

person can not discriminate “one person” videos. Also, floc does not perform well due to

the lack of discriminative power of spatial location alone for concept detection. In general,

audio feature faudio alone can not compete with visual feature fvis or fsift, since most of the

21 concepts are visual-oriented. However, faudio works very well over “museum”. The visual

content of “museum” videos is very diverse while the audio sound is relatively consistent,

e.g., the sound of people talking and walking in a large quiet indoor room. The global fvis

outperforms local fsift over most of the concepts except for “dancing” and “sports”. As
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discussed in detail in Chapter 2 Section 2.7.5, this is because of the challenging condition

to detect generic concepts in this Kodak’s video collection. Due to the large diversity in the

visual content, there is very little repetition of objects or scenes in different videos, even

those from the same concept class. In such a case, it is hard to exert the advantage of local

descriptors like SIFT for local point matching/registration.
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Figure 6.19: Comparison of AVA-MIL with individual fvis, floc, fsift, fmt, and faudio.

Fig. 6.20 gives the AP and MAP comparison of AVA-MIL using different combinations

of fvis, floc, fsift, fmt, and faudio. From the result, compared with individual fvis, both

of the multi-modal features generated by concatenating fvis and fmt, and fvis and faudio

have slight improvements in terms of MAP. By adding the noisy motion features (fvis+fmt),

most concepts get worse or unchanged performances except for “beach” and “sports”, which

receive 9.6% and 3.5% AP gains, respectively. This is reasonable since “sports” videos often

have fast moving athletes, and “beach” videos have large stable regions like sky, sand and

waterfront that do not move. By adding spatial features (fvis+floc), most concepts also get
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performance degradation, due to the lack of discriminative power of the spatial location

information in detecting the set of semantic concepts we experiment on. By adding SIFT

features (fvis+fsift) we can not get overall improvement either. By adding audio features

(fvis+faudio), 12 concepts get clear improvements, e.g., “boat” and “sports” get 28.7% and

15.9% AP gains, respectively. However, we also have noticeable AP degradation over some

concepts like “crowd” and “park”, because the regional color and texture features are much

more powerful in detecting these concepts than audio features. The results also indicate the

uneven strengths of different modalities in detecting different concepts. Therefore, as will

be shown in Section 6.7.2.3, a more rigorous approach in selecting optimal features from

different modalities is needed.
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Figure 6.20: Comparison of AVA-MIL with different combinations of fvis, floc, fsift, fmt,

and faudio.
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6.7.2.3 AVA-MIL-Boosting with Multi-Modal Features

Fig. 6.21 gives the performance of multi-modal AVA-MIL-Boosting. For better comparison,

we show results from VA-MIL using visual feature fvis alone. Also, we compare with a

straightforward fusion approach, where SVMs trained using codebooks generated from fvis,

fvis + fmt, and fvis + faudio, respectively, are averagely combined together to give the final

detection results. From the figure, we can see that by selectively using the optimal types of

codebooks for detecting different individual concepts, the multi-modal AVA-MIL-Boosting

can improve the detection performance over most of the concepts (17 out of 21) compared

to VA-MIL. Significant AP gains are achieved (on a relative basis) for “animal” by 20.9%,

“beach” by 28.3%, “boat” by 35.4%, “crowd” by 11.7%, “group of three or more” by 14.6%,

“dancing” by 56.7%, “museum” by 106.3%, “playground” by 20.7%, and “sports” by 18.9%.

The overall MAP is improved by 8.5%. In comparison, without feature selection, the direct

fusion method can not improve the overall performance by simply adding up classifiers from

different modalities, which is consistent with the findings in [24].

6.8 Discussion

We propose a framework for audio-visual analysis in general videos by extracting atomic

representations over video segments. Visual atoms are extracted by a hierarchical framework

where in the first step an STR-PTRS algorithm is developed to track consistent visual

regions within short-term video slices and then in the second step the extracted short-term

region tracks are connected into visual atoms by visual linking. At the same time, the

corresponding audio soundtrack is decomposed to time-frequency bases, according to which

audio energy onsets are located. Audio atoms are reconstructed from the time-frequency

bases around each audio energy onset. Visual atoms are associated with audio atoms to

generate AVAs. A set of regional visual features and a spectrogram audio feature are

assigned to each AVA. Joint audio-visual codebooks are constructed on top of the AVAs to

capture salient audio-visual patterns for effective concept detection. Our method provides a

balanced choice for audio-visual analysis in general videos: we generate a middle-level atomic

representation to fuse visual and audio signals and do not rely on precise object extraction.
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Figure 6.21: Comparison of multi-modal AVA-MIL-Boosting, VA-MIL with fvis alone, and

direct fusion.

Experiments over the challenging Kodak’s consumer benchmark videos demonstrate the

effectiveness.

One major future work is to explore moderate-level audio-visual synchronization, i.e.,

sounding regions, from general videos. As discussed in Section 6.3, with a backward check-

ing process, our STR-PTRS can be extended to find short-term region tracks with their

starting/ending time stamps within video slices. Trajectories of such short-term region

tracks can be generated. On the other hand, the MP-based audio representation is specifi-

cally chosen to be able to find audio features corresponding to identified video objects. By

describing audio as a set of parameterized basis functions, distinct features of overlapping

sounds can be segmented into disjoint sets of functions. Since each function depends only on

a compact neighborhood of time-frequency energy, it is largely invariant to simultaneous en-

ergy from other sources, unlike common audio features like MFCCs which reflect the global

properties of all energy present in a sound. Moreover, the precise timing associated with
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each function can provide both for the detection of repeated structure within the sound,

and also for detailed synchronous correlation against video features. By modeling relations

between visual region trajectories and audio bases, we can study moderate-level audio-

visual synchronization for discovering interesting audio-visual events like horse running and

people singing. In addition, we may explore temporal patterns beyond co-occurrence and

synchronization, such as “audio atom A typically precedes video atom B by a time offset

between 1-3 seconds”. We may investigate related data mining techniques to discover such

pattern rules.
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Chapter 7

Conclusions

In this final chapter, we will conclude the work presented in this thesis along the two

directions that we have explored to enhance generic concept detection in general videos.

We will then present a few potential areas for extension and improvements.

7.1 Summary

This thesis is dedicated to the research in detecting generic concepts from general videos

focusing on two main research areas: leveraging information from multiple modalities and

exploring inter-conceptual relationships.

7.1.1 Multi-Concept Learning

We have developed two different multi-concept learning approaches. The first method,

BCRF-CF, models the inter-conceptual relationships by a CRF that takes as input the

posteriors predicted from individual concept detectors and outputs refined detection results

through graph inference. To avoid the difficulty of designing two-node compatibility poten-

tials in CRF, a discriminative objective function aiming at class separation is optimized by

iterative boosting. In addition, we have proposed a simple but effective criterion to predict

which concepts will benefit from CBCF, based on both the strength of relationships between

a concept and its neighborhood and the robustness of detectors of this neighborhood.

Based on the framework of BCRF-CF we have also explored the interesting “20 questions
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problem” for concept detection, where the user’s interaction is incorporated. We have

proposed an Active CBCF paradigm, where for each input data, the system actively selects

a small number of concepts for the user to label and then uses user’s annotation to help

determine the presence of other concepts, by utilizing the inter-conceptual relationships.

We have presented an accurate method to choose the most informative concepts given the

specific input image, for the user to label based on both information theoretic and heuristic

rules.

Furthermore, instead of modeling inter-conceptual relationships explicitly in the two-

layer CBCF framework, we have proposed the second multi-concept learning method to con-

struct a single-layer multi-class concept detector by sharing kernels and classifiers through

an iterative joint boosting framework. Multiple kernels over multi-resolution visual vocab-

ularies and multi-resolution spatial coordinates are constructed and shared among different

concepts to improve the accuracy of detecting individual concepts.

We have evaluated our multi-concept learning algorithms over the TRECVID 2005 news

video set. Promising results have been obtained in terms of both the improved detection ac-

curacy and efficiency. Our prediction method also allows us to apply multi-concept learning

when it is likely to be effective.

7.1.2 Multi-Modality Learning

To incorporate information from both visual and audio signals, we have developed algo-

rithms exploring both multi-modality fusion and mid-level audio-visual correlation. Two

multi-modality fusion methods have been presented: the early fusion A-V Joint Boosting

and the late fusion A-V Boosted CRF. A-V Joint Boosting extends the kernel/classifier

sharing algorithm developed for multi-concept learning, which constructs and shares both

visual-based and audio-based kernels and classifiers to build multi-class concept detectors.

A-V Boosted CRF extends the BCRF-CF algorithm, where the input of CRF includes

both audio-based and visual-based independent concept detection results. Both A-V Joint

Boosting and A-V Boosted CRF provide natural combinations of multi-concept learning

and multi-modality learning, and are flexible to incorporate other types of modalities, e.g.,

textual if available, to further help classification.
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To conduct mid-level audio-visual correlation in general videos, we have proposed to

extract atomic representations over video segments, which does not rely on precise object

extraction or tight audio-visual synchronization. Specifically, a hierarchical framework has

been developed to get visual atoms from the visual channel. In the first step consistent

visual regions are tracked within short-term video slices, and then in the second step such

short-term region tracks are connected into visual atoms based on visual similarities. At

the same time, the corresponding audio soundtrack is decomposed to time-frequency bases,

according to which audio energy onsets are located. Audio atoms are reconstructed from

the time-frequency bases around each audio energy onset. Visual atoms are associated with

audio atoms to generate audio-visual atoms, and a set of visual features and audio features

are assigned to such atoms. Joint audio-visual codebooks are constructed on top of the

atoms to capture salient audio-visual patterns for concept detection.

We have evaluated our multi-modality learning approaches over Kodak’s consumer

benchmark video set. Experimental results demonstrate that both audio and visual fea-

tures contribute significantly to the robust detection performance, and that by combining

information from both audio and visual channels we can achieve better detection than using

single modalities alone.

7.2 Future Work

Generic concept detection in general videos is a challenging problem in general, and many

research efforts have been made to improve the detection robustness, accuracy, and speed.

Among various approaches, multi-modality and multi-concept learning continues to attract

interest from many researchers. These two directions are not mutually exclusive, and we can

combine them to exploit the power of both. We will discuss some interesting directions be-

low, including those for improving multi-concept learning or multi-modality learning alone,

and those aiming at more effective fusion.
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7.2.1 Multi-Concept Learning

Most of the current multi-concept learning works use concept co-occurring statistics in

images or videos to generate inter-conceptual relationships. Such approximations can be

unreliable when we only have limited training data, which, unfortunately, is usually the

case in practice due to the high cost in obtaining ground-truth sets. On the other hand,

with the proliferation of image and video sharing websites such as Flickr and YouTube,

conceptual structures and relationships can be obtained through mining the textual infor-

mation associated with web images and videos. The rich online multimedia resources give

promises to accurate estimation of the complicated relationships over a large number of

real-world semantic concepts. In such cases, multi-concept learning can be combined with

techniques such as Web data mining to build large-scale concept detection systems where a

huge number of concepts as well as their relationships can be studied. One interesting work

along this direction was described in [102]. More research may need to be done to adapt

and apply concept relations obtained from online multimedia data to specific individual

collections, e.g., consumers’ personal albums.

7.2.2 Multi-Modality Fusion

As mentioned earlier, the multi-modality fusion algorithms proposed in this thesis are flex-

ible to incorporate other types of modalities in the future. In A-V Joint Boosting ker-

nels/features from other modalities, e.g., textual description or other meta data, can be

combined with visual and audio kernels/features to enhance classification. In A-V Boosted

CRF, individual detection results from independent concept detectors trained over other

modalities can also be combined with audio-based and visual-based independent detection

results to feed into the inter-conceptual CRF.

The general issues that remain unsolved related to multi-modality fusion include: how

to normalize and combine features extracted from different signals 1; how to normalize and

combine judgements generated by classifiers learned over features of different modalities;

1The goal of feature normalization is to ensure that the contribution of each feature component to the

learned model is comparable.
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how to conduct dimension reduction in the high-dimension multi-modal feature space; how

to select optimal features/classifiers for each specific task.

7.2.3 Mid-Level Audio-Visual Correlation

7.2.3.1 Improving Audio-Visual Atoms

The quality of the current AVAs is limited by the quality of image segmentation. Although

by temporal tracking we alleviate the problem of noisy segments, bad segments (caused by

sudden movement of camera or sudden lighting change) can still break temporal tracking.

To increase the robustness of the extracted AVAs, several approaches can be taken, such

as using multiple segmentation strategies to generate various sets of segments, or using

overlapping video slices with multiple window durations to generate a large pool of candidate

region tracks.

In addition, as discussed in Section 6.3, the current AVAs can not capture objects

than enter and leave the screen within a short video slice. We can extend the STR-PTRS

algorithm with a backward tracking process or bi-directional tracking process, so that we

can not only capture such objects but also locate their starting/ending time stamps within

the video slice.

The current audio atoms and visual atoms are extracted from video segments in an

unsupervised manner, which may not correspond to semantic meanings. In the future,

supervised/semi-supervised learning approaches can be introduced to extract semantically

more meaningful audio and visual atoms.

7.2.3.2 Audio-Visual Atomic Representation

The joint atoms offer a natural representation to describe videos in terms of a number of

middle-level features that are more relevant to human observers than low-level features. It

captures essential characteristics of videos, such as the presence of regions (ideally objects)

with consistent distinct appearance, sound, and motion. A systematic study can be con-

ducted in the future to use such joint representation for a broad range of applications such

as audio-visual pattern mining, audio-visual object/event detection and localization, and

retrieval and summarization of general videos. We elaborate on these ideas below.
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To describe the content of large multimedia collections, representative audio-visual pat-

terns, in the form of AVA templates, can be constructed on top of the AVAs extracted from

individual videos. Such audio-visual patterns can be discovered in a supervised process

(e.g., learning of discriminative patterns to distinguish a specific personal collection), or an

unsupervised or semi-supervised process (e.g., discovery of frequently occurring patterns

in a consumer set). For instance, through mining of a general video collection related to

wedding events, we can find the salient audio-visual patterns consistently occurring in wed-

ding videos. By examining the difference between wedding videos from a specific personal

collection and those from general sources (e.g., wedding videos from the internet), unique

audio-visual patterns can be found to distinguish this individual personal collection. Such

mining results are helpful to organize, summarize, and browse multimedia data.

Complicated semantic events, e.g., wedding, birthday, and graduation, usually consist

of some salient audio-visual elements. For example, the birthday event is usually associated

with birthday cake, birthday candle, birthday balloon, birthday music, birthday card, etc.

The AVAs or the higher-level audio-visual patterns not only capture important audio-visual

characteristics of these elements, but also provide the ability to study correlations between

these elements. For instance, the presence of a cake does not necessarily indicate a birthday

event, but the co-occurrence of a cake with a candle and a balloon significantly increases

the confidence for birthday detection. Constructing event models by taking into account

both the individual AVAs and their co-occurring, spatial, or temporal relationships is an

interesting direction for future research.

A natural application following the audio-visual pattern mining and object/event de-

tection is content-based retrieval, e.g., retrieval of items whose content, action, or location

(based on both audio and visual features) resemble a query example or small set of exam-

ples. Interesting research topics include new relevance feedback strategies, new similarity

measurements, and new classification frameworks.

7.2.4 Fusion of Multi-Concept & Multi-Modality Learning

As discussed before, the A-V Joint Boosting and A-V Boosted CRF algorithms presented

in this thesis combines multi-modality learning and multi-concept learning naturally. Since
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real-world concepts are interrelated and are innately multi-modal, it is intuitive to design

concept detection systems that consider both multi-concept and multi-modality learning

jointly. For instance, users usually organize multimedia data according to highly semantic

event occurrences, such as Vivian’s birthday party. Such events are generally composed by

many concept elements, including both visual-oriented concepts like people (e.g., Vivian and

her friends) and birthday cake, and audio-oriented concepts like music and birthday song.

By visual, audio, and joint audio-visual analysis as well as studying the relationships of

interrelated multi-modal concepts, we can build systematic models to describe and classify

these events.
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