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Abstract

The rapidity with which digital information, particularly
video is being generated, has necessitated the development
of tools for efficient search of these digital media. Con-
tent based visual queries have been primarily focussed on
still image retrieval. In this paper, we propose a novel,
real-time, interactive system on the Web, based on the vi-
sual paradigm, with spatio-temporal attributes playing a
key role in video retrieval. We have developed algorithms
for automated video object segmentation and tracking and
use real-time video editing techniques while responding to
user queries. The resulting system performs well, with the
user being able to retrieve complex video clips such as those
of skiers, baseball players, with ease.

1. Introduction

The ease of capture and encoding of digital images has
caused a massive amount of visual information to be pro-
duced and disseminated rapidly. Hence the need for tools
and systems for searching and retrieving visual information
has assumed great importance. While there are efficient
search engines for text documents today, there are no sat-
isfactory systems for retrieving visual information.

Content-based visual queries (CBVQ) has emerged as a
challenging research area in the past few years [Chang 97],
[Gupta 97]. While there has been substantial progress with
the presence of systems such as QBIC [Flickner 95], Photo-
Book [Pentland 96], Virage [Hamrapur 97] and VisualSEEk
[Smith 96] most systems only support retrieval of still im-
ages. CBVQ research on video databases has not been fully
explored yet. We propose an advanced content-based video
search system with the following unique features:

� Automatic video object segmentation and tracking.

� A rich visual feature library including color, texture,
shape, motion.

� Query with multiple objects.

� Spatio-temporal constraints on the query.

� Interactive querying and browsing over the World-
Wide Web.

� Compressed-domain video manipulation.

Specifically, we propose to develop a novel video search
system which allows users to search video based on a rich
set of visual features and spatio-temporal relationships. Our
objective is to investigate the full potential of visual cues
in object-oriented content-based video search. While the
search on video databases ought to necessarily incorporate
the diversity of the media (video, audio, text captions) our
research will complement any such integration.

We will present the the visual search paradigm in section
2, elaborate on the system overview in section 3, describe
video objects and our automatic video analysis techniques
in sections 4-5, discuss the matching criteria and query res-
olution in sections 7-8 and finally present some preliminary
evaluation results in section 9.

2. The Visual Paradigm

The fundamental paradigm under which VideoQ op-
erates is the visual one. This implies that the query is
formulated exclusively in terms of elements having vi-
sual attributes alone. The features that are stored in the
database are generated from an automatic analysis of the
video stream. There is no information present in the query
loop that emanates from the captions, textual annotations
or the audio stream. Many retrieval systems such as Pho-
toBook [Pentland 96], VisualSEEk [Smith 96] and Virage
[Hamrapur 97] share this paradigm, but only support still
image retrieval. While QBIC [Flickner 95] is visual, it is
not exclusively so as the images have been manually anno-
tated allowing for keyword searches on the database.
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Figure 1. The visual interface of VideoQ. The
figure shows an example query to retrieve
video shots of all high jump sequences in the
database. The retrieved shots which include
three (the second, third and the seventh key-
frame) successful matches, bear out the im-
portance the motion attribute in video shot
retrieval.

Video retrieval systems should evolve towards a system-
atic integration of all available media such as audio, video
and captions. While video engines such as [Hauptmann 95],
[Hamrapur 97], [Shahraray 95], [Mohan 96] attempt at
such an integration, much research on the representation
and analysis of each of these different media remains to be
done. Those that concentrate on the visual media alone fall
into two distinct categories:

� Query by example (QBE)

� Visual sketches

In the context of image retrieval, examples of QBE sys-
tems include QBIC, PhotoBook, VisualSEEk, Virage and
FourEyes [Minka 96]. Examples of sketch based image
retrieval systems include QBIC, VisualSEEk, [Jacobs 95],
[Hirata 92] and [Del Bimbo 97]. These two different ways
of visually searching image databases may also be accom-
panied by learning and user feedback [Minka 96].

Query by example systems work under the realization
that since the “correct” match must lie within the database,
one can begin the search with a member of the database
itself. With the hope that one can guide the user towards
the image that he likes over a succession of query exam-
ples. In QBE, one can use space partitioning schemes to

precompute hierarchical groupings, which can speed up the
database search [Minka 96]. While the search speeds up,
the groupings are static and need recomputation every time
a new video is inserted into the database. QBE in prin-
ciple, is easily extensible to video databases as well, but
there are some drawbacks. Video shots generally contain
a large number of objects, each of whom are described by
a complex multi-dimensional feature vector. The complex-
ity arises partly due to the problem of describing shape and
motion characteristics.

Sketch based query systems such as [Hirata 92] com-
pute the correlation between the sketch and the the edge
map of each of the images in the database, while in
[Del Bimbo 97], the authors minimize an energy functional
to achieve a match. In [Jacobs 95], the authors compute a
distance between the wavelet signatures of the sketch and
each of the images in the database.

What makes VideoQ powerful is the idea of an animated
sketch to formulate the query. In an animated sketch, mo-
tion and temporal duration are the key attributes assigned to
each object in the sketch in addition to the usual attributes
such as shape, color and texture. Using the visual pallette,
we sketch out a scene by drawing a collection of video ob-
jects. It is the spatio-temporal ordering (and relationships)
of these objects that fully define a scene. This is illustrated
in Figure 1.

While we shall extensively employ this paradigm, some
important observations are to be kept in mind. The visual
paradigm works best when there are only a few dominant
objects in the video with simply segmented backgrounds1.
It will not work well if the user is interested in video se-
quences that are simple to describe, but are hard to sketch
out. For example, a video shot of a group of soldiers march-
ing, shots of a crowd on the beach etc. It will also not
work well when the user is interested in a particular seman-
tic class of shots: he might be interested in retrieving that
news segment containing the anchor person, when the news
anchor is talking about Bosnia.

3. The VideoQ System Overview

VideoQ is a Web based video search system, where the
user queries the system using animated sketches. An ani-
mated sketch is defined as a sketch where the user can as-
sign motion to any part of the scene.

VideoQ which resides on the Web, incorporates a client-
server architecture. The client (a java applet) is loaded up
into a web browser where the user formulates (sketches)
a query scene as a collection of objects with different at-
tributes. Attributes include motion, spatio-temporal order-

1Note, even if the background shows a crowd, due to aggressive region
merging, they may be merged into one single region.
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ing, shape and the the more familiar attributes of color and
texture.

The query server contains several feature databases, one
for each of the individual features that the system indexes
on. Since we index on motion, shape, as well as color and
texture, we have databases for each of these features. The
video shot database is stored as compressed MPEG streams.

Once the user is done formulating the query, the client
sends it over the network to the query server. There, the
features of each object specified in the query are matched
against the features of the objects in the database. Then,
lists of candidate video shots are generated for each object
specified in the query. The candidate lists for each object
are then merged to form a single video shot list. Now, for
each of these video shots in the merged list, key-frames are
dynamically extracted from the video shot database and re-
turned to the client over the network. The matched objects
are highlighted in the returned key-frame.

off-line

on-line

user

viewer

animated sketch
query
serverfeatures

video
server

video archive

QBE

video scene detection features index      object
segmentation

Figure 2. The VideoQ system where the
queries are in the form of animated sketches.
The dashed path shows a QBE (query by ex-
ample) loop, which is absent in the current
system, but will be incorporated into the im-
plementation.

The user can interactively view these matched video
shots over the network by simply clicking on the the key-
frame. Then, in the backend, the video shot corresponding
to that key frame is extracted in real time from the video
database by “cutting” out that video shot from the database.
The video shots are extracted from the video database using
basic video editing schemes [Meng 96] in the compressed
domain. The user needs an MPEG player in order to view
the returned video stream.

Since the query as formulated by the user in the VideoQ
system comprises of a collection of objects having spatio-
temporal attributes, we need to formalize the definition of a
video object.

4. What is a Video Object?

We define a region to be a contiguous set of pixels that
is homogeneous in the the features that we are interested

c1

r1

o1 oi

rjr2regions

features

classes

objects

color, texture, shape

motion, time

spatio-temporal ordering

      grouping
(visual features)

     abstractions
(hueristics, models)

Figure 3. The feature classification tree.

in (i.e texture, color, motion and shape). A video object is
defined as a collection of video regions which have been
grouped together under some criteria across several frames.
Namely, a video object is a collection of regions exhibiting
consistency2 across several frames in at least one feature.
For example a shot of a person (the person is the “object”
here) walking would be segmented into a collection of ad-
joining regions differing in criteria such as shape, color and
texture, but all the regions may exhibit consistency in their
motion attribute. As shown in Figure 3, the objects them-
selves may be grouped into higher semantic classes.

The grouping problem of regions is an area of ongoing
research and for the purposes of this paper, we restrict our
attention to regions only. Regions may be assigned several
attributes, such as color, texture, shape and motion.

4.1. Color, Texture, Shape

In the query interface of VideoQ, the set of allowable
colors is obtained by uniformly quantizing the HSV color
space. The brodatz texture set is used for assigning the tex-
tural attributes to the various objects. The shape of the video
object can be an arbitrary polygon along with ovals of arbi-
trary shape and size. The visual palette allows the user to
sketch out an arbitrary polygon with the help of the cur-
sor, other well known shapes such as circles, ellipses and
rectangles are pre-defined and are easily inserted and ma-
nipulated.

2If two regions exhibit consistency in all features, then they will be
merged into one region. Regions which exhibitnoconsistency at all in any
feature, would probably not belong to the same object
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4.2. Motion, Time

Motion is thekeyobject attribute in VideoQ. The mo-
tion trajectory interface (Figure 4) allows the user to specify
an arbitrary polygonal trajectory for the query object. The
temporal attribute which defines the overall duration of the
object, which can either be intuitive (long, medium or short)
or absolute (in seconds).

Since VideoQ allows users to frame multiple object
queries, the user has the flexibility of specifying the over-
all scene temporal order by specifying the “arrival” order of
the various objects in the scene. The death order (or the or-
der in which they disappear from the video) depends on the
duration of each object).

Another attribute related to time is the scaling3 factor, or
the rate at which the size of the object changes over the du-
ration of the objects existence. Additional global scene at-
tributes include the specification of the (perceived) camera
motion like panning or zooming. The VideoQ implementa-
tion of the temporal attributes is shown in figure 4.

Figure 4. The spatio-temporal description of
an video object. The user can assign the du-
ration, and an arbitrary trajectory to the video
object. In addition, the user also specifies
the temporal arrival order of the object in the
scene.

4.3. Weighting the Attributes

Prior to the actual query, the various features need to be
weighted in order to reflect their relative importance in the

3This is the factor by which an object changes its size over its duration
on the shot. This change could either be induced by camera motion or by
the objects intrinsic motion.

query (refer to Figure 1). The feature weighting is global to
the entire animated sketch; for example, the attribute color,
will have the same weight across all objects. The final rank-
ing of the video shots that are returned by the system is
affected by the weights that the user has assigned to various
attributes.

5. Automatic Video Shot Analysis

The entire video database is processed off-line. The indi-
vidual videos are decomposed into separate shots, and then
within each shot, video objects are tracked across frames.

5.1. Scene Cut Detection

Prior to any video object analysis, the video must be
split up into “chunks” or video shots. Video shot separation
is achieved by scene change detection. Scene change are
either abrupt scene changes or transitional (e.g. dissolve,
fade in/out, wipe). [Meng 95] describes an efficient scene
change detection algorithm that operates on compressed
MPEG streams.

It uses the motion vectors and DCT coefficients from the
MPEG stream to compute statistical measures. These mea-
surements are then used to verify the heuristic models of
abrupt or transitional scene changes. For example, when a
scene change occurs before a B frame in the MPEG stream,
most of the motion vectors in that frame will point to future
reference frame. The real-time algorithm operates directly
on the compressed MPEG stream, without complete decod-
ing.

5.2. Global Video Shot Attributes

The global motion (i.e. background motion) of the dom-
inant background scene is automatically estimated using
the six parameter affine model [Sawhney 95]. A hierarchi-
cal pixel-domain motion estimation method [Bierling 88]
is used to extract the optical flow. The affine model of
the global motion is used to compensate the global motion
component of all objects in the scene4. The six parameter
model:

�x = ao + a1x+ a2y; (1)

�y = a3 + a4x+ a5y; (2)

where,ai are the affine parameters,x; y are the pixel co-
ordinates, and�x, �y are the pixel displacements at each
pixel.

4Global motion compensation is not needed if users prefer to search
videos based on perceived motion.
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Classification of global camera motion into modes such
as zooming or panning is based on the global affine estima-
tion. In order to detect panning, a global motion velocity
histogram is computed along eight directions. If there is
dominant motion along a particular direction, then the shot
is labeled as a panning shot along that direction.

In order to detect zooming, we need to first check if the
average magnitude of the global motion velocity field and
two affine model scaling parameters (a1 anda5) satisfy cer-
tain threshold criteria.

When there is sufficient motion, anda1 anda5 are both
positive, then the shot is labeled as a “zoom-in” shot and if
they are both negative then the shot is labeled as a “zoom-
out”.

5.3. Tracking Objects: Motion, Color and Edges

Our algorithm for segmentation and tracking of image
regions based on the fusion of color, edge and motion infor-
mation in the video shot. The basic region segmentation and
tracking procedure is shown in Figure 5. The projection and
segmentation module is the module where different features
are fused for region segmentation and tracking.

n+1current frame nn-1

projection and 
 segmentation

  motion 
estimation

affine motion estimation

   motion
refinement

color regions optical flow

segmented regions
 from frame n-1

segmented regions
 for frame n+1

  region
grouping

video stream

Figure 5. Region segmentation and tracking
of frame n.

Color is chosen as the major segmentation feature be-
cause of its consistency under varying conditions. As
boundaries of color regions may not be accurate due to
noise, each frame of the video shot is filtered before color
region merging is done. Edge information is also incorpo-
rated into the segmentation process to improve the accuracy.
Optical flow is utilized to project and track color regions
through a video sequence.

The optical flow of current framen is derived from frame
n andn+1 in the motion estimation module using a hierar-
chical block matching method [Bierling 88]. Given color
regions and optical flow generated from above two pro-
cesses, a linear regression algorithm is used to estimate
the affine motion for each region. Now, color regions with
affine motion parameters are generated for framen, which
will the be tracked in the segmentation process of frame
n+ 1.

5.3.1. Projection and Segmentation Module

interframe projection

intraframe projection

edge points labeling

quantization
 LP filtering

canny edge
 detection

frame n

segmented
  regions

n-1

Figure 6. Region projection and segmentation
of frame n

Now we discuss the projection and segmentation module
[Zhong 97] (see Figure 6). In the first step, the current frame
(i.e. framen) is quantized in a perceptually uniform color
space (e.g., CIE LUV space). Quantization palettes can be
obtained by a uniform quantizer or clustering algorithms
(e.g., self-organization map). After quantization, non-linear
median filtering is used to eliminate insignificant details and
outliers in the image while preserving edge information. In
the meanwhile, edge map of framen is extracted using edge
detectors (e.g. Canny edge detector).

For the first frame in the sequence, the system will go di-
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rectly to intra-frame segmentation. For intermediate frames,
as region information is available from framen � 1, an in-
terframe projection algorithm is used to track these regions.
All regions in framen� 1 are projected into framen using
their affine motion estimates. For every pixel in framen that
is covered by regions projected from the previous frame, we
label it as belonging to the region to which it is closest in the
CIE-LUV space. If a pixel is not covered by any projected
region, then it remains unlabeled.

The tracked regions together with un-labeled pixels are
further processed by an intra-frame segmentation algorithm.
An iterative clustering algorithm is adopted: two adjoining
regions with the smallest color distance are continuously
merged until the difference is larger than a given thresh-
old. Finally, small regions are merged to their neighbors
by a morphological open-close algorithm. Thus, the whole
procedure generates homogeneous color regions in framen

while tracking existing regions from framen� 1.
The edge map is used to enhance color segmentation ac-

curacy [Zhong 97]. For example, regions clearly separated
by long edge lines will not be merged with each other. Short
edge lines which are usually inside one color region will not
affect the region merging process.

Figure 7. Region segmentation on QCIF se-
quences, using feature fusion. The top rows
show the original sequence while the corre-
sponding bottom rows show the segmented
regions.

Figure 7 shows segmentation results with two sequences.
In both cases, the top row shows original sequence and the
second row shows a subset of automatically segmented re-
gions being tracked. Tracked regions are shown with their
representative (i.e. average) colors. Experiments show that
our algorithm is robust for the tracking of salient color re-
gions under different circumstances, such as multiple ob-
jects, fast or slow motion and instances of regions being
covered and uncovered

6. Building the Visual Feature Library

Once each object in the video shot has been segmented
and tracked, we then compute the different features of the
object and store them in our feature library. For each object
we store the following features:

Color The representative color in the quantized CIE-LUV
space. It is important to bear in mind that the quantiza-
tion is not static, and the quantization palette changes
with each video shot. The quantization is calculated
anew for each sequence with the help of a self organiz-
ing map.

Texture Three Tamura [Tamura 78] texture measures,
coarseness, contrast and orientation, are computed as
a measure of the textural content of the object.

Motion The motion of the video object is stored as a list of
N�1 vectors (where the number of frames in the video
is N ). Each vector is the average translation of the
centroid of the object between successive frames5 af-
ter global motion compensation [Sawhney 95]. Along
with this information, we also store the frame rate of
the video shot sequence hence establishing the “speed”
of the object as well as its duration.

Shape For each object, we first determine the principal
components of the shape by doing a simple eigenvalue
analysis [Saber 97a]. At the same time we generate
first and second order moments of the region. Two
other new features, the normalized area6, and the the
percentage area7 are calculated. We then determine if
the region can be well approximated by an ellipse and
label it so if that is indeed the case. We chose not to
store the best fit polygon to the object because of rea-
sons of computational complexity. The computational
complexity of matching two arbitraryN vertex poly-
gons isO(N2 logN) [Arkin 91].

The resulting library is a simple database having a
fattribute, valueg pair for each object. Creating a relational
database will obviously allow for more complex queries to
be performed over the system as well as decrease the over-
all search time. The issue of the structure of the database
is an important one, but was not a priority in the current
implementation of VideoQ.

5We could have also stored the the successive affine transformations,
but that would have increased the complexity of the search. Also, it is
worth keeping in mind that the users will not have “exact” idea of the
trajectory of the object that they wish to retrieve.

6the ratio of the area of the object to the area of the cicumsrcibing circle.
Note that this feature is invariant to scale.

7this is the percentage of the area of the video shot that is occupied by
the object
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7. Feature Space Metrics

The nature of the metric, plays a key role in any im-
age or video retrieval system. Designing good metrics is a
challenging problem as it often involves a tradeoff between
computational complexity of the metric and the quality of
the match. For it is not enough to be able to locate images
or videos that are close under a metric, they must be percep-
tually close to the query.

While we employ well accepted metrics for color, tex-
ture and shape, we have designed new metrics to exploit the
spatio-temporal information in the video.

7.1. Matching Motion Trails

A motion trail is defined to be the three dimensional tra-
jectory of a video object. It is represented by a sequence
fx[i]; y[i]g; i 2 f1; ::Ng, the three dimensions comprising
of the two spatial dimensionsx; y and the temporal dimen-
siont (normalized to the frame number. The frame rate pro-
vides us with the true time information). Prior techniques to
match motion [Dimitrova 94], have used simple chain codes
or a B-spline to represent the trajectory, without completely
capturing the spatio-temporal characteristic of the motion
trail.

The user sketches out the trajectory as a sequence of ver-
tices in thex � y plane. In order for him to specify motion
trail completely he must specify the duration of the object
in the video shot. The duration is quantized (in terms of the
frame rate8) into three levels: long, medium and short. We
compute the entire trail by uniformly sampling the motion
trajectory based on the frame rate.

We develop two major modes of matching trails:

Spatial In the spatial mode, we simply project the motion
trail onto thex � y plane. This projection results in
an ordered contour. The metric is then measures dis-
tances between the query contour and the correspond-
ing contour for each object in the database. This kind
of matching provides a “time-scale invariance”. This
is useful when the user is unsure of the time taken by
an object to execute the trajectory9.

Spatio-Temporal In the spatio-temporal mode, we simply
use the entire motion trail to compute the distance. We
use the following distance metric:X

i

((xq [i]� xt[i])
2 + (yq [i]� yt[i])

2); (3)

8We quantify it in terms of (frame rate)/(unit distance). Where the dis-
tance refers to the length of the motion trajectory in pixels. We assume a
canonical frame rate of 30 frames/sec.

9A immediate benefit of using this method is when one is matching
against a database of sports shots, then “slow-motion” replays as well as
“normal-speed” shots will be retrieved as they both execute the samexy

contour.

where, the subscriptsq and t refer to the query and
the target trajectories respectively and the indexi runs
over the the frame numbers10. Since in general, the
duration of the query object will differ from that of the
objects in the database, there are some further refine-
ments possible.

� When the durations differ, we could simply
match the two trajectories up til the shorter
of the two durations (i.e the indexi runs up til
min (query duration; database object duration)
and ignore the “tail”.

� We could also normalize the the two durations to
a canonical duration and then perform the match.

7.2. Matching Other Features

Let us briefly describe the distance metrics used in com-
puting the distances in the other feature spaces.

Color The color of the query object is matched with
the mean color of a candidate tracked object in the
database as follows:

Cd =
q
(Lq � Lt)2 + 4(Uq � Ut)2 + 4(Vq � Vt)2;

(4)
where,Cd is the weighted Euclidean color distance in
the CIE-LUV space and the subscriptsq andt refer to
the query and the target respectively.

Texture In our system, we compute three Tamura
[Tamura 78] texture parameters (coarseness, contrast
and orientation) for each tracked object. The dis-
tance metric is simply the Euclidean distance weighted
along each texture feature with the variances along
each channel:

Td =

s
(�q � �t)2

�2
�

+
(�q � �t)2

�2

�

+
(�q � �t)2

�2

�

;

(5)
where,�; � and� refer to the coarseness, contrast and
the orientation respectively and the various��;�;� re-
fer to the variances in the corresponding features.

Shape In the current implementation, the metric only in-
volves the principal components of the shape:

Shd =

�����2q�1q
�
�2t
�1t

���� ; (6)

where,�2 and�1 are the eigenvalues along the princi-
pal axes of the object (their ratio is the aspect ratio).

10Alternately, the index could run over the set of subsampled points
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Size This is simply implemented as a distance on the area
ratio11:

Sid = 1�
min(Aq ; At)

max(Aq ; At)
; (7)

where,Aq;t refer to the percentage areas of the query
and target respectively.

The total distance is simply the weighted sum of these
distances, after the dynamic range of each metric has been
normalized to lie in[0; 1]. i.e

Dg =
X

i2ffeaturesg

!iDi; (8)

where!i is the weight assigned to the particular feature and
Di is the distance in that feature space.

8. Query Resolution

Using these feature space metrics and the composite dis-
tance function, we compute the composite distance of each
object in the database with the each object in the query. Let
us now examine how we generate candidate video shots,
given a single and multiple objects as queries. An example
of an single object query along with the results (the candi-
date result) is shown in Figure 1.

8.1. Single Object Query

The search along each feature of the video object pro-
duces a candidate list of matched objects and the associated
video shots. Each candidate list can be merged by a rank
threshold or a feature distance threshold. Then, we merge
the candidate lists, keeping only those that appear on the
candidate list for each feature. Next, we compute the global
weighted distanceDg , and then sort the merged list based
on this distance. A global threshold is computed (based on
the individual thresholds and additionally modified by the
weights) which is then used to prune the object list. This is
schematically shown is Figure 8. Since there is a video shot
associated with each of the objects in the list, we return the
key-frames of the corresponding video shots to the user.

8.2. Querying Multiple Objects

When the query contains multiple video objects, we need
to merge the results of the individual video object queries.
The final result is simply an logical intersection of all the
results of the individual query objects. When we perform
a multiple object query in the the present implementation,
we do not use the relative ordering of the video objects in
space as well in time. These additional constraints could
be imposed on the result by using the idea of 2D strings
[Chang 87], [Shearer 97], [Smith 96] (discussed in 10.3).

11This is the area of the object divided by the area of the entire shot.

color
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motion

shape

size
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motion

shape
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Sid

Td

Cd

Shd

Md

query
all database objects

feature match

 threshold
and merge

object list

object list

object list

object list

object list

Figure 8. Generating the candidate video shot
list for a single object query. The first column
of features shows the features of the query,
while the second column shows the features
across all objects in the database.

9. How does VideoQ perform?

Evaluating the performance of image retrieval systems
is still very much an open research issue [Chang 97]. There
does not exist a standard video test set to measure retrieval
performance nor standard benchmarks to measure system
performance. This is partly due to the emerging status of
this field. To evaluate VideoQ, we use two different ap-
proaches. First, we extend the standard precision-recall
metrics in information retrieval. Although we acknowledge
several drawbacks of this classical metric, we include it here
simply for a reference. Another type of metric measures the
effort and cost required to locate a particular video clip that
a user has in mind or one that the user may have previously
browsed in the database.

9.1. Precision-Recall Type Metrics

In our experimental setup, we have a collection of 200
video shots, categorized into sports, science, nature, and
history. By applying object segmentation and tracking al-
gorithms to the video shots, we generate a database of more
than 2000 salient video objects and their related visual fea-
tures.

To evaluate our system, sample queries are performed
and measurements are computed by comparing the return
list of video shots against the ground truth. The ground truth
is obtained manually for each sample query.

Precision-recall metrics characterize retrieval effective-
ness, such as the performance of the search and match-
ing algorithm. In VideoQ, the search and matching algo-
rithms are, in turn, performed on video objects. Therefore,
precision-recall metrics are really a measure of how well the
object segmentation and tracking algorithms performed.

Precision-recall measurements are based on both the rel-
evant and non-relevant video shots that have been retrieved.
Specifically, recall calculates the ability of a system to re-

8



trieve relevant video shots, while precision calculates the
ability of a system to reject false alarms [Jones 81].

Recall =
Retrieved and relevant

All relevant in the database
(9)

Precision =
Retrieved and relevant

Number retrieved
(10)

where, the relevant video shots are predefined by the ground
truth database.

A ground truth database is established, by choosing all
the relevant video shots in the database that have features
corresponding to each query shown in Figure 9. Once the
ground truth is established, the sample query is performed
that returns a list of candidate video shots, and precision-
recall values are calculated according to equations 9, 10. A
precision-recall curve is generated by varying the size of the
return list and computing precision-recall values for each
size.

As shown in Figure 9, four sample queries were per-
formed. The first sample query specifies a skin-colored,
medium-sized object that follows a motion trajectory arc-
ing to the left. The ground truth consisted of nine video
shots of various high jumpers in action and brown horses in
full gallop. The return size is increased from 1 to 20 video
shots, and a precision-recall curve is plotted in Figure 10
(a).

An overlay of the four precision-recall curves is plotted
in Figure 10. For an ideal system, the precision-recall curve
is a horizontal line that stays flat with a precision value of
one and slopes down after recall reaches one. The break-
point at which the line slopes downward is where the num-
ber of relevant video shots equals the number of retrieved
video shots. The breakpoints of the four precision-recall
curves are marked with a cross. Their distance from the
ideal breakpoint is an indicator of how effective that partic-
ular query was.

The sample query, shown in Figure 9 (a), proved to be ef-
fective. Three features, motion, color, and size, were speci-
fied, and the motion trajectory was well-defined and unique.
The sample query (b), however, did not perform as well.
One reason is that, in some video shots, the background ob-
jects were not properly compensated by the global motion
compensation algorithm and were treated as foreground ob-
jects. Since the video database contains many shots where
the camera is panning from left to right, those same back-
ground objects were indexed with left/right motion trajec-
tories. The average precision-recall curve is also calculated
and plotted in Figure 11.

9.2. Time and Cost to Find a Particular Video Shot

Two benchmarks are used to evaluate how efficiently
the system uses its resources to find the correct video shot.

(a) (b)

(c) (d)

Figure 9. Four sample queries used in the
precision-recall experiments. (a-b) Highlights
motion, color and size. (c) Highlights motion
and size. (d) Highlights multiple objects in
addition to motion and size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision vs. Recall

Recall

P
re

ci
si

on

(a)

(b)

(c)(d)

X

X
X

X
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sponding to the sample queries of Figure 9
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Figure 11. The precision-recall curve aver-
aged over the four precision-recall curves of
Figure 10

Query frequency measures how many separate queries are
needed to get a particular video shot in the return list. Band-
width measures how many different false alarms are re-
turned before obtaining the correct video shot in the return
list.

A randomly generated target video shot, shown in Fig-
ure 12 (b), is chosen from the database. In order to find this
video shot, we query the system, selecting a combination of
objects, features, and feature weights. The total number of
queries to get this video shot are recorded. By varying the
size of the return list, the query frequency curve is gener-
ated.

Each query returns a list of video shots from an HP 9000
server over the network to a client. The video shot is ac-
tually represented by a 88x72 key frame. In many cases,
a series of queries were needed to reach a particular video
shot. The number of key frames that were returned are to-
taled. Repeat frames are subtracted from this total since
they are stored in the cache and not retransmitted over the
network. Conceptually bandwidth is proportional to the to-
tal number of key frames transmitted. Therefore the band-
width is recorded and by varying the size of the return list,
the bandwidth curve is generated.

Twenty target video shots, similar to those in Figure 13,
are randomly selected. For each target video shot, sample
queries are performed, and query frequency and bandwidth
curves are generated by varying the return size from 3 to 18
video shots.

The query frequency curve in Figure 13 shows that a
greater number of queries are needed for small return sizes.
On average for a return size of 14, only two queries are
needed to reach the desired video shot.

The bandwidth curve is minimal for small return sizes.
This is because for three of the target videos, ten or more
queries failed to place the video shot within the return list.
These “failed” videos are shown in Figure 15. To compen-
sate for this, a heuristic is used to penalize the failed videos.
Once this was done, the average bandwidth was recalcu-
lated in Figure 16, which shows that a medium return size
requires the least amount of bandwidth.

The system performed better when it was provided with
more information. Multiple object queries proved more
effective than single object queries. Also, objects with a
greater number of features, such as color, motion, size, and
shape, performed better than those with just a few features.
It is also important to emphasize that certain features proved
more effective than others. For example, motion was the
most effective, followed by color, size, shape and texture.

(a) (b)

(e) (f)

(c) (d)

Figure 12. Three sample queries used in sys-
tem benchmarks. The left column shows
the final sketch to successfully retrieve the
video.(a) A Skier (b) Two Soccer players (c)
A baseball query. In the baseball video clip,
the catcher moves to the left. Also note the
strong match of the sky-like texture to the sky.
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Figure 15. Number of failed videos for a par-
ticular return size.
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10. Research Issues in VideoQ

While the results section (Section 9) demonstrates that
VideoQ works well, there are other issues that need to be
addressed. This section contains a brief overview of the
issues that we are currently working on.

10.1. Region Grouping

Automatic region grouping, is an open problem in com-
puter vision, and in spite of decades of research, we are
still far from completely a automated technique that works
well on unconstrained data. Nevertheless, the segmented
results, need to be further grouped in order for us to prune
the search as well search at a higher semantic level. Also
good region grouping is needed avoid over-segmentation of
the video shot.

10.2. Shape

One of the biggest challenges with using shape as a fea-
ture is to be able to represent the object while retaining
a computationally efficient metric to compare two shapes.
The complexity of matching two arbitraryN point poly-
gons isO(N2 logN) [Arkin 91].

One approach is to use geometric invariants to represent
shape [Mundy 92], [Karen 94], [Lei 95]. These are invari-
ants on the coefficients of the implicit polynomial used to
represent the shape of the object. However, these coeffi-
cients need to be very accurately calculated as the repre-
sentation (that of implicit polynomials) is very sensitive to
perturbations. Additionally, generating these coefficients is
a computationally intensive task.

10.3. Spatio-Temporal Search

We are currently extending the work done on Visu-
alSEEk [Smith 96] on 2-D strings [Chang 87] in order to
effectively constrain the query results. There has been work
using modified 2-D strings as a spatial index into videos
[Arndt 89], [Shearer 97].

For video, 2-D strings can be extended to a sequence of
2D-strings or a 2D-string followed by a sequence of change
edits [Shearer 97]. Building on these observations we pro-
pose two efficient methods for indexing spatio-temporal
structures of segmented video objects.

� In the first method, only frames with significant
changes of spatial structures need to be explicitly in-
dexed (by 2D strings of those image frames). Given
such a representation, users will be able to search video

objects or events of interest (e.g., two objects swap lo-
cations, birth or death of objects) by specifying tem-
poral instances or changes of spatial structures. A sim-
plified representation is to include the 2D strings at the
beginning frame, the ending frame, and several sam-
pled frames in between.

� The second method extends the 2D-string based query
to 3D-strings. Video objects may be projected tox; y

and time dimensions to index their absolute centroid
position, 3-dimensional support, and relative relation-
ships. More sophisticated variations of 3D strings can
be used to handle complex relationships such as adja-
cency, containment, overlap.

11. Conclusions

Video search in large archives is an emerging research
area. Although integration of the diverse multimedia com-
ponents is essential in achieving a fully functional system,
we focus on exploiting visual cues in this paper. Using the
visual paradigm, our experiments with VideoQ show con-
siderable success in retrieving diverse video clips such as
soccer players, high jumpers and skiers. Annotating video
objects with motion attributes and good spatio-temporal
metrics have been the key issues in this paradigm.

The other interesting and unique contributions include
developing a fully automated video analysis algorithm for
object segmentation and feature extraction, a java-based in-
teractive query interface for specifying multi-object queries,
and the content-based visual matching of spatio-temporal
attributes.

Extensive content analysis is used to obtain accurate
video object information. Global motion of the background
scene is estimated to classify the video shots as well as to
obtain the local object motion. A comprehensive visual fea-
ture library is built to incorporate most useful visual fea-
tures such as color, texture, shape, size, and motion. To
support the on-line Web implementation, our prior results
in compressed-domain video shot segmentation and editing
are used. Matched video clips are dynamically ”cut” out
from the MPEG stream containing the clip without full de-
coding of the whole stream.

As described earlier, our current work includes region
grouping, object classification, more accurate shape repre-
sentation, and support of relative spatio-temporal relation-
ships. An orthogonal direction addresses the integration of
the video object library with the natural language features to
fill the gap between low-level visual domain and the high-
level semantic classes.
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