
1

Distributed Multicast Address Management

in the Global Internet
Sassan Pejhan, Alexandros Eleftheriadis, Student Member, IEEE,

and Dimitris Anastassiou, Senior Member, IEEE

Abstract|We describe a distributed architecture for man-
aging multicast addresses in the global Internet. A multi-
cast address space partitioning scheme is proposed, based
on the unicast host address and a per-host address man-
agement entity. By noting that port numbers are an in-
tegral part of end-to-end multicast addressing we present
a single, uni�ed solution to the two problems of dynamic
multicast address management and port resolution. We
then present a framework for the evaluation of multicast
address management schemes, and use it to compare our
design with three recently proposed approaches, as well as
a random allocation strategy. The criteria used for the eval-
uation are blocking probability and consistency, address ac-
quisition delay, the load on address management entities,
robustness against failures, and processing and communica-
tions overhead. With the distributed scheme the probability
of blocking for address acquisition is reduced by several or-
ders of magnitude, to insigni�cant levels, while consistency
is maintained. At the same time, address acquisition delay
is reduced to a minimum by serving the request within the
host itself. It is also shown that the scheme generates much
less control tra�c, is more robust against failures, and puts
much less load on address management entities as compared
with the other three schemes. The random allocation strat-
egy is shown to be attractive primarily due to its simplicity,
although it does have several drawbacks stemming from its
lack of consistency (addresses may be allocated more than
once).

Keywords| multicast address management, port resolu-
tion, multipoint applications, multicast communication, in-
ternetworking

I. Introduction

Recent gains in bandwidth and processing power have
made multipoint communications technically feasible,
while applications such as videoconferencing and group
editing have made them desirable. To support multipoint
communications, especially high-bandwidth real-time ap-
plications, it is very important to provide multicast capa-
bility at the network layer.
In IP networks, thousands of which are linked together

over the global Internet backbone, a subset of the address
space has been reserved for multicast groups [6]. Its size
represents 1/16th of the total address space, and a much
lower ratio of the total number of possible group forma-
tions (2N �N � 1, where N is the total number of hosts).
For this reason, multicast addresses cannot be permanently
assigned to particular applications or group combinations,
but need to be available for re-use: at session initiation a
free address is selected, which is returned to the pool at
session termination. This requires a dynamic multicast ad-
dress allocation and release mechanism which is transpar-
ent to users. Furthermore, the same address must not be
assigned to concurrent sessions (consistency), as this will

lead to interference or \cross-talk"1. Although this could
be considered acceptable if its probability of occurrence is
extremely small, we believe that it is undesirable for most
communication applications. Finally, these goals must be
achieved within certain constraints such as low blocking
probability (probability that a request for a multicast ad-
dress is rejected), low delay, high reliability (robustness),
low complexity and low control tra�c overhead. Hence the
need for an e�cient and robust multicast address manage-
ment mechanism. We should note that if we dispense with
the consistency requirement, the problem is signi�cantly
simpli�ed.
Although there have been a number of proposals for

multicast transport protocols|such as XTP [1], MTP [2],
RTP [19], and the simple and heavily used UDP|they all
assume that there exists some outside authority for allo-
cating and managing multicast addresses [3]2. Currently,
however, there is no mechanism for the management and
dynamic allocation of multicast addresses (with the fea-
tures described above) within the Internet, and hosts have
to communicate all relevant communications parameters
(such as multicast address and port numbers) a priori.
Alternatively, a session can be continuously \advertized"
throughout its duration, with peer programs providing the
relevant information to the user. Popular experimental
software packages used in the multicast-enabled part of the
Internet (MBONE) fall in this category. The Session Di-
rectory (SD)3 multicast address allocation program that is
widely used today follows this approach, but is not gen-
eral enough to satisfy the requirements for a multicast ad-
dress management mechanism, as is further discussed in
Section IV-C.
Recently, a couple of schemes have been proposed [3],

[10]. In [3] an architecture has been introduced where mul-
ticast addresses are managed by a tree-structured Multi-
cast Group Authority (MGA). Such a scheme, however,
su�ers from large set-up delay, and is not very robust.
In [10] the multicast address space is partitioned according
to (sub)networks. This reduces the acquisition delay, as re-
quests are served within the particular (sub)network, but

1The same address can be allocated to di�erent concurrent appli-
cations if restrictions are imposed on the geographical location of
the participants (scoping). This is not desirable, however, as many
applications becomemore appealing as the distance between the par-
ticipants increases.
2ST-II [21] provides the option of using IP multicast addresses (in

which case an outside mechanism for multicast address management
is needed), but most implementations use lists of unicast addresses.
3The SD program has been developed by V. Jacobson, Lawrence

Berkeley Laboratories).

increases the blocking probability. To strike a balance be-
tween the two, a \proxy" mechanism is used, whereby ad-
dresses are shared between any number of (sub)networks.
Finally, a scheme for managing multicast addresses has
been proposed in [22], but only in the context of a local area
network. The merits and drawbacks of all three schemes,
as well as those of random address selection, are discussed
in more detail in Section V.
The contribution of this paper is three-fold. Firstly, we

propose a new, distributed architecture for multicast ad-
dress management within the global Internet. Secondly,
our scheme incorporates a solution to the problem of port
resolution4|which is inherently linked to that of multi-
cast address management|thereby providing a uni�ed so-
lution to both problems. Except for [10], none of the other
schemes implement port resolution. Finally, we present
a framework for evaluating the performance of multicast
address management schemes, and use it to compare our
architecture with those mentioned above.
The mechanism proposed here achieves what appear to

be two incompatible goals of (consistent) multicast address
management: it reduces the blocking probability by several
orders of magnitude while reducing the set-up delay. Fur-
thermore, it does not increase the complexity of multicast
communications, as it only requires simple changes to be
made to the transport and multicast routing protocols. If
anything, and due to its distributed nature, it signi�cantly
reduces the complexity of the address management task
compared to a hierarchical [3] or semi-centralized scheme
[10]. At the same time, it allows for the reduction of the
number of addresses reserved for multicasting, and hence
for temporary relief from the IP address exhaustion prob-
lem.
The paper is organized as follows. In Section II we de-

scribe the concept of virtual port numbers and how they
may be used both as a port resolution mechanism, and
to extend the multicast address space. In Section III, we
describe an architecture for fully distributed multicast ad-
dress management, using the concept of virtual port num-
bers and extended multicast addresses. Brief descriptions
of the other alternatives proposed in the literature are given
in Section IV. Section V compares the performance of the
di�erent address management schemes discussed, on the
basis of blocking probability and consistency, address ac-
quisition delay, load on address management entities, over-
all robustness, and processing and communications over-
head. In Section VI we briey discuss the applicability
of the proposed architecture in the context of non-IP net-
works, namely OSI CLNP and the IPng (IP Next Gener-
ation) proposals (TUBA, CATNIP, and SIPP). Finally, in
Section VII we present our concluding remarks.

II. Virtual Port Numbers

Addresses in the current IP environment consist of four
octets [15]; part of the address (pre�x) is used to identify
a network, while the rest (su�x) is used to locally identify

4This is a necessary step for multicast communications, as discussed
in Section 2.1.

an individual host5. In order to allow the deployment of
networks of various sizes, three classes are de�ned, each
allowing a di�erent number of hosts. Each class uses a
number of pre�x octets (ranging from 1 to 3 for classes A
to C) to specify the network, with the remaining octets
used for local host speci�cation. Multicast addresses are
de�ned as a fourth (D) class, and have the form:6 f224{
239g.X.X.X, where X can have any value between 0 and
255 [6]. The address range 224.0.0.X is reserved for the use
of routing and other low-level protocols.

A. Use of Virtual Port Numbers for Port Resolution

In order to support multiple connections per host, trans-
port protocols provide means to multiplex di�erent data
streams from higher layers. In the IP environment, multi-
plexing is provided with the use of port numbers. These
numbers are used to identify both receiving and sending
entities, and are an integral part of end-to-end addressing.
They are used by the transport protocol at the receiver,
in order to identify the appropriate recipient. Sixteen bits
are used for the port number, yielding a pool of 65,536. Of
these, 1023 are reserved by the Internet Assigned Numbers
Authority (IANA) for allocation to special, well known pro-
cesses [17]. In addition, many ports are used for ordinary
user processes on most systems, and are assigned by the
local systems themselves.
For multicast applications the situation is complicated

by the fact that the same port number has to be used
by all participants. Since this port number is randomly
selected for each application, there is no guarantee that
it will be available on a given host. For this reason, port
numbers may have to be dynamically allocated/negotiated.
Resolving the problem of �nding a common port number
is thus a necessary step in the call set-up phase of mul-
ticast communications, regardless of the address manage-
ment scheme used. As with multicast addresses, current
practice requires prior communication of the port number
that will be used for a session among the participants, or
use of scoped advertizing as in SD. In either case, there is
no mechanism to resolve conicts.
A number of port resolution mechanisms have been pro-

posed in [10]. One of these adds a port mappingmechanism
to the transport protocol, relating Virtual Port Numbers
(VPRs) to Actual Port Numbers (APNs). The mapping as-
sociates multicast group addresses with VPN-APN pairs,
and is established as part of the connection set-up or group
join process. The session initiator selects the common port
number (virtual) to be used. Users joining in will have to
map that port number to a free one. Every time a packet
with that particular multicast address is received, the map-
ping (VPN to APN) will be performed to send the packet
to the correct application.
Although this scheme was proposed as a solution to the

5With the proposed CIDR repartitioning of the IP address space,
part of the network number also indicates a routing domain [16]; this
has no e�ect on our scheme, which operates at a higher level.
6The conventional dot-decimal notation is used throughout this

paper.

port resolution problem independent of the address man-
agement scheme employed, it can be used as the basis of
a fully distributed address management scheme. This pro-
vides a single solution to both address management and
port resolution (Section III).
An alternative mechanism that was discussed in [10] is

packet �ltering; this is performed at the transport layer,
by associating (binding) port numbers to particular IP ad-
dresses. This is currently not possible for multicast ad-
dresses, since binding is only allowed for local interface
addresses. Modi�cations to operating system kernel code
to remove this restriction are currently available for some
platforms, although they are not yet widely deployed.

B. Virtual Port Numbers as an Extension of Multicast Ad-
dresses

Since for multicast transmission, all participating hosts
are required not only to use a common 4-byte group net-
work address, but also the same 2-byte port number, we
can view the end-to-end multicast address as a 6-byte en-
tity. Using mechanisms that are described in Section III,
the multicast group address and port number of a session
will be communicated to each participating host. Hosts
will keep a VPN-APN mapping table, used for multicast
addresses only (since multicast addresses begin with 1110,
the transport protocol can immediately decide whether to
use the mapping table, even before reading the rest of the
address). Each time they join a multicast group, they must
perform a VPN-APN mapping and add the appropriate
entry in the table, even if the port number to be used is
free and available (in which case the mapping would be
the identity). Upon leaving the session, the entry will be
deleted from the table. The entries must be arranged ac-
cording to the multicast addresses. Two sessions using the
same multicast address but di�erent port numbers will be
sent to the correct applications, since there will be two
di�erent entries in the mapping table for that multicast
address (one for each port number). If the host is a par-
ticipant in only one of those sessions, the one without an
entry in the mapping table will be �ltered out7.
In the following section, we consider the multicast ad-

dress and port number combination as a single entity for
multicast address management, port resolution and multi-
cast routing purposes.

III. Distributed Multicast Address Management

We briey describe the approach of [10] and then de-
scribe the proposed distributed scheme, since the latter is
a direct extension of the former.

A. Semi-Distributed Multicast Address Management

In the address management scheme described in [10], a
Multicast Address Manager (MAM) is responsible for the
assignment of multicast addresses within a network or sub-
network. The MAM is assigned a set of addresses accord-

7The network interface will pick up packets on the basis of the
4-byte multicast address only (or, more accurately, the MAC-layer
address it is mapped to).

ing to an address space partitioning scheme based on the
(sub)network number. Each MAM is assigned the manage-
ment of all valid multicast addresses that have as a pre�x
the concatenation of a valid class D address �rst octet (224{
239) and the network number. So the MAM residing on the
class C network A1.A2.A3, for example, will be responsi-
ble for managing the address set f224{239g.A1.A2.A3|16
addresses, or 15 if we reserve the pool 224.X.X.X for \open-
style" conferences [10]8. The address formation procedure
for a class B network is shown in Figure 1.

224-239

A1 A2 A3 A4

224-239 A1 A2 X

Multicast Address Space

Host Address Space

Multicast Address Subspace

X: 0-255

Network Number
(Class B)

X X X

Fig. 1. Multicast address subspace formation in [10]

The MAM allocates a free multicast address but it is the
session initiator which initially selects the common port
number to be used. If virtual port numbers are used for
port resolution, then users joining in will have to map that
port number to a free one.

In addition to the MAM, there is one Connection Con-
troller (CC) on each host which is responsible for connec-
tion control, handling join and leave operations during a
session, and maintenance of state information for each ses-
sion. This is done through an elaborate protocol, which
is described in detail in [10]. Upon allocating a multicast
address, the MAM also selects a CC to manage the session
that will use that address. Upon session termination the
CC returns the address to the MAM. The only other time
that the MAM gets involved is when the CC fails during
the session. Again, an elaborate mechanism is described
in [10], whereby the MAM selects a new CC| transpar-
ently to the users and without disruption of communica-
tion between the participants. Finally, periodic keep-alive
messages are exchanged between the MAM and the CCs
residing on its (sub)network, to ensure that the MAM has
proper state information regarding the status of the CCs,
and also for recovery mechanisms.

8The term open-style conference refers to broadcast-oriented ap-
plications, such as seminars or radio, invovling a potentially large
number of receivers and a small number of transmitters, with no or
limited interaction between them. Similarly, closed-style refers to
highly interactive sessions with a small number of participants.

B. Fully Distributed Multicast Address Management

Using the concept of an extended multicast address (6-
bytes, multicast address plus virtual port number), the
scheme proposed in [10] can be modi�ed so as to imple-
ment a fully distributed address management and connec-
tion control architecture. In the distributed scheme we can
assign a MAM on each host, since we now have a multicast
address space that is larger than the unicast one. These
MAMs will select extended multicast addresses based on
the entire unique 4-byte address of the host on which they
reside, thus guaranteeing that no two MAMs will pick the
same address. Again, the �rst byte will be selected from
the range [224{239]. The next three bytes will be the �rst
three bytes of the host address. Finally, the port number
selected will be of the form Y.A4, where A4 is the fourth
byte of the host address. Y can take any value in the range
[4{255], since the reserved port number pool [0{1023] has
to be excluded9. So, for example, the address manager
residing on host A1.A2.A3.A4 will select an extended mul-
ticast address of the form f224{239g.A1.A2.A3.Y.A4, as
shown in Figure 2. Even if Y is �xed, this scheme allows
for 16 multicast addresses per host, instead of the other
way round. By letting Y take any arbitrary value in the
range [0{255], the scheme allows for 4032 extended multi-
cast addresses per host.

224-239 X X X

224-239 A1 A2 A3

Host Address Space

Multicast Address Subspace

A4Y

Virtual Port Number

Multicast Address Space

A1 A2 A3 A4

X: 0-255

Y: 0-255

Fig. 2. Extended (including virtual port number) multicast address
subspace formation

Each host may now have a number of Connection Con-
trollers (CCs). Upon receiving a request for a new address
from a local user, the MAM will create a new CC to man-
age the session. The task of selecting a new CC in [10] is
eliminated, and there is no need for \keep-alive" messages
between the MAM and the CCs. Upon session termina-
tion, the CC returns the address to the MAM, and the
CC is then terminated. The connection control protocol
between the CC and participating hosts, and the mecha-
nisms for recovery from CC and MAM failures, are exactly

9This restriction actually applies to the actual port number space
only, but carries over to the virtual port number space if we want to
guarantee that the same number of prts is included in both spaces.

as before (see [10]).

The distributed scheme will also require minor modi�ca-
tions to the multicast routing mechanisms, to avoid packet
duplication. This is because packets in IP are currently
routed according to their IP destination address only, re-
gardless of the port number. The latter is only used at
the source and destination by the transport protocol. The
scheme proposed, as described up to this point, could lead
to a considerable increase in the network load. To see why
this is so, consider hosts A and B in Figure 3, which are
participating in two di�erent sessions with the same mul-
ticast address but di�erent port numbers. The router will
forward both sets of tra�c to both hosts, since it routes
packets on the basis of the multicast address only.

Host A

Host B

226.2.4.5 port 2025

Network A

Network B

Router Internet

226.2.4.5 port 3125

Fig. 3. Tra�c duplication without router modi�cation

This problem can be avoided by considering port num-
bers when making routing decisions, at least for multicast
addresses (which, as mentioned before, can easily be dis-
tinguished by the �rst 4 bits of the destination address).
This is particularly easy to implement for the most popular
multicast routing protocol (DVMRP [9]) as currently the
router|mrouted|is separate from the regular (unicast)
routers, and is implemented in software. Also, the loca-
tion of the port number in the UDP header is well known,
while the length of the IP header is speci�ed by the 4-bit
IHL �eld. Thus, the routing table for mrouted could list
groups by both address and port number.

A reasonable concern with this approach is that the port
number is a transport layer entity, while routing is a func-
tion performed at the network layer. This mechanism then
violates the logical separation of tasks between the two lay-
ers, and requires the router to look inside what it considers
to be \data". Note that this is not uncommon, and is being
used as a means of packet �ltering (primarily for security
reasons) in many routers (e.g. [4]). To avoid the extension
of routing decisions to the transport layer we can make use
of the Options �elds of the IP datagramheader. These hap-
pen to be placed right after the destination address. The
single octet option code which precedes each option allows
up to 32 options for each of four di�erent option classes.

Until recently, only 8 options were de�ned [5]. We can de-
�ne a new option within Option Class 0 (used for datagram
or network control) to include port number information.
The mechanism described above would require a number

of changes to the existing infrastructure. These include the
addition of the mapping function and table to the trans-
port protocol, modi�cation of the operating system ker-
nel forwarding code, and the address size modi�cations to
the routing protocols and tables. The performance of the
mechanism may be improved with more extensive modi-
�cations, in which packet �ltering at the receiver|when
necessary10|is performed in the network instead of the
transport layer. The IP service interface, which includes
the JoinHostGroup and LeaveHostGroups operations (for
joining and leaving multicast groups, and having packets
routed accordingly) [6], has to be modi�ed so that group
addresses are extended to include the port number, and
also to accommodate the semantics of an address manager.
Ditto for the IP module, which maintains a table of the
multicast group memberships for each network interface,
and for the Internet Group Management Protocol (IGMP)
which is used by IP hosts to report their host group mem-
berships to multicast routers [6].
Other popular multicast routing protocols, such as MO-

SPF [14] and PIM [8], will not require extensive modi�ca-
tions either, as the only architectural di�erence is the mul-
ticast address size. Although the process requires changes
to custom-designed routing equipment, these are typically
driven by �eld-upgradable software.
We should note that although the required changes are

simple, the fact that they a�ect a very large number
of hosts/routers makes their deployment far from trivial.
Since, however, DMAM can function even with no routing
protocol modi�cations (albeit at the possible detriment of
network tra�c load), its gradual incorporation into the ex-
isting infrastructure is feasible.
One side-e�ect of using the port number as part of the ex-

tended multicast address (to be used for routing purposes)
is that applications that use multiple ports for the same
session11 will have to obtain multiple extended addresses.
This will result in additional routing table entries that will
have to be maintained, although due to the temporary na-
ture of multicast sessions their number will probably be
much smaller than the number of unicast entries in the
routing tables.
Another side e�ect of the proposed scheme is that part

of the multicast address space will be left unused since
not all possible network/host addresses will be assigned.
Given the inescapable fact that for multicast communica-
tions port numbers are an integral part of the end-to-end
address, and that by using port numbers in the address se-
lection process a host has a signi�cant number of extended
addresses at its disposal (more than 4000), leaving some of

10Filtering may still be necessary for tra�c originating from hosts
on the same (sub)network. It can be eliminated by redesigning the
current way in which IP multicast addresses are mapped to MAC-
layer addresses.
11The bene�ts of using multiple port numbers within a single ses-

sion are debatable.

the multicast address space unused is not a concern. Static
allocation of unused addresses can be made, but that is
neither necessary nor desirable, since changes have to be
made every time a new network/host is added. Finally,
this leaves resources available to accommodate expansion
of the network (i.e. the performance does not deteriorate
as the network|or parts of it|expands).

IV. Other Proposals for Multicast Address

Management

The semi-distributed scheme proposed in [10] (hence-
forth referred to as SMAM) and the fully distributed
scheme proposed in this paper (DMAM) have already been
described in detail. We therefore give a brief description of
the other three approaches.

A. Multicast Group Authority (MGA)

The authors of [3] present an outline of a hierarchical
address management scheme. In this architectural outline
the multicast addresses are managed by a Multicast Group
Authority (MGA) hierarchy, with a centralized controller
at the root of an administrative tree. Address requests
received from application processes or other MGA nodes
result in a block of addresses being assigned to the request-
ing MGA node. The size of the address block allocated is
dependent on the position of the requester in the MGA
hierarchy. If a given MGA node runs out of addresses,
it will make a request to its parent node. The request is
propagated upwards in the hierarchy until free addresses
are found. When the root exhausts the address space it is-
sues a request to all its children for reclamation of unused
addresses.

B. Heidelberg Multicast Protocol (HeiMAP)

An elaborate description of another approach is given in
[22] (HeiMAP), though in the context of local area net-
works. If some partitioning mechanism for the multicast
address space is employed (such as the one described in
[10]) and a pool of addresses is allocated to each LAN, it
can be used to manage that pool. HeiMAP is based on a
two-phase negotiation protocol. Each host is required to
keep a table of all multicast addresses that are in use, re-
gardless of whether it is a member of that group or not.
Upon session initiation, a host picks an address which is
not used according to its local table and broadcasts a RE-
SERVE message. If no REJECT message is received within
a speci�ed time-out period, the host will proceed with its
call management procedure using that address for the ses-
sion. The address is released at session termination by
broadcasting an UNRESERVE message. The scheme does
impose one restriction: an address may be deleted only by
the session initiator. Provisions are also made for recovery
from various failure scenarios.

C. Random Address Selection

Strictly speaking, random selection of multicast ad-
dresses does not �t the de�nition of address management,

but it is currently the most widely used alternative. It per-
forms satisfactorily today, where multicast sessions are rel-
atively few and far apart, but its architecture may become
problematic in the future. The popular Session Directory
(SD) program uses scoped advertizing of randomly selected
addresses so as to reduce the risk of other SDs selecting the
same address. Such a scheme, however, will not work on a
large scale due to the huge overhead generated12, and the
higher possibility of simultaneous address allocation due to
longer end-to-end delays. Furthermore, advertizing a ses-
sion may not be desirable for privacy/security reasons. It
is, nevertheless, of interest to analyze the probability of
collision using a random address selector (without address
advertizing). This will be done in Section V-A.2

V. Performance Analysis

In the introduction, we stated the need for an e�cient
and robust address management scheme which could oper-
ate within certain performance constraints. In this section,
we consider �ve di�erent criteria in order to evaluate the
performance of a multicast address management scheme:
blocking probability and consistency, address acquisition
delay, address manager load, robustness, and processing
and communications overhead. For each criterion, we com-
pare all four schemes of interest. The results of the compar-
isons are summarized in Table 1 at the end of this section.

A. Blocking Probability and Consistency

We can segment the �ve di�erent address manage-
ment/allocation approaches into two broad categories: con-
sistent, and non-consistent. The former has as a primary
design parameter the requirement that no single address
may be allocated more than once (hence the term \manage-
ment"), while the latter allows such multiple allocations.
All schemes discussed here except for random allocation
fall in the consistent category.
Non-consistent behavior is undesirable as it results in

merging of tra�c from two or more sessions. Among its
potential drawbacks are the tra�c load increase, the need
to do packet �ltering at the transport layer (or at the ap-
plication layer if the port number happens to coincide) in
order to remove packets of other sessions with the same
multicast address, and incidental compromise of privacy
(if the same or compatible applications are used, allowing
processing of received packets from the alternate session).
Three strong arguments in favor of such an approach are,
however, that: a) it is extremely simple to implement, b)
real privacy in IP can only be guaranteed through encryp-
tion, and c) the problem is insigni�cant if the probability
of its occurrence is extremely small. Although encryption
solves the privacy problem, it involves additional process-
ing overhead (either via software or hardware), and it is
seldom used by users. Similarly to the telephone network
(which is also not secure), users have a reasonable expecta-
tion of privacy in the sense that it cannot be compromised
by normal operation of the system, but only intentionally.

12Currently, SD is working with a small subset (15 bits) of the
multicast address space.

Regarding intentional attempts, lack of an address manager
actually makes eavesdropping trivial if the address of a ses-
sion is known. Finally, as we will see later in this section,
the probability of multiple allocations is not negligible.
At any rate, this is not a strictly technical issue but also

a user community one, pertaining to the desired type of
service. In the following we separately discuss the blocking
probability characteristics of consistent schemes, and the
probability of non-consistent behavior for random alloca-
tion.

A.1 Blocking Probability

Because of the limited number of multicast addresses
available, in consistent address management schemes there
is a non-negligible blocking probability. This blocking
probability may not be signi�cant today, but will become
increasingly so as the number of applications that use
multicast communication grows. As observed in [10], ad-
dress management transactions (acquire and release) can
be modelled as an M=M=k=k system, where k is the num-
ber of available multicast addresses (\servers"). Requests
for multicast addresses (session initiations) arrive in a Pois-
son fashion at a rate of � requests/host/minute and session
durations are distributed exponentially with mean 1=�.
New address requests will be blocked if all k addresses are
in use, the probability of which is given by the Erlang-B
formula [20]:

PB =
�k=k!Pk

i=0 �
i=i!

where � = �=�. Assuming a request rate of 1 re-
quest/hour/host and an average session duration of 3
minutes13, it was observed in [10] that the blocking prob-
ability was 0.11 for a fully occupied (254 hosts) class C
network, with 15 addresses at its disposal. With two fully
occupied class C networks sharing addresses through the
proxy mechanism, the blocking probability was calculated
to be 0.06.
In MGA, although the ratio of hosts to multicast ad-

dresses is still 16 to 1, the blocking probability is smaller
since all addresses are available to all hosts (see [10] for
proof), though not by much. Unfortunately, the exact
blocking probability cannot be easily calculated due to the
large numbers involved, but the beginning of the curve for
a load/host of � = 0:083 (corresponding to 1 request ev-
ery 24 hours with an average duration of 2 hours) is shown
in Figure 4 (host to address ratio is 16 to 1). As can be
seen, the drop in blocking probability is very small once
the number of addresses increases beyond 32.
In HeiMAP it is not clear how many multicast addresses

are made available to the network. The actual negotiation

13These numbers are meaningful for person-to-person telephone
communications, but may not be accurate for multipoint multimedia
communications. Examples of the latter, which include videoconfer-
encing and group editing, will most probably be seen in the business
community where they would be replacing sta� meetings. As such,
they could be expected to last much longer (in the order of 60 to
120 minutes on the average) but occur less frequently (perhaps about
once every 24 hours), yielding more or less the same overall load (�).

0 10 20 30 40 50 60 70
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of Addresses

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Fig. 4. Blocking Probability in MGA vs. number of addresses, with
constant host to address ratio (16:1)

is done for a layer 2 multicast address, which has a larger
address space, but is then mapped to a layer 3 (IP) ad-
dress. If equitable distribution of IP multicast addresses
between all networks is assumed, then the blocking proba-
bility statistics become identical to that of SMAM.
For DMAM, and if we allow only 2 ports per multicast

address (thus increasing the e�ective number of multicast
addresses twofold, for the same number of total hosts), the
blocking probability for the class C network considered in
[10] becomes 1:7x10�5. With three port numbers, the prob-
ability is less than 10�12. If we use the full [4{255] range
for Y and [1{254] for A4, the blocking probability is prac-
tically zero (this corresponds to over a million extended
multicast addresses for 254 hosts).
Figure 5 shows the blocking probability vs. number of

ports used for various values of � (254 times � to be exact,
where 254 is the number of hosts on a fully occupied Class C
network), ranging from 12.7 to 84.7 (the latter representing
an average request rate of 4 every 24 hours per host, with
average session duration of 2 hours|i.e. a full working
day spent in meetings on the average!). It can be seen that
by using as few as 8 di�erent port numbers per multicast
address, the blocking probability can be made practically
zero even for a fully occupied Class C network.
To reduce the chance of address exhaustion, one could

conceivably bias the address block allocation mechanism in
MGA or any address partitioning scheme in favor of net-
works where requests for multicast addresses occur more
frequently. There are, however, several drawbacks. One
is that this information is not available a priori, and has
to be accumulated over a long period of observation. More
importantly, the load distribution will be dynamicallyvary-
ing, especially if some of the hosts are mobile. Taking these
dynamics into account would add unnecessary complexity
to the address management scheme.
A signi�cant concern in the Internet community is that,

due to the unexpected growth of the number of users be-
yond the highest expectations of the original designers, the
IP address space is being exhausted. It is generally agreed

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Ports

B
lo

ck
in

g
P

ro
ba

bi
lit

y

12.7
42.3

63.5

84.7

Fig. 5. Blocking Probability in DMAM vs. number of ports for
varoius normalized (by 254) hosts

that the long term solution is to increase address sizes
from the current 32 bits to 64 bits, or even 128 bits [7].
This, however, will require extensive modi�cations to cur-
rent routing protocols, hardware, bu�ers and memory re-
quirements.
Since the multicast address space can easily be increased

to several times its current size by using port numbers,
we can reduce the number of IP addresses reserved for
multicasting purposes. For example, reducing the multi-
cast address space by 75% from f224{239g.X.X.X to f236{
239g.X.X.X (i.e. all addresses starting with 111011)|
which can easily be compensated by using 4 ports per
address|will free up more than 200 million host addresses,
or equivalently, 800 thousand class C networks. The freed
addresses can be used for Class C networks (extending
them by 37.5% from the current space f192{223g.X.X.X
to f192{235g.X.X.X), where the problem of address space
exhaustion is the most severe, or for smaller size classes of
networks. Using 256 ports per address as in DMAM, would
increase the original multicast address space by a factor of
64 and achieve the savings in IP addresses.
It might be argued that a change towards for example

64 bit addresses would make the blocking probability a
non-problem, as the multicast address space would be in-
creased by a factor of 232. Yet larger addresses do not
really solve the problem. Firstly, although there will be
232 more multicast addresses, there will also be potentially
232 more host addresses. More importantly, even with 64
bit addresses it is still desirable to partition some of the
address space into class C size (256 hosts) or even smaller
networks. In fact, one of the problems with the current
partitioning scheme is its coarse granularity, whereby the
smallest possible set of IP addresses one may obtain is 256.
As the number of individual subscribers and small compa-
nies that may want direct access to the Internet increases,
assigning class C networks to them will become very waste-
ful. There has been at least one proposal to add three new
classes for networks of size 1{2, 1{7, and 1{15 hosts [18]. To
minimize address acquisition delay, complexity and control

tra�c generated it is best to serve address requests within
the particular network segment where the host resides (as
in SMAM), or within the host itself (as in DMAM). This in
turn requires the partitioning of the multicast space. Us-
ing a partitioning scheme as in SMAM to this end will lead
to the same blocking probability as before for the class C
size networks (since there are still 254 potential hosts for
16 addresses), and an even larger blocking probability for
the other, smaller size, classes.

A.2 Probability of Collision for Random Address Selection

With the random address selection alternative, there is
no blocking probability, since nobody will reject the ran-
dom address selected. On the other hand, we have to con-
sider the probability of address collisions. To avoid a colli-
sion during a session, one must a) pick a free address during
session initiation and b) hope that nobody else picks that
address while the session is going on.
Assuming an internetwork withN hosts andM multicast

addresses, and assuming an average address request rate
of � requests/host/minute and a session duration of 1=�
minutes (as before), there will, at any given time, be N�=�
sessions in progress. The probability of selecting a free
address during session initiation is thus:

Pa =
M �N�=�

M

assuming N�=� < M . During the session, which will last
for say x minutes, k new requests will be made. Each
will pick the same address of the session of interest with
probability 1=M . The probability that none will pick that
address, given k and x, is: (1� 1=M)k.
Given a Poisson process with rate N� for k and an ex-

ponential distribution with mean 1=� for x, the probability
that no one else will pick the address of the session of in-
terest is14:

Pb =

Z
1

x=0

1X
k=0

((1� 1=M)k
(N�x)k

k!
e�N�x)�e��xdx

which, after some manipulations, yields:

Pb =
1

1 +N�=M�

The probability that we avoid a collision is (assuming Pa
and Pb to be independent):

Pcol = PaPb = (
M � N�=�

M
)(

1

1 +N�=M�
)

and hence, the probability of a collision is given by:

Pcol = 1� Pcol =
2N�=M�

1 + N�=M�

14This is derived by considering the joint probability distribution of
collisions, number of requests, and duration of a session, expanding
to a product of conditional distributions using the chain rule, and
computing the marginal distribution with respect to the number of
collisions (here set to 0).

In the current IP environment, the ratio of the unicast
address space to that of the multicast address space is 224
to 16. Assuming an occupancy of only 1% for the uni-
cast address space (37 million hosts), a request rate of
1/host/hour, and average session duration of 6 minutes,
the probability of collision is 2.8%. With 3% occupancy
and average session duration of 10 minutes, the probabil-
ity of collision rises to 13.1%. These numbers are clearly
too high to be acceptable. Note that this only includes col-
lisions based on the 4-byte IP address; if no port resolution
mechanism is used, further collisions due to port matches
(even with unicast addresses) should also be considered.
The probability of collision can be considerably reduced

if binding of port numbers to multicast addresses becomes
widely established. This is because collisions on just the 4-
byte multicast address or just the 2-byte port number will
automatically be �ltered at the transport layer. In other
words, collisions will occur when both the multicast address
and the port number match. The tra�c duplication prob-
lem, however, still remains. Furthermore, we should note
that random allocation provides no control mechanism in
case usage becomes high.

B. Address Acquisition Delay

The time required to acquire a multicast address would
be one of the components of the call set-up delay for mul-
tipoint applications. Here, we will see how this component
can be minimized by using the DMAM approach. Note
that delay is treated qualitatively, rather than quantita-
tively, in our analysis since it depends on a great number
of factors (such as link capacity and quality, access delay,
router speeds, routing con�guration and network topol-
ogy, and so forth); any quantitative argument would be
extremely involved and beyond the scope of this paper.
There are two dominant factors which can a�ect the ad-

dress acquisition delay. The main factor is that in MGA
and SMAM the host and the address management entity lie
on di�erent machines, and thus have to communicate via
the network. This is also true for HeiMAP, since the ses-
sion initiator must send a reservation request to other hosts
and allow some time for their possible rejection. Another
factor, which comes into play when one of the system com-
ponents (address management entity, network link, etc.)
fails, is the time required to detect a problem and take
appropriate measures. A third factor is the possible queu-
ing delay at the address management entity (MGA node or
MAM) due to overloading, and is discussed in Section V-C.

B.1 Networking delay

A number of delays are introduced due to the fact that
the host and the address management entity lie on di�erent
machines, and thus need to communicate over the network.
These include network access delay, and delays associated
with the reliable transfer of data over the network (prop-
agation delays, queuing delays, possible retransmissions,
etc.). The problem is aggravated by the fact that two- and
three-way handshakes have to be used to ensure correct-
ness and robustness [10]. The problem will be more severe

for mobile hosts connected by wireless networks, where link
capacities are lower and bit-error rates higher.
In MGA, where addresses can be moved from one part

of the Internet to the other as needed, this delay could
vary greatly. Assuming that there exists an MGA node
within each network|although this was not explicitly
stated in [3]15|and if that node has free addresses, then
the minimum delay is the time required for the address
request to be served within that network segment. Other-
wise, the MGA node needs to ask for free addresses from
a parent node, spanning two or more networks. The max-
imum delay, which occurs whenever all the nodes on the
particular branch of the MGA hierarchy on which the re-
questing host resides are out of addresses, is equal to at
least two traversals of the entire MGA tree plus two traver-
sals of the branch. This is because the address request �rst
propagates from the branch all the way to the root, which
then sends out a request to reclaim all unused addresses
to all the nodes in the tree. This request propagates down
every branch, and the replies propagate back to the root,
which then sends a free address down to the branch of the
requester. Added to this delay is all the processing and
queuing time required to handle all the responses at the
nodes, especially near and at the root.
In SMAM, since addresses are allocated by a single

(sub)network entity, the delay is limited to the time re-
quired to serve the request within that (sub)network. If
the proxy mechanism is employed, the delay will be longer,
depending on how far out the proxy address manager is.
In HeiMAP, after broadcasting a RESERVE request, the

session creator must wait for some time-out period in which
other hosts may reply with a REJECT message. This time-
out period depends on the round-trip delay of the network,
and a default value of 50 milliseconds was set in [22].
The best performance will be obtained with DMAM,

since address requests are served within the host itself with-
out involving the network at all. Therefore all delays as-
sociated with propagation, retransmission, congestion and
handshaking are eliminated. This will reduce the address
acquisition delay by several orders of magnitude.

B.2 Delay required to detect failures

Another parameter to be considered is the time needed
for an address requester to detect that the address man-
ager, or the link between them, is down during the ses-
sion initiation phase. This issue is not addressed at all in
MGA. In SMAM, the requester retransmits its request to
the address manager using a truncated exponential back-
o� algorithm. If no response is received after a number of
back-o�s, the address manager is considered to be down.
This delay could be reduced by having periodic \keep-
alive" messages between all hosts and their MAM at all
times, but that would be wasteful of network resources. In
DMAM, however, the user can immediately detect the fail-

15The delay will be longer if there is less than one MGA node
per network. On the other hand, having one MGA node per network
increases the potential of ooding parent nodes, especially those closer
to the root, due to the greater number of children.

ure of the address management entity, as it resides on the
same host.

C. Address Manager Load

One of the main advantages of distributed address man-
agement schemes (such as DMAM and HeiMAP) over
schemes with a centralized orientation (SMAM, MGA) is
that there is much less load on each address management
entity, both in terms of the number of addresses managed
and the number of potential hosts that it has to serve. This
is simply because there are more of them.
The load could become especially severe in MGA for

nodes that are close to the root. This is particularly true
during periods where use of multicast addresses is heavy,
and more requests for addresses are propagated towards
the root. Also, each time the root broadcasts a request to
reclaim all unused addresses, it and its immediate children
could potentially be ooded with unused addresses. This
would become a much more signi�cant problem if and when
the move to 64-bit addresses is made, thereby increasing
the number of multicast addresses from the current 268 mil-
lion to more than 1018. Similarly, the storage and memory
requirements for the root become immense. Although the
root will allocate addresses in blocks, the space required to
store the multicast address `in use' ags using a bit map-
ping scheme would be 33.5 MBytes. With 64-bit (8-byte)
addresses, the requirement is close to 1:4x1017 bytes! This
poses a serious drawback in terms of scalability.
The problem is less severe in SMAM. Class C address

managers will manage 15 addresses and service the re-
quests of up to 256 hosts|disregarding the proxy mech-
anism. For class A and B managers, the numbers depend
on how the network is divided into subnetworks, but could
become quite signi�cant.
Another factor to consider is the queuing and bu�ering of

multiple address requests at the MGA node or the MAM.
This could also a�ect the address acquisition delay. Neither
of the two schemes discuss this issue, but the logical thing
to do in each of those schemes (be it at the MGA node or
the MAM) would be to queue up requests for multicast ad-
dresses and serve them one at a time|or reject all but one,
which would have the undesirable e�ect of increasing the
blocking probability. This problem can be especially sig-
ni�cant in MGA for nodes closer to the root, as they would
be susceptible to receiving many requests during periods of
high usage.
With HeiMAP, the load on each host is low since it only

handles address requests originating from itself. On the
other hand, it does have to keep track of all multicast ad-
dresses that are in use, and to react to all address reserva-
tions and releases that are broadcast. This is one reason
why this scheme is not deemed scalable.
DMAM would require each address manager to handle

just the number of addresses that are in use in a single
host, and also to service the requests of only that particular
host. In addition, the address manager does not have to
deal with simultaneous requests for addresses fromdi�erent
hosts, thereby making its task less complex.

D. Robustness

Another characteristic of any address management
scheme is its robustness and ability to recover from fail-
ures. Two issues are of particular interest here16. One is
the e�ect of system failures on the blocking probability.
The other is the amount of disruption caused to sessions
that are in progress at the time the failure occurs.

As only an outline is provided in [3], details of error
recovery were not analyzed. If an end-node fails, new ad-
dress requests in the branch managed by that node would
be blocked. If any of the intermediate nodes or links in the
MGA hierarchy breaks down, nodes above and below will
not be able to exchange multicast addresses. If the nodes
below exhaust their addresses, new requests will have to be
rejected, thus increasing the blocking probability. Parent
nodes periodically send heartbeat requests to their children
to ensure connectivity, with addresses recalled if queries are
not answered. This would imply that if network links be-
tween a parent and some of its children|or the children
themselves|are down for a period of time, the parent will
reclaim all the addresses it had allocated to those end-
nodes, thereby disrupting all sessions in progress in that
branch.

If the MAM in SMAM goes down, none of the hosts resid-
ing in that particular (sub)network will be able to acquire
a multicast address and, again, all new requests will be
blocked. On the other hand, SMAM has recovery mecha-
nisms that allow sessions to continue uninterrupted if either
the MAM or the CC|but not both|fail.

In HeiMAP, failure of the address managing process at
a host will only a�ect users on that particular host, where
new requests will not be honored. The scheme also de-
scribes mechanisms to detect failure of a session creator
(which is the only entity which may release an address).
Periodic REFRESH messages are exchanged between the
creator and members for this purpose. If no message is re-
ceived from the creator, however, hosts are forced to leave,
leading to session disruption.

In DMAM, the failure of a MAM will prevent only the
particular host on which the MAM resides from acquiring
new addresses. Even this can be avoided since there is a
MAM on every host, and the user can potentially use a
MAM process on a di�erent host (if the MAM interface al-
lows, for example, remote procedure calls). DMAM is more
vulnerable to machine failures than SMAM, since both the
address management and session management entities re-
side on the same host (the same error recovery mechanisms
as those of SMAM apply in DMAM in case of process fail-
ures). Such a failure, however, will have less dramatic con-
sequences than it would in a more centralized scheme, as
it leads to loss of only those sessions that were initiated by
the failed host.

16Proper maintenance of multicast address status information to
prevent multiple allocations of the same address is, of course, a given
requirement.

E. Processing and Communications Overhead

MGA, HeiMAP, and SMAM all require the exchange of
periodic refresh messages between di�erent hosts. In MGA,
parent nodes in the hierarchy exchange such messages with
their children; in SMAM, such messages are exchanged be-
tween the MAM and the CCs; in HeiMAP, periodic RE-
FRESH messages are exchanged by the session creator and
all the other participants. These periodic messages have
the e�ect of generating added control tra�c, and process-
ing overhead at the hosts involved.
In addition, all three schemes generate control tra�c

during allocation and deallocation of multicast addresses.
MGA will generate control tra�c that might span several
networks, and even be propagated throughout the inter-
network. With SMAM, the control tra�c is con�ned to
the (sub)network, if the proxy mechanism is not used, but
otherwise will span to other networks as well. The control
tra�c generated is one of the main reasons why HeiMAP
cannot be scaled to an internetwork, as each RESERVE
and UNRESERVE request will have to be broadcast to all
hosts.
In terms of the control tra�c generated, the fully dis-

tributed scheme is clearly superior, as all address acqui-
sition and release is performed locally on the host. Fur-
thermore, no periodic keep-alive mechanism is required to
maintain information about the status of multicast ad-
dresses, with the side bene�t of less processing complexity.
The overhead added by the addition of the VPN-APN

mapping tables is very small. It will only be a problem if
the mapping tables become extremely large. It is doubtful,
however, that this may become a problem, since it is highly
unlikely that a host will be a member of more than a few
tens of multicast groups at the same time.

F. Summary of Performance Analysis

We present the summary of the evaluation of the four
consistent schemes in Table I. Note that for random allo-
cation address acquisition delay, blocking probability, and
complexity are all negligible, while robustness is very high.

VI. Non-IP Networks

The current Internet is dominated by the IPv4 (IP Ver-
sion 4) protocol suite, but due to its rapid and unpredicted
expansion, there has been a growing discussion on the need
to replace it with protocols that are better suited to to-
day's (and tomorrow's) needs. In this section, we examine
the DMAM scheme in the context of a number of poten-
tial replacements of IPv4, namely SIPP (IPv6) CATNIP
(IPv7) and TUBA (OSI CLNP). The discussion is neces-
sarily brief, and primarily focuses on the architectural level.
It must be noted that the multicast address manage-

ment and connection control protocols are independent of
how the multicast address space is partitioned: as long as
a number of addresses (regardless of whether the addresses
are hierarchical or not) are allocated for multicast com-
munication, then that address space can be partitioned in
any arbitrary way and assigned to individual network seg-

TABLE I

Performance Analysis Summary

MGA SMAM HeiMAP� DMAM

Blocking Probability low high highy negligible
Address acquisition delay high low/medium low (50ms) negligible
Address manager load high low/medium low very low
Robustness y high medium high
Complexity high medium medium low

y: Insu�cient information for evaluation
�: Augmented by SMAM-style address space partitioning

ments. No matter what is used as the basis for address
space partitioning, MAMs and CCs can be made respon-
sible to manage each partition. The only requirement for
the operation of the address management protocol is the
availability of datagram transmission and multicast rout-
ing capability. Accordingly, in the following we focus on
the address partitioning issues.

Our IP-based partitioning scheme has been coupled with
the overall partitioning scheme of the network layer, the
hierarchical nature of host addresses, and the use of port
numbers to distinguish among processes. The Simple In-
ternet Protocol Plus17 (SIPP) [7], which has been recom-
mended by the IETF as the basis for IPng (IPv6) [11],
extends the IP address size from 32 to 128 bits, supporting
even more levels of addressing hierarchy. As in IP, spe-
ci�c addresses are reserved for multicast communication
(1/256th of the new address space). Support for exten-
sions and options has improved, allowing greater exibility
for introducing new options. This would make the inclu-
sion of the port number in the options �eld more attractive.
Port numbers are still used by the higher level transport
protocols (TCP and UDP) to distinguish among applica-
tions. This structure enables the direct extension of our IP
partitioning scheme to SIPP.

Another proposed replacement for IP is TUBA (TCP
and UDP with Bigger Addresses) [12]. TUBA uses the
ISO Connectionless Network Protocol (CLNP, ISO 8473) at
the network layer, augmented with appropriate redesigns of
the TCP and UDP transport protocols. The protocols will
use the OSI Network Service Access Point (NSAP) address
format. NSAP addresses may have arbitrary lengths, but
are typically limited to 20 bytes. Current working drafts
propose a multicast address space as large as the unicast
address space by assigning a one-to-one mapping of AFI
(Authority and Format Identi�er) �elds between unicast
and multicast addresses [13]. This should alleviate further
the issue of blocking probability. Since TCP and UDP are
included in TUBA, port numbers can still be used as before;
in fact, since NSAPs are variable length, port numbers can
be directly included in the network layer address in the
DSP (Domain Speci�c Part) �eld.

17SIPP resulted from the merging of the Simple Internet Protocol
(SIP), \P" Internet Protocol (PIP), and IP Address Encapsulation
(IPAE) working groups of the IETF.

CATNIP (CommonArchitecture for Next-generation In-
ternet Protocol) [23] has evolved from the TUBA IPng
proposal and the TP/IX protocol, and its objective is to
provide common ground between the IP, IPX (from Nov-
ell Inc.) and ISO's CLNP. It will also use the NSAP ad-
dress format (albeit extended by a pre�x byte specifying
the length of the address), and hence the same exibility as
with TUBA exists. As an example, NSAP addresses allow
a direct encapsulation of IPv4 addresses. This is done by
assigning a speci�c Authority and Format Identi�er (AFI)
value for IPv4 addresses, and then having a 4-byte DSP
which is the 4-byte IPv4 address. Since there is a one-to-
one mapping between unicast and multicast AFIs, we can
easily specify a corresponding AFI for IPv4 multicast ad-
dresses, in which the format of the address speci�ed in the
DSP part will be 6-bytes (i.e. includes the port number).

VII. Concluding Remarks

We described a distributed architecture for managing
multicast addresses in the global Internet. Our approach
consists of an address partitioning scheme based on the uni-
cast host address, a multicast address management entity
per host, and separate processes for session management.
By noting that port numbers are an integral part of end-
to-end multicast addressing, the multicast address space
was e�ectively expanded to include the port number. This
in turn allowed us to present a single solution to the two
problems of dynamic multicast address management and
port resolution.

We then presented a framework for evaluating multicast
address management schemes, and used it to compare our
design with three other proposed ones. The criteria used
were the blocking probability for address requests, consis-
tency, address acquisition delay, the load on address man-
agement entities, robustness against failures, and process-
ing and communications overhead.

Among the consistent schemes, the fully distributed one
reduced the blocking probability by several orders of mag-
nitude, to insigni�cant levels. At the same time, address
acquisition delay is reduced to a minimumby servicing the
request within the host itself. It was also shown that the
scheme generated much less control tra�c, was more ro-
bust against failures, and put much less load on address
management entities. Random allocation was shown to be

attractive due to its simplicity, although several drawbacks
were identi�ed. These include non-consistency and its re-
sultant tra�c duplication with non-negligible probability,
implications on session privacy, as well as lack of any con-
trol mechanisms in case usage becomes high (in which case
the collision probability increases rapidly).
The DMAM design can be implemented with simple

modi�cations to the transport layer and multicast routing
software, although their incorporation is far from trivial as
they a�ect a large number of hosts. A side bene�t is that
part of the IP address space can be freed up and provide
temporary relief for the address space exhaustion problem.

References

[1] Xpress Transfer Protocol Version 3.6. Technical report, XTP
Forum, Santa Barbara, CA, 1992.

[2] S. Armstrong, A. Freier, and K. Marzullo. Multicast Transport
Protocol. RFC 1301, February 1992.

[3] R. Braudes and S. Zabele. Requirements forMulticast Protocols.
RFC 1458, TASC, Reading, MA, May 1993.

[4] Cisco Systems. Router Products Con�guration and Reference,
Vol. II, Section 13, software release 9.1 edition, September 1992.

[5] D. Comer. Internetworking with TCP/IP. Prentice Hall, Engle-
wood Cli�s, NJ, 1991.

[6] S. Deering. Host Extensions for IP Multicasting. RFC 1112,
Stanford University, 1989.

[7] S. Deering. Simple Internet Protocol Plus (SIPP) Speci�cation
(128-bit address version). Working Group Draft, IETF, July
1994.

[8] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and
L. Wei. Protocol Independent multicast (PIM): Motivation and
Architecture. Working Group Draft, IETF, March 1994.

[9] S. Deering, C. Partridge, and D. Waitzman. Distance Vector
Multicast Routing Protocol. RFC 1075, November 1988.

[10] A. Eleftheriadis, S. Pejhan, and D. Anastassiou. Multicast
Group Address Management and Connection Control for Multi-
Party Applications. Technical Report CU/CTR/TR 351-93-31,
Center for Telecommunications Research, Columbia University,
November 1993.

[11] R. M. Hinden. IP Next Generation Overview. Working Group
Draft, IETF, October 1994.

[12] D. Katz and P. Ford. TUBA: Replacing IP with CLNP. IEEE
Network Magazine, pages 38{47, May 1993.

[13] D. Marlow. Host Group Extensions for CLNP Multicasting.
Working Group Draft, IETF, May 1994.

[14] J. Moy. Multicast Extensions to OSPF. RFC 1584, March 1994.
[15] J. Postel. Internet Protocol. RFC 791, USC/Information Sci-

ences Institute, September 1981.
[16] Y. Rekhter and T. Li. An Architecture for IP Address Allocation

with CIDR. RFC 1518, September 1993.
[17] J. Reynolds and J. Postel. Assigned numbers. RFC1340, ISI,

July 1992.
[18] P. Robinson. Suggestions for New Classes of IP Addresses. RFC

1375, Tansin A. Darcos & Co., October 1992.
[19] Henning Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.

RTP: A Transport Protocol for Real-Time Applications. Work-
ing Group Draft, IETF AVT, July 1994.

[20] Mischa Schwartz. Telecommunication Networks: Protocols,
Modeling and Analysis. Addison-Wesley, Reading, MA, 1987.

[21] C. Topolcic. Experimental Internet Stream Protocol: Version 2
(ST-II). RFC1190, October 1990.

[22] B. Twachtmann and R. G. Hertwich. Multicast in the Heidelberg
Transport System. Technical Report 43.9206, IBM European
Networking Center, Heidelberg, 1993.

[23] R. Ullman. CATNIP Common Architecture for Next-generation
Internet Protocol. Working Group Draft, IETF, March 1994.

