
Abstract

Envisioned advanced multimedia video services include both
rectangular and arbitrarily-shaped image segments. Image seg-
ments of the TV weather reporter produced by the chromo-key
technique and image segments produced by video segmentation
or image editing are typical examples. In this paper, we investi-
gate efficient transform coding techniques of arbitrarily-shaped
image segments. We formulate the optimal representation prob-
lem in two different domains — the full rectangular domain and
the shape-projected domain. In the former, we still use the tradi-
tional rectangular transform coding method (e.g. DCT) but try to
find optimal pixel values outside the segment boundary in order
to make the transform spectrum as compact as possible. A simple
but efficient mirror-image extension technique is proposed. In
the shape-projected domain, we project the image segment and
all basis functions into the subspace spanned over the image
region only. Existing coding algorithms, such as orthogonal
transform by Gilge [1] and iterative coding by Kaup and Aach
[2], can be intuitively interpreted. To demonstrate the flexibility
of the proposed formulation, we also derive a new KLT-like algo-
rithm in the shape-projected domain. We analyze tradeoff
between compression performance, computational complexity,
and codec complexity for different coding schemes. Simulation
results show that complicated algorithms (e.g. iterative, adaptive)
can improve the quality by about 5-10 dB at some computational
or hardware cost. On the other hand, the proposed simple mirror-
image extension technique improves the quality by about 3-4 dB
without any overheads. The contributions of this paper lie in effi-
cient problem formulation, new transform coding techniques,
and numerical tradeoff analyses. Currently, we are implementing
a software program for AS image object editing and manipula-
tion.

Keywords: transform coding, arbitrarily-shaped image seg-
ments, object-oriented video coding, structured video.

1.  Introduction

In envisioned advanced multimedia video services, dis-
played video objects can in general be rectangular (e.g. window
graphic interface) or arbitrarily-shaped (AS) (e.g. chroma-keyed
TV weather reporter) [3,4]. In multimedia editing systems, users

can create arbitrarily-shaped video objects manually or by seg-
mentation algorithms. Users can then manipulate each individual
video object or composite multiple video objects together. In the
so-called object-oriented video coding algorithms, AS video
objects are segmented and transmitted separately [5,6]. Separate
video objects are composited together at the receiver to reconstruct
the original video signal. Figure 1 illustrates a block diagram for
the AS video object editing system we are currently prototyping.
After AS video objects are extracted, we need to encode their
shape and contents, perform anti-aliasing along the boundary to
make them smooth, and then we can manipulate the AS video
objects as desired.

A complete representation of AS video objects includes
two parts — shape and internal contents. The former represents
the boundary information of the object; the latter represents the
internal color intensity variation. Both these two components are
required for general manipulation of AS video objects, such as
overlap, translation, and scaling. In this paper, we focus on design-
ing efficient representation of the image contents to achieve good
compression and image quality. In particular, we look at block-
wise transform coding of the image contents, such as the widely
used Discrete Cosine Transform (DCT) [5,6,7,8]. One immediate
advantage of using the transform code is that existing codec hard-
wares can be used to process AS video signals, as well as tradi-
tional rectangular video signals.

In block-wise transform coding algorithms, images are
separated into small blocks with fixed size, say N pixels by N pix-
els. Figure 2 shows an example AS video object (miss USA) and
illustrates the concept of block structure. In internal blocks, all
pixel values are fully defined. The traditional DCT algorithm can
be used to encode these blocks efficiently. However, for the
boundary blocks, only part of the pixel values are defined. One
straightforward approach is to fill zero values outside the boundary
and treat the image block as traditional image blocks. But an obvi-
ous drawback of this approach is significant increase of the high-
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FIGURE 1. An experiment system for manipulating/
compositing arbitrarily-shaped video objects.
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order transform coefficients and thus potential serious degrada-
tion of the compression performance.

In this paper, we investigate two classes of transform
coding techniques — brute-force full-block transform and shape-
adaptive transform. The former explores innovative ways of fill-
ing the redundant data outside the boundary in the boundary
blocks and then take the traditional full-block DCT. The latter
changes the transform basis functions adaptively, based on the
shape of the input block. The iterative approximation method
proposed by Kaup and Aach [2] and the adaptive orthogonal
transform proposed by Gilge et al. [1] both belong to this class of
techniques. We will propose the shape-projected domain as an
efficient problem formulation, based on which we can easily
interpret adaptive transform bases. We will also derive a new
KLT-like transform bases to demonstrate the flexibility of our
proposed formulation.

Afterwards, we will compare the performance of differ-
ent transform coding techniques and illustrate the tradeoff rela-
tion between the compression performance, computational
complexity, and codec complexity. The contributions of this
paper lie in an efficient problem formulation, new transform cod-
ing techniques, and numerical tradeoff analyses.

2.  Approach I: Brute-Force Full-Block
Transform

As mentioned earlier, image segments are separated
into small blocks, e.g. N pixels by N pixels each. For AS image
segments, boundary blocks usually have part of the pixel values
defined only. Let P(x,y) represent the pixel values within a N
pixel × N pixel block area, called R. Let B represent the occupied
region within the block, as shown in figure 3. An irregular
shaped image segment has P(x,y) defined within region B only.
The brute-force full-block transform coding technique fills up

FIGURE 2. An example AS image segment and the grid
lines which separate the image into small blocks.
Boundary blocks have part of pixel values defined only.
The block structure is for demonstrative purpose and is
not of accurate scale.

the redundant area outside the boundary and then utilize the tradi-
tional block-wise transform coding.

Once the image data, P(x,y), is extended to the full
block, we can use traditional block-wise transform coding to rep-
resent the block as follows,

, x,y in R (EQ 1)

where fi’s are basis functions defined on the full-block area, R.
Namely, P(x,y) is transformed to coefficients ai, which can be
used to reconstruct the original signal completely or partially. The
objective is to use as least coefficients as possible to obtain an
accurate reconstruction, . The resulting error term can
be defined as

, x, y in B (EQ 2)

Note the summation is executed over the occupied region, B,
only, because error terms outside the boundary will be discarded
when we apply the shape information at the receiver.

If we fix the choice of basis functions, e.g. use N×N
DCT basis functions, the objective can be interpreted as finding
the optimal P(x,y) values outside region B so that the transform
coefficients, ai, present highest energy compaction. The concept
is illustrated in figure 2. However, it is difficult to quantitatively
formulate the abstract property — “energy compaction”. An
example discussed in [2] is to use the entropy definition

(EQ 3)

to emulate the energy compactness of the transform spectrum.
But the problem with this definition is that the final choice usually
will end up with few large spectrum components which may
cause overflow problems, though the spectrum “entropy” is low.
Furthermore, optimization with respect to the above objective
function is difficult.

But, the approach to filling the region outside the bound-
ary with optimal redundant data does provide a freedom for us to
optimize the transform spectrum. The simplest method to aug-
ment a partially defined image segment into a full block image is
by stuffing zero’s outside the image boundary. But it is well
known this method may introduce sharp edges on the boundary
and high-frequency components in the transform spectrum. A
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FIGURE 3. Find the optimal pixel values outside the
boundary of image segment P, so that the transform
spectrum has the most compact energy spectrum.
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more promising method is to extend the image segment with its
“mirror image” outside the boundary. Figure 4 shows a simple
example in one dimension. In general, the support of the original
image sequence is not exactly one half of the block size, we may
need to duplicate the image sequence several times and truncate
it at the block boundary. For a 2D image segment, we can apply
this 1D mirror image extension technique in one direction first,
and then once again in another direction.

This mirror-image extension technique is simple but
efficient. Its compression performance will be described in sec-
tion 4. Actually, there are other techniques which can be applied
to extrapolate the image segment and fill up the whole image
block [11,12]. We are currently investigating their effectiveness.

3.  Approach II: Shape Adaptive Transform

As described in equation 2, the only concerned errors
are reconstruction errors within the image boundary, i.e. errors
within the covered region B. An equivalent but maybe more effi-
cient approach to finding optimal representation of AS image
segments is to perform the optimization in the subspace defined
over region B only, denoted by SB. Basically, we project the AS
image block and the transform bases into the subspace SB and
find the optimal representation there. The redundant pixel values
and their associated errors outside the boundary can thus be auto-
matically ignored. But since the subspace varies with the image
shape, the optimal transform bases for different image shapes
may also vary. This is the reason why we call this approach
shape-adaptive.
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FIGURE 4. Fill the outside redundant region with the
mirror image of the internal contents. (a) original segment.
(b)the segment size equals one half of the block size.
(c)apply the mirror image recursively when the segment
size is not one half of the block size.

3.1  Shape-Projected Subdomain
Instead of filling data outside the image boundary and

applying the full-block rectangular transform, we can focus on the
defined image contents only, i.e. P(x,y) values within region B.
Mathematically, let’s define SR as the linear space spanned over
the whole square block R, SB as the subspace spanned over the
irregular region B only. For example, in figure 5, space SR has a
dimension equal to 16, while the dimension of subspace SB
equals to 4 only. One possible bases for subspace SB is shown in
figure 5(b). Each basis matrix has a single non-zero element only.

Every arbitrarily-shaped image segment, P(x,y), can be
considered as a vector in SB. To represent this vector completely,
we can find a set of independent vectors, say bi, in SB and
describe P(x,y) as a linear combination of bi’s. The distinction
between this approach and that in the previous section is that the
whole problem domain now is confined in the subspace SB only.
We don’t have to worry about the redundant data outside the
image boundary, i.e. vector component outside subspace SB. If we
still want to use traditional block-based transform bases, say fi
(e.g. DCT bases), we can project these basis functions into sub-
space SB,

(EQ 4)

and describe vector P(x,y) as a linear combination of ’s. Actu-
ally, the above projection is very simple. It just removes the com-
ponents of fi outside subspace SB.1 Figure 6 illustrates a simple
example when the dimension of SB equals 2

An important issue remains now is how to find optimal
basis functions in subspace SB such that we can use the least num-
ber of coefficients to reconstruct the image segment vector with
satisfactory errors. The above formulation does provide a very
flexible platform to derive new transform bases and evaluate their
performance. We will describe some existing approaches and our
new proposal in the following subsections.

1.  Another interpretation of projection is to force all those com-
ponent values of fi outside SB to be zero.
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FIGURE 5. (a)An irregular-shape image segment in a
4×4 block area. A canonical bases of the subspace is
shown in (b).
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3.2  Successive Approximation with
Fixed Bases in the Full-Block Domain

Using the existing full-block 2D DCT bases to represent
the arbitrarily-shaped image segments is still very attractive
since existing decoders for rectangular images can be used with-
out any modifications. But as described earlier, the shape-pro-
jected DCT bases, { }, are generally not orthogonal and
mutually dependent. There are more than one solutions for equa-
tion 1 if we use { } as the representation bases. Instead of find-
ing a fully accurate representation, Kaup and Aach [2] proposed
a successive approximation method to calculate the most signifi-
cant coefficients only. In this section, we first briefly review
Kaup and Aach’s approach based on our shape-projected subdo-
main formulation. Then, we apply this technique to constant-rate
and constant-quality compression. Some subtle issues imposed
by quantization of transform coefficients are also addressed.

3.2.1  Perfect Reconstruction vs. Non-Perfect
Reconstruction

If a linear representation can reconstruct the original
function without any errors, we call it a perfect-reconstruction
(PR) representation. Otherwise, it’s called a non-perfect-recon-
struction (non-PR) representation. If the rank of the representa-
tion bases is less than the dimension of the image segment
vector, then the PR property cannot be guaranteed. As mentioned
earlier, the shape-projected DCT bases { } form a dependent
but complete set of vectors in the shape-projected subspace. We
should be able to choose m independent bases out of projected
DCT bases to achieve PR, where m is the rank of the shape-pro-
jected subspace. But the issue is which bases can produce the
best energy compaction.

Kaup and Aach used an successive approximation algo-
rithm to project the image vector to each basis function itera-
tively and choose the basis with the largest projection during
each iteration, i.e.,

Project(r(n), ) = (EQ 5)

r(n+1) = r(n) - Project(r(n) , ) (EQ 6)

fi
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FIGURE 6. Project the image segment and all
representation bases into the subspace spanned over the
image shape region only.
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where r is the residual error during each iteration. Note the same
basis function could be chosen repetitively since { } are not
orthogonal. A more important point is that the number of trans-
form coefficients may exceed m (i.e. the image segment size)
without achieving the PR property.

One way to guarantee PR in the above iterative algo-
rithm is to accumulate the chosen bases in each iteration and
project the image segment to the whole set of chosen bases, not
only a single basis function. Namely, the following operations are
performed during each iteration.

Di(n) = Union(Dopt(n-1) , ) (EQ 7)

Project(r0, Dopt(n)) = (EQ 8)

r(n+1) = r0 - Project(r0, Dopt(n)) (EQ 9)

where Dopt(n) is the set of chosen basis functions up to the current
iteration. During each iteration, we keep previously chosen set of
bases from last iteration and add an additional basis to minimize
the residual error (i.e. maximizing the projection). The rank of the
representation bases is incremented by one in each iteration.
Note, during each iteration, we need to project the image segment
vector to every possible set of bases, each of which requires solv-
ing a complete linear equation system. This computation over-
head is quite significant.

Another interpretation of the above PR iterative approxi-
mation algorithm is that during each iteration we not only add a
new basis, but also make the remaining unchosen basis functions
and the residual error orthogonal to the chosen set of bases by
projection, i.e.,

 ,

for all (EQ 10)

r(n+1) = r(n) - Project(r(n) , ) (EQ 11)

where  is the new basis added to the chosen set in itera-
tion n. Essentially, we reduce the dimension of the residual error
and remaining basis functions one by one successively. During
each iteration, since all remaining unchosen bases are orthogonal
to the chosen set, Dopt, the newly added optimal basis is simply
the one with the largest projection of the residual vector. The
complex process of iteratively solving a complete linear equation
system in equation 8 is avoided.

This approximation algorithm can guarantee the PR
property after m steps, since only independent bases are chosen.
Also, the prediction error decreases faster than the above non-PR
approximation method at some cost of computational overhead.

3.2.2  Constant Rate vs. Constant Quality

The above successive approximation algorithm increases
the number of coefficients and thus reduces the residual error suc-
cessively. As discussed, the residual error will always decrease to
zero after m steps for the PR approximation, but not for the non-
PR approximation. In practice, the number of coefficients used is
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determined by the available output transmission capacity of the
encoder, the acceptable reconstructed image quality, and the
affordable processing power of the hardwares. Rate control can
be easily done by limiting the number of coefficients required.
Quality control can be done by measuring the final residual
energy. And computational complexity depends on the number
of iterations performed. These controls will be further compli-
cated by quantization of the transform coefficients, which will be
discussed in the following.

3.2.3  Quantization

Transform coefficients are usually further quantized to
increase the compression rate. Small coefficients may be trun-
cated to zero after quantization. Thus, after quantization, the
direct proportionality between the recovered image quality and
the number of iterations may become invalid. The reason is two-
fold. First, small coefficients obtained in later iterations are trun-
cated to zero and thus will not increase the recovered image
quality level. Second, existing coefficients maybe changed when
new coefficients are added (particularly for the PR approxima-
tion technique). These changes may cause the quantized approx-
imation more distant from the perfect representation and thus
increase the prediction error. Figure 7 shows the peak signal-to-
noise ratio (PSNR) of a simple image segment when the succes-
sive approximation proceeds. The PSNR after quantization
begins to drop after 4 iterations. One way to avoid this problem
is to integrate the quantization into the optimization process,
namely change equation 8 to the following

Project(r0, Dopt(n)) =

(EQ 12)

In other words, we choose the bases with the largest projection
after quantization. This definitely will increase the computa-
tional complexity, but the recovered image quality, as shown in
figure 7, becomes non-decreasing and generally higher than that
obtained from the original approach. Another simple way to
avoid this quality decline due to over-iteration is to stop iteration
when quality after quantization begins to drop or already reach a
preset quality goal.
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FIGURE 7. A simple image segment and its PSNR in each
iteration of the PR successive approximation coding
algorithm. The original method finds the minimal residual
error before quantization, while the integrated method
finds the minimal residual errors after quantization. We
use uniform quantization here.

3.3  Adaptive Transform Bases
Intuitively, the spatial statistics of an AS image segment

will vary with its irregular shape, thus will require different opti-
mal transform bases. For example, a single image line may prefer
a 1D DCT bases, while a square image block may prefer a 2D
DCT bases. In this section, we describe the approach which uses
adaptive transform bases based on the shape information of the
input image segment. As shown in figure 8, the shape information
is also available at the receiver and thus correct transform bases
can be used to reconstruct the original image signal.

3.3.1  Orthogonal Transform

The computations for finding the coefficients in the lin-
ear representation of equation 1 can be greatly simplified if the
basis functions form an orthogonal set, in which case the coeffi-
cients can be obtained by simple projection. If the basis functions
are not orthogonal to each other, then we need to solve a complete
linear equation system. Also, using orthogonal basis functions
usually implies good energy decoupling in the transform spec-
trum.

One easy way to construct an orthogonal transform bases
is to reshape the arbitrarily-shaped image segment into a 1D array
and apply the 1D DCT bases. DCT is known to be close to the
optimal Karhunen-Loeve Transform (KLT) if the image contents
has high spatial correlation. But except the single-line image,
most arbitrarily-shaped image segments usually do not have exact
1D spatial correlations. Furthermore, the dimension of the 1D
DCT bases changes with the image segment size. This will also
make the codec design complex.

Another way to construct orthogonal basis functions in
the subspace SB is to use the Schmidt algorithm, as proposed in
[1]. The Schmidt algorithm can extract an orthogonal subset of
functions out of a larger set of arbitrary functions. One possible
initial seed set of functions for the Schmidt algorithm is the tradi-
tional 2D DCT bases. Suppose the dimension of the full block is n
and the dimension of subspace SB is m (m<=n). Let di represent
the original DCT bases, and ’s represent their projected ver-
sion in the subspace SB. It is easy to show that rank({di})=n,
rank({ })=m, and { } are mutually dependent if m<n. Actu-
ally, in the Schmidt algorithm, we still have a great flexibility in
choosing different orthogonal subset from a larger set of func-

FIGURE 8. Use the shape information to assist in choosing
the optimal transform bases. The shape information is also
available at the receiver and thus correct transform bases
can be used to reconstruct the original image.
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tions. In later simulations, we start from the DCT bases with the
smallest zonal order. The final choice of orthogonal bases will
depend on the input image shape.

3.3.2  KLT-Like Transform

The KLT can be shown to be the best transform algo-
rithm for the rectangular image segments if the spatial statistics
of the input images are known. The DCT can be derived from the
KLT if the image assumes a first-order Markovian model with
high spatial correlation [11]. We propose a new transform bases
based on the above implication. Using the same assumption of a
first-order Markovian model, we can find the variance-covari-
ance matrix for an arbitrarily-shaped image segment. For exam-
ple, if the image segment has m pixels, then we can rearrange the
image segment, P(x,y), to a 1D array of m elements, and define a
m×m variance-covariance matrix, C, with

Cij= (λ1)|k-l| ⋅ (λ2)|p-q| (EQ 13)

where λ1 and λ2 are correlation coefficients in x and y direction,
P(k,p) is the i-th element in the 1D array, and P(l,q) is the j-th
element in the 1D array. Figure 9 shows an example of a 4-pixel
segment in a 4×4 image block. For simplicity, we assume that λ1
equals λ2 in later simulations.

Using a technique similar to that for deriving DCT from
KLT, we can set the correlation coefficients λ1 (λ2) to a value
close to unity (e.g. 0.9) and find the eigenvectors of the above
variance-covariance matrix, C. We can prove that these eigen-
vectors form an orthogonal bases in the subspace, SB, as long as
λ1 and λ2 are less than 1. Hopefully, these KLT-like transform
bases can encode AS image segments as well as the DCT bases
do to the traditional rectangular image blocks. We will show the
compression performance of this technique in the next section.

4.  Performance Comparison

In this section, we use the irregular shaped image seg-
ment shown in figure 2 (miss USA) as a test case to simulate the
performance of various transform coding schemes described in
this paper. Only the boundary blocks (8 pixels × 8 pixels each)
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FIGURE 9. (a)Reshape the image segment into a
1D array and (b)construct its variance-covariance
matrix based on the 1st-order Markovian model.

with irregular shape are used. As discussed in section 2, it’s very
difficult to have a quantitative measure of energy compactness of
a transform spectrum. Here, we use a uniform quantizer with var-
ious quantization steps to approximate the distortion/rate curve of
each transform scheme. The distortion is measured by the peak
signal-to-noise ratio (PSNR) of the recovered image. The rate is
represented by the compression ratio, i.e. the number of pixels
inside the image segment divided by the number of non-zero
transform coefficients after quantization. The results are shown in
figure 10.

There are basically three different groups of coding
schemes in figure 10. Algorithms in the first group use adaptive
transform bases. They include 1D DCT (section 3.3.1), the pro-
posed KLT-like transform bases (section 3.3.2), and DCT-based
orthogonal transform bases proposed by Gilge et al. (section
3.3.1). These algorithms change the transform bases when the
image segment shape changes. They are orthogonal and complete
set in the shape-projected subspace SB. Therefore, perfect recon-
struction property is assured if without quantization. At the
decoders, the adaptive transform bases can be recalculated in the
real time, or pre-calculated and stored in the memory in advance.
However, the required memory size could be large due to the
large variety of possible shapes.

The second group of algorithms are modified versions of
successive approximation proposed by Kaup and Aach [2]. As
discussed in section 3.2.2, the iteration process can be based on
the output quality or rate constraints. For example, the quality-
based scheme may iterate until the PSNR reaches 50 dB. The
rate-based scheme may iterate until the number of transform coef-
ficients exceeds 25% of the segment size. In average, for the same
performance level, the quality-based schemes need fewer itera-
tions than the rate-based schemes. The reason is because that the
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FIGURE 10. Rate/Distortion curves for various transform
coding schemes for the image segment shown in figure 2
by using uniform quantizers. (Kaup_snr represents the
Kaup & Aach’s successive algorithm which iterates until
the PSNR before quantization exceeds 50 dB.)
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a. orthogonal with respect to the shape-projected subspace

Table 1: Characteristics of several transform coding algorithms for arbitrarily-shaped image segments.

Transform Bases iterative computations
Perfect Reconstruction

(PR)
Compression Gain cp. to

zero-stuffing

Orthogonal_DCT adaptive, orthogonala Yes 6-12 dB

KLT-like adaptive, orthogonal Yes 5-10 dB

1D DCT adaptive, orthogonal Yes 2.7-7 dB

Kaup & Aach’s iterative
method

static Yes (20 iterations for the R/
D curve of fig. 10)

Possible 5-10 dB

Mirror-image extension static, orthogonal Yes 2.7-4 dB

Zero-stuffing static, orthogonal Yes —

quality-based schemes can adapt to the local activity of each
individual image block and spend more computations in busy
image blocks than flat ones. The overhead of this successive
approximation algorithm is in the encoders only. Existing decod-
ers can be used to reconstruct the image segment without any
modifications. Note, this group of algorithms can achieve perfect
reconstruction (PR) at some cost of extra computations, as dis-
cussed in section 3.2.1. The PR iterative scheme usually has a
slightly higher quality than the non-PR iterative schemes at the
same compression rate.

The third group of coding algorithms directly extend the
image segments into full image blocks and apply the traditional
2D DCT algorithm. Two results are shown in figure 10 — zero-
stuffing and mirror-image extension proposed in section 2. After
augmentation, the image segments are treated as the regular rect-
angular image blocks. No overheads are introduced and the per-
fect reconstruction is assured.

From the R/D curves shown in figure 10, we can see
that adaptive-basis schemes (the 1st group) and iterative schemes
(the 2nd group) outperform the most straightforward scheme (i.e.
zero-stuffing) by a quality gap of 5-10 dB. The only exception is
the 1D DCT, which suffers a lower performance (about 3-4 dB
difference) at high compression rates compared to other compli-
cated schemes. This is quite reasonable since an arbitrarily-
shaped 2D image segment usually does not have spatial correla-
tions similar to those found in 1D image sequence.

In order to avoid severe computational overhead, we
use the non-PR iterative scheme in our simulations. But a large
number of iteration (20 iterations in average) is still required for
the iterative method to achieve the performance shown in figure
10. However, during each iteration, the residual vector needs to
be projected to 64 possible basis vectors. The computation over-
head is still quite significant.

A satisfactory performance is observed for the proposed
mirror-image extension method. It can achieve a 3-4 dB com-
pression gain compared to the zero-stuffing method without any
significant overheads.

Table 1 lists some major characteristics and compres-
sion performance of these coding algorithms. This comparison
should be very useful for system-level designs. If the processing
resources are abundant, fancy algorithms like adaptive or itera-
tive methods can be used to improve the reconstructed image
quality. Otherwise, we can use simple mirror-image extension
technique to achieve a fairly good image quality. In addition,
both adaptive and iterative algorithms need to change the codec

hardwares, but the mirror-image extension technique is compati-
ble with existing hardwares.

5.0  Conclusions and Future
Works

Arbitrarily-shaped (AS) image segments will become
more and more popular in the future advanced video applications.
In this paper, we investigate efficient transform coding schemes
for AS image segments. We formulate the problem in two differ-
ent domains — the straightforward full block rectangular domain
and the shape-projected subdomain. In the former, we still use the
traditional rectangular transform coding method but try to find
optimal pixel values outside the segment boundary in order to
make the transform spectrum as compact as possible. We propose
a simple but efficient mirror-image extension technique to extend
the irregular image segments into a full block image. In the latter,
we project the image segment and all basis functions into the sub-
space spanned over the image segment only. Existing coding
algorithms such as the adaptive orthogonal technique proposed by
Gilge and iterative method proposed by Kaup and Aach can be
easily interpreted by using this flexible formulation. We also pro-
pose a new transform bases based on the implication of optimal
KLT transform.

Another focus of this paper is to analyze and compare
the compression performance of different coding methods. In par-
ticular, we investigate the tradeoff between computational com-
plexity, codec complexity, and recovered image quality for
different coding methods. Using the image segment shown in fig-
ure 2 as a test case, we found that fancy algorithms like iterative
algorithms or adaptive algorithms have a quality gain of about 5-
10 dB (compared to the zero-stuffing technique) at some cost of
extra computations or memory. Our proposed mirror-image
extension method achieves a 3-4 dB gain compared to the zero-
stuffing technique without any significant overheads. These anal-
yses of performance and tradeoffs are useful for system-level
designs to choose appropriate coding schemes.

As mentioned earlier, the shape information is necessary
for AS image object manipulation. It needs to be encoded and
transmitted separately from the image contents. Currently, we are
also studying efficient techniques to represent the irregular shapes
with a joint consideration of the anti-aliasing operation (as shown
in figure 1). Our goal is to design a software to support creation,
compression, and manipulation (like scaling, translation and rota-



tion) of AS image objects. The envisioned application is desktop
multimedia editing.
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