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Abstract

We formulate a practical yet challenging problem: General
Partial Label Learning (GPLL). Compared to the traditional
Partial Label Learning (PLL) problem, GPLL relaxes the su-
pervision assumption from instance-level — a label set par-
tially labels an instance — to group-level: 1) a label set par-
tially labels a group of instances, where the within-group
instance-label link annotations are missing, and 2) cross-
group links are allowed — instances in a group may be par-
tially linked to the label set from another group. Such ambigu-
ous group-level supervision is more practical in real-world
scenarios as additional annotation on the instance-level is no
longer required, e.g., face-naming in videos where the group
consists of faces in a frame, labeled by a name set in the cor-
responding caption. In this paper, we propose a novel graph
convolutional network (GCN) called Dual Bipartite Graph
Autoencoder (DB-GAE) to tackle the label ambiguity chal-
lenge of GPLL. First, we exploit the cross-group correlations
to represent the instance groups as dual bipartite graphs:
within-group and cross-group, which reciprocally comple-
ments each other to resolve the linking ambiguities. Second,
we design a GCN autoencoder to encode and decode them,
where the decodings are considered as the refined results. It
is worth noting that DB-GAE is self-supervised and trans-
ductive, as it only uses the group-level supervision without a
separate offline training stage. Extensive experiments on two
real-world datasets demonstrate that DB-GAE significantly
outperforms the best baseline over absolute 0.159 F1-score
and 24.8% accuracy. We further offer analysis on various lev-
els of label ambiguities.

Introduction
Labels are not always clean, complete, and unequivo-
cal. As illustrated in Figure 1 (top), given a training in-
stance , it corresponds to a candidate label set
[ , ] where only one of them is correct. Learn-
ing from such ambiguous labels is known as Partial Label
Learning (PLL) (Cour, Sapp, and Taskar 2011), which is a
practical problem since it significantly reduces the human
label effort compared to other one-to-one supervisions.

However, the assumption of PLL is still hardly feasible
in large-scale scenarios: if we have millions of frames in
videos or Web images, the instance-level label annotation
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Figure 1: Top: Traditional PLL problem — each face is as-
sociated with one of the names in the caption. Bottom: The
proposed GPLL problem addressed in this paper — there
are general cases of faces without names or names without
faces. See Figure 2 for illustrative formulation differences.
Images are from MPII-MD (Rohrbach et al. 2017) and M-
VAD (Pini et al. 2019)

of PLL will be prohibitively expensive. Figure 1 (bottom)
shows several examples of the relaxation from instance-level
to group-level: a group of instances
and the candidate label set [ , ]. Compared to
the tradition PLL, this is more complex and ambiguous: 1)
within-group annotations are dropped, 2) cross-group links
are allowed — appears in the candidate label set
of another group [ ], and 3) there are some instances

with null label that is not in any label set. Such re-
laxed supervision is more appealing since it requires NO ex-
tra annotation on the instance-level. To this end, we propose
a novel problem: General Partial Label Learning (GPLL),
whose training annotation only comes from the inherent data
pair (Figure 1 bottom), and thus is very challenging. Figure 2
illustrates some related problems with progressively relaxed
supervisions.

A straightforward approach to GPLL is to consider some
within-/cross-group heuristics such as : 1) Instances with
similar features across groups likely belong
to the same label. 2) Similar instances co-
occur with the same label across groups implies
that the label is likely assigned to those instances. 3) An in-
stance cannot belong to multi-labels → ,



Figure 2: From (a) to (d), on the evolution of relaxing the supervision but bringing in more label ambiguity challenges. (a)
Multi-Label (Huang, Gao, and Zhou 2018): each instance is labeled with more than one labels. (b) Multi-Instance (Wu et
al. 2015): at least one instance in a group belongs to the label. (c) Partial-Label (Feng and An 2019): a candidate label set
partially labels an instance, only one of them is correct. Note that the label set may vary from instance to instance. So far, the
supervision is on instance-level. (d) General Partial Label Learning (our focus): group-level supervision. Instances or labels
(blue or green shaded) may link to another group; there are also null instances and labels (grey shaded) with no links at all.

→ , and distinct instances
cannot be the same label within a group. However,
these heuristics are too weak to address the extreme ambi-
guity. In fact, as we will show in Ablation Study, modeling
such heuristics to construct the initial links only achieves
62.9% accuracy.

We believe that the key to solve GPLL is how to exploit
the aforementioned cross-group correlations unsupervisedly
to construct initial links and then refine them with stronger
group contextual representations. To this end, we propose
a novel graph convolutional network, called Dual Bipartite
Graph Autoencoder (DB-GAE). As its name implies, DB-
GAE explicitly learns richer within-group and cross-group
representations which serve as a reciprocal complement to
each other. The within-group representation resolves the am-
biguity in a group, and the cross-group one renders addi-
tional global group context for further disambiguation. In
particular, we first represent the initial links as the proposed
within-group and cross-group bipartite graphs, and then use
GCN (Berg, Kipf, and Welling 2017) to encode and decode
them to refine the dual links to obtain the results, where the
reconstruction loss is only referenced to the within-group
graph input as this is the only supervision we have in GPLL.
Therefore, it is worth noting that DB-GAE is self-supervised
and transductive, which is appealing as it requires NO addi-
tional training data and an offline training stage.

We compare the proposed DB-GAE to other baselines on
both GPLL and PLL benchmarks. Our method outperforms
the best baseline with absolute 0.158 F1-score and 24.7%
accuracy. We also analyze the model performances on the
varying levels of label ambiguity. The contributions are sum-
marized as follows:

• We introduce the new learning problem of GPLL, which
generalizes the existing PLL formulation to more realis-
tic, challenging, and ambiguous annotation scenarios.

• We propose a novel graph neural networks called DB-
GAE, which aims to disambiguate and predict instance-
label links within and across groups.

• We set up a new benchmark for the proposed GPLL task.
Experiments demonstrate that DB-GAE significantly out-
performs over strong baselines.

Related Work
Partial Label Learning (PLL) (Nguyen and Caruana 2008;
Cour, Sapp, and Taskar 2011; Xie and Huang 2018) also
called superset label learning (Gong et al. 2017) had been
viewed as a weakly-supervised learning framework with im-
plicit labeling information which assumes there is always
exactly one ground-truth among the candidate label set.
Therefore, one disambiguation strategy is building a certain
parametric model and regarding ground-truth label as a la-
tent variable. The model is iteratively refined by optimizing
certain objectives, such as the maximum likelihood crite-
rion (Kupfer and Zorn 2019; Liu and Dietterich 2014), or the
maximum margin criterion (Yu and Zhang 2016). Another
strategy assumes equal importance for all kinds of candidate
labels and predicts label scores by averaging their model-
ing outputs (Cour, Sapp, and Taskar 2011; Tang and Zhang
2017; Wu and Zhang 2018; Wang, Li, and Zhang 2019;
Xu, Lv, and Geng 2019). Compared to the PLL problem,
GPLL is much more challenging and needs to resolve group-
level disambiguation, which is more general and practical
for real-world scenarios.
Graph Neural Networks (GNNs) were introduced in (Gori,
Monfardini, and Scarselli 2005; Scarselli et al. 2008),
and mainly focus on supervised node classification or
link prediction problem based on convolutional graph net-
works (Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2016a; 2016b; Zhang and Chen 2018). More
recently, graph autoencoder networks (Berg, Kipf, and
Welling 2017) were proposed to perform unsupervised link
prediction, which we adopt for our label disambiguation
problem. Unlike previous link prediction problems where
the weights of observed links were given by the data. Our
weights were initially estimated by clustering algorithms,
which is the only information we have.



Figure 3: The framework of the proposed method can be demonstrated as four parts: (a) Problem Formulation with Instance-
Label Groups. (b) Dual Bipartite Graph. (c) Graph Autoencoder. (d) Instance Label Pooling.

Problem Formulation
In GPLL setting, the data is provided in the form of K
groups G = {gi}Ki=1. Each group gi is a collection of in-
stances and a candidate label set where gi = {X (i),L(i)}.
X (i) is the set of M (i) instances, X (i) = {x(i)

m }M
(i)

m=1, and
x

(i)
m is the instance feature where x

(i)
m ∈ Rd. The asso-

ciated candidate label set L(i) is the set of N (i) labels,
L(i) = {l(i)n }N

(i)

n=1 , where l(i)n ∈ Y . The class set Y contains
(C+1) classes where Y = {1, , ..., C, null}, since some in-
stances might be from background classes that never appear
in the dataset labels. As shown in the GPLL examples in In-
troduction, the correct label for an instance inX (i) may exist
in its candidate label set L(i) or even in another candidate la-
bel set L(j) of another group, where i 6= j. The instance in
X (i) will have a null label if its correct label doesn’t exist
in any candidate label set L in G. In a nutshell, the input of
this problem is a set of groups which consist of instances
and labels G = {X (i),L(i)}Ki=1. The output is the predicted
label l ∈ Y for each instance x ∈ X . In addition, we as-
sume that some instances and labels repetitively co-occur
across groups for the model to learn the association pattern.
Moreover, the problem is naturally in a self-supervised and
transductive scenario, i.e., there is no train/test split, and the
data G is all we have for labeling the instances.

Approach
As shown in Figure 3, we describe our method for GPLL
task and elaborate on each part with details: (b) In Dual Bi-
partite Graph, we take instances and labels as nodes and con-
struct Within-Group or Cross-Group Link for two bipartite
graphs with uncertain links. (c) We propose a Graph Autoen-
coder to learn the embedding representations of the bipartite
graphs and iteratively refine the bipartite link weights. (d)
In the final stage, we propose an Instance Label Pooling to
predict the correct instance-label link for each instance.

Dual Bipartite Graph
Formally, we define our uncertain bipartite graph as G =
{[X ,L],M}, G is a weighted graph with instance nodes
X and label nodes L. M denotes the uncertain links be-
tween instance X and label L with likelihood values. The
likelihood of each link refers to whether a label is correct
for an instance. We will construct the dual bipartite graph
M = [Mwithin,M cross] with complementary information.
Mwithin and M cross will be the edges of the Within-Group
Graph and Cross-Group Graph.
Within-Group Graph Construction. As shown in Fig-
ure 3(b), we consider the second and third heuristics de-
scribed in the third paragraph of the Introduction to estimate
the link likelihood within a group to construct the Within-
Group Graph. The within-group link weight initialization
contains three steps: 1) Given a instance xi ∈ X and label
lj ∈ L, we represent the within-group link qij by concate-
nating instance and label features to form a tuple [xi; lj ].
2) We create all possible links within each of group be-
tween instances and labels and perform DBSCAN (Sander
et al. 1998) to cluster the links by their link features. We
choose the cluster size cij for each link to describe the co-
occurrence frequency of instance-label pairs. The number is
the times that xi co-occurs with the label lj in the entire
dataset, which assigned as the likelihood of lj being the cor-
rect label of xi. 3) We will refine the likelihood by consid-
ering the contradictory relation of links within a group.We
define the contradictory link for each link qij : the links with
only one shared node (instance xi or label lj) in the same
group. We will refine the likelihood by dividing the total
likelihood of the link qij and its contradictory links. The
within-group link weight is defined as follow:

wij =
cij

(
∑

u∈Ni
ciu +

∑
v∈Nj

cvj)− cij
(1)

whereNi andNj are the neighbor nodes set for node i and j.
We acquire all the within-group link weights by calculating
all the weights between the instances and labels within the



same group and denote the weighted adjacency matrix as
Mwithin ∈ [0, 1]U×V where U is the number of instances in
X and V is the number of labels in L.
Cross-Group Graph Construction. Given the within-
group weights M inner and the first heuristic mentioned in
the third paragraph of Introduction, we can initialize the
cross-group link weight and construct Cross-Group Graph
shown in Figure 3(b). Given an instance, we measure the
l2-distance for instances and select similar instances by a
certain threshold d and define those nodes as homogeneous
neighbor node. In addition, the homogeneous neighbors of
each instance has their candidate labels, and we link the in-
stance to these cross-group candidate labels as a cross-group
link. The likelihood values of cross-group links were ini-
tialized in the previous step. We use such within-group link
weight to be the likelihood between the instance and the la-
bel of its homogeneous node.

Graph Autoencoder
To predict the unknown likelihood of instance-label pairs for
uncertain graph, we design a novel graph autoencoder ar-
chitecture called DB-GAE. The model has the ability to 1)
Encode the graph G with heterogeneous within/cross-group
links to a low-dimensional embedding space. 2) Dynami-
cally update the instance-label relation while learning a new
representation of the instance and label nodes. 3) Predict the
link weights between instances and labels by reconstructing
the observed links we initialize.
Graph Convolution Encoder. Given the node features
[X ,L] and the link weights [Mwithin,M cross] initialized
in the previous step, we aim to encode such information in
node representation for further prediction. The graph convo-
lution model incorporates the neighbor information by prop-
agating the message to form a new representation of a node.
We utilized this characteristic to use the link information
during propagation to obtain a more representative embed-
ding. For expressing the propagation of within-group links,
a single hidden layer GCN is given by

Hi = f(Hi−1,Mwithin) (2)
where H0 = [X ,L] and f is a propagation rule. Each
layer Hi corresponds to the instance and label feature ma-
trix [X ,L] and where each row is a feature representation of
a node. This operation is similar to a filtering operation in
the CNN (LeCun, Bengio, and others 1995), and the fea-
tures become increasingly more abstract at each consecutive
layer. We aggregate the feature representation of each node
by its associated neighbors. Moreover, the neighbors were
weighted by the within-group weight wij and transformed
by applying the weights W before propagation. To avoid
the interference between within-group and cross-group link
propagation, we have distinct propagation rules of dual bi-
partite GCNs for within-group links and cross-group links
separately. The propagation rule for within-group and cross-
group can be denoted as:

µj→i = wijWlj µj′→i = wij′Wlj′ (3)
where the wij and wij′ are link weights computed from the
previous section and j′ is a cross-group label. W is a learn-
able parameter. This operation is similar to the spectral rule

propagation (Kipf and Welling 2016a) where the propaga-
tion is normalized based on the degree of both i and j. In-
stead, our propagation is normalized by the link weight of
both i and j. We aggregate incoming messages for each of
instance from label nodes by accumulating all neighbors Ni

to represent the node, denoted as:

hwithin
i = σ(

∑
j∈Ni

µj→i) hcrossi = σ(
∑
j′∈Ni

µj′→i) (4)

hwithin
i is the hidden vector that represents the instance node
i by within-group and hcrossi is the hidden vector that rep-
resents the instance node i by cross-group. To arrive at the
final embedding of instance node i and label node j, we ap-
ply the concatenate operation over the hidden vector updated
from the within-group and cross-group. The model has a
non-linear transformation to transform the concatenated rep-
resentations for each node by dual path GCN to a unified
embedding representation. After concatenation, the feature
will feed into a dense layer to obtain the final representation,
denoted as:

ui = σ(Wu[hwithin
i ;hcrossi ; fi]) (5)

vj = σ(Wv[hwithin
j ;hcrossj ;nj ]) (6)

σ(·) denotes an ReLU activation function. Wu and Wv are
learnable parameters. We use the transformation functions
of fi = σ(Wfxi + b) and nj = σ(Wnlj + b) in our paper.
The output of the encoder will be the updated representa-
tions [U, V ] for the instances and labels.
Graph Attention for Within/Cross-Group Propagation.
The graph convolution is based on the probability value of
in the dual bipartite graph, which is fixed during the graph
propagation process. Moreover, we want to continuously up-
date the representations of nodes to predict the link weights
by learning from links with uncertainty. Hence, dynamically
adjust the propagation weight between instances and labels
by considering the features itself is essential. To this end, we
can employ some form of attention mechanism (Veličković
et al. 2017) which actively learn how to propagate the infor-
mation to optimize our result. To perform the attention on
nodes, attention coefficients can be calculated by:

eij = a(Waxi,Walj) (7)
It indicates the importance of label node lj’s features to in-
stance node xi, and Wa is its learnable weight matrix, and
a is a feed-forward network. We inject the graph structure
into the mechanism by performing masked attention which
means we compute αij for nodes j ∈ Ni, where Ni is
the neighbor nodes of node i in the graph. To make coeffi-
cients easily comparable across different nodes, we normal-
ize them across all choices of j using the softmax function:

αij =
exp(eij)∑

k∈Ni
exp(eik)

(8)

We learn two kinds of link information by graph attention,
including the within-group link weight and cross-group link
weight. Therefore, the propagation rule in Equation 3 can be
extended to:

µj→i = αijwijWlj µj′→i = αij′wij′Wlj′ (9)



where α is the context vector which represents the normal-
ized contribution of label j to instance i. After aggregating
the information though the neighbors by summation and ap-
ply averaging on the K transformation attention by multi-
head attention (Zitnik and Leskovec 2017), the Equation 4
becomes:

hwithin
i = σ(

1

K

K∑
k=1

∑
j∈Ni

µk
j→i) (10)

hcrossi = σ(
1

K

K∑
k=1

∑
j′∈Ni

µk
j′→i) (11)

Bi-linear Decoder for Link Resolution. To predict the link
values between instances and labels, we decode the updated
embedding that contains the within-group, cross group, and
feature information. In addition, we can use Bi-linear de-
coder model (Kiros, Salakhutdinov, and Zemel 2014) to re-
construct links of the bipartite graph by considering the
node feature similarity. The reconstruction model is M =
σ(UTV ), and likelihood between instance i and label j is
M̂ij . The learning objective is to reconstruct the weights of
the observed links (estimated from the within-group initial-
ization) and predict the weights of unobserved links (cross-
group link). The score function of the decoder is:

p(M̂ij = r) =
eu

T
i Qrvj

Σs∈Reu
T
i Qsvj

, (12)

where Qr is the trainable parameter matrix of shape E ×
E, and E is the dimension of hidden representations. r is
weighting scale from 0 to 1 which represents the likelihood
of the link. The predicted rating is computed as:

M̂ij = g(ui, vj) = Ep(M̂ij=r)[r] =
∑
r∈R

rp(M̂ij = r) (13)

Within Group Reconstruction Loss. To optimize the pro-
posed graph inference networks, we follow the loss func-
tion defined in (Berg, Kipf, and Welling 2017) to minimize
the reconstruction loss by negative log likelihood of the pre-
dicted likelihood:

L = −
∑

i,j;Ωij=1

R∑
r=1

I[r = Mwithin
ij ] log p(M̂ij = r), (14)

where the matrix Ω ∈ 0, 1 is a mask for unobserved links in
the within-group matrix Mwithin. We optimize over the ob-
served links to predict the likelihood of the matrix M̂ which
contains observed links and unobserved links.

Link Prediction by Instance Label Pooling
To infer the label of each instance, we use the predicted link
weight M̂ij generated by DB-GAE. As shown in Figure3(d),
given an instance, we aggregate all the weights of the links it
connects by different classes. For within-group link weight,
we directly use the predicted link weight. For cross-group
link weight, we multiply the predicted link weight with the
cosine similarity of the instance i’s feature and its homo-
geneous neighbor’s feature. That is because the link weight

should be lower if the feature similarity is low. The weight
of a class o being the label of instance i is calculated by:

W i
o =

∑
j∈o;Ωij=1

σ(M̂ij) +
∑

j∈o;Ω′
ij′=1

σ(M̂ij′
fi · fi′
||fi||||fi′ ||

)

(15)

where the σ represents a ReLU over a sigmoid function.
Ω′ ∈ 0, 1 is a mask for unobserved links in the cross group
matrix M cross. We aggregate the link weight by the same
class and pool the class with the maximum weighted score
pi = argmaxo∈Y(W i

o) as the predicted label of instance xi.
If the score is equal to 0, it means there is no prediction, we
predict it as a null.

General Partial Label Learning Datasets
We evaluate the performance of our model for the automatic
face naming problem on two real-world datasets: MPII-
MD (Rohrbach et al. 2017) and M-VAD (Pini et al. 2019).
MPII-MD dataset in GPLL setting, which contains only
group-level supervision with cross group labels and null
labels. The M-VAD dataset is constructed for PLL setting,
which has less ambiguity but larger-scale data.
MPII-MD: MPII Movie Description Dataset. The MPII-
MD dataset consists of face images and ambiguous labels
automatically extracted using the screenplays provided in
13 movies with 806 different faces and 181 possible names
from 558 image-caption pairs. We select the frames from the
data with detectable faces and corresponding captions. The
percentage of the faces with a null label in the dataset are
21%.
M-VAD: Montreal Video Annotation Dataset. In M-VAD
Names dataset contains fully annotated faces in images with
names in the captions from 55 movies. It consists of 222,58
detected faces and 591 possible names from 17,533 image-
caption pairs.

Figure 4: Data Distribution over Ambiguity Ratio

Data Distribution over Ambiguity Ratio. To explore the
data difficulty of the datasets, we define ambiguity ratio and
show the histogram over different levels of ambiguity, as
shown in Figure 4. The metric refers to a fraction of all pos-
sible instance-label links that are incorrect, the ambiguity
ratio of a label with class c ∈ Y is defined by:

Ro = 1−
∑K

i=1 |s
(i)
t |∑K

i=1 |s
(i)
t |+ |s

(i)
f |

(16)



Table 1: Method Comparison on MPII-MD and M-VAD
MPII-MD M-VAD

Method F1-score Accuracy Accuracy

Pair Clustering 0.539 45.0 % 78.2 %
Cluster Voting 0.558 46.5 % 78.9 %
SURE 0.605 48.7 % 85.7 %
IPAL 0.608 48.3 % 86.1 %
PL-LEAF 0.610 48.6 % 86.3 %
PL-AGGD 0.598 47.6 % 86.5 %
Our method 0.768 76.5 % 90.3 %

where i is the group index. s(i)
t is the set of correct instance-

label links in the group g(i) with class o. s(i)
f is the set of

wrong links in group g(i) which connect to instance node or
label node with class o.

Baselines
Cluster Voting (Sander et al. 1998): For each instance, the
method selects candidate labels from the same cluster. The
correct label is determined by majority voting over all the
candidates. To cluster faces by visual features for face nam-
ing datasets, we apply DBSCAN (with ε = 1, n = 2).
Pair Clustering (Sander et al. 1998): As in the Within-
Group Graph Construction, we perform pair clustering to
estimate the likelihood of a link. Given an instance, we find
its link with the largest cluster size and pick its label as the
prediction, We also perform DBSCAN (with ε = 1, n = 2)
for pair clustering.
IPAL (Zhang and Yu 2015): IPAL is an instance-based
PLL model and disambiguates candidate labels by an iter-
ative label propagation procedure.
PL-LEAF (Zhang, Zhou, and Liu 2016): PL-LEAF is a
feature-aware approach which learns the manifold structure
of feature space and performs regularized multi-output re-
gression over the generated labeling confidences.
SURE (Feng and An 2019): SURE proposes a unified for-
mulation with the maximum infinity norm regularization to
train the desired model and perform pseudo-labeling jointly.
PL-AGGD (Wang, Li, and Zhang 2019): PL-AGGD pro-
poses a unified framework which jointly optimizes the
ground-truth labeling confidences, similarity graph, and
model parameters to achieve generalization performance.

Experimental Setup
For all runs, we use pre-trained FaceNet (Schroff,
Kalenichenko, and Philbin 2015) to extract the visual em-
bedding for detected faces with 512 dimensions from the
images and apply a threshold d = 1 suggested in the paper
(Schroff, Kalenichenko, and Philbin 2015) for l2 distance to
determine two faces are the same person. We encode names
using one-hot vectors. In DB-GAE, we use the Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.001.
The layer sizes of graph convolution (with ReLU) is 1000
and 100 for the dense layer. We run 1000 epochs on both
datasets with the runtime of 10min on MPII-MD dataset

and 5hr 10min on the M-VAD dataset on CPU. Since M-
VAD dataset has sufficient training data, we perform 10-fold
cross-validation on the partial label learning method with 9:1
train/test split. For our method, we only use the same testing
data (10% data) because our method does not require addi-
tional training data. More details of the model architecture,
parameter list, and analysis of the time complexity of the
model will be included in the arXiv version.

Methods Performance Comparison
From Table 1, our proposed method outperforms the base-
lines in both datasets with a significant margin by 0.158
absolute improvements of F1-score for GPLL dataset and
3.8% absolute improvement of accuracy in PLL dataset. In
the experimental results on MPII-MD dataset, the best base-
line reach about 0.61 on F1-score and 49% on accuracy, and
proposed model can achieve the best performance with over
0.76 on F1-score and 73% on accuracy. The significant im-
provements show that our model is powerful enough to deal
with generalized ambiguity, and the baseline methods will
fail to disambiguate distractors. As shown in the results on
M-VAD dataset, PLL methods performed much better when
using sufficient training data for PLL setting. Our model
is able to achieve the best performance among the meth-
ods with only one-tenth of data in the transductive setting.
This result shows its ability to resolve the extreme ambigu-
ity caused by data sparsity.

Figure 5: F1-score and accuracy curves versus ambiguity ra-
tios on MPII-MD and M-VAD.

Figure 6: F1-score and accuracy curves versus ground-truth
frequency on MPII-MD and M-VAD.

Condition Controlled Experiments
In addition to overall performance results, we show the com-
parison with baselines for different levels of data difficulty.
The effect of ambiguity ratio on performance. In the Fig-
ure 5(a), the baselines can reach comparable performances
with the proposed model when the ambiguity is not severe
(ambiguity ratio < 0.4). Their performances will drop a lot
when they meet high levels of data ambiguity (ambiguity



Table 2: Ablation Study of Proposed Method DB-GAE
MPII-MD M-VAD

Method F1-score Accuracy Accuracy

DB-GAE 0.768 76.5% 90.3%
w/o Graph Autoencoder 0.614 62.9% 81.6%
w/o Dual Bipartite Graph 0.724 68.4 % 88.3 %
w/o Cross-Group Link 0.730 73.9 % 89.2 %
w/o Graph Attention 0.743 76.4 % 87.3 %

ratio > 0.4). In less ambiguity dataset (PLL setting) Fig-
ure 5(b), we can see that the proposed method is compara-
ble with the state-of-the-art PPL method without addtional
training data.
The effect of ground-truth frequency on performance.
The ground-truth frequency is the number of face-name
pairs with the same class co-occur in the same group
throughout the dataset. In Figure 6 (a), we can see that our
model performs better than other methods in general. Al-
most all of the methods exhibit a slight drop in the ground-
truth frequency of 14, because the average ambiguity ratio at
frequency interval is higher than the middle ambiguity ratio
of frequency 7. In Figure 6(b), the approach performs better
than other methods. The accuracy of the model will con-
tinually increase even beyond 95% if the correct face-name
co-occur frequently enough.

Ablation Study

To reveal the contribution of each component, we test
the performance of DB-GAE by removing different parts:
Graph Autoencoder, Dual Bipartite Graph Architecture (ap-
ply GAE and set all weights for instance label links to be
averaged (Hüllermeier and Beringer 2006; Zhang and Yu
2015)), Cross-Group Link, and Graph Attention. The com-
parison results of ablation study are shown in the Table 2,
we can see that the Graph Autoencoder contributes the most
of performance improvement. The GAE (w/o Dual Bipar-
tite Graph Architecture) encounters an accuracy drop in the
MPII-MD dataset because it is unable to deal with null dis-
tractors since the weights fed into the GAE are all links with
a high likelihood. The consideration of Cross-Group Link
will help the model to deal with the group-level ambigu-
ity. The F1-score of DB-GAE (w/o Cross-Group Link) drops
obviously on MPII-MD. The improvement of DB-GAE over
DB-GAE (w/o Graph Attention) verifies our hypothesis that
graph attention can help to capture a better representation of
the graph structure.

Qualitative Results

As shown in Figure 7, compared to the best baseline: PL-
LEAF in our MPII-MD experiment, our model can correctly
predict the null labels and cross-group labels even when
the number of distractors is large within a group. Also, the
performance for within-group label prediction is also better
since the model incorporates cross-group knowledge to re-
solve the within-group ambiguity.

Figure 7: Qualitative examples from MPII-MD dataset.
The blue/grey box represents the correct prediction of a
name/null label. Red box represents the wrong prediction.
The orange line visualize the predicted link between face
and name.

Figure 8: Failure cases from MPII-MD dataset. The dashed
line represents the ground-truth link between face and name
which the model misses.

Failure Cases

From Figure 8, we can conclude that 1) The visual recogni-
tion rate may affect the within-group linking performance.
In the first example, didn’t link to , which was
limited by the feature representation. 2) Also, it will affect
the cross-group linking due to the failure of finding simi-
lar faces. should link to the name to find
its correct label but the model can’t find as
similar faces. 3) The current model is based on correlation
and thus lacks reasoning ability, for example, we humans
may rule out other faces and predict the correct link, but
our method fails. For example, when predicting ,
since we know and were linked, we can infer

is more likely to be .

Conclusions

We introduced the General Partial Label Learning (GPLL)
problem, which is more realistic and general than the tra-
ditional PLL. The proposed approach DB-GAE was de-
signed to tackle the challenges of GPLL by disambiguat-
ing the within-/cross-group instance-label links with richer
contextual graph representations. We contributed two GPLL
benchmarks on automatic face naming tasks. We found
that DB-GAE outperformed the best baseline with absolute
0.159 F1-score and 24.8% accuracy. Further analysis shows
the robustness of DB-GAE in generalized ambiguity scenar-
ios and the effect of various ambiguity levels. Moving for-
ward, we are going to frame more tasks into GPLL such as
cross-domain co-reference resolution in NLP, and push the
envelope of DB-GAE in other fields.
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