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Abstract

Visual relations, such as “person ride bike” and “bike
next to car”, offer a comprehensive scene understanding
of an image, and have already shown their great utility in
connecting computer vision and natural language. How-
ever, due to the challenging combinatorial complexity of
modeling subject-predicate-object relation triplets, very lit-
tle work has been done to localize and predict visual re-
lations. Inspired by the recent advances in relational rep-
resentation learning of knowledge bases and convolutional
object detection networks, we propose a Visual Translation
Embedding network (VTransE) for visual relation detection.
VTransE places objects in a low-dimensional relation space
where a relation can be modeled as a simple vector transla-
tion, i.e., subject + predicate ≈ object. We propose a novel
feature extraction layer that enables object-relation knowl-
edge transfer in a fully-convolutional fashion that supports
training and inference in a single forward/backward pass.
To the best of our knowledge, VTransE is the first end-to-
end relation detection network. We demonstrate the effec-
tiveness of VTransE over other state-of-the-art methods on
two large-scale datasets: Visual Relationship and Visual
Genome. Note that even though VTransE is a purely visual
model, it is still competitive to the Lu’s multi-modal model
with language priors [27].

1. Introduction
We are witnessing the impressive development in con-

necting computer vision and natural language, from the ar-
guably mature visual detection [16, 35] to the burgeoning
visual captioning and question answering [2, 4]. However,
most existing efforts to the latter vision-language tasks at-
tempt to directly bridge the visual model (e.g., CNN) and
the language model (e.g., RNN), but fall short in modeling
and understanding the relationships between objects. As
a result, poor generalization ability was observed as those
models are often optimized on specialized datasets for spe-
cific tasks such as image captioning or image QA. [17, 40].

As illustrated in Figure 1, we take a step forward from
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Figure 1. We focus on detecting visual relations (dashed boxes in
the middle layer) in this paper. Different from the direct connec-
tion between low-level vision and high-level language, visual re-
lations offer the direct understanding of object interactions, which
provide further semantic information for applications such as im-
age captioning and QA.

the lower-level object detection and a step backward from
the higher-level language modeling, focusing on the vi-
sual relations between objects in an image. We refer to
a visual relation as a subject-predicate-object
triplet1, where the predicate can be verb (person1-talk-
person2), spatial (clock-above-person2), preposi-
tion (car-with-wheel), and comparative (person1-
taller-person2) [23, 27]. Visual relations naturally
bridge the vision and language by placing objects in a se-
mantic context of what, where, and how objects are con-
nected with each other. For example, if we can detect
clock-above-person2 and person2-wear-jacket
successfully, the reasoning behind the answer “gray” to the
question asked in Figure 1 will be explicitly interpretable
using dataset-independent inference, e.g., QA over knowl-

1When the context is clear, we always refer to object in normal font as
a general object and object in teletype to the tail object in a relation.
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Figure 2. An illustration of translation embedding for learning
predicate ride. Instead of modeling from a variety of ride
images, VTransE learns consistent translation vector in the rela-
tion space regardless of the diverse appearances of subjects (e.g.,
person) and objects (e.g., horse, bike, etc.) involved in the
predicate relation (e.g., ride).

edge bases [8], and thus permits better generalization or
even zero-shot learning [23, 41].

In this paper, we present a convolutional localiza-
tion network for visual relation detection dubbed Visual
Translation Embedding network (VTransE). It detects ob-
jects and predicts their relations simultaneously from an im-
age in an end-to-end fashion. We highlight two key novel-
ties that make VTransE effective and distinguishable from
other visual relation models [27, 36, 37]:

Translation Embedding. Since relations are composi-
tions of objects and predicates, their distribution is much
more long-tailed than objects. For N objects and R pred-
icates, one has to address the fundamental challenge of
learning O(N2R) relations with few examples [33, 37].
A common solution is to learn separate models for ob-
jects and predicates, reducing the complexity to O(N +
R). However, the drastic appearance change of predi-
cates makes the learning even more challenging. For exam-
ple, ride appearance largely varies from person-ride-
bike to person-ride-elephant. To this end, inspired
by Translation Embedding (TransE) in representing large-
scale knowledge bases [5, 25], we propose to model visual
relations by mapping the features of objects and predicates
in a low-dimensional space, where the relation triplet can be
interpreted as a vector translation, e.g., person+ride ≈
bike. As shown in Figure 2, by avoiding learning the di-
verse appearances of subject-ride-object with large
variance, we only need to learn the ride translation vec-
tor in the relation space, even though the subjects and/or
objects can be quite diverse.

Knowledge Transfer in Relation. Cognitive evidences
show that the recognition of objects and their interactions is
reciprocal [6, 15]. For example, person and bike detec-
tions serve as the context for ride prediction, which in turn
constrains the articulation of the two objects, and thus bene-
fiting object detection. Inspired by this, we explicitly incor-
porate knowledge transfer between objects and predicates
in VTransE. Specifically, we propose a novel feature extrac-
tion layer that extracts three types of object features used in

translation embedding: classeme (i.e., class probabilities),
locations (i.e., bounding boxes coordinates and scales), and
RoI visual features. In particular, we use the bilinear feature
interpolation [13, 18] instead of RoI pooling [11, 35] for dif-
ferentiable coordinates. Thus, the knowledge between ob-
ject and relation—confidence, location, and scale—can be
transfered by a single forward/backward pass in an end-to-
end fashion.

We evaluate the proposed VTransE on two recently
released relation datasets: Visual Relationship [27] with
5,000 images and 6,672 unique relations, and Visual
Genome [23] with 99,658 images and 19,237 unique rela-
tions. We show significant performance improvement over
several state-of-the-art visual relation models. In particular,
our purely visual VTransE can even outperform the multi-
modal method with vision and language priors [27] in de-
tection and retrieval, and a bit shy of it in zero-shot learning.

In summary, our contributions are as follows: 1) We pro-
pose a visual relation detection model dubbed Visual Trans-
lation Embedding network (VTransE), which is a convolu-
tional network that detects objects and relations simultane-
ously. To the best of our knowledge, this is the first end-to-
end relation detection network; 2) We propose a novel vi-
sual relation learning model for VTransE that incorporates
translation embedding and knowledge transfer; 3) VTransE
outperforms several strong baselines on visual relation de-
tection by a large performance gain.

2. Related Work
Our work falls in the recent progress on grounding com-

positional semantics in an image [23, 32]. It has been
shown that high-quality groundings provide more compre-
hensive scene understanding, which underpins many vision-
language tasks such as VQA [1], captioning [21] and com-
plex query retrieval [20]. Visual relation detection not only
ground regions with objects, but also describes their inter-
actions. In particular, our VTransE network draws on recent
works in relation learning and object detection.

Visual Relation Detection. Different from considering
relations as hidden variables [42], we relate to explicit re-
lation models which can be divided into two categories:
joint model and separate model. For joint models, a rela-
tion triplet is considered as a unique class [3, 9, 33, 37].
However, the long-tailed distribution is an inherent defect
for scalability. Therefore, we follow the separate model
that learns subject, object, and predicate individually [7, 14,
36, 27]. But, modeling the large visual variance of predi-
cates is challenging. Inspired by TransE that has been suc-
cessfully used in relation learning in large-scale knowledge
base [5, 25], our VTransE extends TransE for modeling vi-
sual relations by mapping subjects and objects into a low-
dimensional relation space with less variance, and modeling
the predicate as a translation vector between the subject and
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Figure 3. The VTransE network overview. An input image is first through the Object Detection Module, which is a convolutional local-
ization network that outputs a set of detected objects. Then, every pair of objects are fed into the Relation Prediction Module for feature
extraction and visual translation embedding. In particular, the visual feature of an object is smoothly extracted from the last convolutional
feature map using Bilinear Interpolation. ◦ denotes vector concatenation and 	 denotes element-wise subtraction.

object. Note that there are works [3, 27, 33, 24] that exploit
language priors to boost relation detection, but we are only
interested in visual models.

Object Detection. VTransE is based on an object detec-
tion module composed of a region proposal network (RPN)
and a classification layer. In particular, we use Faster-
RCNN [35], which is evolved from its predecessors [11, 12]
that requires additional input of region proposals. Note that
VTransE cannot be simply considered as appending a rela-
tion prediction layer to Faster-RCNN. In fact, we propose a
novel feature extraction layer that allows knowledge trans-
fer between objects and relations. The layer exploits the bi-
linear interpolation [13, 18, 19] instead of the non-smooth
RoI pooling in Faster-RCNN and thus the reciprocal learn-
ing of objects and predicates can be achieved in a single
forward/backward pass. Note that VTransE can be mar-
ried to any object detection network such as the very recent
SSD [26] and YOLO [34].

3. Our Approach: VTransE Network

VTransE is an end-to-end architecture that completes ob-
ject detection and relation prediction simultaneously. As il-
lustrated in Figure 3, it builds upon an object detection mod-
ule (e.g., Faster-RCNN), and then incorporates the proposed
feature extraction layer and the translation embedding for
relation prediction.

3.1. Visual Translation Embedding

Given any valid relation, Translation Embedding
(TransE) [5] represents subject-predicate-object
in low-dimensional vectors s, p, and o, respectively, and
the relation is represented as a translation in the embed-
ding space: s + p ≈ o when the relation holds, and s +
p 6≈ o otherwise. TransE offers a simple yet effective lin-
ear model for representing the long-tail relations in large
knowledge databases [31]. Suppose xs,xo ∈ RM are the
M -dimensional features of subject and object, re-
spectively. Besides learning a relation translation vector

tp ∈ Rr (r � M ) as in TransE2, VTransE learns two pro-
jection matrices Ws,Wo ∈ Rr×M from the feature space
to the relation space, i.e., s = Wsxs and o = Woxo:

Wsxs + tp ≈Woxo. (1)

Unlike the relations in a knowledge base that are gen-
erally facts, e.g., AlanTuring-bornIn-London, visual
relations are volatile to specific visual examples, e.g., the
validity of car-taller-person depends on the heights
of the specific car and person in an image, resulting in prob-
lematic sampling negative triplets if the relation annotation
is incomplete. Instead, we propose to use a simple yet effi-
cient softmax for prediction loss that only rewards the deter-
ministically accurate predicates3, but not the agnostic object
compositions of specific examples:

Lrel =
∑

(s,p,o)∈R
− log softmax

(
tTp (Woxo −Wsxs)

)
, (2)

where the softmax is computed over p. Although Eq. (2)
learns a rotational approximation for the translation model
in Eq. (1), we can retain the translational property by proper
regularizations such as weight decay [30, 43, 44].

The final score for relation detection is the sum of object
detection score and predicate prediction score in Eq. (2):
Ss,p,o = Ss+Sp+So, where Ss or So is the object detection
score and Sp is the relation predicate prediction score.

3.2. Feature Extraction

We propose a Feature Extraction Layer in VTransE to
extract xs and xo. There are three types of features that
characterize the multiple facets of objects in relations:
Classeme. It is an (N + 1)-d vector of object classification
probabilities (i.e., N classes and 1 background) from the
object detection network. Classeme is widely used as se-
mantic attributes in various vision tasks [39]. For example,
in relation detection, classeme is a useful prior for rejecting

2In experiments, we tested r ∈ {100, 200, ..., 1000} and found that
r = 500 is a good default.

3In fact, predicate is multi-labeled, e.g., both person-on-bike and
person-ride-bike are correct. However, most relations are single-
labeled in the datasets, e.g., 58% in VRD [27] and 67% in VG [23].



unlikely relations such as cat-ride-person.
Location. It is a 4-d vector (tx, ty, tw, th), which is
the bounding box parameterization in [12], where (tx, ty)
specifies a scale-invariant translation and (tw, th) specifies
the log-space height/width shift relative to its counterpart
object or subject. Take subject as an example:

tx =
x− x′

w′ , ty =
y − y′

h′ , tw = log
w

w′ , th = log
h

h′ (3)

where (x, y, w, h) and (x′, y′, w′, h′) are the box coordi-
nates of subject and object, respectively. Location
feature is not only useful for detecting spatial or preposi-
tion relation, but also useful for verbs, e.g., subject is
usually above object when the predicate is ride.
Visual Feature. It is a D-d vector transformed from a con-
volutional feature of the shape X × Y × C. Although it is
as the same size as the RoI pooling features used in Faster-
RCNN, our features are bilinearly interpolated from the last
conv-feature map, so as to achieve end-to-end training that
allows knowledge transfer (cf. Section 3.3).

The overall feature xs or xo is a weighted concatenation
of the above three features (M = N + D + 5), where the
weights are learnable scaling layers since the feature con-
tribution dynamically varies from relation to relation. As
shown in Figure 3, the proposed feature extraction layer
couples the Object Detection Module and the Relation Pre-
diction Module.

3.3. Architecture Details

A training image for VTransE is labeled with a list
of subject-predicate-object triplets, where every
unique subject or object is annotated with a bounding
box. At testing time, VTransE inputs an image and outputs
a set of detected objects and the relation prediction scores
for every pair of objects.

Object Detection Network. VTransE network starts
from the Faster-RCNN [35] object detection network with
the VGG-16 architecture [38]. At training time, we sample
a mini-batch cotaining 256 region proposal boxes generated
by the RPN of Faster-RCNN, each of which is positive if
it has an intersection over union (IoU) of at least 0.7 with
some ground truth regions and it is negative if the IoU <
0.3. The positive proposals are fed into the classification
layer, where each proposal outputs an (N + 1) class proba-
bilities and N bounding box estimations. Then, we perform
non-maximum suppression (NMS) for every class with the
IoU > 0.4, resulting in 15.6 detected objects on average,
each of which has only one bounding box. The reasons of
performing NMS for object detection are two folds: 1) we
need a specific object class for each region to match with
the relation ground truth, and 2) we need to down-sample
the objects for a reasonable number of candidate relations.
At test time, we sample 300 proposal regions generated by
RPN with IoU > 0.7. After the classification layer, we per-

form NMS with IoU > 0.6 on the 300 proposals, resulting
in 15–20 detections per image on average.

Bilinear Interpolation. By removing the final pooling
layer of VGG-16, we use the last convolutional feature map
F of the shape W ′ × H ′ × C (the pink cube in Figure 3),
where C = 512 is the number of channels, W ′ = bW16 c,
and H ′ = bH16c, where W and H are the width and height
of the input image. F encodes the visual appearance of the
whole image and is used for extracting visual features for
the object detection and relation prediction.

In order to achieve object-relation knowledge transfer,
the relation error should be back-propagated to the object
detection network and thus refines the objects. However,
the widely-used RoI pooling visual feature in Fast/Faster
R-CNN is not a smooth function of coordinates since it re-
quires discrete grid split for the proposal region, resulting in
zero coordinate gradients back-propagated from the feature
extraction layer.

To this end, we replace the RoI pooling layer with bilin-
ear interpolation [18]. It is a smooth function of two inputs:
the feature map F and an object bounding box projected
onto F, and the output is a feature V of the size X×Y ×C
(the orange cube in Figure 3). Each entry value in V can be
efficiently interpolated from F in a convolutional way:

Vi,j,c =

W ′∑
i′=1

H′∑
j′=1

Fi′,j′,ck(i
′ −Gi,j,1)k(j

′ −Gi,j,2), (4)

where G ∈ RX×Y×2 records the positions of the X × Y
grid split in the input bounding box and k(x) = max(0, 1−
|x|) is the bilinear interpolation kernel. Note that the grid
position G matrix is a linear function of the input box.
Therefore, the gradients from V can be back-propagated to
the bounding box coordinates.

Optimization. We train the VTransE network end-to-
end by stochastic gradient descent with momentum [22].
We follow the “image-centric” training strategy [35], i.e.,
the mini-batch arises from a single image that contains
many object regions and relations. The loss function is a
multi-task loss combining the object detection lossLobj and
the relation detection loss Lrel in Eq. (2), allowing recipro-
cal learning for objects and relations. In particular, we find
that a reasonable loss trade-off is Lobj +0.4Lrel. Since ob-
ject detection and relation prediction have different sample
sizes, we normalize Lobj and Lrel by the mini-batch size.

For model initializations, we pre-train Faster-RCNN on
the objects in the relation datasets to initialize the object de-
tection network and randomly initialize the VTransE com-
ponent with Gaussian weights. For end-to-end training, we
also replace the RoI pooling layer in the object detection
network with bilinear interpolation. For efficiency, we do
not fine-tune the VGG-16 CNN. Generally, we need 2 – 3
epochs for the model to converge. For a single image that
has been resized to the longer side of 720 pixels, the train-
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Figure 4. Top 5 confident regions of subject and object re-
trieved by ride and park on models of JointBox (1st row) and
VTransE (2nd row with ground-truth bounding boxes) from VRD.

ing runs in 2.0 fps and the testing runs in 6.7 fps on a Titan
X GPU using Caffe and Python. Note that we can always
plug-in faster object detection networks such as SSD [26]
and YOLO [34] for more efficient training and testing.

4. Experiments

We are going to validate the effectiveness of the pro-
posed VTransE network by answering the following ques-
tions. Q1: Is the idea of embedding relations effective in the
visual domain? Q2: What are the effects of the features in
relation detection and knowledge transfer? Q3: How does
the overall VTransE network perform compared to the other
state-of-the-art visual relation models?

4.1. Datasets and Metrics

To the best of our knowledge, there are only two datasets
for visual relation detection at a large scale. We used both:
VRD. It is the Visual Relationships dataset [27]. It con-
tains 5,000 images with 100 object categories and 70 pred-
icates. In total, VRD contains 37,993 relation annotations
with 6,672 unique relations and 24.25 predicates per object
category. We followed the same train/test split as in [27],
i.e., 4,000 training images and 1,000 test images, where
1,877 relationships are only in the test set for zero-shot eval-
uations.
VG. It is the latest Visual Genome Version 1.2 relation
dataset [23]. Unlike VRD that is constructed by computer
vision experts, VG is annotated by crowd workers and thus
the objects and relations are noisy. Therefore, we contact
the authors for an official pruning of them. For example,
“young woman” and “lady” are merged to the WordNet hy-
pernym “woman”. We filtered out relations with less than 5
samples. In summary, VG contains 99,658 images with 200
object categories and 100 predicates, resulting in 1,174,692
relation annotations with 19,237 unique relations and 57
predicates per object category. We split the data into 73,801
for training and 25,857 for testing.

Following [27], we used Recall@50 (R@50) and Re-

Table 1. Predicate prediction performances of the two methods.
Method JointBox VTransE

Dataset VRD VG VRD VG

R@50 25.78 46.59 44.76 62.63
R@100 25.78 46.77 44.76 62.87

JointBox

VTransE

Figure 5. t-SNE visualizations [28] of the 70 predicate model pa-
rameters of JointBox and VTransE from VRD. Please zoom in.

call@100 (R@100) as evaluation metrics for detection.
R@K computes the fraction of times a true relation is pre-
dicted in the top K confident relation predictions in an im-
age. Note that precision and average precision (AP) are
not proper metrics as visual relations are labeled incom-
pletely and they will penalize the detection if we do not have
that particular ground truth. For the relation retrieval task
(cf. Section 4.4), we adopted the Recall rate@5 (Rr@5),
which computes the fraction of times the correct result was
found among the top 5, and Median rank (Med r), which is
the median rank of the first correctly retrieved image [20].
In fact, for datasets with more complete annotations (e.g.,
VG), even if the recall is low, the actual precision could be
high since the number of ground truth in an image is usually
larger than 50/100. Therefore, the retrieval task measured
by Rr@5 and Med r provides a complementary evaluation.

4.2. Evaluations of Translation Embedding (Q1)

Setup. Visual relation detection requires both object de-
tection and predicate prediction. To investigate whether
VTransE is a good model for relations, we need to isolate
it from object detection and perform the task of Predicate
Prediction: predicting predicates given the ground-truth
objects with bounding boxes.

Comparing Methods. We compared 1) JointBox,
a softmax classifier that classifies the images of the
subject and object joint bounding boxes into predi-
cates, and 2) VTransE that classifies the predicate of a pair
of subject and object boxes. For fair comparison, we
only use the RoI pooling visual features of boxes for the



two methods. Note that JointBox represents many visual
relation models in predicate prediction [9, 27, 33, 37]

Results. From Table 1, we can see that VTransE for-
mulated in Eq. (2) outperforms conventional visual models
like JointBox. This is because the predicate model param-
eters of VTransE—the translation vectors—are able to cap-
ture the essential meanings of relations between two objects
mapped into a low-dimensional relation space. Figure 4 il-
lustrates that VTransE can predict correct predicates with
diversity while JointBox is more likely to bias on certain
visual patterns. For example, JointBox limits park on
in cars, but VTransE can generalize to other subjects like
plane and bus. Moreover, by inspecting the semantic affini-
ties between the predicate parameter vectors in Figure 5,
we can speculate that JointBox does not actually model re-
lations but the joint object co-occurrence. For example,
in JointBox, the reason why beneath is close to drive
on and park on is largely due to the co-occurrence of
road-beneath-car and car-drive on-road; how-
ever, VTransE is more likely to understand the meaning of
beneath as its neighbors are below and under, and it
is far from on and above.

4.3. Evaluations of Features (Q2)

Setup. We evaluated how the features proposed in Sec-
tion 3.1 affect visual relation detection. We performed Re-
lation Detection [27, 37]: the input is an image and the
output is a set of relation triplets and localizations of both
subject and object in the image having at least 0.5
overlap with their ground-truth boxes simultaneously.

Comparing Methods. We ablated VTransE into four
methods in terms of using different features: 1) Classeme,
2) Location, 3) Visual, and 4) All that uses classeme, lo-
cations, visual features, and the fusion of the above with a
scaling layer (cf. Figure 3), respectively. Note that all the
above models are trained end-to-end including the object
detection module. To further investigate the feature influ-
ence on relations, we categorized the predicates into four
categories: verb, spatial, preposition and comparative (cf.
Supplementary Material for the detailed category list).

Results. From Figure 6, we can see the details of what
features are good at detecting what relations: 1) fusing all
the features with a learned scaling layer can achieve the best
performance on all types of relations; 2) classeme can gen-
erally outperform visual features in various kinds of rela-
tions as it characterizes both the high-level visual appear-
ances (e.g., what an object looks like) and composition
priors (e.g., person is more likely to ride-bike than
cat); 3) for spatial relations, location features are better;
however, for preposition relations, all features perform rel-
atively poor. This is because the spatial and visual cues
of prepositions are volatile such as person-with-watch
and car-with-wheel.

Table 2. Object detection mAP% before (Faster-RCNN) and after
training VTransE from VRD (100 objects) and VG (200 objects).
Low mAP is mainly due to the incomplete object annotation.

VRD VG

Before After Before After

13.32 13.98 6.21 6.58

Figure 6. Performances (R@100%) of relation detection of the
four relation types using the four ablated VTransE methods from
VRD (left) and VG (right).
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Figure 7. Qualitative object detection examples before (red box
and font) and after (green box and font) training VTransE from
VRD (top row) and VG (bottom row).

Table 2 shows that the end-to-end training of VTransE
can improve the object detection. This is mainly due to
that the proposed feature extraction layer allows knowledge
transfer so that the errors made by relation prediction can
be back-propagated to the front object detection module. In
fact, the improvement can be expected since we incorporate
additional relation labels besides object labels. As shown in
Figure 7, compared to the pre-trained Faster-RCNN mod-
ule, the object detection module trained by VTransE can
generally improve bounding boxes, such as minor refine-
ment or even recovery from drastic dislocation and correc-
tions for wrong detections. This demonstrates that relations
place objects in a contextual scene. For example, relation
can recover shorts from the wrong detection bag, even
though the correct detection should be pants, which is se-
mantically similar to shorts. This correction is likely in-
ferred by the relation person-wear-shorts/pants.

4.4. Comparison with State-of-The-Arts (Q3)

Setup. As we will introduce later, some joint relation
models can only detect a joint bounding box for an en-
tire relation; thus, besides relation detection, we performed
Phrase Detection [27]: the input is an image and the out-
put is a set of relation triplets and localizations of the entire
bounding box for each relation that having at least 0.5 over-
lap with the ground-truth joint subject and object box.

For more extensive evaluations, we also performed two
additional tasks. 1) Relation Retrieval: image search with
the query of a relation triplet. We first detect the relation



Table 3. Performances of phrase detection, relation detection, relation retrieval using various methods on both datasets. “–” denotes that
the result is not applicable. (cf. Supplementary Material for the incomplete annotation in VRD that causes low retrieval performances.)

Dataset VRD [27] VG [23]

Task Phrase Det. Relation Det. Retrieval Phrase Det. Relation Det. Retrieval

Metric R@50 R@100 R@50 R@100 Rr@5 Med r R@50 R@100 R@50 R@100 Rr@5 Med r

VisualPhrase [37] 0.54 0.63 – – 3.51 204 3.41 4.27 – – 11.42 18

DenseCap [19] 0.62 0.77 – – 4.16 199 3.85 5.01 – – 12.95 13

Lu’s-V [27] 2.24 2.61 1.58 1.85 2.82 211 – – – – – –

Lu’s-VLK [27] 16.17 17.03 13.86 14.70 8.75 137 – – – – – –

VTransE 19.42 22.42 14.07 15.20 7.89 41 9.46 10.45 5.52 6.04 14.65 7

VTransE-2stage 18.45 21.29 13.30 14.64 7.14 41 8.73 10.11 4.97 5.48 12.82 12

Random 0.06 0.11 7.14×10−3 1.43×10−2 2.95 497 0.04 0.07 1.25×10−3 2.50×10−3 3.45 1.28×104
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Figure 8. Qualitative examples of relation detection (4 top-1 detections from 4 predicate types) and retrieval (top-5 images). We compare
our VTransE with its best competitors: Lu’s-VLK on VRD and DenseCap on VG. Green and red borders denote correct and incorrect
results.

query in gallery (i.e., test) images and then score them ac-
cording to the average detection scores of the query rela-
tion. An image with at least one successful query relation
detection is considered as a hit. This task is a representa-
tion of the compositional semantic retrieval [20]; We se-
lected the top 1,000 frequent relations as queries. 2) Zero-
shot Learning [27]: individual subject, object, and
predicate are seen in both training and test, but some
specific triplet compositions are only in the test set. Due to
the long-tailed relation distribution, it is a practical setting
since it is impossible to collect data for all triplets.

Comparing Methods. We compared the VTransE net-
work to four state-of-the-art visual relation detection mod-
els. 1) VisualPhrase [37]: a joint relation model that con-
siders every unique relation triplet as an relation class. For
fair comparison, we replace the original DPM object detec-
tion model [10] with Faster-RCNN [35]; 2) DenseCap [19]:
it detects sub-image regions and generate their descriptions
simultaneously. It is an end-to-end model using bilinear in-
terpolated visual features for region localizations. We re-
place its LSTM classification layer with softmax for relation

prediction. Thus, it can be considered as an joint relation
model; 3) Lu’s-V (V-only in [27]): it is a two-stage sepa-
rate model that first uses R-CNN [12] for object detection
and then adopts a large-margin JointBox model for predi-
cate classification; 4) Lu’s-VLK (V+L+K in [27]): a two-
stage separate model that combines Lu’s-V and word2vec
language priors [30]. In addition, we compared VTransE
to its two-stage training model VTransE-2stage that apply
Faster-RCNN for object detection and then perform predi-
cate predication using translation embedding as in Q1.

As we have no training source codes of Lu’s methods, we
cannot apply them in VG and we quoted the results of VRD
reported in their paper [27]. Moreover, as the joint relation
models such as VisualPhrase and DenseCap can only detect
relation triplet as a whole, they are not applicable in zero-
shot learning. Therefore, we only report zero-shot results
(detection and retrieval) on VRD for the official 1,877 zero-
shot relations [27].

Results. From the quantitative results in Table 3 and the
qualitative results in Figure 8, we have:
1) Separate relation models like VTransE and Lu’s-V out-
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perform joint models like VisualPhrase and DenseCap sig-
nificantly, especially on VRD. This is because the classifi-
cation space of joint models for all possible relationships is
large (e.g., 6,672 and 19,237 training relations in VRD and
VG, respectively), leading to insufficient samples for train-
ing infrequent relations.
2) For separate models, better object detection networks,
such as Faster-RCNN v.s. R-CNN used in VTrasnE and
Lu’s, are beneficial for relation detections. As shown in
Figure 8, on VRD dataset, Lu’s-VLK mistakes soundbox
as person and plate as bowl. We believe that this is a
significant reason why their visual model Lu’s-V is consid-
erably worse than VTransE.
3) Even though VTransE is a purely visual model, we
can still outperform Lu’s-VLK which incorporates language
priors, e.g., on VRD measured by R@50 and Med r, we
are 20%, 2%, and 230% relatively better in phrase detec-
tion, relation detection, and relation retrieval, respectively.
First, the classeme feature can serve as a similar role as lan-
guage priors. Second, location feature is indispensable to
relations. Take the person-wear-tie relation query as
an example in Figure 8, when there are multiple person
detections in an image, Lu’s-VLK usually relates tie to
the wrong person, regardless the fact that the spatial dis-
tance is far. Similar examples can be also found in the false
detection shirt-on-cup of Lu’s-VLK.
4) The end-to-end VTransE is better than VTransE-2stage
across all the tasks on both datasets. Together with the re-
sults in Q2, they demonstrate the effectiveness of reciprocal
learning between objects and relations.

From the zero-shot quantitative results in Table 4 and the
qualitative results in Figure 9, we have:
1) The performances of ours and the compared methods
degrade drastically, e.g., for relation detection, VTransE
and Lu’s-VLK suffer 88% and 79% performance (R@100)
drop, respectively. This is the key limitation of VTransE.
Perhaps this is because our transformation from feature
space to relation space in Eq. (1) is too generic, especially
for verbs, and thus fails to capture the relation-specific vi-
sual deformations. For example, VTransE cannot discrim-
inate between person-lying on-table and person-
sit next to-table. One remedy is to incorporate

Table 4. Performances of zero-shot phrase detection, relation de-
tection, relation retrieval using various methods on VRD. Note that
joint models like VisualPhrase and DenseCap do not apply in zero-
shot setting.

Task Phrase Det. Relation Det. Retrieval

Metric R@50 R@100 R@50 R@100 Rr@5 Med r

Lu’s-V [27] 0.95 1.12 0.67 0.78 0.54 454

Lu’s-VLK [27] 3.36 3.75 3.13 3.52 1.24 434

VTransE 2.65 3.51 1.71 2.14 1.42 422

Random 0.02 0.04 7.14×10−3 1.43×10−2 0.45 499

predicate and object models [29], although it will increase
the model complexity fromO(N+R) toO(NR), where N
is the number of objects and R is the number of predicates.
2) Both as visual models, our VTransE is significantly bet-
ter than Lu’s-V in zero-shot relation predictions; neverthe-
less, as a multi-modal model, Lu’s-VLK surpasses VTransE
by exploiting language priors. But, since visual relations
are volatile to specific examples, language priors are not
always correct—Lu’s-VLK can be misled by frequent lan-
guage collocations which are invalid in visual examples,
e.g., the mismatch of subject and object in sofa-
beneath-person and person-play with-laptop.

5. Conclusions
We focused on the visual relation detection task that is

believed to offer a comprehensive scene understanding for
connecting computer vision and natural language. Towards
this task we introduced the VTransE network for simulta-
neous object detection and relation prediction. VTransE is
an end-to-end and fully-convolutional architecture that con-
sists of an object detection module, a novel differentiable
feature extraction layer, and a novel visual translation em-
bedding layer for predicate classification. Moving forward,
we are going to 1) model higher-order relations such as
person-throw-ball-to-dog, 2) tackle the challenge of
zero-shot relation learning, and 3) apply VTransE in a VQA
system based on relation reasoning.
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