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Abstract

In applications involving matching of image sets, the
information from multiple images must be effectively ex-
ploited to represent each set. State-of-the-art methods use
probabilistic distribution or subspace to model a set and
use specific distance measure to compare two sets. These
methods are slow to compute and not compact to use in a
large scale scenario. Learning-based hashing is often used
in large scale image retrieval as they provide a compact
representation of each sample and the Hamming distance
can be used to efficiently compare two samples. However,
most hashing methods encode each image separately and
discard knowledge that multiple images in the same set rep-
resent the same object or person. We investigate the set
hashing problem by combining both set representation and
hashing in a single deep neural network. An image set is
first passed to a CNN module to extract image features, then
these features are aggregated using two types of set feature
to capture both set specific and database-wide distribution
information. The computed set feature is then fed into a
multilayer perceptron to learn a compact binary embedding
trained with triplet loss. We extensively evaluate our ap-
proach on multiple image datasets and show highly com-
petitive performance compared to state-of-the-art methods.

1. Introduction
With the ubiquity of camera network, ease of imaging

and availability of online data, it is fairly easy to capture
and access images in the form of a set. An image set is a
collection of unordered images for a target, e.g. an object, a
human face, an event etc. Images within a set could exhibit
different characteristics about the target, such as different
views of an object or a face, images of a scene taken under
different lighting conditions, a set of video frames depicting
different poses of a human action. Thus, an image set con-
tains richer information than a single image and is poten-
tially more useful for problems like object or scene classifi-

cation, face recognition and action analysis. Many methods
[38, 37, 24, 41, 15] have been proposed to leverage sets as
input for matching problem. Most of these methods focus
on set modeling and how to compute a proper matching dis-
tance between two sets. They usually don’t have a compact
representation for sets, making it expensive to store the set
models in memory and slow to match, thus hard to scale
when the number of targets increases.

Learning-based hashing [5, 23, 39, 22, 36] has received
a lot of attention in problems like image retrieval. By com-
puting a binary code for each image, much less memory
space is needed and Hamming distance could be used to sig-
nificantly reduce the matching time. Since the hash codes
are learned, they are also able to preserve prior known con-
straints using supervised or semi-supervised learning and
achieve good matching accuracy. Inspired by image based
hashing, we consider the problem of hashing for image sets.
While in the individual image case, each image is encoded
as a binary code, we seek to represent a set as a single binary
code regardless of the set size. This can effectively reduce
the complexity of matching two sets without referring to the
individual images composing them and can greatly reduce
the time and memory cost during matching. Although the
benefits of doing set hashing are obvious and appealing, it
is not a trivial task: 1) a proper way of representing a set
is needed to effectively integrate information from each im-
age; 2) the hashing process should be connected with fea-
ture extraction so the image feature is optimized to achieve
accurate hash code matching; 3) the method should work
with sets of different sizes with the ability to improve per-
formance when bigger sets are used.

In this paper, we propose a novel deep neural network
model which takes an image set as input and computes a sin-
gle compact binary code. Codes are optimized so that sets
from the same class have smaller distances while sets from
different classes have bigger distances. Each image is first
passed through a feature extraction module to get an image
feature. Then these features are aggregated to compute set
features which summarize the features distribution within
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Figure 1: Our deep neural network architecture for set hashing. Each image in the input set goes through a shared feature extraction
network producing one feature per image. All features are aggregated in the set feature layer before being encoded to produce a single
binary hash code for the whole set.

the set. Finally, the set features are fed into a multilayer
network to be transformed into a binary code. An overview
of our set hashing network is given in Fig. 1. To ensure
the learned codes are meaningful, the model is trained us-
ing triplet loss to get a metric binary embedding by directly
optimizing on the distance value. This loss has been shown
as an appropriate choice for metric learning [28, 25]. We
evaluate the proposed method on multiple datasets used for
image set matching, and show our method compares favor-
ably with regards to the state-of-the-art including both sin-
gle image hashing methods and set matching.
Our contributions can be summarized as follows:

1. We propose an end-to-end deep neural network struc-
ture which learns a binary code for a given image set.
To the best of our knowledge, this is the first work to
tackle set hashing problem using a deep learning ap-
proach.

2. We incorporated two types of complementary features
to represent a set of image features - one capturing the
local distribution geometry and the other encodes the
set using a global dictionary. The combination of the
two enables learning high quality set hashing codes.

3. Our extensive experiments show the proposed set
hashing method achieves much better retrieval per-
formance compared to state-of-the-art image hashing
methods and is similarly effective compared to state-
of-the-art set matching algorithms. As opposed to
these state-of-the-art set matching method, ours is in-
dependent of the number of classes in the database thus
making set based matching scalable.

2. Related works
We will first review here the related literature that stud-

ied how to represent and match image sets. Then we discuss
works related to deep learning for hashing and set represen-
tation.

2.1. Image set representation and matching

The key problems for set matching are how to represent
a set of images and how to properly compute the similarity
between two given sets. The two being linked as the appro-
priate similarity measure depends on the set representation
at hand. The existing works can be grouped into two cate-
gories: parametric and non-parametric methods.

Parametric approaches seek to represent the distribu-
tion within a set, for example using a single Gaussian [30]
or Gaussian Mixture Models (GMM) [2] or as probability
distribution functions (PDFs) using kernel density estima-
tors [7]. The distribution representations are compared with
f-divergence functions such as the Kullback-Liebler (KL)
divergence. These approaches need to estimate a complex
model with potentially many parameters for each set. More-
over they make strong assumption on the distribution within
one set, and between gallery and query sets causing them to
be sensitive to statistical noise.

The non-parametric methods seek a more effective set
representation. Several works have focused on finding some
representative exemplars: mean [38], affine hull or convex
hull [4], approximated nearest neighbors [11], and regular-
ized nearest points [42]. Other works use a geometric repre-
sentation such as linear subspaces [6, 15] compared with the
principal angles method [14] or the projection kernel met-
ric [6]. Subspace based methods perform well when each
set represents a dense sampling, but tends to struggle when
the set is of small size with complex data variations. Lin-



ear subspace models are usually estimated from an eigen-
decomposition of the covariance matrix but discarding non
leading eigenvectors. Hence, the covariance matrix char-
acterizes the set structure more faithfully and has there-
fore also been used as a set representation [37] but its
higher dimensionality is a burden when dealing with large
scale problems. In the Hashing across Euclidean space and
Riemannian manifold (HER) framework proposed in [21],
video clips are encoded as covariance matrices and embed-
ded into a Reproducing Kernel Hilbert Space (RKHS) be-
fore applying a SVM-based hash learning procedure.

2.2. Deep learning for single image hashing

In the last years, several approaches were proposed for
binary embedding with deep networks. A two stage ap-
proach was developed in [39] where the authors first learn
target codes using pair similarity supervision and then train
a deep hash network to map each sample to its target
code. The pre-training procedure renders the method not
scalable. End-to-end deep hash methods were proposed
in [22, 17, 44]. The authors of [22] proposed to add a
latent hash layer to a standard AlexNet and use a classi-
fication loss to train their model. As our goal is to learn
hash codes for retrieval of similar samples, the optimization
should focus on learning hash codes for which the hamming
distance preserves similarity ranking. The classification op-
timization of the previous work has no guarantee to do so,
hence recent methods prefer to rely on a triplet loss to en-
force hamming distances between hash codes to respect the
classes semantics [44]. The authors of [17] also proposed
a divide and encode approach to improve bit independence.
All these methods proposed solely deep hashing methods
that produce a hash code for each single image separately.

2.3. Deep learning for set classification

A few works have addressed the problem of set clas-
sification with deep networks, mainly using class specific
models. The authors of [24] propose a multi-manifold deep
metric learning approach for image set classification. Class-
specific neural networks are trained using a maximal man-
ifold margin that minimizes the intra-manifold and maxi-
mizes the inter-manifold distances. In [8], class specific
auto-encoders are trained and the classification procedure
seeks the minimal reconstruction error when auto-encoding
each sample of the test set with each class model, the set
label being estimated as the most recurring label amongst
all images of the test set. A similar classification strat-
egy is used in [29] where class-specific neural networks are
trained using a Pooled Convolutional representation as in-
put. In these methods, the classification of one test set re-
quires passing each test image through each class network.
Hence, the complexity of these methods grows linearly with
the number of classes making them intractable for problems

with large number of classes in the gallery. Furthermore,
the test set structure is only used in aggregation of sample
distances or classification results.

To the best of our knowledge, our method is the first
to tackle the set hashing problem in an end-to-end learn-
ing framework. We specifically aim for a single model
that can efficiently encode sets of images from a num-
ber of classes without relying on class-specific models that
will prevent efficient scalability when the number of target
classes grows. Our model enables large-scale set based re-
trieval thanks to the binary representation.

3. Deep Set Hashing Network

We design a deep neural network model to process input
in the form of image sets. The network structure is com-
posed of three blocks: an image feature extraction phase
that is applied to each sample, an aggregation layer applied
to all the image features within an input set to compute set
features, and finally a hashing phase that encodes the set
features into a single hash code. The network structure is il-
lustrated in Figure 1. We detail in this section each building
block of our network.

3.1. Image feature extraction

Each image Ii in the input set S first goes through a
feature extraction module to transform the original pixels
to a powerful feature representation. Convolutional Neu-
ral Networks (CNN) are used as the feature extractor given
its proven success on various computer vision problems.
As has been showed in various published works, the CNN
structure needs to be engineered to work on specific tasks
and data domains.

To make the image feature relevant and useful, we could
choose a network design that has been shown to work well
for a particular problem. VGG-16 [31], Inception net-
work [33] and the recent ImageNet-winner Residual net-
work [10] achieve excellent performance on object classi-
fication problem. They would be the preferred architec-
tures for feature extraction when we work with object re-
lated datasets. For face recognition, CASIA network [43],
Google FaceNet [28] and Oxford VGG-face [25] are some
successful examples. Once the feature extraction part is
chosen, it is shared among all images. In Section 3.4, we
will also discuss how the network parameters (e.g., coeffi-
cients) will be learned in an end-to-end manner to derive the
optimal set hashing method.

3.2. Set feature computation

Given a set of input samples, we need to find a way to
merge them into a unified set representation regardless of
how many samples are present for a given set. This process
enables us to model a set compactly and perform distance



Figure 2: Illustration of set features in the image feature space:
red nodes are images of the set S considered, gray node are images
not in the set, orange nodes are cluster centers of the VLAD dictio-
nary, the green node is mean(S), black lines represent the space
delimited by min(S) and max(S), blue lines represent var(S)
and purple arrows represent V LAD(S) (best viewed in color).
Please see text for more details.

measure without resorting to the original images. Mean-
while, information from different images should be cap-
tured in the final representation so we benefit from having
more data than a single image.

To ensure the set feature is generic to maintain character-
istics of the unknown underlying image feature distribution,
we derive statistics to describe the global geometry property
of the set distribution. Specifically, for each input set S we
compute:

• the average feature: mean(S) ∈ Rd;

• the variance of each feature dimension: var(S) ∈ Rd;

• the element-wise minimum feature: min(S) ∈ Rd;

• the element-wise maximum feature: max(S) ∈ Rd.

mean(S) indicates the average location of the set in the
sample feature space. var(S) shows how values of each
feature dimension changes relative to its mean within the
given set. min(S) and max(S) give the range of the set
features. The last three measures capture the shape of the
set in the feature space. An illustration of the set statistic
feature is shown in Fig 2. Here each gray node represents an
image in the feature space, red nodes denote a set of images.
Green node is the mean of the set, the lines surrounding the
set gives min(S) and max(S). var(S) describes the aver-
age variation of the set around the mean. From the graph,
we can see these summary statistics are useful to provide
an overall view of the set, but they only depict the set itself
independent of other sets.

For an effective comparison, it is necessary to derive fea-
tures based on the overall feature distribution across all set
samples. Inspired by the popular pooling methods of image
local descriptors in image retrieval such as Bag-of-words
(BoW) [32] and its improved derivations, we add another
set feature using the Vector of Locally Aggregated Descrip-
tors (VLAD) [12] representation which has been shown
very effective in describing a set of features with a lower di-
mension compared to Fisher Vectors (FV) [26]. In our case,

we use the training image pool to construct the dictionaryD
that is required in computing VLAD features. This dictio-
nary no longer encodes local image patches but the higher
level concepts at the image level. Given the deep features
extracted from the CNNs, the dictionary can be used to rep-
resent semantic structure like pose, attributes, category etc.
To compute the dictionary, we first extract CNN features
for a random subset of the training images, then perform K-
Means to get the cluster centroids: C = {c1, . . . , ck}. As-
suming a set S of N images {I1, . . . , IN} with correspond-
ing CNN features {x1, . . . , xN}, each component vk,j of
the VLAD descriptor for S is calculated as:

vk,j =

N∑
i=1

wk(xi)(xi,j − ck,j), (1)

where k ∈ [1,K] is the cluster index in D and j ∈ [1, d]
indexes the dimension of the CNN image feature x. wk(xi)
is the weight for feature xi, which is 1 if NN(xi) = ck,
otherwise it’s 0. L2-normalization is applied to get the final
VLAD feature V LAD(S).

However, naively compute the VLAD feature has several
limitations. First, the hard assignment of centroid is not dif-
ferentiable, making it hard to train end-to-end. Second, the
dictionary is static once computed, making it not compat-
ible with the iterative training process of a deep network.
To handle these issues, we make two key modifications for
VLAD extraction. Instead of assigning each sample to one
centroid, soft assignment is used based on the distance to
each centroid. This is computed as:

wk(xi) =
e−||xi−ck||2∑
k e
−||xi−ck||2

, (2)

which essentially is a softmax operation. The new weight
now is a real value between 0 and 1 with higher value as-
signed to closer centroid. Soft assignment also eliminates
the problem of sparseness when a small number of images
are presented in a set. The second modification comes for
the training process. With the change of network parame-
ters, the deep feature for each image is also changed. It is
necessary that the dictionary is recomputed to incorporate
the updated features. Since the clustering is relatively time
consuming, it is not practical to do it for each batch. To
strike a balance, we compute a new dictionary at the begin-
ning of each epoch and use it to encode VLAD. This keeps
the training efficient while making VLAD adaptive to the
updated features. We choose a dictionary size of 64 empir-
ically for a good trade-off between accuracy and computa-
tional complexity.

As shown in Fig. 2, orange nodes denote cluster cen-
ters and purple arrows denote the difference vector between
each set node and its closest cluster center, we can see



VLAD describes the distribution pattern of set samples rela-
tive to the whole image feature space, thus giving additional
information on the set.

The output of the aggregation layer for a set S is
then the concatenation of the five set features F (S) =
(mean(S), var(S),min(S),max(S), V LAD(S)). No-
tice unlike other existing methods where set feature and
image feature are usually computed independently, in our
case, by connecting image feature extraction with set fea-
ture computation, the image feature will be learned through
the end-to-end back propagation training process described
in Section 3.4 below, to optimize the set feature, thus no
fixed assumption of the set distribution is made.

3.3. Set Hashing

Hashing is performed by multiple fully connected layers
with non-linear activation. We use W i to indicate the pa-
rameter of ith layer and bi is the corresponding bias. Given
a set aggregate feature F (S), the output of the first layer
could be written as: h1(F (S)) = s(W 1F (S) + b1) where
s(.) is a nonlinear activation function. For all layers ex-
cept the last layer, rectified linear unit (Relu) is used while
the sigmoid activation is used in the last layer to get output
value between 0 and 1. Similarly, output of the ith layer
is: hi(F (S)) = s(W ihi−1(F (S)) + bi). Note that each
layer hi is a multi-dimensional vector. Assuming we use
M layers for hashing, our set hashing network output is:

H(F (S)) = hM (F (S)) = s(WMhM−1(F (S)) + bM )
(3)

To generate the final binary code, we use 0.5 to threshold
this output: B(S) = sgn(H(F (S)) > 0.5).

3.4. Training the network

One of the distinct novelty of our proposed approach is
the end-to-end architecture that allows us to learn differ-
ent parts (image feature, set aggregation, and hashing) in
the same model. To train our network, we need to define a
proper loss function given set training data and labels. In
our case, we want the final binary code to preserve set re-
lations defined by corresponding labels, i.e. codes of sets
with the same labels should have a smaller Hamming dis-
tance while codes of sets with different labels should have
a bigger Hamming distance. To train such objective, the
triplet loss could be used as in [28] and [25].

Let’s denote a set triplet ti as< Sa,Sp,Sn >with corre-
sponding feature for each set as F (Sa), F (Sp) and F (Sn).
Here Sa is the anchor set, Sp is the positive set which has
the same class label as Sa, Sn is the negative set with dif-
ferent class label as Sa. To make the notation simpler, we
replace F (Sa) by Fa, F (Sp) by Fp and F (Sn) by Fn. We
get the output from the final hash layer and compute the loss

(a) Input image (b) Cropping (c) Scaling (d) Flip

Figure 3: Examples of augmented images.

for each triplet:

Lti = max{0, ||H(Fa)−H(Fp)||22−||H(Fa)−H(Fn)||22+α}
(4)

where ||.||22 is the squared Euclidean distance. The overall
triplet loss then could be computed as the average of all
individual triplet losses:

J0 =
1

|T |
∑
ti∈T

Lti (5)

Here T is the collection of all training triplets. Since the
hard binary output are non-differentiable, we use the real
valued outputs from the sigmoid activation. To help learn
better codes, we introduce two additional cost. First, we
compute a distance between real valued output from last
hash layer and binary output:

J1 =
1

2
||B−H||2F (6)

where B is the matrix of binary outputs for all input sam-
ples, H is the real valued outputs matrix and ||.||2F is the
squared Frobenius norm. This binary approximation cost
helps push the real valued output to be close to binary out-
put. Second, we would like the learned codes to be bal-
anced, meaning the variance of the output values should be
maximized:

J2 =
1

N
tr(HHT ) (7)

Here N is the total number of samples, i.e. N = 3|T |.
Overall, our loss function is defined as:

J = J0 + λ1J1 − λ2J2

λ1 and λ2 are parameters to balance the different cost terms,
they were set empirically to 1 and 0.1 for all experiments
based on preliminary evaluation. The optimization is car-
ried out with Stochastic Gradient Descent (SGD). Since
our architecture is actually a single network, the back-
propagation will optimize the parameters in both the set
hashing layers and the image feature extraction layers. The
set features are parameter-free and allow the gradient to be
back-propagated to the image feature extraction block.

3.5. Prepare Sets for the Network

Set inputs to our network could have very different sizes.
When the set size is small, our set feature, especially statis-
tics like mean and variance will not be meaningful. In this



Methods MNIST (32bits) CIFAR10 (32bits)
ITQ [5] 0.82 0.27

ITQ (deep feature) 0.97 0.64
KSH [23] 0.98 0.37

KSH (deep feature) 0.97 0.65
Deep image hashing [40] 0.97 0.52
Deep image hashing [22] 0.98 0.64

Set hashing 0.99 0.83
Unbinarized set feature 0.99 0.85

Table 1: Mean Average Precision (MAP) of different hashing
methods on MNIST and CIFAR10.

case, it is necessary to augment the set to include more im-
ages. We employ 3 types of augmentation to introduce vari-
ations: 1) cropping: use a fixed size window to generate
random cropped images; 2) scaling: downsample the image
to a lower resolution then resize it to the original size; 3)
flip: transform the image with a vertical or horizontal sym-
metry. Example images are shown in Fig 3. These types
can be combined to generate many extra images so we can
have a reasonably big set. This augmentation process brings
more variation to the training process, making the learned
model more robust to changes and noise present in the data.
Besides the issue of small sets, it is possible that we do not
have a sufficient number of sets for training, in this case,
random subsets are sampled from the original set to expand
the training data. The generated subset shares the same set
label.

4. Experiments
To evaluate our proposed set hashing method, we per-

form various types of experiments. First, we compare re-
trieval performance between our set hashing and different
traditional individual image hashing techniques to show that
our method can effectively use set input to achieve much
better performance. Second, we compare with state-of-the-
art set matching algorithms and show our learned set codes
can achieve similar performance with a much smaller mem-
ory footprint for the representation and matching complex-
ity. Third, we evaluate the influence of some important pa-
rameters of our network.

4.1. Comparison with individual image hashing

Two standard hashing datasets are used: MNIST and CI-
FAR10. MNIST [18] consists of 70000 handwritten digit
images from 10 classes (0-9). Each image is grayscale of
size 28x28 pixels. 50000 images are used as training data
and the remaining 20000 images are used as testing data.
CIFAR10 [16] is a subset of the Tiny image dataset [34]. It
contains 10 object classes, with a total 60000 images. Each
image is 32x32 pixels in color. We use 50000 images for
training and 10000 for testing. Since these two datasets

have no set information, we construct our own sets. For
each image in the training data, we randomly sample ad-
ditional images of the same class to form a set of size 10.
This ensures each image appears at least once in training
sets. This is also used to form query sets of size 30.

For image based hashing, the performance is measured
by computing set distance as the mean average image dis-
tance. We compare hash codes using the Hamming dis-
tance. During evaluation, testing data is used as query and
training data is used as gallery to perform retrieval. Mean
Average Precision (MAP) is used as the performance evalu-
ation metric. Each image set in the test set is used as a query
and when the retrieved image set belong to the same class,
the result is considered correct.

If not specified otherwise, raw pixels are taken as input
to learn the codes. The deep features used by ITQ and KSH
are extracted from CNNs trained on each dataset for clas-
sification using the same structure as the feature extraction
part of our model. Details about the CNN architectures used
for each dataset are given in Section 4.4. We use two lay-
ers for our set hashing, with 512 and 32 nodes respectively,
which hence produce 32 bits codes.

Comparisons are done with both standard hashing meth-
ods and deep learning based hashing methods, results are
shown in Table 1. Given that MNIST is a simple dataset
which contains limited variation for each character, all
methods perform quite well with deep learning based ap-
proaches reaching very high MAP value close to 1. Our set
hashing is even able to improve slightly to 0.99. On CI-
FAR10, all methods perform lower than on MNIST since
CIFAR10 is more challenging with low quality images of
objects under large appearance variation. KSH and ITQ
trained directly on pixels perform poorly. By using deep
features, their performance is greatly improved. However,
an end-to-end feature learning and hashing network for im-
age [22] achieves a higher MAP of 0.64. Our set based
hashing method further increases the performance beating
image based hashing methods by a large margin, indicating
the effectiveness of our method in encoding multiple im-
ages within a set into a single binary code. Additionally,
we also evaluate performance of the learned hash codes be-
fore binarization in the last row of Table 1. The real valued
feature are compared using the Euclidean distance. They
achieves better performance than hash codes but not with a
large margin, indicating the binarization has a minimal ef-
fect on the performance thanks to the binary approximation
cost J1 defined in Eq. 6.

4.2. Comparison with set matching

We use some of the most popular image set data to com-
pare with non-hashing based set matching methods. Two
face datasets are used, including a small scale Honda/UCSD
dataset [19] and the larger scale YouTube Celebrity [13].



Methods Honda/UCSD YTC ETH-80
DCC [15] 92.56 51.42 91.75
MMD [38] 92.05 54.04 77.50
AHISD [4] 91.28 61.49 78.75
CHISD [4] 93.62 60.42 79.53
SANP [11] 95.13 65.60 77.75
CDL [37] 98.97 56.38 77.75
RNP [42] 95.90 65.82 96.23
ADNT [8] 100 71.35 98.12
RT [9] 100 74.10 95.50
IDLM [29] 100 76.52 98.64
Set Hashing (512 bits) 100 75.03 97.23

Table 2: Average classification accuracy on image set datasets,
compared with state-of-the-art image matching techniques.

For object set matching, the ETH-80 dataset [20] is used.
The Honda/UCSD dataset contains a total of 59 video se-

quences from 20 different subjects. Each video has a frame
count ranging from 12 to 645. The original face images
have a resolution of 32x32 pixels which are very low qual-
ity, they are resized to 100x100 to be fed into our face fea-
ture extraction neural network. YouTube Celebrities (YTC)
dataset consists of 1910 videos of 47 celebrities. The face
images exhibit large variations in illumination, pose and ex-
pression. The face region of each frame is extracted using
an off-the-shelf face detector [35]. For each person, three
videos are randomly selected as the training data (which is
used as the gallery during testing), the remaining videos are
used as test queries. The ETH-80 object dataset contains
image sets of 8 object categories: apples, cars, cows, cups,
dogs, horses, pears and tomatoes. Each category has ten ob-
ject instances and each instance has images under 41 differ-
ent orientations. We use 5 instances as training data (which
become gallery sets during testing), and the remaining 5 are
used as test query sets.

For evaluation, we use classification accuracy as metric
to be comparable with both set matching and classification
approaches. The nearest neighbor is used to predict the la-
bel. In this experiment, we use two hashing layers with
1024 and 512 nodes. This configuration works best across
all datasets. We summarize the results in Table 2. All re-
cently proposed methods [8, 9, 29] perform well on these
datasets. On Honda/UCSD dataset, four methods are able
to achieve perfect classification including ours. Our method
performs slightly worse on ETH-80 than ADNT and IDLM
but still much better than all other methods with only 512
bits for each set. YTC is more challenging given face im-
ages captured in vastly difference conditions. Our method
is able to perform second best with a little lower accuracy
than IDLM. We would like to point out that, as discussed in
Section 2.3, both IDLM and ADNT train class specific deep
models. Therefore, the complexity in training and testing

Methods 16 bits 32 bits 64 bits
ITQ (image) 0.24 0.27 0.28
ITQ (deep feature) 0.62 0.64 0.66
KSH (image) 0.31 0.37 0.39
KSH (deep feature) 0.63 0.65 0.66
Deep Hashing [22] 0.61 0.64 0.67
Set Hashing 0.76 0.83 0.87

Table 3: Mean Average Precision (MAP) of different hash bits on
CIFAR10 dataset.

linearly increases according to the number of classes. At
test time, each image in the query set has to be processed
independently by all classes models and voting is needed to
decide the final set label. Our method uses a single model
for all classes and produces one hash code regardless of how
many images are in each set. Thus, the complexity of our
approach does not grow as the number of classes increases
and testing is much faster. Furthermore, our model learns a
similarity-preserving binary embedding and thus could also
handle matching for classes out of the training set.

4.3. Effects of key configurations

There are several important configurations in our net-
work which will influence the final output. Here we con-
duct a detailed analysis on each factor. To do that, we use
CIFAR10 as a testbed given it is easy to form sets and has
enough data to train our model from scratch. Settings sim-
ilar to Section 4.1 are applied with modifications for each
experiment conducted. The results are reported by aver-
aging 10 trials of random set generation. For set hashing,
we are interested in the following questions: 1) the perfor-
mance under different number of hash bits; 2) how different
set sizes will affect our method; 3) how effective is the aug-
mentation when applied to small sets; 4) how useful each
type of set feature is.

4.3.1 Hash Bits Comparison

We evaluate the impact of hash bits number for the match-
ing performance. The results are given in Table 3. From the
table, it can be seen that the performance of each method
grows consistently with the number of bits. Due to the
use of deep features, KSH and ITQ performs similarly to
the end-to-end image based deep hashing which essentially
only uses a simple linear transformation and sigmoid acti-
vation for the compression. Our set hashing however offers
much better performance across all hash bits selection.

4.3.2 Influence of set size

Set size: to evaluate the effect of different set sizes, we con-
struct query sets with sizes in the range of values V = [1, 5,



Input set size No augmentation Small augmentation Large augmentation
1 0.25 0.41 (5) 0.62 (10)
5 0.55 0.70 (10) 0.69 (20)
10 0.69 0.73 (20) 0.74 (30)
20 0.75 0.80 (30) 0.77 (40)

Table 4: Mean Average Precision (MAP) of different set sizes on
CIFAR10 dataset. The augmented set size is shown in parenthesis.

10, 20] while keeping the gallery sets size fixed to 10 sam-
ples and using hash codes of 32 bits. The results can be seen
in the second column of Table 4. The performance increases
consistently when the query set size increases, which indi-
cates our method is able to leverage more data to improve
its performance.

Data augmentation: we also investigate how data aug-
mentation, as described in Section 3.5, can improve our set
hashing framework performance especially when dealing
with small set sizes. Two augmentation cases are defined.
Small augmentation expands V to S(V )=[5, 10, 20, 30] and
large augmentation expands V to L(V )=[10, 20, 30, 40].
The results reported in Table 4 show that data augmentation
can significantly improve the set hashing performance, es-
pecially with small query sets (MAP from 0.25 to 0.62 with
a single image input set). For larger set sizes, augmentation
adds small improvement indicating the performance tends
to converge when sufficient number of samples are used.

4.3.3 Set feature comparison

We evaluate the performance using each type of set features
(statistics and VLAD) and their combination. By only us-
ing one of the set features, our method is able to get rea-
sonably good results with statistics performing better than
VLAD feature in this particular case with MAP 0.80 and
0.79 respectively. However, combining these two features
the MAP gets to 0.83. The result shows the complementary
property of these two set features, they capture the local
characteristics and the global context of a set, respectively.

4.4. Implementation details

Based on the target datasets, we use different pre-trained
CNN model as feature extraction module. For experiments
on face dataset, we use the CASIA face model [43]. The
output of pool5 layer is treated as feature. We replaced Relu
with parametric Relu as activation function which gives a
little improvement in performance. For the object dataset,
we use the VGG-16 [31] model which won ILSVRC-2014
competition [27]. For MNIST and CIFAR10, we use cus-
tom designed network structures. MNIST network uses two
5 × 5 convolution layers, each followed by a 2 × 2 max
pooling layer. A fully connected layer with 256 nodes is
used to compute the feature. For CIFAR network, 3 con-

volution with max pooling layers are used and followed
by a fully connected layer for feature extraction. For all
the datasets except MNIST and CIFAR10, we expand each
original image set by generating 50 subsets. If the set is
small, we perform augmentation using the random transfor-
mations described in Section 3.5 to make the set at least
10 images, then do the sampling. Training is performed
with 3000 triplets in each epoch and run for 10000 epochs.
The triplet margin α is set to 1

2

√
b where b is the number

of bits used in a given experiment, this setting makes the
margin grow sub-linearly with increasing binary code sizes.
We implemented our approach with Theano [3] and Tensor-
Flow [1] and the training is performed on a NVIDIA GTX
Titan X.

5. Discussion

In this work, we tackle the challenging problem of hash-
ing image sets for scalable matching. We introduce a deep
network which takes an image set as input, and process it
with image feature extraction, computing set feature and
finally convert it to a single binary code. The network is
learned from end-to-end where triplet loss is used to opti-
mize the hashing output and feature learning. Extensive ex-
periments are conducted showing our set based hashing is
superior to single image based hashing which is also trained
using deep models. Our method is also able to achieve sim-
ilar retrieval performance with state-of-the-art set matching
algorithms which does not have a compact representation as
binary codes and use more complicated class-specific mod-
els. Further experiments show our approach is able to im-
prove with larger set size and the set features we used are
complementary and work better when used together.

Set hashing is a valid solution to a real-world problem
when dealing with large collection of images. Our future
effort will be dedicated to the design of a network archi-
tecture which can potentially learn set features and domain
specific set data generation.
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