
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017 5367

Hash Bit Selection for Nearest Neighbor Search
Xianglong Liu, Member, IEEE, Junfeng He, Member, IEEE, and Shih-Fu Chang, Fellow, IEEE

Abstract— To overcome the barrier of storage and computation
when dealing with gigantic-scale data sets, compact hashing has
been studied extensively to approximate the nearest neighbor
search. Despite the recent advances, critical design issues remain
open in how to select the right features, hashing algorithms,
and/or parameter settings. In this paper, we address these by
posing an optimal hash bit selection problem, in which an
optimal subset of hash bits are selected from a pool of candidate
bits generated by different features, algorithms, or parameters.
Inspired by the optimization criteria used in existing hashing
algorithms, we adopt the bit reliability and their complementarity
as the selection criteria that can be carefully tailored for hashing
performance in different tasks. Then, the bit selection solution is
discovered by finding the best tradeoff between search accuracy
and time using a modified dynamic programming method.
To further reduce the computational complexity, we employ the
pairwise relationship among hash bits to approximate the high-
order independence property, and formulate it as an efficient
quadratic programming method that is theoretically equivalent
to the normalized dominant set problem in a vertex- and edge-
weighted graph. Extensive large-scale experiments have been
conducted under several important application scenarios of hash
techniques, where our bit selection framework can achieve
superior performance over both the naive selection methods and
the state-of-the-art hashing algorithms, with significant accuracy
gains ranging from 10% to 50%, relatively.

Index Terms— Nearest neighbor search, hash bit selection,
bit reliability, bit complementarity, normalized dominant set,
locality-sensitive hashing.

I. INTRODUCTION

NEAREST neighbor (NN) search is a fundamental issue
in many applications such as multimedia search, stero-

vision, machine learning, and biomedical pattern matching.
It has attracted great attention in the past decades [1]–[11].
Though tree based NN search methods (e.g., k-D tree [1])

Manuscript received November 9, 2015; revised June 21, 2016,
September 29, 2016, and March 1, 2017; accepted March 28, 2017. Date
of publication April 19, 2017; date of current version August 21, 2017. This
work was supported in part by the National Natural Science Foundation of
China under Grant 61402026 and in part by the Foundation of State Key
Laboratory of Software Development Environment under Grant 2015ZX-04.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Wen Gao. (Corresponding author: Junfeng He.)

X. Liu is with the State Key Laboratory of Software Development
Environment, Beihang University, Beijing 10091, China (e-mail:
xlliu@nlsde.buaa.edu.cn).

J. He is with Google, Mountain View, CA 94043 USA (e-mail:
junfenghe@google.com).

S.-F. Chang is with the Department of Electrical Engineering,
Columbia University, New York City, NY 10027 USA (e-mail:
shih.fu.chang@columbia.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
the proof details of Theorem 1. Contact xlliu@nlsde.buaa.edu.cn and
junfenghe@google.com for further questions about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2695895

have gained popularity in the past decades, they suffered
from the severe performance degeneration in many cases
for high-dimensional features (e.g., SIFT-based bag-of-words
feature, GIST, deep learning based feature, etc.) [12]. Instead,
as one of the commonly-used approaches, hash based methods
have shown nice theoretic guarantee properties and significant
empirical success in many applications [6], [13]–[22].

Locality-Sensitive Hashing (LSH) [13] is one of the most
well-known hash based NN search methods. To guarantee the
search accuracy, the basic LSH method tries to embed similar
data in original similarity metrics like l p-norm (p ∈ (0, 2])
into similar codes by thresholding the random projections [14].
However, since the projections are generated independently
and randomly, usually long hash codes are required to meet the
desired performance, which increase computation and memory
consumption in practice. To generate compact, yet informative
binary codes, various types of hashing algorithms have been
further proposed following LSH [9], [17]–[20], [23]–[26],
[26]–[33].

Though the past decade has witnessed the rapid devel-
opment of hashing research, however, designing a hashing
algorithm for specific scenarios still requires lots of efforts.
Even tailoring a hashing algorithm for different datasets usu-
ally requires significant efforts to discover the best parameter
settings, partially due to the varying difficulty of the nearest
neighbor search on different data [34]. Since there are a
variety of hashing algorithms in hands, an obvious question is
whether we can directly choose the most desirable subset of
hash functions (or bits in binary form) from different sources
generated by existing hashing algorithms. This is analogous
to the well-known feature selection problem that aims at
selecting the optimal subset of features from an existing
feature pool [35]. Therefore, we similarly name such problem
hash bit selection, which aims at selecting the most informative
bits from a pool of hash bits.

Targeting the NN search task, we adopt the bit reliability and
their complementarity as the selection criteria, motivated by
the optimization approach used in existing compact hashing
algorithms. These two important criteria can be carefully
tailored for good hashing performance in any specific task.
We then propose similarity preservation of each bit and the
independence among them for the general hashing problems.
Considering the overall (high-order) bit independence prop-
erty, we achieve the selection of the most informative hash bits
by finding the best tradeoff between search accuracy and time
using a dynamic programming method with certain additional
techniques to achieve speedup. To further reduce the compu-
tational complexity, we employ the pairwise relationship to
approximate the high-order bit independence, and formulate
the selection problem as a quadratic programming problem

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5368 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

Fig. 1. The proposed unified bit selection for various hashing scenarios, where the candidate bits can be generated from multiple sources.

that can be solved efficiently using the replicator dynamics.
The optimal subset is proved to be equivalent to the normalized
dominant set in a vertex- and edge-weighted graph.

Figure 1 demonstrates the framework of the proposed bit
selection which is generic for a wide range of scenarios and
hashing sources. Specifically, it serves as a unified framework
that can support various important scenarios (e.g., hashing
with multiple features, multiple hashing algorithms, multiple
bit hashing, etc.) using different types of hashing algorithms
(linear, nonlinear, multi-bit, multi-feature, etc.) with different
feature spaces, parameter settings, etc., and naturally supports
different search schemes including Hamming distance ranking
and hash table lookup. Under this framework, we first propose
two useful selection criteria: the bit reliability and complemen-
tarity. According to these selection criteria, we respectively
design two selection algorithms via dynamic and quadratic
programming with respect to different orders of the bit com-
plementarity. Since the dynamic programming based solution,
considering the high order correlations among bits, is quite
time-consuming, the quadratic based one is further designed
to speed up the computation by reducing the higher-order
complementarity to the pairwise case.

The whole paper extends upon a previous conference publi-
cation [36] with additional exploration on the bit selection cri-
teria and algorithms, detailed discussions from different point
of views, and expanded experimental results. The remaining
sections are organized as follows. Section III introduces bit
selection framework and criteria. In Section IV we first present
a straightforward selection method via dynamic programming,
considering the high-order bit complementarity. To further
reduce the computation, in Section V we approximate the bit
complementarity based on the pairwise mutual information
and thus reformulate the selection as an normalized domi-
nant set problem that can be efficiently solved by quadratic
programming. We conduct comprehensive experiments to
demonstrate the superiority of the bit selection framework
in Section VI.

II. RELATED WORK

Owing to the attractive performance, in the past decade
hashing technique has been widely used in a variety of appli-
cations including large-scale visual search [30], [31], machine

learning [7] and recommendation [37]. The pioneering work
Locality-Sensitive Hashing (LSH) hashes similar data into the
similar (usually binary) codes, and achieves fast search using
Hamming distance ranking or hash table lookup by exploiting
the efficient binary operations. Based on the concept of LSH,
a bunch of hashing studies have been proposed to learn infor-
mative hash functions that can achieve satisfying performance
using compact hash codes. To pursue compact, yet informative
binary codes, various types of hashing algorithms have been
proposed following LSH, such as unsupervised [20], [24], [25],
(semi-)supervised [17], [26], nonlinear (kernelized [26], [27],
spherical [28] and clustering [19]), multiple features [29], [30],
multiple labels [31], multiple bits [18], [32], [38], [39] and
deep learning [40], [41].

Among these methods, the most typical solution is first
proposing an optimization objective such as the neighbor dis-
similarity [15], [42], [43], reconstruction error [9], [16], [41],
ranking loss [44], [45], distance bias [46], and quantization
error [19], [24], [25], and then designing efficient optimiza-
tion algorithms that can find the desirable hash functions.
In most cases, these criteria simultaneously take both the
quality of hash functions and their complementarity into
account [15], [17], [24], [31], [42]. As previous research show,
the complementarity among hash functions is important for
compact binary codes generation [15], [18], [42]. In prac-
tice, the entropy is a natural measurement of the comple-
mentarity among hash functions. However, its computation
involves the joint probability distributions, which together
with the discrete constraints dramatically makes the optimiza-
tion of hash functions rather difficult. Therefore, research
like [15], [24] and [25] employed the orthogonality
on hash functions to surrogate the bit complementarity.
Besides, [28] and [19] respectively forced the balanced par-
titions to achieve the independence between the nonlinear
hash functions. The sequential manner is another alternative
to achieve bit complementarity heuristically [17], [31].

Besides the emerging hashing algorithms, the bit selection
is a promising solution targeting the specific scenario. In the
literature, there are very few works regarding the bit selection
problem. The most related work [47] greedily selects bits
preserving maximum margins for specific semantics. But it

LIU et al.: HASH BIT SELECTION FOR NEAREST NEIGHBOR SEARCH 5369

is only suitable to scenarios like semantic search, where
sequentially estimating the averaged margin is computationally
expensive, and the independence between bits, benefiting the
compact hash codes [15], [23], is not considered explicitly.
Recently, [8] proposed an a globally optimized bit selection
that exploits the bit correlation based on mutual information
minimization and achieved encouraging performance in fast
visual search.

The bit selection finds the most desirable bits from a
large pool of candidates for the nearest neighbor search
task, which to some extent works as the traditional feature
selection does. The feature selection finds a small subset of
features to minimize redundancy and maximize relevance to
the target (usually class labels in classification) [35]. In the past
decades, there are many studies proposed that mostly focus on
selecting relevant features that are highly relevant to the class
labels [48]–[50]. By eliminating the noisy, redundant, and
irrelevant features based on different relevance definition,
the feature selection can faithfully improve the learning per-
formance in the classification task.

However, from the aspect of the motivation, targeting task,
and problem formulation, the bit selection is quite different
from feature selection. The bit selection is proposed to deal
with the problem that how to exploit the existing hashing
algorithms for the nearest neighbor search in an easy and
flexible way, instead of designing a new specific algorithm
which requires much effort. The different motivations and
the targeting tasks make the selection criteria are quite dif-
ferent, rather than the relevance to the class label in fea-
ture selection [49], [50]. Besides, the bit selection pursues a
desired number of hash bits from the candidate binary codes,
which prevents from directly employing the selection solutions
in the feature selection.

III. BIT SELECTION

During the past decade, quite a number of hashing algo-
rithms have been proposed for different scenarios, which
can be adopted to generate a large pool of over-complete
hash bits (or functions in binary hashing) for n data points
Z = {zi , i = 1, . . . , n}. Here each zi is encoded by L bits gen-
erated by specified hashing algorithms with different features,
parameter settings, etc. We denote the L bits of heterogeneous
types by an index set V = {1, . . . , L}, and represent the i -th
bits of all n points by yi ∈ {−1, 1}n. The goal of bit selection
is to discover a small bit subset (of size l) S ⊂ V , which can
achieve satisfying NN search performance using short hash
codes.

A. Selection Criteria

In the literature, two properties have been proven critical for
compact hash codes in the task of nearest neighbor search: bit
reliability and bit complementarity [15], [23]. Bit reliability
considers the capability that the embedded binary codes can
retain the original distances in Hamming space, and meanwhile
bits complementarity measures the independence among them,
which together lead to short, yet discriminative codes. More-
over, [8], [23], [51] pointed out that the bit complementarity

helps to pursue large entropy among bits and thus allows
fast search using hash tables. Therefore, for nearest neighbor
search intuitively we prefer the bits of high bit reliability and
mutually complementary in the bit section. Note that both
selection criteria are general for hashing scenarios, and there
are many options that can be flexibly tailored for different
objectives.

1) Bit Reliability: To obtain good hash codes guaranteeing
search accuracy, hashing algorithms should preserve similar-
ities between data points, i.e., similar points are supposed to
share similar codes with small hamming distances [15], [23].
The similarity should be adaptively defined based on the
predefined objectives, e.g., for Euclidean neighbor search,
we can define the similarity based on �2 distances; while for
image search, similarity based on label consistency might be
more appropriate.

Without loss of generality, we introduce the typical defini-
tion of the similarities S = (si j) ∈ R

n×n based on �2 distances.
Formally, each nonzero entry si j is the similarity between the
nearest neighbors zi and z j :

Si j =
⎧
⎨

⎩
e
− ‖zi −z j ‖2

σ2 , z j ∈ N (zi)

0, otherwise.
(1)

where N (zi) is the nearest neighbor set of zi .
For the high-quality hash bit, if z j ∈ N (zi), then the higher

the similarity Si j between z j and zi , the larger the probability
that the k-th hash bits of z j and zi satisfies ykj = yki . Then
the similarity preservation for k-th bit can be defined following
the spectral embedding loss [15]:

πk = −
∑

i j

Si j ‖ykj − yki‖2, (2)

To further make the weight positive and sensitive to the
capability of neighbor preservation, in practice we use the
exponential form with a parameter γ > 0:

πk = e−γ ykLyT
k , (3)

where L = diag(S1) − S is the Laplacian matrix.
2) Bit Complementarity: Since hash-based nearest neighbor

search retrieves a number of points in the hitted buckets
(i.e., those buckets with similar hash bits as the query) and
usually further rerank them using raw features, the computa-
tional complexity will highly depend on the number of samples
in the selected hash buckets. Perfectly balanced buckets will
distribute samples evenly, and thus reduce the searching time
on average.

Note the fact that both the worst case and the average case
of time complexity in hash-based nearest neighbor search can
be minimized if the buckets are perfectly balanced, when the
entropy among all hash bits is maximized. Similar discussion
in prior research indicated that maximizing entropy among
hash bits not only provides the most compact and least
redundant hash code, but also perfectly balances all the hash
buckets [23]. Therefore, to achieve the desired performance
with less hash bits, it requires the entropy of the selected
hash bits to be maximized to guarantee the compact/irredudant
hash codes. Fortunately, in the bit selection framework, all

5370 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

candidate hash bits are available for the estimation of the
probability distributions before computing the entropy, which
largely reduces the optimization difficulty.

We represent the chosen bits by the l dimensional
binary random vector YS corresponding to the selected bits
yi1 , yi2 , . . . , yil in S. It is not difficult to see that if the entropy
H (YS) is maximized, there would be no redundancy among
selected bits and hence the bits are most compact. If all the bits
yik , ik ∈ S are independent for any choice S ⊂ V , we will have
H (yi1, . . . , yil) = H (yi1) + H (yi2) + . . . + H (yil). However,
in practice for most of the cases, the candidate hash bits are
not guaranteed to be independent. Some of them may have
dependency among each other. In this case, the computation of
the entropy H (YS) involves higher-order relationships among
the candidate bits. For the sequential selection, the natural way
to compute the entropy is applying the chain rule:

H (yi1, . . . , yik) = H (yi1) + H (yi2/yik)

+ . . . + H (yik /yi1 , . . . , yik −1).

IV. BIT SELECTION VIA DYNAMIC PROGRAMMING

In the last section, we have introduced two important criteria
for hash bit selection, among which the bit reliability and
complementarity correspondingly improve the quality of the
hash codes from the individual and overall points of view. With
the desired number of hash bits (e.g., l in this paper) fixed,
maximizing their entropy will impose strong complementarity
on them, and thus results in discriminative and balanced hash
codes. Next we will present a simple model that incorporated
both selection criteria and an naive solution using dynamic
programming.

A. Formulation

The bit reliability and their complementarity together can
provide an appropriate tradeoff between the accuracy and the
time cost of the nearest neighbor search. A good subset of hash
bits should possess higher reliability and complementarity
simultaneously.

Specifically, given L candidates, the problem of selecting
an optimal subset of l bits for nearest neighbor search can be
formulated as finding the best tradeoff between bit reliability
and complementarity (meanwhile between search accuracy and
search time) via an optimization framework linearly combining
both selection criteria:

maxS
∑

i∈S πi + αH (YS)

s.t. |S| = l,S ⊆ V (4)

where |S| means the cardinality of set S. α > 0 is a parameter
to control the tradeoff between the two criteria (or between
search accuracy and search time).

B. Optimization

The optimization in equation (4) is quite difficult,
because the term H (Y) potentially involves higher-order
relationships among bits. However, if all the candidate
bits yi , i = 1, . . . , L are independent, we will have

Algorithm 1 Bit Selection via Dynamic Programming.

H (yi1, . . . , yil) = H (yi1) + H (yi2) + . . . + H (yil)
for any S. Subsequently, the problem can be rewritten as:

maxS
∑

i∈S πi + αH (yi)

s.t. |S| = l,S ⊆ V (5)

which can be solved efficiently using a greedy algorithm
(or forward selection procedure): we sequentially select the bit
with the highest value of πi + αH (yi) among the remaining
ones, until we get l bits. The problem also can be regarded as
a degenerated Knapsack problem with all item weights equal
to 1 and the capacity of the bag constrained to be l.

In most cases, the candidate bits are generated by different
ways, and usually contain higher-order correlations among
them. Therefore, the problem (4) is very difficult to solve
efficiently. Fortunately, we can decompose the computation of
the bit entropy according to (4), where H (YS) is increased by
H (yik/yi1 , . . . , yik−1) when S is expanded from {i1, . . . , ik−1}
to {i1, . . . , ik} (k ≤ l).

Motivated by this observation, we provide a simple approx-
imate solution, and the maximum objective value Fi, j when
selecting the j -th bit into from the subset S from i candidates,
where Fi, j is defined as follows:

(1) F0, j = 0, 0 ≤ j ≤ l

(2) Fi, j = max{Fi−1, j ,Fi−1, j−1 + vi }� (6)

where vi is the value of vi = πi + αH (yi/S) when adding
the i -th bit into S. This is quite similar to Knapsack problem
for general cases, with the value of each added item equal to
the sum of its bit reliability and the entropy increase, all item
weights equal to 1, and the capacity of the bag constrained
to be l. Therefore, we modify the dynamic programming
algorithm of Knapsack problem, where the updating condition
depends on Fi−1, j ≥ Fi−1, j−1 + vi , i.e., whether adding the
bit will increase the objective value F .

Algorithm 1 lists the detailed procedures as a simple
approximating solution for problem (4). Unlike the general

LIU et al.: HASH BIT SELECTION FOR NEAREST NEIGHBOR SEARCH 5371

dynamic programming, Algorithm 1 can not guarantee the
global optimum anymore. However, it is shown to be very
fast and effective in experiments.

C. Speedup

In Algorithm 1, the bottleneck of the time complexity
mainly lies on the computation of the conditional entropy
Hi|Ti−1, j−1 = H (yi/YTi−1, j−1), where Ti−1, j−1 denotes the

selected bit subset containing j − 1 selected bits from i − 1
candidate ones. This operation would take very long time when
the size |Ti−1, j−1| of the subset becomes large.

We note that for any set S1 ⊆ S2 and any bit yi ,

H (yi/YS2) ≤ H (yi/YS1). (7)

This motivates us to build a set O, whose each element is a
subset of Ti−1, j−1, and then employ minQ∈O H (yi/YQ) as a
good upper bound for H (yi/YTi−1, j−1).

In practice, O contains a great number of subsets of
Ti−1, j−1. To reduce the complexity, we can only consider
subsets with no more than τ elements. τ actually determines
the order of the relationship among the candidate bits, and is
usually set to 2 or 3 for efficiency. However, computing their
entropy online is still time-consuming. We further introduce
a set � containing all sets with no more than τ elements
from V . Therefore, O ⊆ �, i.e., if any set Q ∈ O, then
Q ∈ �. To speed up our algorithm using minQ∈O H (yi/YQ)
as a fast approximation of H (yi/YTi−1, j−1), we only need build
� and precompute all H (yi/YQ) for each i ∈ V and Q ∈ �
aforehand. At the online selection stage, H (yi/YQ) for Q ∈ O
can be computed fast by looking up the precomputed values.

V. BIT SELECTION VIA NORMALIZED DOMINANT SET

We have presented a simple dynamic programming algo-
rithm for bit selection taking both similarity preservation and
complementarity into account. However, due to the high-
order relationships involved in the computation of the entropy,
the algorithm even with speedup techniques still consumes
much time, especially when using a large τ . In this section,
we will first give a pairwise approximation for the entropy
computation, then present a simple efficient quadratic pro-
gramming algorithm for bit selection, and finally theoreti-
cally explain the intuition with a concept named normalized
dominant set.

A. Pairwise Approximation

If the entropy H (YS) is maximized in (4), there would be
no redundancy among selected bits and hence the bits are most
compact. Actually note the fact that

H (YS) =
∑

i∈S
H (yi) − I (y1, . . . , yi , . . .) (8)

where I (y1, . . . , yi , . . .) is the mutual information among the
bits of YS . The above equation indicates that maximizing
H (YS) not only requires every bit itself to be the most
informative, but also makes sure there are no redundancy
among yi , i ∈ S, which would lead to the most compact bits.

In the above equation, we can easily observe that if yi is highly
correlated with other bits in S, I (y1, . . . , yi , . . .) would be
increased, therefore H (YS) would be decreased. H (yi) will
be maximized if the bits itself are balanced, i.e., 50% chance
to be +1 or -1. Since most existing hashing methods already
generated balanced bits [24], [26], [52], [53], guaranteeing
the informativeness of the selected bits, to maximize H (YS)
we can place more importance on the minimizing the second
part characterized by the mutual information I (y1, . . . , yi , . . .)
among all candidate bits.

Considering higher-order independence among more than
two hash bits hardly improves the search quality [28]. This
fact will be also validated by our experimental observation
in Section VI. Therefore, for efficiency we approximately
measure the independence among bits using their pairwise
relationships. The smaller mutual information between i -th
and j -th bits indicates a larger independence between them,
and thus we define the pairwise bit complementarity between
i -th and j -th bits based on their mutual information I (yi , y j):

ai j = e−λI (yi ,y j), (9)

where λ > 0, and an exponential form is again adopted for
positive and sensitive measurement.

Note that ai j = a j i , which means A = (ai j) serves as a
symmetric complementarity matrix between all bits. Moreover
since each bit is self-dependent, all the elements on the main
diagonal of A are zeros.

B. Formulation

The bit selection problem mainly aims to find bits that not
only preserve the similarity of data points, but also show strong
uncorrelation. Formally, with the pairwise approximation to
the mutual information among all candidates, we can define an
affinity matrix Â incorporating both bit similarity preservation
and their complementarity:

Â =
A
, (10)

where
 = diag(π). The affinity matrix Â, judging the
cohesiveness between bits, should be non-negative, symmetric,
and monotonic with respect to bit quality and their com-
plementarity. Specifically, for any two bits i and j in V ,
Âi j ≥ 0, Âi j = Â j i , and Âi j should monotonically increase
with respect to πi , π j and ai j , due to the fact that each desired
bit is supposed to strongly connect to others, in terms of
similarity preservation and mutual independence.

Based on the affinity matrix, the bit selection problem can
be straightforwardly reformulated as a quadratic programming
with binary constraints, rather than the dynamic programming
based on conditional entropy in last section:

maxx
1

2
xT Âx

s.t. x ∈ {0, 1}L×1, |x|0 = l (11)

The objective function 1
2 xT Âx measures the cohesiveness

among the selected bits indicated by the binary vector x:
xi = 1 (i = 1, 2, . . . , L) means the i -th bit is selected.

5372 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

The optimal x∗ should maximize the cohesiveness among its
corresponding bit subset of desired size l.

Here, the way to incorporate the two important properties
of compact hash codes is different from the linear combina-
tion used in dynamic programming algorithm in last section.
In fact, the definition consisting of symmetric production
surprisingly possesses good nature behind. In Section V-D,
we will disclose its physical meaning.

C. Optimization

Directly optimizing Problem (11) is quite difficult (NP hard)
due to the discrete constraints on x. Fortunately, motivated by
previous research on subset selection [54], it can be approx-
imately solved by relaxing the binary x to a non-negative
real-valued one. Each element of x, with a continuous value
in [0, 1] instead of the discrete one in {0, 1}, characterizes the
importance of the desired bit.

If we define the support of x as σ(x) = {i ∈ V : xi 	= 0},
then the desired bit subset corresponds to the elements in
the support with largest values. This turns to a quadratic
programming with continuous constraints on x:

maxx
1

2
xT Âx

s.t. x ∈ � (12)

where

� = {x ∈ R
L : x ≥ 0 and 1T x = 1}, (13)

To find (local) solutions of a quadratic programming prob-
lem, a straightforward and powerful way is the so-called
replicator dynamics [54], arising in evolutionary game theory.
In the replicator dynamics, we first initialize x(0) = L−11,
and then perform the iteration in an efficient way as follows:

xi(t + 1) = xi (t)
(Âx(t))i

x(t)T Âx(t)
, i = 1, . . . , L . (14)

The above dynamics enjoy a sound property that the simplex
� is invariant to the sequential updating. Moreover, it has
been proven that with symmetric, nonnegative Â, the objective
function will strictly increase, and its asymptotically stable
points correspond to strict local solutions.

By solving (12) using the replicator dynamics, usually we
can get l bits when l
 L. However, in practice it is possible
that |σ(x∗)| < l happens. In Algorithm 2 we lists the an
effective strategy that sequentially solves similar problems
to (12) with respect to the remaining bit set and removes the
selected bits from the candidate pool. Note that the algorithm
is also feasible for large-scale problems using other efficient
methods like graph shift, because usually A can be very sparse.

D. Normalized Dominant Set

We have formulated the proposed bit selection as a quadratic
programming problem considering the pairwise bit comple-
mentarity. Next, we present a theoretical analysis that reveals
the nature of the selection.

For pairwise relations, the pooled bits can be repre-
sented by a vertex-weighted and undirected edge-weighted

Algorithm 2 Bit Selection via Normalized Dominant Set.

graph [54], [55]: G = (V, E, A, π), where V = {1, . . . , L}
is the vertex set corresponding to the L pooled bits with
weights π = [π1, . . . , πL]T , characterizing the bit quality,
and E ⊆ V × V is the edge set with weights A = (ai j).
Each ai j : (i, j) ∈ E → R+, a positive weight corresponding
to the edge between vertex i and j , reflecting the pairwise
complementarity between bits.

With the graph representation, the bit selection over the
large pool is intuitively equivalent to finding a bit subset
possessing high vertex and edge weights. This is similar to the
popular dense subgraph discovery, and also can be regarded
as a dominant set discovery problem [54]. However, since
we concern the vertex- and edge-weighted graph G, in the
literature there are very few work regarding the dominant set
discover on such graph. Fortunately, we show that we can
introduce the normalized dominant set as the dense subgraph
on such graph for bit selection, and prove that the local optima
of a quadratic programming defined in (12) corresponds to the
normalized dominant set.

The desired bit subset should have high vertex and edge
weights inside, i.e., high internal homogeneity, and high
inhomogeneity between vertices inside and those outside.
Following the dominant set research [54], [55], we introduce a
discriminative weight assignment to each vertex, invigorating
both vertex and edge weights and meanwhile with respect to
the homogeneity among the whole set. Based on the induced
weights, we can rank all candidate bits and find the most
dominant ones.

1) Relative Internal Homogeneity: Suppose we have
S ⊆ V as a nonempty subset of vertices and j ∈ S. We can
characterize the induced vertex weights from the predefined
vertex and edge weights, by measuring the connection from
any vertex j ∈ S to i /∈ S. It should take both the internal
homogeneity in S and the vertex weights of j and i into
account. We first define a function f (S, j |i) for the relative
internal homogeneity between j and other vertices in S
with respect to i . It should satisfy three basic properties:
(1) Non-negativity f should be non-negative for S, j , and i ;
(2) Symmetry f should be symmetric with respect to all
vertices in S; and (3) Monotonicity f should be monotonic
with respect to each of its arguments.

LIU et al.: HASH BIT SELECTION FOR NEAREST NEIGHBOR SEARCH 5373

Fig. 2. (a) An illustration of relative connection defined in (16). The induced vertex weight of vertex i with regard to S = {1, 2, 3} for
two types of graph: (b) Edge-weighted graph [54]: wS (1) = 10 < wS (2) = 16 < wS (3) = 18; (c) Vertex-weighted Edge-weighted
graph: wS (2) = 8

9 < wS (1) = 4
3 = wSs(3) = 4

3 .

Positivity and symmetry are simple consequences of the
internal homogeneity definition. Monotonicity is a reason-
able constraint from the following aspects: f should be
monotonically increasing with respect to S and j , because
the increase of vertex weighs and edge weights in S will lead
to higher internal homogeneity between j and S; f should
be monotonically decreasing with respect to vertex i , due to
the intuition that a large weight on i has strong attraction
to j ∈ S, and thus indicates relatively small internal homo-
geneity between j and S.

With these properties, there are many choices for f , and in
this paper we consider the following form:

f (S, j |i) = π−1
i

∑
k∈S π−1

k

∑

k∈S
a jk. (15)

Note that when all elements of π are identical, f will
degenerate to the average weight between j and S adopted
in dominant set in [54].

2) Relative External Connection: Now we can define the
connection between vertex j ∈ S and i /∈ S motivated by the
transition rate in Markov jump processes:

φS (j, i) = π j

πi
(a j i − f (S, j |i)). (16)

φS (j, i) measures the relative external connection from vertex
j ∈ S to i /∈ S, considering not only the vertex- and
edge weights between vertex j and i , but also the internal
homogeneity of j in S.

The connection strength is determined by both (a j i −
f (S, j |i)), the homogeneity between j and i eliminating the
internal homogeneity of i in S, and the vertex weight ratio

π j
πi

.
If π j is small compared to πi , vertex j will contribute less
to vertex i . See the illustrative example in Figure 2 (a). Note
φS (j, i) can be either positive or negative.

3) Induced Vertex Weights: Now we formalize the induced
vertex weights in a recursive way:

Definition 1: Let S ⊆ V be a nonempty vertex subset and
i ∈ S. The induced vertex weight of i with regard to S is

wS(i) =
{

1
π2

i
, if |S| = 1

∑
j∈S\{i} φS\{i}(j, i)wS\{i}(j), otherwise.

The total weight of S is defined to be: W (S) = ∑
i∈S wS (i).

The induced vertex weight wS (i) serves as a measure of the
relative overall connections between vertex i and the remain-
ing vertices in S. Therefore it can be naturally regarded as a
rank score for each vertex, normalized by the vertex weights
in the computation.

An example comparing our induced vertex weight and that
of the dominant set [54] is shown in Figure 2. As we can see,
our induced vertex weights, aggregating both vertex and edge
weights, alter the final rank of vertices, and assign high scores
to vertices with large vertex weights.

We formally introduce the definition of the normalized
dominant set in a vertex- and edge-weighted graph based on
induced vertex weights:

Definition 2: A nonempty subset of vertices S ⊆ V such
that W (T) > 0 for any nonempty T ⊆ S, is said to be
normalized dominant if: (1) wS(i) > 0, for all i ∈ S; (2)
wS∪{i}(i) ≤ 0, for all i /∈ S.
In above definition, the first condition premisses the strong
connections among vertices in the normalized dominant set,
while the second forces external inhomogeneity.

4) Local Optima of Quadratic Programming: Now we can
reveal the nature of the proposed quadratic programming
in (12) by establishing its intrinsic connections with the
normalized dominant set.

Theorem 1: If x∗ is a strict local solution to Problem 12
with Â =
A
, and
 = diag(π), then its support σ = σ(x)
is the normalized dominant set of graph G = (V, E, A, π),
provided that wσ∪{i}(i) 	= 0 for all i /∈ σ .

See the supplementary materials for the proof. Theorem 1
indicates that the non-zero elements of the local optima
x∗ of program (12) correspond to the normalized dominant
set S. Therefore, Algorithm 2 actually selects the normalized
dominant set from the graph with the remaining bit subset in
each iteration, until l bits are selected.

E. Related Point of Views

1) Game Dynamics: The above theoretical analysis indi-
cates that discovering the most dominant bits from the pool
may be formulated as a non-cooperative game, where the
dominant set turns out to be informally equivalent to a classical
equilibrium in evolutionary game theory.

5374 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

Reference [56] pioneered evolutionary game theory by
applying the principles and techniques of game theory to
studying the evolution of animals, where randomly drawn
pairs of individuals repeat a symmetric two-player game. The
players act according to inherited behavioral patterns, instead
of behaving rationally with complete knowledge of the game
in traditional game theory. In evolutionary game theory the
evolutionary stable strategy (essentially a Nash equilibrium)
guarantees that once it is adopted by a population, the natural
selection alone is sufficient to prevent alternative (mutant)
strategies from invading successfully.

For our bit selection, the dominant bits discovery can be
formulated as the following two-player game [57]. Given the
candidate bits V and a matrix of affinities Â between the bits
in V . Two players with complete knowledge of the game play
by simultaneously selecting a bit in V . After both have shown
their choice, each player receives a payoff proportional to the
affinity with respect to the elements chosen by the two players.

Clearly, within this game it is better for each player to
pick a bit that is strongly supported (i.e., high bit reliability
and complementarity) by those that the adversary probably
choose. Supposing the bits in V consist of two parts: a cohesive
group with high mutual affinity (i.e., internal homogeneity)
and the remaining inhomogeneous bits that usually give
inferior support to all candidates, the optimal choice for a
player will be selecting elements belonging to the cohesive
group rather than the inhomogeneous ones. The bit group
corresponds to the evolutionary stable strategy of the non-
cooperative game, namely the competition process over time
will eventually drive those weakly supported bits to extinction,
and while preserve the dominant ones that own strong support
from compatible edges inside and competitive pressure to the
others outside [58]. This informally establishes the connections
between our bit selection formulation in (12) and the algorithm
using replicator dynamics from the perspective of game theory.

2) Random Walk: The evolutionary replicator dynamics can
be interpreted as a diffusion process [59]. We can interpret the
pooled hash bits as a new graph Ĝ = (V, E, Â), consisting
of L candidate bits in V as the vertices, and edges E that
link vertices with the edge weights Â considering both bit
reliability and independence.

The diffusion process as a random walk spreads through the
entire graph according to the edge weights. By rewriting the
dynamics of (14) in matrix form:

x(t + 1) = x(t) Âx(t), (17)

and x(t + 1) = x(t+1)
‖x(t+1)‖1

, where is the Hadamard matrix
product. The iterative process highly relates to random walk.
Instead of tracking where it visited, the diffusion process
mainly concerns the probability distribution x over all can-
didate bits after reaching the convergence.

The process starts with an initialization x(0) = L−11 which
lies on the invariant simplex � under the replicator dynam-
ics formulation in (14). Consequently, each iteration of the
replicator dynamics consists of a update and a normalization
part, i.e., first spreading the similarities on the graph and
then normalizing the newly obtained matrix to guarantee the
simplex invariance.

TABLE I

COMPARISON OF DIFFERENT BIT SELECTION METHODS

Here Â can be regarded as a generalized transition matrix
defining the probabilities for walking from one bit to neigh-
boring ones. Although not a valid transition matrix, it encodes
the same global information as the commonly used one,
and is therefore also applicable for diffusion. The higher
bit reliability and independence between any two bits with
respect to others indicate stronger transition between them
and thus larger distribution probabilities on them. This is con-
sistent with our theoretical analysis based on the normalized
dominant set.

VI. EXPERIMENTS

In our experiments, we will evaluate bit selection over
several state-of-the-arts basic hashing algorithms. Besides,
we will also investigate the performance under diverse use-
ful scenarios: hashing with multiple features, mixed multiple
hashing algorithms, and multiple bit hashing.

In the literature, several naive solutions in terms of met-
ric and semantic neighbor search on several datasets can
be adopted for bit selection. The straightforward method
is the random way (“Random”) without considering either
of the aforementioned properties. Previous research has
attempted to take the similarity preservation (“Greedy”) into
account using greedy selection method [47], [60] for specific
semantics. To deal with bits correlations, the dominant set
method (“DomSet”), which is first used to find the most
dense subgraph in the literature [54], [55], can be adopted
to select the most uncorrelated subset. The greedy selection
method and the dominant set respectively consider similarity
preservation and complementarity between bits (the edges
in the graph). To simultaneously consider both bit quality
and their correlations in bit selection, we propose a dynamic
programming method (i.e., Algorithm 1, named “Dynamic”)
and a fast, approximated quadratic programming method
using normalized dominant set (i.e., Algorithm 2, named
“NDomSet”). Table I shows the comparison of different bit
selection methods.

We adopt a number of state-of-the-arts hashing meth-
ods of different types in bit generation, such as Locality
Sensitive Hashing (LSH) [14], Kernelized Locality Sensi-
tive Hashing (KLSH) [27], PCA-based Hashing (PCAH) and
its variation with random rotation (PCAR) [24], Iterative
Quantization (ITQ) [24], Random Maximum Margin Hash-
ing (RMMH) [61] and Spherical Hashing (SPH) [28].

• LSH: LSH generates Gaussian random projection vectors
and preserves the locality with high probability.

• KLSH: KLSH constructs randomized locality-sensitive
functions with arbitrary kernel functions. We feed it the
Gaussian RBF kernel k(z1, z2) = exp (−η‖z1 − z2‖2)

LIU et al.: HASH BIT SELECTION FOR NEAREST NEIGHBOR SEARCH 5375

TABLE II

COMPARISON OF DIFFERENT HASHING ALGORITHMS

and 300 support samples. The kernel parameter η is tuned
to an appropriate value on each dataset.

• PCAH and PCAR: PCAH selects the top principal
directions as the hashing projection vectors, while PCAR
randomly rotates the projections along these directions.
Both methods guarantee the orthogonality of the projec-
tion vectors, and meanwhile preserve the most variance
of the training data.

• ITQ: Instead of the random rotation in PCAR, ITQ iter-
atively finds the data rotation in a subspace to minimize
the binary quantization error.

• RMMH: RMMH boosts the scattering of the data by
purely random splits of the data, and adopts large margin
classifiers to learn hash functions with good generaliza-
tion performances.

• SPH: This algorithm iteratively finds the balanced and
independent partitions, which maps spatially coherent
data points into a binary code.

These methods covers linear/nonlinear (kernel or mani-
fold) hashing and random/optimized hashing (see Table II).
To evaluate bit selection performance for hashing with
multiple features, we employ the recent multiple feature
hashing (MFH) [29] and multiple feature kernel hash-
ing (MFKH) [30] for comparison. In addition, double bit
algorithms [55], [62] are employed in the scenario using
multiple bit hashing.

A. Datasets and Protocol

We conduct experiments on two popular tasks including
metric and semantic neighbor search. The former selects the
nearest neighbors according to their distances in certain metric
space (e.g., Euclidean space), while the latter treats database
points sharing the same semantic labels with the query as
the groundtruth. We respectively employ several widely-used
datasets for both tasks:

• Metric neighbor search: GIST-1M: A set of one million
960-D GIST descriptors and SIFT-1M: A set of one
million 128-D SIFT descriptors [63].

• Semantic neighbor search: CIFAR-10: It contains 60K
32×32 color images of 10 classes and 6K images in each
class, and NUS-WIDE: It comprises over 269K images
with 81 concept tags, of which we consider 25 most
frequent tags [64].

For each dataset, we respectively construct two subsets:
a training set with 10,000 random samples and a testing

Fig. 3. The parameter sensitivity when selecting 32 bits on GIST-1M.
(a) MAP wrt α. (b) MAP wrt λ and γ .

set with 3,000 queries. On the training set, we can com-
pute the Laplacian matrix using 100 nearest neighbors for
each training sample. On GIST-1M and SIFT-1M for metric
neighbor search, the groundtruth is defined by the top ‰5
nearest neighbors based on Euclidean distances. All experi-
ments are conducted on a workstation with Intel Xeon CPU
E5645@2.40GHz and 24GB memory, and the results reported
in this paper are averaged over 10 runs. For parameter sen-
sitivity, we respectively evaluate the dynamic and normalized
dominant set methods on different datasets with respect to
different parameters (i.e., α, λ and γ) varying in { 1

4 , 1
2 , 1, 2, 4}.

We investigate the parameter sensitivity over several datasets,
and show that on GIST-1M in Figure 3. The experimental
results indicate a similar observation that usually α = 2, λ = 2
and γ = 0.25 can promise good performance in most cases,
and therefore, we roughly share the same parameter settings
in all experiments.

We adopt two common search methods used in the litera-
ture: (1) Hamming distance ranking: all points in the database
are ranked according to the Hamming distances from the
query, and the top ranked are treated as the search results.
(2) Hash table lookup: an indexing table is constructed using
the binary codes, and points falling within certain Hamming
radius (usually choose 2) from the query codes are returned
as search results.

B. Results and Discussion

1) Bit Selection Over Basic Hashing Algorithms: Although
most hashing algorithms learn hash bits according to
their heuristical criteria, their solutions usually beyond the
desired or optimal ones due to the problem relaxation and
complicated scenarios [20]. Our bit selection serves as a
generic framework that selects the most informative and com-
plementary bits generated by different hashing algorithms for
specific scenarios, which can be directly tailored by adopting
different selection criteria.

We evaluate the bit selection over six basic hashing
algorithms respectively on GIST-1M in terms of �2 metric
(Euclidean) neighbor search. Each hashing algorithm is
applied to generating 500 hash bits on GIST-1M as a bit pool.
Table III compares performances of different bit selection
methods using varying numbers of hash bits. It lists the
mean average precision (MAP), a overall measure of the
effectiveness in terms of both recall and precision.

5376 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

TABLE III

MAP (%) OF BIT SELECTION OVER DIFFERENT HASHING
ALGORITHMS USING 32 - 128 BITS ON GIST-1M

From the table, we first observe that the performances of
all methods improve when using more bits. The baseline
methods can hardly discover the best bit subset by considering
either bit reliability or bit independence separately. Instead, our
proposed methods, especially “NDomSet”, complementarily
and efficiently combine the selection criteria to enhance the
compactness and informativeness of the hash codes, and
subsequently achieve the best performances.

Since both LSH and RMMH generate their hash functions
independently, “Random” over them can be regarded as an
equivalent to the original hashing algorithms. From this point
of view, by comparing to the performance of “Random”
we can conclude that both the proposed “Dynamic” and
“NDomSet” can achieve significant performance gains over
the basic hashing algorithms (e.g., 34.20% using 32 bits and
19.48% using 64 bits over LSH), especially when selecting
a small number of bits. Note that the selection performance
depend on the bit quality. Selecting more hash bits will
increase the probability that large redundancy exists among
the selected hash bits, and thus the performance gain over the
basic hashing algorithm will be decreased. This is consistent
with our experimental results, where the performance gain of
selecting 32 or 64 bits is higher than that of selecting 128 bits
in Table III.

Furthermore, if we compare the selection performances over
ITQ and SPH, we can find that “DomSet” performs better
over ITQ than “Random”, and while “Greedy” works better
over SPH. This indicates that the orthogonality constraints on
hash functions in ITQ are not enough for learning independent
bits, while for SPH that already takes the bit relations into
account when learning hash functions, its bit reliability should
be further enhanced. This observation can help us find the
starting point to accordingly improve the existing hashing
algorithms.

2) Bit Selection Over Multiple Hashing Algorithms: With
features of a low dimension it usually fails to generate long
hash codes using PCA [24], [42], landmark [18] or cluster [19]
based hashing algorithms. Moreover, sometimes the bit quality
decreases dramatically due to the information concentration in
many algorithms [15], [42]. Besides a single hashing algorithm
evaluated, the proposed bit selection framework can also
work well with multiple hashing algorithms. By building a
large bit pool using multiple hashing algorithms, bit selection
elegantly and complementarily chooses any desired number of
heterogeneous bits, and hopefully achieves performance gains
over existing hashing algorithms. This is quite beneficial to
the practical and successful applications of existing hashing
algorithms.

To evaluate the bit selection performance, in this scenario,
we first employ the SIFT-1M with low-dimensional (128)
SIFT features [63], with which the baselines hashing algo-
rithms PCAH, PCAR and ITQ can only learn a very lim-
ited number (at most 128) of hash functions. When longer
hash codes (say 196 in our experiment) are desired, these
basic hashing algorithms cannot meet the requirement directly.
However, with our bit selection framework, we can build a
larger bit pool, e.g., 384 bits, of which PCAH, PCAR, and
ITQ respectively generate 128 ones.

In Figure 5 we compare the performances of all selection
methods picking 196 bits and the basic hashing algorithms
with the largest number of bits they can learn. The results
show that bit selection methods like “Greedy”, “Dynamic”
and “NDomSet” using 196 bits outperform the three basic
hashing algorithms with its best performance, and moreover
they also achieve higher recall and MAP than the other
selection methods including “Random” and “DomSet” with
the same settings. This observation indicates the bit quality
plays a critical role in the selection over multiple sources. Note
that though “Greedy” gets a close and satisfying performance
to “Dynamic”, but “NDomSet” obtains even more significant
performance gains over all baselines, including the basic
hashing algorithms ITQ, PCAR, and PCAH with the maximum
number of hash bits.

To further evaluate the selection over multiple algorithms on
GIST-1M, we build a large bit pool with 600 bits, of which
200 are respectively generated by ITQ, SPH and RMMH
with 960-D GIST features. Then all bit selection methods are
performed on this pool and compared with original hashing
algorithms using its top bits on GIST-1M. In Figure 4,
we report several performance statistics, i.e., the recall, MAP
and hamming lookup precision within radius 2 (PH2). In this
case, both “Greedy” and “DomSet” are defeated by “Random”,

LIU et al.: HASH BIT SELECTION FOR NEAREST NEIGHBOR SEARCH 5377

Fig. 4. Performance comparison of bit selection methods over multiple hashing algorithms on GIST-1M. (a) Recall @ 64 bits. (b) Recall @ 128 bits.
(c) MAP @ 8-128 bits. (d) PH2 @ 32 bits.

Fig. 5. Performance comparison of bit selection methods and the original
hashing algorithms over multiple hashing methods on SIFT-1M. (a) Recall @
196 bits. (b) MAP.

which indicates that neither the similarity preservation nor
the bit complementarity alone is sufficient for high quality
bit selection. Our bit selection methods, incorporating both
criteria simultaneously, faithfully boost the performance over
the basic hashing algorithms, and meanwhile surpasses all
selection baselines.

3) Bit Selection With Multiple Features: Real-world data are
often described by different features. Hashing with multiple
features can adaptively incorporate different representations to
explore informative hashing functions [29], [30]. Bit selection
efficiently tackles the problem by simply picking bits produced
by different hashing algorithms with different features, instead
of solving the hard optimization problems involving multiple
features, which can largely save the efforts on designing multi-
view hashing algorithms. We evaluate the nearest neighbor
search with multiple features on CIFAR-10 and NUS-WIDE,
in terms of semantic neighbor search.

For CIFAR-10, each image is represented by a 384-D GIST
feature and a 300-D SIFT BoW of 8×8 patches with a 4 space
overlap; while for NUS-WIDE the provided 128-D wavelet
texture and 225-D block-wise color moments are directly used
as features. Then on each dataset, 250 hash bits are generated
respectively for each type of feature using LSH, and mixed
together as a 500 bit pool for bit selection.

Besides the naive bit selection methods, we also compare
our bit selection methods with the state-of-the-art multiple
feature hashing algorithms MFH [29] and MFKH [30]. MAP
performance on both datasets is reported in Table IV. All
bit selection methods improve their performance when using
longer hash codes. But the original multiple feature hashing

TABLE IV

MAP (%) USING 32 AND 64 BITS ON CIFAR-10 AND NUS-WIDE

Fig. 6. Semantic neighbors search performances on CIAFR-10 and
NUS-WIDE using multiple features. (a) P-R @ 32 bits, CIAFR-10.
(b) P-R @ 32 bits, NUS-WIDE.

algorithms MFH and MFKH perform worse with more hash
bits, partially due to the orthogonal constraints. This phe-
nomenon has also been observed and discussed in many
prior research [17], [18], which to some degree reflects the
difficulty of designing hashing algorithm for specific scenarios.
With the help of our bit selection framework, we can clearly
conclude that both “Dynamic” and “NDomSet” can easily
achieve satisfying performance over any existing hashing algo-
rithm, and here over LSH they gain remarkable superiority,
e.g., “NDomSet” gets up to 22.76% performance gain on
CIFAR-10 and 7.48% one on NUS-WIDE over MFH. We also
show the precision-recall (P-R) curves using 32 bits on both
datasets in Figure 6, where the observation that “NDomSet”
owns the largest areas under its P-R curves further confirms
our conclusion.

4) Bit Selection Over Multiple Bit Hashing: Most of state-
of-the-art hashing algorithms generate one bit by first pro-
jecting data into a real value and then simply thresholding
(or quantizing) it to a binary value. This might result in unex-
pected quantization loss of similarity preservation, because
the threshold that typically lies in the dense region probably

5378 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

Fig. 7. Performance comparison of bit selection methods over hierarchical hashing on GIST-1M. (a) R @ 64 bits. (b) R @ 128 bits. (c) MAP.
(d) PH2 @ 32 bits.

Fig. 8. Performance comparison of bit selection methods over double bit quantization on GIST-1M. (a) R @ 64 bits. (b) R @ 128 bits. (c) MAP.
(d) PH2 @ 32 bits.

partitions the nearby neighbor points into different bits. Several
work have attempted to alleviate the problem by generating
multiple bits per projection [18], [62], [65]. Since the quality
of bits per projection varies, especially for the hierarchical
hashing process, it is reasonable that we can select the most
informative bits for different scenarios.

To evaluate our bit selection framework over multiple bit
hashing for the general nearest neighbor search, we employ the
two popular multi-bit algorithms: hierarchical hashing (HH)
proposed in [55] and double bit quantization (DB) proposed
by [38], respectively with equal probability thresholding on
PCAR (PCAR-HH and PCAR-DB) and ITQ (ITQ-HH and
ITQ-DB). Each of them serves as a basic hashing source that
provides a desired number of hash bits.

A 500 bit pool is first built with 250 bits generated by
PCAR-HH and the rest bits by ITQ-HH on GIST-1M. Figure 7
shows the results comparing PCAR-HH, ITQ-HH and different
bit selection methods over the bit pool. In Figure 7 (a)-(c) both
the recall and MAP of all methods increase dramatically when
using more bits, and our “Dynamic” and “NDomSet” consis-
tently outperform both the hierarchical hashing and selection
baselines in all cases. Their significant performance improve-
ments certainly support the conclusion that our bit selection
framework can help recognize the bits of high quality. Note
that when selecting more hash bits (more than 64), it is can be
observed that the MAP performance of “NDomSet” increases
much faster than “Dynamic”. This means that beside the
time efficiency our quadratic formulation based on normalized
dominant set also possesses better generalization ability than
the dynamic programming algorithm.

Figure 8 shows the results comparing PCAR-DB, ITQ-DB
and different selection methods over the 500 bit pool
generated similarly on GIST-1M. Compared with greedy

Fig. 9. The effect of the bit pool size when selecting 32 bits on GIST-1M.
(a) time cost wrt L . (b) MAP wrt L .

selection, “Random” and “DomSet” give the worst perfor-
mance, which indicates that the quality of hash bits generated
by DB varies widely and thus most information might be
contained in a very small bit subset. In this experiment, though
“Dynamic” gives a fair performance in terms of MAP and
PH2, our “NDomSet” ranks first with a large margin compared
to the best competitors “Greedy” and ITQ-DB in all cases, e.g.,
up to 45.66% and 56.76% MAP gaps respectively, and 51.47%
and 62.86% PH2 gaps respectively using 32 bits. Previous
work report that double bit quantization improves the hashing
performance [18], [38], and this observation leads to the con-
clusion that our bit selection can further improve performances
over DB by elegantly examining the most dominant bit subset.

5) Dynamic Programming vs. Normalized Dominant Set:
Figure 9(a) plots the time cost of each selection method on bit
pools of different size from 100 to 8000. “Dynamic-3” takes
much more time than that using second-order (“Dynamic-2”)
especially when working on a large bit pool. This is because
that computing the entropy of more than 2 bits will bring
expensive computational cost mainly due to the combina-
torial explosion. Moreover, by comparing the time cost of

LIU et al.: HASH BIT SELECTION FOR NEAREST NEIGHBOR SEARCH 5379

“NDomSet”, “DomSet” and “Greedy”, it is easy to conclude
that estimating the mutual information between bits contributes
the most to the computational cost. Even so, our “NDomSet”,
consuming less time compared to “Dynamic”, demonstrates
its efficiency and effectiveness over a number of basic hashing
algorithms. Besides, we also investigate the effect of the bit
pool size on the selection performance in Figure 9(b). From the
figure we can see that when using a large bit pool, it is more
possible that NDomSet method can select more informative
hash bits, and thus can achieve better performance.

The results listed in Table III further investigate the perfor-
mance of “Dynamic” with respect to different orders. In most
cases, the selection methods via dynamic programming, con-
sidering bit relationships of second (“Dynamic”) or third
order (“Dynamic-3”), outperform all baseline methods. More-
over, “Dynamic-3” performs slightly better than “Dynamic”
over certain hashing algorithms, which means that considering
the high-order mutual information among bits can improve the
search accuracy to some extent, yet at the expensive compu-
tational cost (see Figure 9). In all cases, we can find that our
“NDomSet” is able to obtain best performance with much less
computation. The experimental results under the scenarios of
bit selection over multiple hashing algorithms (Figure 4 and 5),
with multiple features (Figure 6 and Table IV) and over
multiple bit hashing (Figure 7 and 8) further validate our
conclusion that although “Dynamic” can achieve better per-
formance than the baselines, “NDomSet” usually obtains even
more significant performance gains.

VII. CONCLUSIONS

For generic hashing problems under different scenarios, this
paper proposed a novel solution named hash bit selection,
which supports different hashing algorithms using different
features, settings, etc. Motivated by the optimization objec-
tives used in existing compact hashing algorithms, it adopted
similarity preservation of each bit and the independence among
them as the selection criteria for compact, yet discriminative
hash codes. We presented two related selection methods via
dynamic programming and quadratic programming, incorpo-
rating bit reliability and complementarity. Based on high-
order bit relationships, the former method found the tradeoff
between search accuracy and efficiency with speedup tech-
niques by linearly combining the selection criteria. By approx-
imating the bit complementarity based on the pairwise mutual
relations, the quadratic programming method further speeds
up the selection through a stable distribution discovery, solved
efficiently using the replicator dynamics with a natural mean-
ings equivalent to the normalized dominant set in a vertex- and
edge-weighted graph. Our extensive experiments for several
important hashing scenarios proved the effectiveness and effi-
ciency of our bit selection framework, and also demonstrated
its practical meaning and future prospect in many areas.

REFERENCES

[1] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[2] J. He et al., “Mobile product search with bag of hash bits and boundary
reranking,” in Proc. CVPR, 2012, pp. 3005–3012.

[3] L. Chen, D. Xu, I. W.-H. Tsang, and X. Li, “Spectral embedded hashing
for scalable image retrieval,” IEEE Trans. Cybern., vol. 44, no. 7,
pp. 1180–1190, Jul. 2014.

[4] X. Liu, J. He, C. Deng, and B. Lang, “Collaborative hashin,” in Proc.
IEEE CVPR, Jun. 2014, pp. 1–2.

[5] J. Song, Y. Yang, X. Li, Z. Huang, and Y. Yang, “Robust hashing with
local models for approximate similarity search,” IEEE Trans. Cybern.,
vol. 44, no. 7, pp. 1225–1236, Jul. 2014.

[6] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete
hashing,” in Proc. IEEE CVPR, Jun. 2015, pp. 37–45.

[7] Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Bourdev, and R. Fergus,
“Web scale photo hash clustering on a single machine,” in Proc. IEEE
CVPR, Jun. 2015, pp. 19–27.

[8] L.-Y. Duan, J. Lin, Z. Wang, T. Huang, and W. Gao, “Weighted
component hashing of binary aggregated descriptors for fast visual
search,” IEEE Trans. Multimedia, vol. 17, no. 6, pp. 828–842,
Jun. 2015.

[9] Z. Wang, L. Duan, J. Yuan, T. Huang, and W. Gao, “To project more
or to quantize more: Minimize reconstruction bias for learning compact
binary codes,” in Proc. IJCAI, 2016, pp. 2181–2188.

[10] X. Liu, C. Deng, B. Lang, D. Tao, and X. Li, “Query-adaptive reciprocal
hash tables for nearest neighbor search,” IEEE Trans. Image Process.,
vol. 25, no. 2, pp. 907–919, Feb. 2016.

[11] L. Liu, F. Shen, Y. Shen, X. Liu, and L. Shao, “Deep sketch hashing:
Fast free-hand sketch-based image retrieval,” in Proc. IEEE CVPR,
Mar. 2017, p. 1.

[12] J. E. Goodman, J. O’Rourke, and P. Indyk, Nearest Neighbors High-
Dimensional Spaces, Handbook Discrete Computer Geometry, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2004.

[13] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. STOC, 1998,
pp. 604–613.

[14] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. SCG, 2004,
pp. 253–262.

[15] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. NIPS,
2008, pp. 1753–1760.

[16] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Proc. NIPS, 2009, pp. 1042–1050.

[17] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for
hashing with compact codes,” in Proc. ICML, 2010, pp. 1127–1134.

[18] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proc. ICML, 2011, pp. 1–8.

[19] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc. CVPR,
Jun. 2013, pp. 2938–2945.

[20] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
in Proc. NIPS, 2014, pp. 3419–3427.

[21] Y. Xia, K. He, P. Kohli, and J. Sun, “Sparse projections for
high-dimensional binary codes,” in Proc. IEEE CVPR, Jun. 2015,
pp. 3332–3339.

[22] X. Liu, L. Huang, C. Deng, B. Lang, and D. Tao, “Query-
adaptive hash code ranking for large-scale multi-view visual search,”
IEEE Trans. Image Process., vol. 25, no. 10, pp. 4514–4524,
Oct. 2016.

[23] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer, “Compact hashing
with joint optimization of search accuracy and time,” in Proc. CVPR,
Jun. 2011, pp. 753–760.

[24] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Proc. CVPR, Jun. 2011,
pp. 817–824.

[25] M. Norouzi and D. J. Fleet, “Cartesian K-means,” in Proc. CVPR, 2013,
pp. 3017–3024.

[26] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in Proc. CVPR, Jun. 2012, pp. 2074–2081.

[27] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in Proc. ICCV, Sep. 2009, pp. 2130–2137.

[28] J. P. Heo, Y. Lee, J. He, S.-F. Chang, and S. E. Yoon, “Spherical
hashing,” in Proc. CVPR, 2012, pp. 2957–2964.

[29] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature
hashing for real-time large scale near-duplicate video retrieval,” in Proc.
ACM MM, 2011, pp. 423–432.

[30] X. Liu, J. He, and B. Lang, “Multiple feature kernel hashing for large-
scale visual search,” Pattern Recognit., vol. 47, no. 2, pp. 748–757,
Feb. 2014.

5380 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

[31] X. Liu, Y. Mu, B. Lang, and S.-F. Chang, “Mixed image-
keyword query adaptive hashing over multilabel images,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 10, no. 2, pp. 22-1–22-21,
Feb. 2014.

[32] C. Deng, H. Deng, X. Liu, and Y. Yuan, “Adaptive multi-bit
quantization for hashing,” Neurocomputing, vol. 151, pp. 319–326,
Mar. 2015.

[33] X. Liu, B. Du, C. Deng, M. Liu, and B. Lang, “Structure sensitive
hashing with adaptive product quantization,” IEEE Trans. Cybern.,
vol. 46, no. 10, pp. 2252–2264, Oct. 2016.

[34] J. He, S. Kumar, and S.-F. Chang, “On the difficulty of nearest neighbor
search,” in Proc. ICML, Edinburgh, Scotland, 2012, pp. 1127–1134.

[35] N. Kwak and C.-H. Choi, “Input feature selection for classification
problems,” IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 143–159,
Jan. 2002.

[36] X. Liu, J. He, B. Lang, and S.-F. Chang, “Hash bit selection: A unified
solution for selection problems in hashing,” in Proc. CVPR, 2013,
pp. 1570–1577.

[37] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua, “Discrete
collaborative filtering,” in Proc. ACM SIGIR, 2016, pp. 1–10.

[38] Y. Lee, J. P. Heo, and S. E. Yoon, “Quadra-embedding: Binary
code embedding with low quantization error,” in Proc. ACCV, 2012,
pp. 214–227.

[39] Z. Wang, L.-Y. Duan, J. Lin, X. Wang, T. Huang, and W. Gao,
“Hamming compatible quantization for hashing,” in Proc. AAAI, 2015,
pp. 2298–2304.

[40] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and
hash coding with deep neural networks,” in Proc. IEEE CVPR, Jan. 2015,
pp. 3270–3278.

[41] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2015, pp. 2475–2483.

[42] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Proc. CVPR, 2010, pp. 3424–3431.

[43] M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact binary
codes,” in Proc. ICML, 2011, pp. 353–360.

[44] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing
for approximate nearest neighbor search,” in Proc. ACM MM, 2013,
pp. 133–142.

[45] J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang, “Learning hash codes with
listwise supervision,” in Proc. ICCV, 2013, pp. 3032–3039.

[46] Z. Wang, L.-Y. Duan, T. Huang, and W. Gao, “Affinity preserving
quantization for hashing: A vector quantization approach to learning
compact binary codes,” in Proc. AAAI, 2016, pp. 1102–1108.

[47] Y. Mu, X. Chen, X. Liu, T.-S. Chua, and S. Yan, “Multimedia semantics-
aware query-adaptive hashing with bits reconfigurability,” in Proc.
IJMIR, 2012, pp. 1–12.

[48] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Jan. 2003.

[49] X. He, D. Cai, and P. Niyogi, Laplacian Score for Feature Selection.
Cambridge, MA, USA: MIT Press, 2005, pp. 1–8.

[50] Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based feature
selection for high-dimensional data analysis,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 9, pp. 1610–1626, Sep. 2010.

[51] X. Liu, C. Deng, Y. Mu, and Z. Li, “Boosting complementary hash tables
for fast nearest neighbor search,” in Proc. AAAI, 2017, 4183–4189.

[52] J. He, W. Liu, and S.-F. Chang, “Scalable similarity search
with optimized kernel hashing,” in Proc. ACM SIGKDD, 2010,
pp. 1129–1138.

[53] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for large-
scale search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2393–2406, Dec. 2012.

[54] M. Pavan and M. Pelillo, “Dominant sets and pairwise clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 167–172, Jan. 2007.

[55] H. Liu and S. Yan, “Robust graph mode seeking by graph shift,” in
Proc. ICML, 2010, pp. 671–678.

[56] J. M. Smith, Evolution Theory Games. Cambridge, U.K.: Cambridge
Univ. Press, 1982.

[57] M. Pelillo, “What is a cluster? perspectives from game theory,” in Proc.
PASCAL, 2009, p. 712.

[58] A. Torsello, S. R. Bulo, and M. Pelillo, “Grouping with asymmetric
affinities: A game-theoretic perspective,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., vol. 1. Jun. 2006, pp. 292–299.

[59] M. Donoser and H. Bischof, “Diffusion processes for retrieval revisited,”
in Proc. CVPR, 2013, pp. 1320–1327.

[60] Y. Mu, X. Chen, T.-S. Chua, and S. Yan, “Learning reconfigurable
hashing for diverse semantics,” in Proc. ACM ICMR, 2011, p. 7.

[61] A. Joly and O. Buisson, “Random maximum margin hashing,” in Proc.
IEEE CVPR, Jun. 2011, pp. 873–880.

[62] W. Kong and W.-J. Li, “Double-bit quantization for hashing,” in Proc.
AAAI, 2012, p. 5.

[63] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[64] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-
WIDE: A real-world Web image database from National University of
Singapore,” in Proc. CIVR, 2009, p. 48.

[65] C. Xiong, W. Chen, G. Chen, D. Johnson, and J. J. Corso, “Adaptive
quantization for hashing: An information-based approach to learning
binary codes,” in Proc. SDM, 2014, pp. 172–180.

Xianglong Liu (M’12) received the B.S. and Ph.D.
degrees in computer science from Beihang Univer-
sity, Beijing, in 2008 and 2014, respectively. From
2011 to 2012, he visited the Digital Video and
Multimedia Laboratory, Columbia University, as a
joint Ph.D. Student. He is currently an Associated
Professor with Beihang University. His research
interests include machine learning, computer vision,
and multimedia information retrieval.

Junfeng He (M’08) received the B.S. and M.S.
degrees from Tsinghua University and the Ph.D.
degree from Columbia University. He is currently
with Google, where he is involved in research
topics about on-device deep learning models, HCI,
and computer vision. His research interests include
image/video indexing and search, computer vision,
machine learning, ranking, and HCI.

Shih-Fu Chang (F’04) was the Chairman of the
Columbia Electrical Engineering Department from
2007 to 2010 and an Advisor for several compa-
nies and research institutes. He has been a Senior
Vice Dean of the Columbia Engineering School
since 2012. He is currently the Richard Dicker
Professor and the Director of the Digital Video and
Multimedia Laboratory, Columbia University. He is
also an active Researcher, leading development of
innovative technologies for multimedia information
extraction and retrieval, while contributing to fun-

damental advances of the fields of machine learning, computer vision, and
signal processing. Recognized by many paper awards and citation impacts,
his scholarly work set trends in several important areas, such as content-based
visual search, compressed-domain video manipulation, image authentica-
tion, large-scale high-dimensional data indexing, and semantic video search.
He co-led the ADVENT university-industry research consortium with partic-
ipation of more than 25 industry sponsors. His research has been broadly
supported by government agencies as well as many industry sponsors. He is
a fellow of the American Association for the Advancement of Science.
He received the IEEE Signal Processing Society Technical Achievement
Award, the ACM SIG Multimedia Technical Achievement Award, the IEEE
Kiyo Tomiyasu Award, Service Recognition Awards from the IEEE and the
ACM, and the Great Teacher Award from the Society of Columbia Graduates.
He served as the Editor-in-Chief of the IEEE Signal Processing Magazine
from 2006 to 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

