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Exploiting Feature and Class Relationships in
Video Categorization with Regularized Deep

Neural Networks
Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, Shih-Fu Chang

Abstract—In this paper, we study the challenging problem of categorizing videos according to high-level semantics such as
the existence of a particular human action or a complex event. Although extensive efforts have been devoted in recent years,
most existing works combined multiple video features using simple fusion strategies and neglected the utilization of inter-class
semantic relationships. This paper proposes a novel unified framework that jointly exploits the feature relationships and the class
relationships for improved categorization performance. Specifically, these two types of relationships are estimated and utilized by
imposing regularizations in the learning process of a deep neural network (DNN). Through arming the DNN with better capability
of harnessing both the feature and the class relationships, the proposed regularized DNN (rDNN) is more suitable for modeling
video semantics. We show that rDNN produces better performance over several state-of-the-art approaches. Competitive results
are reported on the well-known Hollywood2 and Columbia Consumer Video benchmarks. In addition, to stimulate future research
on large scale video categorization, we collect and release a new benchmark dataset, called FCVID, which contains 91,223
Internet videos and 239 manually annotated categories.

Index Terms—Video Categorization, Deep Neural Networks, Regularization, Feature Fusion, Class Relationships, Benchmark
Dataset.
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1 INTRODUCTION

V IDEOS carry very rich and complex semantics,
and are intrinsically multimodal. Techniques for

recognizing high-level semantics in diverse uncon-
strained videos can be deployed in many applications,
such as Internet video search. However, it is well-
known that semantic recognition or categorization of
videos is an extremely challenging task due to the
semantic gap between computable low-level video
features and the complex high-level semantics. While
significant progress has been achieved in recent years,
most state-of-the-art solutions rely on a large set of
features to recognize a class-of-interest. In order to
derive a robust fused representation that bridges the
semantic gap, the fusion process of multiple fea-
tures is usually expected to learn the cross-feature
correlations, such as the relationship of HOG and
HOF features that model visual information and their
complements to acoustic descriptors. In addition to
the feature relationships, there are also certain correla-
tions among multiple high-level semantic categories:
knowing the presence of one category may provide
useful clues for recognizing other related categories.
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For example, a high score of a video clip containing
“running” (“diving”) will increase (decrease) the con-
fidence of the video containing “soccer”. Although
there exist several works investigating multi-feature
fusion or exploiting the inter-class relationships, as
will be discussed in the next section, they mostly
address the two problems separately.

Motivated by the limitations of the existing tech-
niques and the increasing popularity of using Deep
Neural Networks (DNN) for visual categorization, in
this paper we propose a novel unified framework that
jointly learns the feature relationships and the class
relationships using a DNN. Video categorization can
also be carried out within the same network utilizing
the learned relationships.

Figure 1 gives an overview of the proposed ap-
proach. We first extract several popular video features,
including the popular frame-based features computed
by the convolutional neural networks (CNN) [1],
trajectory-based motion descriptors and audio de-
scriptors. The features are then used as the inputs of a
DNN, where the first two layers are input and feature
transformation layers, respectively. The third layer is
called fusion layer, where we impose regularization
on the network weights to identify and utilize the
feature relationships. Specifically, the regularization
terms are selected based on two natural properties
of the inter-feature relationships: correlation and di-
versity. The former means that different features may
share some common patterns in a middle level rep-
resentation lying between the original features and
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Fig. 1. Illustration of the proposed rDNN framework for video categorization. See texts for more explanations.

the high-level semantics (i.e., the transformed fea-
tures after the second layer). The latter emphasizes
the unique characteristics of different features, which
are the complementary information that is likely to
be useful for identifying video semantics. Through
modeling both properties using a feature correlation
matrix, we impose a trace-norm regularization over
the network weights to reveal the hidden correlations
and diversity of the features.

In order to discover and utilize the inter-class
relationships, we impose similar regularizations on
the weights of the final output layer. This helps to
identify the grouping structures of video classes and
the outlier classes. Semantic classes within the same
group share commonalities that can be utilized as
knowledge sharing for improved categorization per-
formance, while the outlier classes should be excluded
from “negative” knowledge sharing. By executing
regularized learning of the two kinds of relationships
within the same DNN, we arrive at a unified frame-
work, namely regularized DNN (rDNN), which can be
easily implemented.

Although the framework shown in Figure 1 is built
on the static CNN feature and a few typical hand-
crafted video features, it is feasible to use our ap-
proach for fusing any features. We also realize that,
in the image categorization domain, the CNN fea-
tures are dominating state-of-the-art approaches. The
reasons of considering both the CNN feature and the
hand-crafted features in this work are two-folds. First,
the hand-crafted features have been widely used for
video categorization and remain the key components
of many systems that generated recent state-of-the-
art results on tasks like human action recognition
[2] and complex event recognition [3], [4]. By using
these features it is easy to make comparisons with the
traditional approaches. Second, so far, very few ex-
isting works on neural networks based video feature
extraction have demonstrated significantly better re-

sults than the traditional hand-crafted features. Some
end-to-end learning methods only showed lower or
similar results [5], [6], and, similar to this paper, a
recent work [7] reported better results by combining
deep features with hand-crafted features. Therefore,
this paper considers both the deeply learned and the
hand-crafted features, and focuses on the tasks of
feature fusion and semantic categorization.

The main contribution of this paper is the proposal
of the rDNN. To the best of our knowledge, rDNN
is the first attempt to exploit both the feature and
the class relationships in the DNN pipeline for video
categorization. Our formulation is designed to model
the complex relationships such as feature/class corre-
lation and diversity. It is easy to implement and can
be efficiently executed using a GPU. In addition, we
introduce and release a new benchmark dataset, called
Fudan-Columbia Video Dataset (FCVID). FCVID con-
tains 91,223 YouTube videos and 239 manually an-
notated categories. It is currently one of the largest
manually annotated datasets of Internet videos. Com-
pared with some recently released video benchmarks,
FCVID covers a wide range of categories popularly
seen in Internet user-shared videos, including events,
scenes and objects. For example, the new EventNet [8]
consists of only events and its labels are noisy as it
is not manually labeled; the Sports-1M dataset [5] fo-
cuses only on sports and is also not manually labeled;
the ActivityNet [9] focuses on human actions; and,
the MPII Human Pose dataset was mainly designed
for recognizing human poses [10]. We evaluate rDNN
using our new FCVID dataset, and hope that its public
release could stimulate future research around this
challenging problem.

This work is based upon a conference publica-
tion [11] with the following major extensions. First,
a more comprehensive survey of the state of the arts
on video categorization is included in the next section.
Second, we provide proofs and more discussions on
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how the learned relationships could help improve
the recognition performance. Third, we leverage more
powerful feature representations (i.e., the CNN fea-
tures) to evaluate the generalization ability of the
framework, and implement several additional alter-
native methods to fully justify the effectiveness of
our approach. Finally, we introduce a new dataset
that is much larger than those popularly used in
recent literature. The rest of this paper is organized
as follows. Section 2 discusses related works, where
we mainly focus on the existing works exploiting
feature or class relationships. Section 3 elaborates the
proposed rDNN approach. Extensive experimental re-
sults are discussed in Section 4, where we also briefly
introduce the new FCVID dataset. Finally, Section 5
concludes this paper.

2 RELATED WORK

Video categorization has received significant research
attention. Most approaches followed a very standard
pipeline, where various features are first extracted and
then used as inputs of classifiers. Many works have
focused on the design of novel features, such as the
biologically inspired pipeline [12], Spatial-Temporal
Interest Points (STIP) [13], trajectory-based descriptors
[2], audio clues [14], and the Convolutional Neural
Networks (CNN) based features [1], [5], [15], [6].

In contrast to the variety of video features, Sup-
port Vector Machines (SVM) have been the dominate
classifier option for over a decade. Recently, with
the increasing popularity of the deep learning based
approaches, neural networks have also been adopted
for video classification [5], [15], [6]. Among them,
probably the most well-known deep learning based
video categorization result is probably from Simonyan
and Zisserman [6], who used a two-stream CNN
approach to extract features from static frames and
motion optical flow respectively. The features were
classified separately and the predictions were then
simply fused with fixed weights. Using this pipeline,
they reported similar performance to the improved
dense trajectories [2], one of the best hand-crafted
feature-based approaches. More recently, in addition
to the CNN, researchers also adopted recurrent neural
networks (RNN) to model the long-term temporal
information in videos [16], [17], [18] and reported
promising results.

Besides accuracy, efficiency is another important
factor that should be considered in the design of
a modern video classification system. Several recent
studies investigated this issue by proposing efficient
classification methods [19], [20] or parallel computing
strategies [21], [22].

In the following we primarily discuss works on
multi-feature fusion and/or exploiting class relation-
ships, which are more closely related to this work.

2.1 Exploiting Feature Relationships

In most state-of-the-art video categorization systems,
two feature fusion strategies were popularly adopted,
i.e., the early fusion and the late fusion. Early fusion
relies on the assumption that multiple features are
explicitly complementary to each other, however this
assumption does not always hold in the complex
video data. Late fusion trains models separately and
then combines prediction scores. This method can-
not explore feature relationships in the categorization
process as the features are processed separately. In
contrast, this work derives a fused representation by
explicitly regularizing the fusion process, and the fu-
sion process and classification are conducted simulta-
neously under a unified objective. In other words, our
approach intends to learn what features are correlated
and what are unique clues that exist only in one
input feature. These learned information is used in
generating the fused representation.

In both early and late fusion, fusion weights are
needed to weigh the importance of each individual
feature dimension, which can be set as equal val-
ues (a.k.a. average fusion) or learned based on cross
validation. In several recent works, multiple kernel
learning (MKL) [23] was adopted to estimate the fu-
sion weights [24], [25]. MKL was reported to produce
better performance in some cases, but the gain was
also often observed to be insignificant [26].

Several more advanced feature fusion approaches
were proposed. In [27], Ye et al. proposed an opti-
mization framework, called robust late fusion, which
uses a shared low-rank matrix to remove noises in
certain feature modalities. In [28], Jiang et al. focused
on exploiting the correlations between audio and
visual features. They proposed to generate an audio-
visual joint codebook by discovering the correlations
of the two features for video classification. Jhuo et
al. [29] followed a similar framework, and improved
the speed of training the audio-visual codebook by
replacing the segmentation-based region features with
standard local features.

With the growing popularity of the DNN, a few
recent studies focused on combining multiple features
in neural networks, which are closely related to this
work. A deep de-noised auto-encoder was employed
in [30] to learn a shared representation based on mu-
timodal inputs. Similarly, a deep Boltzmann machine
was utilized in [31] to fuse visual and textual features.
Very recently, Kihyuk et al. [32] proposed to learn a
good shared representation by minimizing variation
of information, so that missing input modality can
be better predicted based on the available informa-
tion. They showed that this method outperforms [31]
on several image classification benchmarks. Different
from [30], [31] that fused the features in a “free” way,
in this paper we propose regularized fusion of multiple
features, which is intuitively reasonable and empir-
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ically effective. Compared with [32], our objective is
to learn and use dimension-wise feature relationships.
Minimizing the variation of information in [32] might
be more suitable for images, but for videos, differ-
ent modalities (e.g., audio and visual) may represent
very distinctive information and simply minimizing
their variation is not a good strategy to exploit the
complementary information.

2.2 Exploiting Class Relationships

Many researchers have investigated class relation-
ships, commonly termed context, to improve classi-
fication performance. In [33], Torralba et al. discussed
the importance of context in the task of object detec-
tion in images. In [34], [35], the class co-occurrence
context was utilized to improve object recognition
accuracy. In the context of video analysis, Naphade
and Huang [36] proposed to utilize a probabilis-
tic graphical network to model the co-occurrence of
semantic concepts for video indexing and retrieval.
Jiang et al. [37] proposed a semantic diffusion al-
gorithm to harness the class relationships. Weng et
al. [38] proposed a similar domain-adaptive method
that not only used the class relationships, but also
explored temporal context information of broadcast
news videos. Recently, Deng et al. [39] proposed
Hierarchy and Exclusion (HEX) graphs, which can
capture not only the co-occurrence class relationships,
but also mutual exclusion and subsumption. Another
two recent works [40], [41] utilized the co-occurrence
statistics to help video classification, where the co-
occurrence of classes was used more as a semantic
feature representation.

Most of these approaches, however, rely on the co-
occurrence statistics of the video classes, and thus
cannot be used in the cases where the classes share
certain commonalities but do not explicitly co-occur
in the same video. By injecting a class relationship
matrix into the learning process, our approach can
automatically learn and utilize such commonalities
using a regularized DNN with a unified objective, as
will be elaborated in the following section.

Our formulation is partly inspired by recent re-
search on Multiple Task Learning (MTL) [42], [43].
MTL trains multiple class models simultaneously and
boosts the performance of a task (a classifier model)
by seeking help from other related tasks. MTL has
demonstrated good results in many applications, such
as disease prediction [44], [45] and financial stock
selection [46]. Sharing certain commonalities among
multiple tasks is the key idea of MTL and several
algorithms have been proposed with regularizations
on the shared patterns across tasks [47], [48], [49].
These works exploited the class relationships in classi-
fication or regression problems using the conventional
learning approaches, but never injected such regular-
izations into the DNN.

In fact, neural network is one of the earliest MTL
models [50]. See Figure 2(b) for a standard network
structure. In the network, each unit of the output layer
refers to a task (class) and neurons of the hidden
layers can be viewed as the shared common features.
In this paper, we show that, by imposing explicit
forms of regularizations, the class relationships can
be better exploited for improved video categorization
performance.

3 REGULARIZED DNN
3.1 Notations and Settings

We have a training set with a total of N video samples,
which are associated with C semantic classes. Since a
video sample may have M types of feature represen-
tations (e.g., multiple visual and audio clues), we can
use an (M + 1)-tuple to represent each video as:

(x1
n, · · · ,xm

n , · · · ,xM
n ,yn), n = 1, · · · , N.

Here xm
n represents the m-th feature of the n-th video

sample, and yn = [yn1, · · · ync, · · · ynC ]> ∈ BC is the
associated semantic label for the n-th sample. If the
n-th sample belongs to the c-th semantic class, the c-
th element is set as ync = 1, otherwise ync = 0. The
objective for video classification under the above set-
ting is to train prediction models that can categorize
new test videos into the C semantic classes.

Simply, one can independently train one classifier
for each semantic class, where different features can
be combined using either the early or the late fusion
scheme. Instead, here we propose a DNN framework
with structure regularization to perform video classi-
fication. In particular, this regularized DNN carries
out feature fusion with an additional layer, namely
fusion layer, to exploit the correlation and diversity
of multiple features, as illustrated in Figure 1. Fur-
thermore, we impose additional regularization on the
prediction layer to enforce knowledge sharing across
different semantic classes. With such a regularized
DNN framework, we are able to explicitly explore
both types of relationships in a uniform learning pro-
cess. To address the details of the proposed regular-
ized DNN, below we first introduce the background
of training standard DNNs with a single type of
feature. After that, we elaborate our formulation and
explain why our proposed approach can realize the
aforementioned goals.

3.2 DNN Learning with A Single Type of Feature

Inspired by the biological neural systems, DNN uses a
large number of interconnected neurons and construct
complex computational models to mimic the informa-
tion processing in neural systems. Through cascading
the neurons in multiple layers, DNN exhibits strong
non-linear abstraction capacity and is able to learn
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Fig. 2. Popular neural network structures: (a) is the standard one-vs-all training scheme using a single type
of feature; (b) is the popular structure used in multi-class learning with a single type of feature; (c) is the one-
vs-all training scheme using multiple types of features; and (d) processes multiple features separately and then
performs fusion using a middle layer [31].

arbitrary mapping from inputs to outputs as long as
being given sufficient training data.

Given a DNN with L layers, we denote al−1 and
al as the input and the output of the l-th layer, l =
1, · · · , L, while Wl and bl refer to the weight matrix
and the bias vector of the l-th layer, respectively. With
only a single type of feature, the transition function
from the (l−1)-th layer to the l-th layer can be written
as:

al =

{
σ (Wl−1al−1 + bl−1) l > 1;
x l = 1,

(1)

where the nonlinear sigmoid function σ(·) is defined
as:

σ(x) =
1

1 + e−x
.

For simplicity, we can absorb bl−1 into the weights
coefficient Wl−1 by adding an additional dimension
to the feature vectors with a constant value one.
Figure 2 (a) and (b) show two types of four-layered
neural networks using a single feature as the input to
classify data samples into C semantic classes.

Typically, one can minimize the following cost func-
tion to derive the optimal weights for each layer in the
network:

min
W

N∑
i=1

`(f(xi),yi) +
λ1
2

L−1∑
l=1

‖Wl‖2F . (2)

The first part in the above cost function measures the
empirical loss on the training data, which summarizes
the discrepancy between the outputs of the network
ŷi = aL = f(xi) and the ground-truth labels yi.
The second part is a regularization term preventing
overfitting.

3.3 Regularization for Feature Fusion
The DNN using a single type of feature is effective in
some cases. However, for data with a variety of repre-
sentations like videos, the semantics could be carried

by different feature representations. Motivated by the
multisensory integration process of primary neurons
in biological systems [51], [52], we extend the basic
DNN with structure regularization on an additional
fusion layer to accommodate the deep fusion process
of multiple types of features. As demonstrated in
Figure 1, the fusion layer absorbs all the outputs from
the transformation layer to generate an integrated
representation as the input for the classification layer.
Accordingly, the transition equation for this fusion
layer can be written as the following:

aF = σ

(
M∑

m=1

Wm
E am

E + bE

)
. (3)

We denote E as the index of the last layer of feature
transformation and F as the index of the fusion layer
(i.e., F = E + 1). Hence, am

E represents the extracted
mid-level representation for the m-th feature. From
the above transition equation, the mid-level repre-
sentation is first linearly transformed by the weight
matrix Wm

E and then non-linearly mapped to generate
the fused representation aF using a sigmoid function.

Note that the weights of the fusion layer,
W1

E , · · · ,WM
E , transform all the available features

into a shared representation. Here the weight ma-
trices are first vectorized into P dimensional vectors
separately with P = |am

E | · |aF | being the product of
the am

E ’s (m = 1, · · · ,M ) dimension and the aF ’s di-
mension. To simplify the formulation, we assume the
extracted features am

E are of the same dimension. Then
all the coefficient vectors are stacked into a matrix
WE ∈ RP×M . Each column of WE corresponds to the
weights of a single feature with the element WE(i, j)
given as

WE(i, j) = Wi
E(j), i = 1, · · · ,M, j = 1, · · · , P.

In order to perform feature fusion by exploring cor-
relations and diversities simultaneously, we formulate
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the following regularized optimization problem to
learn the weights of the DNN:

min
W,Ψ

L+
λ1
2

(
E∑
l=1

M∑
m=1

‖Wm
l ‖2F +

L−1∑
l=F

‖Wl‖2F

)

+
λ2
2

tr(WEΨ−1W>
E)

s.t. Ψ � 0,

(4)

where L =
∑N

i=1 `(ŷi,yi) is the empirical loss term.
Different from the standard single feature based neu-
ral network (Equation 2), we include one additional
regularization term in the above cost function with
one more variable Ψ ∈ RM×M to model the inter-
feature correlation.

Note that Ψ is a symmetric and positive semidefi-
nite matrix and the last regularization term with the
trace norm can help utilize the inter-feature relation-
ship. Similar formulations were often used in multiple
task learning [43], [53], where task relationships are
explored to improve the learning performance. Intu-
itively, the goal is to ensure that the weight vectors
of correlated feature dimensions should contain sim-
ilar values so that the correlated feature dimensions
can contribute similarly to the fused representation.
On the one hand, if a non-diagonal entry of Ψ is
large, updating WE by minimizing the trace norm
ensures that the weights of the corresponding feature
dimensions are similar. On the other hand, if WE

is fixed, minimizing the trace norm can help learn
a Ψ with entries more consistent with the network
weights. Please see Equations 9–11 for a proof on the
relationships between WE and Ψ. In the optimization
stage, we adopt an alternative minimization strategy
to learn WE and Ψ together, as will be explained
in Section 3.6. The coefficients λ1 and λ2 balance the
contributions from different regularization terms.

3.4 Regularization for Class Knowledge Sharing
As discussed earlier, one can simply adopt the one-
vs-all strategy to independently train C classifiers
for categorizing video semantics. As illustrated in
Figure 2(a) and 2(c), this one-vs-all training scheme
with a total of C four-layered neural networks can
be applied for both single-feature and multi-feature
settings. To train a total of C neural networks sepa-
rately, a sufficient amount of positive training samples
are desired for each video category. In addition, the
independent training process completely neglects the
knowledge sharing among different semantic cate-
gories. However, video semantics often share some
commonality due to the strong correlations between
different semantic categories, which have been ob-
served in previous studies [37], [54], [55]. Therefore,
it is critical to explore such a commonality by simul-
taneously learning multiple video semantics, which
can lead to better learning performance [55]. Gen-
erally, the commonality among multiple classes is

represented by the parameter sharing among different
prediction models [56], [57]. In addition, it is fairly
natural for DNN to perform simultaneous multi-class
training. For example, as seen in Figure 2(b), by
adopting a set of C units in the output layer, a single-
feature based DNN can be easily extended to multi-
class problems.

Motivated by the regularization methods adopted
for MTL [56], [57], here we present a regularized
DNN that aims at training multiple classifiers si-
multaneously with deeper exploitation of the class
relationships. To enforce class knowledge sharing, we
employ the following optimization problem as our
learning objective:

min
W,Ω

N∑
i=1

`(f(xi),yi) +
λ1
2

L−1∑
l=1

‖Wl‖2F

+ λ2tr(WL−1Ω
−1W>

L−1).

s.t. Ω � 0.

(5)

Although some previous MTL works explore similar
regularization in the learning objective, they often
assume that the class relationships are explicitly given
and are ready for use as prior knowledge [57], [43].
In our formulation, we tend to learn the prediction
model as well as the class relationships. In particu-
lar, we adopt a convex formulation by imposing a
trace norm regularization term over the coefficients
of the output layer WL−1 with the class relationships
augmented as a matrix variable Ω ∈ RC×C . The
constraint Ω � 0 indicates that the class relationship
matrix is positive semidefinite since it can be viewed
as the similarity measure of the semantic classes. The
form of this regularization term is the same with the
feature regularization in Equation 4, and minimizing
it ensures the consistency between weight correlations
in WL−1 and the non-diagonal values in Ω. The
coefficients λ1 and λ2 are regularization parameters
that balance the contributions from different terms.

3.5 Final Objective of rDNN

Considering both objectives of feature fusion and class
knowledge sharing, we now present a unified DNN
formulation that is able to explore both the feature and
the class relationships. In this joint framework, one
additional layer is employed to fuse multiple features,
where the objective is to bridge the gap between
low-level features and the high-level video seman-
tics. Then another layer of neurons is stacked over
the fusion layer to generate the predictions, where
we impose the trace norm regularization over the
prediction models to encourage knowledge sharing
across different semantic categories. To build such a
rDNN, we incorporate both the feature regularization
in Equation 4 and the class regularization in Equa-
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tion 5 to form the following objective:

min
W,Ψ,Ω

L+
λ1
2

(
E∑
l=1

M∑
m=1

‖Wm
l ‖2F +

L−1∑
l=F

‖Wl‖2F

)

+
λ2
2

tr(WEΨ−1W>
E)

+
λ3
2

tr(WL−1Ω
−1W>

L−1),

s.t. Ψ � 0 tr(Ψ) = 1,

Ω � 0 tr(Ω) = 1,
(6)

where λ1, λ2, and λ3 are regularization parameters.
In the above formulation, two trace-norm regular-
ization terms are tailored for the fusion of multiple
features and the exploitation of the class relationships,
respectively. In addition, we impose two additional
constraints tr(Ψ) = 1 and tr(Ω) = 1 to restrict the
complexity, as suggested in [43]. In the next section,
we introduce an alternating optimization strategy to
minimize the above cost function with respect to the
network weights {Wl}Ll=1, the feature relationship
matrix Ψ, as well as the class correlation matrix Ω.

3.6 Optimization and Analysis

For the optimization problem in Equation 6, two
pairs of variables, i.e., (WE ,Ψ) and (WL−1,Ω), are
coupled with each other. Here we adopt an alternat-
ing optimization approach to iteratively minimize the
cost function with respect to Wm

l (l = 1, · · ·L,m =
1, · · · ,M), Ψ and Ω.

We first consider the minimization problem over the
network weight matrix Wm

l with fixed Ψ and Ω. It is
easy to see that the original problem is degenerated
to the following unconstrained optimization problem:

min
Wm

l

L+
λ1
2

(
E∑
l=1

M∑
m=1

‖Wm
l ‖2F +

L−1∑
l=F

‖Wl‖2F

)

+
λ2
2

tr(WEΨ−1W>
E) +

λ3
2

tr(WL−1Ω
−1W>

L−1).

(7)

Since all the terms in the above cost function are
smooth, the gradient can be easily evaluated. Let Gm

l

be the gradient with respect to Wm
l . We have the

following update equation for the weight matrix Wm
l

at the k-th iteration:

Wm
l (k) = Wm

l (k − 1)− ηGm
l (k), (8)

where η is the step length of the gradient descent.
We then introduce the solution for minimizing the

cost function over Ψ with other variables being fixed.
The problem in Equation 6 can be rewritten as:

min
Ψ

tr(WEΨ−1W>
E),

s.t. Ψ � 0 tr(Ψ) = 1.
(9)

Before giving the analytical solution of Ψ, we provide
a brief discussion on the connection of W and Ψ,
which explains the capability of this regularization
term in a more rigorous way. We first rewrite the
above equation to:

min
Ψ

tr(Ψ−1W>
EWE),

s.t. Ψ � 0 tr(Ψ) = 1.
(10)

Denote U = W>W, since Ψ is a symmetric matrix
and tr(Ψ) = 1 we have

tr(Ψ−1U) = tr(Ψ−1U)tr(Ψ),

=
∥∥∥Ψ− 1

2 U
1
2

∥∥∥2
F

∥∥∥Ψ 1
2

∥∥∥2
F

≥
∥∥∥Ψ− 1

2 U
1
2 Ψ

1
2

∥∥∥2
F

= (tr(U
1
2 ))2

(11)

Adopting the Cauchy-Schwarz inequality,
tr(Ψ−1U) attains minimum (tr(U

1
2 ))2 if and only

if Ψ−
1
2 U

1
2 = aΨ

1
2 . Therefore, Ψ is determined by

matrix U, which defines the relationships among
multiple features.

We now provide the analytical solution of Ψ as:

Ψ =
(W>

EWE)
1
2

tr((W>
EWE)

1
2 )
. (12)

Similarly, we can derive the optimal solution for Ω as:

Ω =
(W>

L−1WL−1)
1
2

tr((W>
L−1WL−1)

1
2 )
. (13)

Note that Zhang et al. adopted a similar solution to
identify task correlations for a linear kernel based re-
gression and classification problem [43]. However, our
method integrates more complex structure regulariza-
tions in a neural network architecture, where both the
feature and the class relationships are exploited for a
completely different application.

In summary, we first estimate the feature and class
relationships using the weights in the neural network.
The relationship matrices are then utilized in turn to
refine the network weights to improve the classifica-
tion performance. Due to the existence of analytical
solutions, we are able to learn the relationship matri-
ces Ψ and Ω in an efficient way. Finally, the training
procedure of the proposed rDNN is summarized in
Algorithm 1. In each epoch, we need to compute
the gradient matrix Gm

l for updating Wm
l , and then

update the matrices Ω and Ψ. The complexity of
calculating the trace norms is the same as that of
the `2 norm. The update of Ω and Ψ requires cubic-
complexity operations with respect to the number of
features M and the number of video classes C. In
practical large scale settings, the values of M and
C are often significantly smaller than the number of
training samples. Therefore, the training cost of the
proposed rDNN is very similar to that of a standard
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Algorithm 1 Training Procedure of rDNN.
Require: xm

n : the representation of the m-th feature for the
n-th video sample;
yn: the semantic label of the n-th video sample;

1: Initialize Wm
l randomly, Ψ = 1

M
IM and Ω = 1

C
IC ,

where IM and IC are identity matrices;
2: for iteration = 1 to K do
3: Back propagate the prediction error from layer L to

layer 1 by evaluating the gradient Gm
l , and update

the weight matrix Wm
l for each layer and each feature

as:
Wm

l (k) = Wm
l (k − 1)− ηGm

l (k);

4: Update the feature relationship matrix Ψ according
to Equation 12:

Ψ =
(W>

EWE)
1
2

tr((W>
EWE)

1
2 )

;

5: Update the class relationship matrix Ψ according to
Equation 13:

Ω =
(W>

L−1WL−1)
1
2

tr((W>
L−1WL−1)

1
2 )
.

6: end for

DNN. Our empirical study further confirms the effi-
ciency of our method, as will be discussed later.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Dataset and Evaluation

We adopt three challenging datasets to evaluate the
rDNN, as described in the following.

Hollywood2 [13]. The Hollywood2 dataset is well-
known in the area of human action recognition in
videos. Collected from 69 Hollywood movies, it con-
tains 1,707 short video clips annotated according to 12
classes: answering phone, driving car, eating, fighting,
getting out of car, hand shaking, hugging, kissing,
running, sitting down, sitting up and standing up.
Following [13], the dataset is split into a training set
with 823 videos and a test set with 884 videos.

Columbia Consumer Videos (CCV) [58]. The CCV
dataset is a popular benchmark on Internet consumer
video categorization. It contains 9,317 videos col-
lected from YouTube with annotations of 20 seman-
tic categories, including objects (e.g., “cats”), scenes
(e.g., “playground”), and events (e.g., “parade”). Since
many categories are events, it requires a joint use of
multiple feature clues like visual and audio represen-
tations to perform better categorization. The dataset
is evenly split into a training set and a test set.

Fudan-Columbia Video Dataset (FCVID). Since
both the Hollywood2 and the CCV datasets are small
in terms of the number of annotated classes and
the number of videos, to substantially evaluate our
rDNN, we collect and release a new benchmark,

named FCVID1. This dataset contains 91,223 Internet
videos annotated manually according to 239 cate-
gories, covering a wide range of topics like social
events (e.g., “tailgate party”), procedural events (e.g.,
“making cake”), objects (e.g., “panda”), scenes (e.g.,
“beach”), etc. We divide the dataset evenly with
45,611 videos for training and 45,612 videos for test-
ing. To the best of our knowledge, FCVID is one
of the largest datasets for video categorization with
accurate manual annotations. Due to space constraint,
please refer to the supplementary material for more
information of the dataset, including details on the
collection and annotation process, statistics, a category
hierarchy, as well as other related released resources
(e.g., all the computed features used in this work).

For all the three datasets, we adopt average pre-
cision (AP) to measure the performance of each cate-
gory and report mean AP (mAP) as the overall results
of all the categories. The standard training and testing
splits are adopted with no separate validation sets.

4.1.2 Video Features
As aforementioned, we consider both deeply learned
features and hand-crafted features in this work.

Static CNN Features. Recently, CNN has exhibited
top-notch performance in various visual categoriza-
tion tasks, particularly in the image domain [59]. We
adopt a CNN model pre-trained on the ImageNet 2012
Challenge data, which consists of 1.2 million images
and 1,000 concept categories. For a given video frame,
we extract a 4,096-d feature representation (CNN-fc7),
which is the output of the 7th fully connected layer
as suggested in [60]. Finally, the frame-level features
are averaged to generate a video-level representation.

Motion Trajectory Features [2]. The dense trajec-
tory features [2] have been popular for several years,
which have exhibited strong performance on various
video categorization datasets. Densely sampled local
frame patches are first tracked over time to generate
the dense trajectories. For each trajectory, four descrip-
tors are computed based on local motion pattern and
the appearance around the trajectory, including a 30-
d trajectory shape descriptor, a 96-d histogram of ori-
ented gradients (HOG) descriptor, a 108-d histogram
of optical flow (HOF) descriptor, and a 108-d motion
boundary histogram (MBH) descriptor. Finally, each
type of descriptor is quantized into a 4,000-d bag-of-
words representation, following the settings of [2].

Audio Features. The audio soundtracks contain
very useful clues that can help categorize some video
semantics. Two types of video features are considered
in this work. The first one is the popular MFCCs (Mel-
Frequency Cepstral Coefficients), which are computed
over every 32ms time-window with 50% overlap
and then quantized into a bag-of-words represen-
tation. The second one is called Spectrogram SIFT

1. Available at: http://bigvid.fudan.edu.cn/FCVID/
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(sgSIFT) [61], where we transform the 1-d soundtrack
of a video into a 2-D image based on the constant-Q
spectrogram. Standard SIFT descriptors are extracted
from this spectrogram and quantized into a bag-of-
words representation.

4.1.3 Alternative Approaches for Comparison

To verify the effectiveness of our rDNN, we compare
with the following approaches:

1) DNN. The same structure with the rDNN using
the same 0.5 dropout ratio, but our proposed
regularization term is not imposed.

2) Early Fusion with Neural Networks (NN-EF).
All the features are concatenated into a long
vector and then used as the input to train a neural
network for video categorization.

3) Late Fusion with Neural Networks (NN-LF).
A neural network is trained using each feature
representation independently. The outputs of all
the networks are fused to obtain the final catego-
rization results.

4) Early Fusion with SVM (SVM-EF). The popular
χ2 kernel SVM is adopted and the features are
combined on the kernel level before classification.

5) Late Fusion with SVM (SVM-LF). An SVM
classifier is trained for each feature and prediction
results are then combined.

6) Multiple Kernel Learning (SVM-MKL). We per-
form feature fusion with the `p-Norm MKL [62]
by fixing p = 2. MKL is able to learn dynamic
fusion weights. For the above EF/LF approaches
1–4, we adopt equal fusion weights.

7) Multimodal Deep Boltzmann Machines (M-
DBM). M-DBM is a fusion approach proposed
in [31], where multiple features are used as the
inputs of the Deep Boltzmann Machines.

8) Discriminative Model Fusion (DMF). DMF [63]
is one of the earliest approaches for exploiting
the inter-class relationships. It simply uses the
outputs of an initial classifier, e.g., a DNN in our
case, as the features to train an SVM model as
the second level classifier to generate the final
prediction. The second level SVM is expected to
be able to learn and use the class relationships.

9) Domain Adaptive Semantic Diffusion (DASD).
DASD [37] uses a graph diffusion formulation
to utilize the inter-class relationships for visual
categorization. Similar to DMF, the prediction
outputs of a DNN (without the regularizations)
are used as the inputs of the DASD in a post-
processing refinement step. The approach re-
quires inputs of pre-computed class correlations,
which can be estimated based on statistics of
label co-occurrences in the training data. Notice
that the pre-computed class correlations are not
needed by our rDNN, which can automatically
learn the relationships.

Among the alternative approaches, 2—7 focus on
feature fusion, while the last two focus on the use of
the class relationships. All the neural networks based
experiments are conducted on a single NVIDIA Telsa
K20 GPU.

4.2 Results and Discussion
We now report and discuss experimental results. In
order to understand the contributions of only exploit-
ing the feature and the class relationships, we first
test the performance of the rDNN by disabling the
regularizations on the output layer and the fusion
layer, respectively. This also ensures to make fair
comparisons with the alternative approaches. After
that, we enable regularizations on both layers and
report results of the entire rDNN framework. With
this setting, we analyze the effect of the number of
training samples, and compare with recent state-of-
the-art results. Last, we discuss the computational
efficiency of rDNN.

Throughout the experiments, we use 4 layers of
neurons in the rDNN. All the features are used as the
input of the first layer, which are then transformed
using a hidden layer with 256 neurons for each type
of feature separately. The transformed features are
further fused with a fusion layer containing 256 neu-
rons, and the fused feature is finally converted to
classification scores through the last layer. Note that
4 layers are empirically found to be suitable. Using
more layers in rDNN may improve the results but
would probably require more training data.

For the key parameters, we set the learning rate of
the neural networks to 0.7, fix λ1 to a small value
of 3e−5 in order to prevent overfitting, and set λ2
and λ3 to 5e-5 for Hollywood and CCV, and 3e-5
for FCVID. We adopt the mini batch gradient descent
with the batch size being 70 for network training. The
training will stop if it reaches the maximal epochs
or the training error stops to decrease in the last 10
epochs (with difference less than 1e-5).

4.2.1 Exploiting Feature Relationships
We first report results by only using the fusion layer
regularization in our rDNN, namely rDNN-Feature
Regularization (rDNN-F). Table 1 shows the results of
the individual features, our rDNN-F, and the alterna-
tive feature fusion methods. Among the static CNN,
motion and audio features, motion is significant better
than the other two on Hollywood2 but is slightly
worse than the CNN feature on CCV and FCVID. This
is due to the fact that many classes in CCV and FCVID
(e.g., “baseball” and “desert”) can be recognized by
viewing just one or a few discrete frames, but cat-
egorizing the Hollywood2 human actions normally
requires a sequence of frames with detailed motion
clues. In addition, the overall performance on CCV is
slightly lower than that on the much larger FCVID.



0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2670560, IEEE Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

TABLE 1
Performance comparison (mAP) using individual and

multiple features with various fusion methods.
“rDNN-F” indicates our rDNN focusing only on the

exploitation of the feature relationships.
Hollywood2 CCV FCVID

Static CNN 40.1% 66.1% 63.8%
Motion 62.4% 60.8% 62.8%
Audio 22.7% 25.9% 26.1%
DNN 64.2% 71.6% 72.1%

NN-EF 63.5% 70.2% 74.7%
NN-LF 60.2% 69.9% 73.8%

SVM-EF 64.1% 71.7% 75.0%
SVM-LF 62.7% 69.1% 72.1%

SVM-MKL [62] 63.8% 71.3% 75.2%
M-DBM [31] 63.9% 71.1% 74.4%

rDNN-F 65.9% 72.9% 75.4%

This is because CCV has some highly correlated cat-
egories (see Figure 4) that are very difficult to be
separated. While FCVID also contains similar confus-
ing categories, the percentage of such “difficult” cases
is lower as it also has more “easy” categories, and
therefore the overall performance is higher.

For the fusion of the three types of features, our
rDNN-F achieves the best performance with consis-
tent gains over all the compared methods. Note that,
like the “DNN” baseline, the M-DBM approach also
utilizes a neural network for feature fusion, but in a
free manner without explicitly enforcing the use of the
feature relationships. These results clearly verifies the
effectiveness of imposing the proposed fusion regu-
larization method. Notice that, since the Hollywood2
and the CCV datasets have been widely used, an
absolute mAP gain of 2% is generally considered as a
significant improvement.

Among the alternative approaches, early fusion
methods tend to produce better results than late
fusion. This is consistent with the observations of
several recent works, where early fusion is more pop-
ularly adopted [3]. The MKL is even slightly worse
than early fusion on Hollywood2 and CCV, indicating
that the learned weights do not generalize well to
testing data. In addition, for the contribution of the
audio feature in the fusion experiments, we observe
clearly improvement for the classes with strong audio
clues, such as “answering phone”. On the contrary,
for classes like “sitting down”, audio features may
slightly degrade the result.

4.2.2 Exploiting Class Relationships
Next, we report results of rDNN using only the class
relationships, namely rDNN-C. We compare with
the DNN baseline with no regularization, DMF and
DASD. Results are given in Table 2. rDNN-C outper-
forms the DNN baseline and the two alternative ap-
proaches. Both DMF and DASD use the outputs of the
DNN baseline as inputs for context-based refinement.

TABLE 2
Performance comparison (mAP) with DMF and DASD,

which focus on the use of the class relationships.
“DNN” is a baseline without imposing our proposed

regularization term and “rDNN-C” indicates our rDNN
utilizing only the class relationships.

Hollywood2 CCV FCVID
DNN 64.2% 71.6% 72.1%

DMF [63] 61.8% 71.1% 72.5%
DASD [37] 64.4% 71.7% 72.8%
rDNN-C 65.1% 72.1% 74.4%

rDNN-C prior 65.8% 72.5% 75.0%

These results corroborate the effectiveness of the class
relationship regularization.

Note that, like many previous methods exploring
class relationships, the DASD requires pre-computed
class relationships as the input, which are estimated
based on the label co-occurrences in the training data.
This might be the reason that it performs worse
than the rDNN-C as the latter automatically learns
the commonalities shared among the categories. The
learning process can identify not only the categories
that co-occur, but also those sharing visual or au-
ditory commonalities but rarely appear together. To
verify this, we visualize some found category groups
in Figure 3. As discussed in Section 3, values in
the matrix Ω can indicate the learned relationships
among the categories. Hence, we apply the spectral
clustering algorithm on Ω to group the categories
and provide examples of several classes having high
similarities. We see that many categories are grouped
together because they share certain commonalities
(e.g., “marathon” and “marchingBand”), not due to
high frequencies of co-occurrence. In addition, we
further visualize the learned matrix Ω on the smaller
dataset CCV in Figure 4(a). The learned correlated
categories may be due to either the shared objects,
scenes or audio clues.

It is interesting to notice that, once prior knowledge
of the relations among multiple categories is available,
it can be leveraged to initialize the relationship matrix
Ω. For example, if a category i is known to be more
similar to j than to k, we could simply set Ωij > Ωik

in the initialization stage. As shown in Table 2 (the
last row rDNN-C prior), we observe further improve-
ments, which are however not very significant. There-
fore, we conclude that the automatically identified
visual/auditory commonalities are effective. In addi-
tion, to further verify that the gain of our approach is
really from using the learned class relationships, not
from our different optimization strategy as compared
with the baselines, we simply fix Ω to be an identity
matrix in the optimization process (i.e., all the classes
are treated independently). Under this setting, the per-
formance drops 1.6%, 0.8% and 3.0% on Hollywood2,
CCV and FCVID respectively.
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Fig. 3. The learned class relationship matrix Ω on FCVID and example frames of a few category groups. Many
of the found groups contain categories that share visual/auditory commonalities but do not necessarily co-occur.

4.2.3 Exploiting Both Kinds of Relationships

Finally, we discuss the results of the entire rDNN
framework, using both the feature and the class rela-
tionships. Table 3 presents the results of the overall
framework. Overall, substantial performance gains
are attained from the proposed approach. Using reg-
ularizations on both kinds of relationships leads to
clearly higher performance than imposing the regu-
larization on a single type of relationship.

Compared with DNN structures that only adopt
dropout to improve generalization, rDNN achieves
better performance on all the datasets. We also deep-
ened the network structures with six and eight layers
in order to learn the hidden relationships (indicated
by “DNN-6 layer” and “DNN-8 layer” in the table),
but the results are significantly worse. This is because
more parameters are added with the additional layers,
which will easily lead to over-fitting especially when
training with limited samples.

In addition, comparing the results across the three
datasets, the improvement from exploiting the class
relationships is more significant on FCVID. This is
because FCVID contains a much larger number of
classes that share commonalities helpful for catego-
rization. Figure 4 further visualizes the confusion
matrix of rDNN on the CCV dataset.

4.2.4 Training with Limited Samples

Regularization techniques could usually help improve
the results when training with limited samples. To
better evaluate the effectiveness of the regularizers,
we plot the performance with different numbers of
training samples in Figure 5. We observe that the
performance gain of rDNN is more significant when
the number of training samples is small (except the

TABLE 3
Performance of the entire framework (the last row)

using both kinds of relationships, in comparison with
single-relationship results and the basic deep

networks with various numbers of hidden layers.
Hollywood2 CCV FCVID

DNN 64.2% 71.6% 72.1%
DNN-6 layer 60.1% 68.1% 67.3%
DNN-8 layer 56.2% 62.3% 62.7%

rDNN-F 65.9% 72.9% 75.4%
rDNN-C 65.1% 72.1% 74.4%

rDNN 66.9% 73.5% 76.0%

case of 10 training samples on FCVID, which are
too few to distinguish the 239 categories). Under all
the settings, the rDNN requires less training data
to achieve comparable results to the non-regularized
version.

4.2.5 Comparison with State of the Arts
We compare rDNN with several recent approaches
in Table 4. On Hollywood2, our proposed method
achieves a competitive mAP of 66.9%, outperforming
many of the compared approaches [64], [2], [65], [66],
[11], except a few recent results [67], [68], [69]. Most
of these approaches are based on the popular dense
trajectory features and the SVM classification with the
simple early fusion method. Note that some of them
like Wang et al. [2] and Lan et al. [67] encoded the
features using the Fisher vector [70], which has been
shown to be more effective than the classical bag-
of-words representation used in our approach. The
approach by Lan et al. [67] extends upon the dense
trajectories with a feature enhancement method called
multi-skip feature stacking, while Hoai et al. [68] and
Fernando et al. [69] explored prediction score distribu-
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(a) Visualization of      on CCV 

(b) Confusion matrix of CCV 

Fig. 4. (a) The learned class relationship matrix Ω on
CCV. (b) Confusion matrix on CCV.

TABLE 4
Comparison with state of the arts.

Hollywood2 mAP CCV mAP
Jain et al. [64] 62.5% Kim et al. [71] 56.5%
Wang et al. [2] 64.3% Xu et al. [72] 60.3%

Zhang et al. [65] 50.9% Ye et al. [27] 64.0%
Ni et al. [66] 61.0% Jhuo et al. [29] 64.0%
Wu et al. [11] 65.7% Ma et al. [73] 63.4%
Lan et al. [67] 68.0% Liu et al. [74] 68.2%
Hoai et al. [68] 73.6% Wu et al. [11] 70.6%

Fernando et al. [69] 73.7% - -
rDNN 66.9% rDNN 73.5%

tion and temporal information respectively. Since the
focus of these works is different, further performance
gain may be achieved by combining them with rDNN.

On the CCV dataset, we obtain to-date the best
performance with an mAP of 73.5%. Most recent
works on CCV focused on the joint use of multiple
audio-visual features. Xu et al. [72] and Ye et al. [27]

extended late fusion with specially designed strategies
to remove the noise of individually trained classifiers.
Jhuo et al. adopted a joint audio-visual codebook to
exploit feature relationships for categorization [29].

4.2.6 Computational Efficiency
We discuss the computational efficiency of rDNN
using the Hollywood2 dataset. The average training
time of each epoch for NN-EF, NN-LF and rDNN are
1.540±0.02, 1.552±0.05 and 1.276±0.10, respectively,
using the same GPU-based implementation. rDNN is
more efficient than NN-EF and NN-LF as it contains
less parameters to be learned. Specifically, compared
with the NN-EF, rDNN processes the features sep-
arately in the first two layers and thus avoids the
parameters needed for interacting among them. The
NN-LF requires the training of separate networks,
which is also more expensive. Note that the M-DBM
method is not compared because it requires much
more time to pre-train the network for weight initial-
ization. For all the methods, normally a few hundreds
of epochs are needed to finish the training (several
minutes in total). After training, all the neural network
methods are very fast in testing.

5 CONCLUSION

We have proposed a novel rDNN approach to exploit
both feature and class relationships in video catego-
rization. By imposing trace-norm based regulariza-
tions on the specially tailored fusion layer and output
layer, our rDNN can learn a fused representation of
multiple feature inputs and utilize the commonali-
ties shared among the semantic classes for improved
categorization performance. Extensive experiments of
action and event recognition on popular benchmarks
have shown that rDNN consistently outperforms sev-
eral alternative approaches. Our rDNN is also efficient
in both model training and testing, which is very
important for large scale applications. In addition,
we have introduced a new dataset, FCVID, for large
scale video categorization. We believe that FCVID is
helpful for stimulating research not only on video
categorization, but also on other related problems.

The current framework supports the use of any pre-
computed features. One interesting future work is to
exploit the joint learning of feature representations
and classification models. For instance, the adopted
CNN feature is computed based on off-the-shelf mod-
els. It would be probably helpful if the feature extrac-
tion part could be further tuned simultaneously with
the regularized classification network.
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