
Tamp: A Library for Compact Deep Neural Networks
with Structured Matrices

Bingchen Gong
∗

Zhejiang University
gbc@zju.edu.cn

Brendan Jou, Felix Yu, Shih-Fu Chang
Columbia University

{bjou,yuxinnan,sfchang}@ee.columbia.edu

ABSTRACT
We introduce Tamp, an open source C++ library for re-
ducing the space and time costs of deep neural network
models. In particular, Tamp implements several recent
works which use structured matrices to replace unstructured
matrices which are often bottlenecks in neural networks.
Tamp is also designed to serve as a unified development
platform with several supported optimization back-ends and
abstracted data types. This paper introduces the design
and API and also demonstrates the effectiveness with ex-
periments on public datasets.

1. INTRODUCTION
Deep neural networks have achieved outstanding perfor-

mances in many fields over the past several years. However,
training and inference of most neural networks often have
high computational costs preventing many popular neural
network architectures, particularly those for visual recogni-
tion, from being deployed on-board in resource-limited de-
vices such as mobile phones, low cost robots and other em-
bedded devices. One major bottleneck comes from the fully-
connected layers which compute the matrix vector product
followed by an element-wise activation function: φ(Cx). For
a layer with a k-dimension input and n-dimension output,
the linear transformation matrix has nk parameters and usu-
ally costs nk operations to compute.

One family of promising methods for reducing the memory
and time costs of fully connected layers is to impose struc-
ture on the matrices used in these networks [1, 7, 10, 11].
By replacing unstructured dense matrices with structured
matrices the number of network parameters can be dramat-
ically reduced, with very modest accuracy loss. For example,
by imposing the [1] structure on the AlexNet architecture
[5], one can get 4,000× space saving and 1.38× speedup
with a less than a 2% cost to accuracy on ILSVRC2012

∗This work was done in part while the first author was an
undergraduate visiting researcher at Columbia University’s
Digital Video & Multimedia Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15 - 19, 2016, Amsterdam, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2973802

[9]. The intuition behind the “compressibility” of these net-
works is that there exist redundancies in the dense matrices.
However, many of these proposed approaches are based on
closed-source implementations or are reported on different
software architectures. This makes real-world application
and benchmarking across such methods difficult.

In this open source submission, we introduce Tamp1, an
open-sourced C++ library providing a unified platform to
develop, benchmark and deploy structured matrices in deep
neural networks. The library supports using two popular
frameworks, Caffe [3] and TensorFlow [2], as back-ends.

2. STRUCTURED TRANSFORMS
We briefly summarize several different structures in Tamp.

Note that the projection matrix is restricted to be square by
some of these methods, requiring pre or post-processing for
input or output vectors.

Circulant [1, 11]. Given an n-dimensional real-valued vec-
tor v as the first column vector of it, a corresponding circu-
lant matrix C ∈ Rn×n has the structure:

C = circ(v) =

v0 vn−1 . . . v2 v1
v1 v0 vn−1 v2
... v1 v0

. . .
...

vn−2

. . .
. . . vn−1

vn−1 vn−2 . . . v1 v0

 . (1)

With a circulant matrix as the matrix of parameters in a
fully-connected layer, for an input data vector x, the layer
output φ(Cx) can be calculated efficiently using the Fast
Fourier Transform (FFT):

φ(Cx) = φ(ifft(fft(v) ◦ fft(x))), (2)

where fft and ifft denote FFT and inverse FFT, respectively;
◦ corresponds to Hadmard (elementwise) product between
two vectors. This FFT equivalence allows us to compute cir-
culant projections in O(n logn) time O(n) space. In prac-
tice, a random sign flipping diagonal matrix D is added be-
tween C and x to improve the capacity of the model [1].

Toeplitz-like [11]. A Toeplitz-like matrix is composed by
f -circulant matrix, a generalization of circulant matrices de-
fined by a real-valued scalar f :

Zf (v)i,j =

{
circ(v)i,j ∗ f : i < j

circ(v)i,j : i ≥ j
(3)

1https://github.com/ColumbiaDVMM/Tamp

Method Complexity Method Complexity
Unstructured O(nk) Low Rank [10] O(r(n+ k))
Circulant [1] O(n logn) Toeplitz [11] O(n logn)

Skew-circulant [11] O(n logn) ACDC [7] O(n logn)

Table 1: Summary of Computational Complexities
of Several Structured Matrix Transforms.

When f is 1, the f -circulant matrix is the same as a circulant
matrix and when f is -1, it is a skew-circulant matrix. Order-
r Toeplitz-like matrices then are all n×n matrices which can
be composed by two f -circulant matrices [11] as:

Cr(G,H) =

r∑
i=1

Z1(gi)Z−1(hi), (4)

where G = [g1 . . . gr], H = [h1 . . . hr] ∈ Rn×r. For most
space complexity saving, order-1 Toeplitz-like matrices are
used in this initial release. Similar to circulant matrices,
FFTs can be used to speed up computation.

Low Rank [10]. For a matrix in the form of C ∈ Rn×k

whose rank is r, there exist two matrices A ∈ Rn×r and
B ∈ Rr×k such that C = AB. By this factorization, the
number of parameters reduces from nk to r(n+ k), and the
time complexity reduces from nk to r(n+k). It is also shown
recently that tensor factorization, a generalization of low-
rank factorization, can also be used in compressing neural
networks [8].

ACDC [7]. With A = [a1 . . . ar], D = [d1 . . . dr] ∈ Cn×r

to scale the signal in the original domain and the Fourier
domain respectively [7], an order-r AFDF transformation
replaces linear projection in neural networks as

AFDFr(x) = xT [

r∏
i=1

diag(ai)Fdiag(di)F−1]

where F denotes the FFT matrix, so Fx and F−1x cor-
respond to fft(x) and ifft(x). AFDF can be viewed as a
further generalization of circulant structures. ACDC is the
real-valued version of AFDF, where the Fourier transform is
replaced by the Discrete Cosine Transformation (DCT) [7].

3. LIBRARY FEATURES

3.1 Interfaces & Tools
Tamp is a C++ library for implementing, benchmarking

and easy execution of structured transforms in deep neural
networks. It provides convenient interfaces via C++ tem-
plate classes, abstracts device/host memory management,
and BLAS and FFT library.

To create a new structured matrix model in Tamp, de-
velop a subclass of the ProcessorBase class and override
forward/backward calculation functions like below.

The Forward function computes the feedforward stage of
the structured matrix model, and the Backward function
computes gradients of the model. These two functions can
be overloaded to add support for different acceleration ar-
chitectures, e.g. GPUs or coprocessors.

An Environment struct is passed to the constructor con-
taining model parameters such as the output dimensions and
whether to include a random sign flipping diagonal matrix
D. To summarize, the following steps are necessary to de-
velop a new structured matrix model with Tamp:

class Processor : ProcessorBase

{

Processor(Environment* env) :

ProcessorBase(env) {}

void Forward(

ExecutiveCore* core,

const ProcessorTape* atape)

{ /* Forward calculation */ }

void Backward(

ExecutiveCore* core,

const ProcessorTape* atape,

const ProcessorTape* btape)

{ /* Gradient calculations */ }

void Shape(

ExecutiveCore* core,

ProcessorTape* atape)

{ /* Set output size */ }

};

• Override Forward and Backward calculation methods.

• Override the Shape method. This method is called
each time before forward calculation to set the output
size and allocate the proper buffer size.

The following additional steps are optional for developers
to provide additional acceleration support like on GPUs:

• Implement a constructor to set the inner class status.

• Overload Forward and Backward calculation methods
to support acceleration.

3.2 Data Type Abstraction
Although not required, inheriting from ProcessorBase by

a template class is preferred since Tamp is designed for
different data types. Using templates, a Processor can be
registered as:

template <typename T>

class Processor : ProcessorBase

{

/* Functions to override */

}

INSTALL_PROCESSOR(float, Processor<float>)

INSTALL_PROCESSOR(double, Processor<double>)

Most of the classes and math functions in Tamp are im-
plemented as templates. One of them, TypedData<T>, class
template abstracts data management. TypedData<T> is a
pure virtual class that inherits from BufferedData and uses
backend-specific implementations such as TypedDataTensor<T>
and TypeDataCaffe<T>.

3.3 Context Management
Because of the multi-threaded nature of TensorFlow [2],

member functions of ProcessorBase may be called concur-
rently, necessitating context management. Tamp provides
a class ExecutiveCore as an interface for current execution
context and uses the ProcessorTape class to record data.
Although Caffe [3] will not call instances concurrently, sim-
ilar context management is provided for coherence.

Through the ProcessorTape and ExecutiveCore classes,
developers can allocate memory buffers and limit their access
within context to avoid the use of mutexes.

void Forward(

ExecutiveCore* core,

const ProcessorTape* atape)

{

const TypedData<float>& input =

atape->input[0]->typed<float>();

TypedData<float>& output =

atape->output[0]->typed<float>();

...

auto conv_buffer =

core->allocateBuffer<float>({3,3});

...

}

3.4 Math Library
By using standard C pointers for data I/O interface, li-

braries are kept lightweight and easy to use in Tamp. Most
functions use a CBLAS back-end and a small subset of FFT
operations require libfftw3. For efficient CPU operations, we
use various libraries like ATLAS/FFTW/MKL/etc, while
for GPU, we use NVIDIA’s cuBLAS and cuFFT along with
CUDA. Also noteworthy, in Caffe [3], their portable header
math_functions conveniently makes all math function tem-
plates type independent.

3.5 Backend Differences
Tamp currently integrates both TensorFlow [2] and Caffe

[3], and so any structured matrix models implemented in
Tamp can be run with a TensorFlow or Caffe back-end.
Although we have abstracted most of the back-end interfac-
ing to developers, some nuanced differences exist when using
each of these back-ends due to their inherent differences.

TensorFlow [2]. A model is defined via two “operators” in
TensorFlow, a forward and backward operator. The back-
ward operator is bound to a forward operator through a
Python wrapper using a RegisterGradients decorator [2].
Technically, developers can override the forward method,
then implement backward code in Python and register them
manually; however, doing so prevents the model from being
compatible with Caffe [3].

Python definition of network: Circulant section

weights = _variable_

biases = _variable_

circulant = struct.circulant(pool, weights) + biases

Calling the structured model like a normal TensorFlow
operation from this point on will then work normally.

Caffe [3]. In Caffe, a structured matrix model corresponds
to a single layer, and can be defined for example as:

layer {

name: "circulant"

type: "CirculantProjection"

bottom: "pool"

top: "circulant"

}

In Caffe, biases are implemented within layers, thus they
can not be added outside the model. Tamp provides a triv-
ial biases which can be added to model automatically.

Along with the Tamp library, we release two basic struc-
ture implementation: Circulant and Skew-circulant. These

two models can be used directly or can be combined to form
more complex structures, like Toeplitz-like matrices [11].

4. BENCHMARKS & PERFORMANCE
We used Tamp to implement multiple structured matri-

ces and benchmarked them using both Caffe [3] and Ten-
sorFlow [2] on MNIST, CIFAR10 and ILSVRC2010. The
experiments were run on a Intel(R) Xeon(R) CPU E5-2609
@ 2.40GHz.

MNIST. The MNIST handwritten digits dataset contains
60K/10K 28×28 greyscale train/test examples. We trained
the convolutional neural network LeNet [6] here, replacing
the second-to-last fully-connected layer with structured ma-
trices. Results are given in Table 2.

Caffe [3] TensorFlow [2]
Method #Params Acc Speed Acc Speed
Unstructured 250,000 99.07 798 99.20 131
Circulant [1] 500 98.84 797 99.00 138
Skew-circulant [11] 500 98.75 703 98.90 130

Table 2: Tamp Accuracy (“Acc” in %) and Speed (
examples/sec) Benchmarks on MNIST.

CIFAR10. In the CIFAR10 dataset, there are 50K/10K
32×32 color train/test examples from ten classes [4]. We
trained a CIFAR10-CNN network on CIFAR10 [4], where
we replaced the only fully-connected layer with structured
transforms. Our CIFAR10 results are shown in Table 3.
Note that the structured matrices should often be used to
structure intermediate fully-connected layers not the last
fully-connected layer providing classification output. In the
case of CIFAR10-CNN, however, we found that introducing
structure in the last layer also leads to minimal compromise
on accuracy.

Caffe [3] TensorFlow [2]
Method #Params Acc Speed Acc Speed
Unstructured 10,240 82.53 1111 86.00 621
Circulant [1] 1,024 80.35 1176 83.70 680
Skew-circulant [11] 1,024 79.77 1136 81.20 671
Low Rank [10] 6,144 71.82 1153 78.70 690
Toeplitz [11] 2,048 81.03 1142 81.40 643
ACDC [7] 2,048 81.08 1153 81.50 658

Table 3: Tamp Accuracy (%) and Speed (exam-
ples/sec) on CIFAR10. Number of parameters is
also shown for one fully-connected layer.

ILSVRC. We trained AlexNet [5] on ILSVRC2010 [9]. Our
results show a ∼90% reduction in the memory requirement
of AlexNet using a circulant structure in exchange for ∼2%
increase in top-1 and top-5 error rate. Here, we replaced
the two fully-connected layers before the last fully-connected
layer containing 4096 output units with circulant transforms.
Results are shown below in Table 4.

Top-5 Err Top-1 Err Memory
Unstructured 17.1% 42.8% 233.2 MB
Circulant [1] 19.4% 44.1% 20.5 MB

Table 4: Tamp Benchmarks of Circulant Structures
[1] in AlexNet [5] on ILSVRC10 [9].

5. CONCLUSIONS
We introduces a C++ library Tamp as a unified plat-

form for constructing structured matrices to replace dense
linear transformation operations in neural networks. De-
velopers can easily utilize either Caffe [3] or TensorFlow
[2] deep network back-end to develop, benchmark and de-
ploy compressed networks. As part of the initial release, we
provide implementations of several structured matrices in-
cluding circulant, low rank, Toeplitz-like matrices and the
ACDC transform. Tamp uses templates to implement data
abstraction and type independent math operations, and also
provides context management to support concurrent com-
puting. In particular, our experiments on MNIST, CIFAR10
and ILSVRC verify the claims of structured matrices in neu-
ral networks for reducing the number of parameters with
modest cost to accuracy compared to unstructured trans-
forms. We believe that our work will enable repeatable re-
search and enable neural network applications with limited
resource.

6. REFERENCES
[1] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar,

A. Choudhary, and S.-F. Chang. An exploration of
parameter redundancy in deep networks with circulant
projections. In ICCV, 2015.

[2] Google, Inc. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. http://tensorflow.org.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. In ACM Multimedia, OSSC, 2014.

[4] A. Krizhevsky. Learning multiple layers of features
from tiny images. Master’s thesis, University of
Toronto, 2009.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
ImageNet classification with deep convolutional neural
networks. In NIPS, 2012.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proc. of the IEEE, 86(11), 1998.

[7] M. Moczulski, M. Denil, J. Appleyard, and
N. de Freitas. ACDC: A structured efficient linear
layer. In ICLR, 2016.

[8] A. Novikov, D. Podoprikhin, A. Osokin, and
D. Vetrov. Tensorizing neural networks. In NIPS,
2015.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge.
arXiv:1409.0575, 2014.

[10] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
and B. Ramabhadran. Low-rank matrix factorization
for deep neural network training with
high-dimensional output targets. In ICASSP, 2013.

[11] V. Sindhwani, T. N. Sainath, and S. Kumar.
Structured transforms for small-footprint deep
learning. In NIPS, 2015.

