
INV ITED
P A P E R

Learning to Hash for Indexing
Big DataVA Survey
This paper provides readers with a systematic understanding of insights, pros, and cons

of the emerging indexing and search methods for Big Data.

By Jun Wang, Member IEEE, Wei Liu, Member IEEE, Sanjiv Kumar, Member IEEE, and

Shih-Fu Chang, Fellow IEEE

ABSTRACT | The explosive growth in Big Data has attracted

much attention in designing efficient indexing and search

methods recently. In many critical applications such as large-

scale search and pattern matching, finding the nearest

neighbors to a query is a fundamental research problem.

However, the straightforward solution using exhaustive com-

parison is infeasible due to the prohibitive computational

complexity and memory requirement. In response, approxi-

mate nearest neighbor (ANN) search based on hashing

techniques has become popular due to its promising perfor-

mance in both efficiency and accuracy. Prior randomized

hashing methods, e.g., locality-sensitive hashing (LSH), explore

data-independent hash functions with random projections or

permutations. Although having elegant theoretic guarantees

on the search quality in certain metric spaces, performance of

randomized hashing has been shown insufficient in many real-

world applications. As a remedy, new approaches incorporat-

ing data-driven learning methods in development of advanced

hash functions have emerged. Such learning-to-hash methods

exploit information such as data distributions or class labels

when optimizing the hash codes or functions. Importantly, the

learned hash codes are able to preserve the proximity of

neighboring data in the original feature spaces in the hash code

spaces. The goal of this paper is to provide readers with

systematic understanding of insights, pros, and cons of the

emerging techniques. We provide a comprehensive survey of

the learning-to-hash framework and representative techniques

of various types, including unsupervised, semisupervised, and

supervised. In addition, we also summarize recent hashing

approaches utilizing the deep learning models. Finally, we

discuss the future direction and trends of research in this area.

KEYWORDS | Approximate nearest neighbor (ANN) search;

deep learning; learning to hash; semisupervised learning;

supervised learning; unsupervised learning

I . Introduction

The advent of Internet has resulted in massive informa-

tion overloading in the recent decades. Today, the World

Wide Web has over 366 million accessible websites,

containing more than one trillion webpages.1 For

instance, Twitter receives over 100 million tweets per
day, and Yahoo! exchanges over three billion messages per

day. Besides the overwhelming textual data, the photo

sharing website Flickr has more than five billion images

available, where images are still being uploaded at the rate

of over 3000 images per minute. Another rich media

sharing website YouTube receives more than 100 h of

videos uploaded per minute. Due to the dramatic increase

in the size of the data, modern information technology
infrastructure has to deal with such gigantic databases. In

fact, compared to the cost of storage, searching for

relevant content in massive databases turns out to be an

even more challenging task. In particular, searching for

rich media data, such as audio, images, and videos,

remains a major challenge since there exist major gaps

between available solutions and practical needs in both

accuracy and computational costs. Besides the widely used
text-based commercial search engines such as Google and

Bing, content-based image retrieval (CBIR) has attracted

substantial attention in the past decade [1]. Instead of

relying on textual keywords-based indexing structures,

Manuscript received April 08, 2015; revised August 31, 2015; accepted September 16,

2015. Date of current version December 18, 2015.

J. Wang is with the School of Computer Science and Software Engineering, East China

Normal University, Shanghai 200062, China (e-mail: wongjun@gmail.com).

W. Liu is with IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA

(e-mail: wliu@ee.columbia.edu).

S. Kumar is with Google Research, New York, NY 10011 USA (e-mail:

sanjivk@google.com).

S.-F. Chang is with the Department of Electrical Engineering and Computer Science,

Columbia University, New York, NY 10027 USA (e-mail: sfchang@ee.columbia.edu).

Digital Object Identifier: 10.1109/JPROC.2015.2487976

1The number of webpages is estimated based on the number of
indexed links by Google in 2008.

0018-9219 � 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

34 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



CBIR requires efficiently indexing media content in order
to directly respond to visual queries.

Searching for similar data samples in a given database

essentially relates to the fundamental problem of nearest

neighbor search [2]. Exhaustively comparing a query point

q with each sample in a database X is infeasible because

the linear time complexityOðjXjÞ tends to be expensive in

realistic large-scale settings. Besides the scalability issue,

most practical large-scale applications also suffer from the
curse of dimensionality [3], since data under modern

analytics usually contain thousands or even tens of

thousands of dimensions, e.g., in documents and images.

Therefore, beyond the infeasibility of the computational

cost for exhaustive search, the storage constraint originat-

ing from loading original data into memory also becomes a

critical bottleneck. Note that retrieving a set of approxi-

mate nearest neighbors (ANNs) is often sufficient for
many practical applications. Hence, a fast and effective

indexing method achieving sublinear ðoðjXjÞÞ, logarithmic

ðOðlog jXjÞÞ, or even constant ðOð1ÞÞ query time is

desired for ANN search. Tree-based indexing approaches,

such as KD tree [4], ball tree [5], metric tree [6], and

vantage point tree [7], have been popular during the past

several decades. However, tree-based approaches require

significant storage costs (sometimes more than the data
itself). In addition, the performance of tree-based indexing

methods dramatically degrades when handling high-

dimensional data [8]. More recently, product quantization

techniques have been proposed to encode high-dimensional

data vectors via subspace decomposition for efficient ANN

search [9], [10].

Unlike the recursive partitioning used by tree-based

indexing methods, hashing methods repeatedly partition
the entire data set and derive a single hash ‘‘bit’’2 from each

partitioning. In binary-partitioning-based hashing, input

data are mapped to a discrete code space called Hamming

space, where each sample is represented by a binary code.

Specifically, given N D-dim vectors X 2 RD�N, the goal of

hashing is to derive suitable K-bit binary codes Y 2 BK�N.

To generate Y, K binary hash functions fhk : RD 7!BgK
k¼1

are needed. Note that hashing-based ANN search techni-
ques can lead to substantially reduced storage as they

usually store only compact binary codes. For instance,

80 million tiny images (32 � 32 pixels, grayscale,

double type) cost around 600 GB [11], but can be

compressed into 64-b binary codes requiring only

about 600 MB. In many cases, hash codes are

organized into a hash table for inverse table lookup,

as shown in Fig. 1. One advantage of hashing-based
indexing is that hash table lookup takes only constant

query time. In fact, in many cases, another alternative

way of finding the nearest neighbors in the code space

by explicitly computing Hamming distance with all the
database items can be done very efficiently as well.

Hashing methods have been intensively studied and

widely used in many different fields, including computer

graphics, computational geometry, telecommunication,

computer vision, etc., for several decades [12]. Among

these methods, the randomized scheme of locality-

sensitive hashing (LSH) is one of the most popular choices

[13]. A key ingredient in LSH family of techniques is a hash
function that, with high probabilities, returns the same bit

for the nearby data points in the original metric space. LSH

provides interesting asymptotic theoretical properties

leading to performance guarantees. However, LSH-based

randomized techniques suffer from several crucial draw-

backs. First, to achieve desired search precision, LSH often

needs to use long hash codes, which reduces the recall.

Multiple hash tables are used to alleviate this issue, but it
dramatically increases the storage cost as well as the query

time. Second, the theoretical guarantees of LSH only apply

to certain metrics such as ‘p ðp 2 ð0; 2�Þ and Jaccard [14].

However, returning ANNs in such metric spaces may not

lead to good search performance when semantic similarity

is represented in a complex way instead of a simple

distance or similarity metric. This discrepancy between

semantic and metric spaces has been recognized in the
computer vision and machine learning communities,

namely as semantic gap [15].

To tackle the aforementioned issues, many hashing

methods have been proposed recently to leverage machine

learning techniques to produce more effective hash codes

[16]. The goal of learning to hash is to learn data-dependent

and task-specific hash functions that yield compact binary

codes to achieve good search accuracy [17]. In order to
achieve this goal, sophisticated machine learning tools and

algorithms have been adapted to the procedure of hash

function design, including the boosting algorithm [18],

distance metric learning [19], asymmetric binary embedding

[20], kernel methods [21], [22], compressed sensing [23],

maximum margin learning [24], sequential learning [25],

clustering analysis [26], semisupervised learning [14], super-

vised learning [22], [27], graph learning [28], and so on. For
instance, in the specific application of image search, the

similarity (or distance) between image pairs is usually not

defined via a simple metric. Ideally, one would like to provide

2Depending on the type of the hash function used, each hash may
return either an integer or simply a binary bit. In this survey, we primarily
focus on binary hashing techniques as they are used most commonly due
to their computational and storage efficiency.

Fig. 1. Illustration of linear-projection-based binary hashing, indexing,

and hash table construction for fast inverse lookup.

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 35



pairs of images that contain ‘‘similar’’ or ‘‘dissimilar’’ images.
From such pairwise labeled information, a good hashing

mechanism should be able to generate hash codes which

preserve the semantic consistency, i.e., semantically similar

images should have similar codes. Both the supervised and

semisupervised learning paradigms have been explored using

such pairwise semantic relationships to learn semantically

relevant hash functions [11], [29]–[31]. In this paper, we will

survey important representative hashing approaches and also
discuss the future research directions.

The remainder of this paper is organized as follows. In

Section II, we present necessary background information,

prior randomized hashing methods, and the motivations of

studying hashing. Section III gives a high-level overview of

emerging learning-based hashing methods. In Section IV,

we survey several popular methods that fall into the

learning-to-hash framework. In addition, Section V de-
scribes the recent development of using neural networks to

perform deep learning of hash codes. Section VI discusses

advanced hashing techniques and large-scale applications

of hashing. Several open issues and future directions are

described in Section VII.

II . Notat ions and Background

In this section, we will first present the notations, as

summarized in Table 1. Then, we will briefly introduce the

conceptual paradigm of hashing-based ANN search.

Finally, we will present some background information on

hashing methods, including the introduction of two well-
known randomized hashing techniques.

A. Notations
Given a sample point x 2 RD, one can employ a set of

hash functions H ¼ fh1; . . . ; hKg to compute a K-bit binary
code y ¼ fy1; . . . ; yKg for x as

y ¼ h1ðxÞ; . . . ; h2ðxÞ; . . . ; hKðxÞf g (1)

where the kth bit is computed as yk ¼ hkðxÞ. The hash

function performs the mapping as hk : RD�!B. Such a

binary encoding process can also be viewed as mapping the

original data point to a binary valued space, namely

Hamming space

H : x! h1ðxÞ; . . . ; hKðxÞf g: (2)

Given a set of hash functions, we can map all the items in

the database X ¼ fxngN
n¼1 2 RD�N to the corresponding

binary codes as

Y ¼ HðXÞ ¼ h1ðXÞ; h2ðXÞ; . . . ; hKðXÞf g

where the hash codes of the data X are Y 2 BK�N.

Table 1 Summary of Notations

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

36 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



After computing the binary codes, one can perform
ANN search in Hamming space with significantly reduced

computation. Hamming distance between two binary

codes yi and yj is defined as

dHðyi;yjÞ ¼ jyi � yjj ¼
XK

k¼1

hkðxiÞ � hkðxjÞ
�� �� (3)

where yi ¼ ½h1ðxiÞ; . . . ; hkðxiÞ; . . . ; hKðxiÞ� and yj ¼
½h1ðxjÞ; . . . ; hkðxjÞ; . . . ; hKðxjÞ�. Note that the Hamming

distance can be calculated in an efficient way as a bitwise

logic operation. Thus, even conducting exhaustive search

in the Hamming space can be significantly faster than

doing the same in the original space. Furthermore,

through designing a certain indexing structure, the ANN

search with hashing methods can be even more efficient.

Below we describe the pipeline of a typical hashing-based
ANN search system.

B. Pipeline of Hashing-Based ANN Search
There are three basic steps in ANN search using

hashing techniques: designing hash functions, generating

hash codes and indexing the database items, and online

querying using hash codes. These steps are described in

detail below.

1) Designing Hash Functions: There exist a number of

ways of designing hash functions. Randomized hashing

approaches often use random projections or permutations.
The emerging learning-to-hash framework exploits the

data distribution and often various levels of supervised

information to determine optimal parameters of the hash

functions. The supervised information includes pointwise

labels, pairwise relationships, and ranking orders. Due to

their efficiency, the most commonly used hash functions

are of the form of a generalized linear projection

hkðxÞ ¼ sgn f w>k xþ bk

� �� �
: (4)

Here fð�Þ is a prespecified function which can be possibly

nonlinear. The parameters to be determined are

fwk; bkgK
k¼1, representing the projection vector wk and

the corresponding intercept bk. During the training

procedure, the data X, sometimes along with supervised
information, are used to estimate these parameters. In

addition, different choices of fð�Þ yield different properties

of the hash functions, leading to a wide range of hashing

approaches. For example, LSH keeps fð�Þ to be an identity

function, while shift-invariant kernel-based hashing and

spectral hashing choose fð�Þ to be a shifted cosine or

sinusoidal function [32], [33].

Note that the hash functions given by (4) generate the
codes as hkðxÞ 2 f�1; 1g. One can easily convert them

into binary codes from f0; 1g as

yk ¼
1

2
1þ hkðxÞð Þ: (5)

Without loss of generality, in this survey, we will use

the term hash codes to refer to either f0; 1g or f�1; 1g
form, which should be clear from the context.

2) Indexing Using Hash Tables: With a learned hash

function, one can compute the binary codes Y for all the
items in a database. For K hash functions, the codes for

the entire database cost only NK=8 bytes. Assuming the

original data to be stored in double-precision floating-point

format, the original storage costs 8ND bytes. Since the

massive data sets are often associated with thousands of

dimensions, the computed hash codes significantly reduce

the storage cost by hundreds and even thousands of times.

In practice, the hash codes of the database are
organized as an inverse lookup, resulting in a hash table

or a hash map. For a set of K binary hash functions, one can

have at most 2K entries in the hash table. Each entry, called

a hash bucket, is indexed by a K-bit hash code. In the hash

table, one keeps only those buckets that contain at least

one database item. Fig. 1 shows an example of using binary

hash functions to index the data and construct a hash table.

Thus, a hash table can be seen as an inverse-lookup table,
which can return all the database items corresponding to a

certain code in constant time. This procedure is key to

achieving speedup by many hashing-based ANN search

techniques. Since most of the buckets from 2K possible

choices are typically empty, creating an inverse lookup can

be a very efficient way of even storing the codes if multiple

database items end up with the same codes.

3) Online Querying With Hashing: During the querying

procedure, the goal is to find the nearest database items to

a given query. The query is first converted into a code

using the same hash functions that mapped the database

items to codes. One way to find nearest neighbors of the

query is by computing the Hamming distance between

the query code to all the database codes. Note that the

Hamming distance can be rapidly computed using logical
xor operation between binary codes as

dHðyi;yjÞ ¼ yi � yj: (6)

On modern computer architectures, this is achieved

efficiently by running xor instruction followed by

popcount. With the computed Hamming distance between

the query and each database item, one can perform

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 37



exhaustive scan to extract the approximate nearest
neighbors of the query. Although this is much faster than

the exhaustive search in the original feature space, the

time complexity is still linear. An alternative way of

searching for the neighbors is by using the inverse lookup

in the hash table and returning the data points within a

small Hamming distance r of the query. Specifically, given

a query, point q, and its corresponding, hash code

yq ¼ HðqÞ, we can use the hash lookup table to retrieve
all the database points ~y whose hash codes fall within the

Hamming ball of radius rcentered atyq, i.e., dHð~y;HðqÞÞ\r.

As shown in Fig. 2, for a K-bit binary code, a total of
Pr

l¼0
K
l

� �
possible codes will be within Hamming radius of r. Thus, one

needs to search OðKrÞbuckets in the hash table. The union of

all the items falling into the corresponding hash buckets is

returned as the search result. The inverse lookup in a hash

table has constant time complexity independent of the
database size N. In practice, a small value of r (r ¼ 1; 2 is

commonly used) is used to avoid the exponential growth in

the possible code combinations that need to be searched.

C. Randomized Hashing Methods
Randomized hashing, e.g., LSH family, has been a

popular choice due to its simplicity. In addition, it has

interesting proximity preserving properties. A binary hash

function hð�Þ from LSH family is chosen such that the

probability of two points having the same bit is propor-

tional to their (normalized) similarity, i.e.,

P hðxiÞ ¼ hðxjÞ
� �

¼ simðxi;xjÞ: (7)

Here simð�; �Þ represents similarity between a pair of points

in the input space, e.g., cosine similarity or Jaccard similarity

[34]. In this section, we briefly review two categories of

randomized hashing methods, i.e., random-projection-based

and random-permutation-based approaches.

1) Random-Projection-Based Hashing: As a representative

member of the LSH family, random-projection-based hash

(RPH) functions have been widely used in different

applications. The key ingredient of RPH is to map nearby
points in the original space to the same hash bucket with a

high probability. This equivalently preserves the locality in

the original space in the Hamming space. Typical examples

of RPH functions consist of a random projection w and a

random shift b as

hkðxÞ ¼ sgn w>k xþ bk

� �
: (8)

The random vector w is constructed by sampling each

component of w randomly from a standard Gaussian
distribution for cosine distance [34].

It is easy to show that the collision probability of two

samples xi;xj falling into the same hash bucket is

determined by the angle �ij between these two sample

vectors, as shown in Fig. 3. One can show that

Pr hkðxiÞ¼hkðxjÞ
� �

¼1�
�ij

�
¼1� 1

�
cos�1 x>i xj

kxikkxjk
: (9)

The above collision probability gives the asymptotic theoret-

ical guarantees for approximating the cosine similarity

defined in the original space. However, long hash codes are

required to achieve sufficient discrimination for high

precision. This significantly reduces the recall if hash-table-

based inverse lookup is used for search. In order to balance the

tradeoff of precision and recall, one has to construct multiple
hash tables with long hash codes, which increases both

storage and computation costs. In particular, with hash codes

of length K, it is required to construct a sufficient number of

hash tables to ensure the desired performance bound [35].

Given l K-bit tables, the collision probability is given as

P HðxiÞ ¼ HðxjÞ
� �

/ l � 1� 1

�
cos�1 x>i xj

kxikkxjk

	 
K

: (10)

Fig. 2. Procedure of inverse lookup in hash table, where q is the query

mapped to a 4-b hash code ‘‘0100’’ and the returned approximate

nearest neighbors within Hamming radius 1 are x1;x2;xn.

Fig. 3. Illustration of random-hyperplane-partitioning-based hashing

method.

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

38 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



To balance the search precision and recall, the length of
hash codes should be long enough to reduce false collisions

(i.e., nonneighbor samples falling into the same bucket).

Meanwhile, the number of hash tables l should be

sufficiently large to increase the recall. However, this is

inefficient due to extra storage cost and longer query time.

To overcome these drawbacks, many practical systems

adapt various strategies to reduce the storage overload and

to improve the efficiency. For instance, a self-tuning
indexing technique, called LSH forest, was proposed in

[36], which aims at improving the performance without

additional storage and query overhead. In [37] and [38], a

technique called MultiProbe LSH was developed to reduce

the number of required hash tables through intelligently

probing multiple buckets in each hash table. In [39],

nonlinear randomized Hadamard transforms were ex-

plored to speed up the LSH-based ANN search for
Euclidean distance. In [40], BayesLSH was proposed to

combine Bayesian inference with LSH in a principled

manner, which has probabilistic guarantees on the quality

of the search results in terms of accuracy and recall.

However, the random-projections-based hash functions

ignore the specific properties of a given data set and thus

the generated binary codes are data independent, which

leads to less effective performance compared to the
learning-based methods to be discussed later.

In machine learning and data mining community,

recent methods tend to leverage data-dependent and

task-specific information to improve the efficiency of

random-projection-based hash functions [16]. For example,

incorporating kernel learning with LSH can help generalize

ANN search from a standard metric space to a wide range

of similarity functions [41], [42]. Furthermore, metric
learning has been combined with randomized LSH

functions to explore a set of pairwise similarity and

dissimilarity constraints [19]. Other variants of LSH

techniques include superbit LSH [43], boosted LSH [18],

as well as nonmetric LSH [44]

2) Random-Permutation-Based Hashing: Another well-

known paradigm from the LSH family is min-wise
independent permutation hashing (min-hash), which has

been widely used for approximating Jaccard similarity

between sets or vectors. Jaccard is a popular choice for

measuring similarity between documents or images. A

typical application is to index documents and then identify

near-duplicate samples from a corpus of documents [45],

[46]. The Jaccard similarity between two sets Si and Sj is

defined as JðSi;SjÞ ¼ ðSi \ SjÞ=ðSi [ SjÞ. A collection of
sets fSigN

i¼1 can be represented as a characteristic matrix

C 2 BM�N, where M is the cardinality of the universal set

S1 [ � � � [ SN. Here the rows of C represent the elements

of the universal set and the columns correspond to the sets.

The element cdi ¼ 1 indicates that the dth element is a

member of the ith set, cdi ¼ 0 otherwise. Assume a random

permutation �kð�Þ that assigns the index of the dth element

as �kðdÞ 2 f1; . . . ;Dg. It is easy to see that the random
permutation satisfies two properties: �kðdÞ 6¼ �kðlÞ and

Pr½�kðdÞ > �kðlÞ� ¼ 0:5. A random-permutation-based

min-hash signature of a set Si is defined as the minimum

index of the nonzero element after performing permuta-

tion using �k

hkðSiÞ ¼ min
d2f1;...;Dg;c�kðdÞi¼1

�kðdÞ: (11)

Note that such a hash function holds a property that the
chance of two sets having the same min-hash values is

equal to the Jaccard similarity between them [47]

Pr hkðSiÞ ¼ hkðSjÞ
� �

¼ JðSi;SjÞ: (12)

The definition of the Jaccard similarity can be extended to

two vectors xi ¼ fxi1; . . . ; xid; . . . ; xiDg and xj ¼ fxj1; . . . ;
xjd; . . . ; xjDg as

Jðxi;xjÞ ¼
PD

d¼1 minðxid; xjdÞPD
d¼1 maxðxid; xjdÞ

:

Similar min-hash functions can be defined for the above
vectors and the property of the collision probability shown

in (12) still holds [48]. Compared to the random-

projection-based LSH family, the min-hash functions

generate nonbinary hash values that can be potentially

extended to continuous cases. In practice, the min-hash

scheme has shown powerful performance for high-

dimensional and sparse vectors like the bag-of-word

representation of documents or feature histograms of
images. In a large-scale evaluation conducted by Google

Inc., the min-hash approach outperforms other competing

methods for the application of webpage duplicate detec-

tion [49]. In addition, the min-hash scheme is also applied

for Google news personalization [50] and near-duplicate

image detection [51], [52]. Some recent efforts have been

made to further improve the min-hash technique, includ-

ing b-bit minwise hashing [53], [54], one permutation
approach [55], geometric min-Hashing [56], and a fast

computing technique for image data [57].

III . Categories of Learning-Based Hashing
Methods

Among the three key steps in hashing-based ANN search,

design of improved data-dependent hash functions has

been the focus in learning-to-hash paradigm. Since the

proposal of LSH in [58], many new hashing techniques

have been developed. Note that most of the emerging

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 39



hashing methods are focused on improving the search
performance using a single hash table. The reason is that

these techniques expect to learn compact discriminative

codes such that searching within a small Hamming ball of

the query or even exhaustive scan in Hamming space is

both fast and accurate. Hence, in the following, we

primarily focus on various techniques and algorithms for

designing a single hash table. In particular, we provide

different perspectives such as the learning paradigm and
hash function characteristics to categorize the hashing

approaches developed recently. It is worth mentioning that

a few recent studies have shown that exploring the power

of multiple hash tables can sometimes generate superior

performance. In order to improve precision as well as

recall, Xu et al. developed multiple complementary hash

tables that are sequentially learned using a boosting-style

algorithm [31]. Also, in cases when the code length is not
very large and the number of database points is large,

exhaustive scan in Hamming space can be done much faster

by using multitable indexing as shown by Norouzi et al. [59].

A. Data Dependent Versus Data Independent
Based on whether design of hash functions requires

analysis of a given data set, there are two high-level

categories of hashing techniques: data independent and

data dependent. As one of the most popular data-independent

approaches, random projection has been used widely for

designing data-independent hashing techniques such as LSH
and SIKH mentioned earlier. LSH is arguably the most

popular hashing method and has been applied to a variety of

problem domains, including information retrieval and

computer vision. In both LSH and SIKH, the projection

vector w and intersect b, as defined in (4), are randomly

sampled from certain distributions. Although these methods

have strict performance guarantees, they are less efficient

since the hash functions are not specifically designed for a
certain data set or search task. Based on the random

projection scheme, there have been several efforts to improve

the performance of the LSH method [37], [39], [41].

Realizing the limitation of data-independent hashing

approaches, many recent methods use data and possibly

some form of supervision to design more efficient hash

functions. Based on the level of supervision, the data-

dependent methods can be further categorized into three
subgroups, as described below.

B. Unsupervised, Supervised, and Semisupervised
Many emerging hashing techniques are designed by

exploiting various machine learning paradigms, ranging

from unsupervised and supervised to semisupervised

settings. For instance, unsupervised hashing methods

attempt to integrate the data properties, such as distribu-

tions and manifold structures to design compact hash

codes with improved accuracy. Representative unsuper-

vised methods include spectral hashing [32], graph

hashing [28], manifold hashing [60], iterative quantization
hashing [61], kernalized locality sensitive hashing [21],

[41], isotropic hashing [62], angular quantization hashing

[63], and spherical hashing [64]. Among these approaches,

spectral hashing explores the data distribution and graph

hashing utilizes the underlying manifold structure of data

captured by a graph representation. In addition, supervised

learning paradigms ranging from kernel learning to metric

learning to deep learning have been exploited to learn
binary codes, and many supervised hashing methods have

been proposed recently [19], [22], [65]–[68]. Finally,

semisupervised learning paradigm was employed to design

hash functions by using both labeled and unlabeled data.

For instance, Wang et al. proposed a regularized objective

to achieve accurate yet balanced hash codes to avoid

overfitting [14]. In [69] and [70], the authors proposed to

exploit the metric learning and LSH to achieve fast-
similarity-based search. Since the labeled data are used for

deriving optimal metric distance while the hash function

design uses no supervision, the proposed hashing tech-

nique can be regarded as a semisupervised approach.

C. Pointwise, Pairwise, Tripletwise, and Listwise
Based on the level of supervision, the supervised or

semisupervised hashing methods can be further grouped

into several subcategories, including pointwise, pairwise,

tripletwise, and listwise approaches. For example, a few

existing approaches utilize the instance level semantic
attributes or labels to design the hash functions [18], [71],

[72]. Additionally, learning methods based on pairwise

supervision have been extensively studied, and many

hashing techniques have been proposed [14], [19], [22],

[65], [66], [69], [70], [73]. As demonstrated in Fig. 4(a),

the pair ðx2;x3Þ contains similar points and the other two

pairs ðx1;x2Þ and ðx1;x3Þ contain dissimilar points. Such

relations are considered in the learning procedure to
preserve the pairwise label information in the learned

Hamming space. Since the ranking information is not

fully utilized, the performance of pairwise-supervision-

based methods could be suboptimal for nearest neighbor

search. More recently, a triplet ranking that encodes the

pairwise proximity comparison among three data points is

Fig. 4. Illustration of different levels of supervised information:

(a) pairwise labels; (b) a triplet simðq;xþÞ > simðq;x�Þ; and (c) a

distance-based rank list ðx4;x1;x2;x3Þ to a query point q.

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

40 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



exploited to design hash codes [65], [74], [75]. As shown
in Fig. 4(b), the point xþ is more similar to the query

point q than the point x�. Such a triplet ranking

information, i.e., simðq;xþÞ > simðq;x�Þ is expected to

be encoded in the learned binary hash codes. Finally, the

listwise information indicates the rank order of a set of

points with respect to the query point. In Fig. 4(c), for the

query point q, the rank list ðx4;x1;x2;x3Þ shows the

ranking order of their similarities to the query point q,
where x4 is the nearest point and x3 is the farthest one.

By converting rank lists to a triplet tensor matrix, listwise

hashing is designed to preserve the ranking in the

Hamming space [76].

D. Linear Versus Nonlinear
Based on the form of function fð�Þ in (4), hash functions

can also be categorized in two groups: linear and nonlinear.

Due to their computational efficiency, linear functions tend

to be more popular, which include random-projection-

based LSH methods. The learning-based methods derive
optimal projections by optimizing different types of

objectives. For instance, PCA hashing performs principal

component analysis on the data to derive large variance

projections [63], [77], [78], as shown in Fig. 5(a). In the

same league, supervised methods have used linear

discriminant analysis to design more discriminative hash

codes [79], [80]. Semisupervised hashing methods estimate

the projections that have minimum empirical loss on
pairwise labels while partitioning the unlabeled data in a

balanced way [14]. Techniques that use variance of the

projections as the underlying objective also tend to use

orthogonality constraints for computational ease. Howev-

er, these constraints lead to a significant drawback since the

variance for most real-world data decays rapidly with most

of the variance contained only in top few directions. Thus,

in order to generate more bits in the code, one is forced to
use progressively low-variance directions due to orthogo-

nality constraints. The binary codes derived from these

low-variance projections tend to have significantly lower

performance. Two types of solutions based on relaxation of

the orthogonality constraints or random/learned rotation of

the data have been proposed in the literature to address

these issues [14], [61]. Isotropic hashing is proposed to

derive projections with equal variances and is shown to be

superior to anisotropic-variances-based projections [62].
Instead of performing one-shot learning, sequential pro-

jection learning derives correlated projections with the goal

of correcting errors from previous hash bits [25]. Finally, to

reduce the computational complexity of full projection,

circulant binary embedding was recently proposed to

significantly speed up the encoding process using the

circulant convolution [81].

Despite its simplicity, linear hashing often suffers from
insufficient discriminative power. Thus, nonlinear meth-

ods have been developed to override such limitations. For

instance, spectral hashing first extracts the principal

projections of the data, and then partitions the projected

data by a sinusoidal function (nonlinear) with a specific

angular frequency. Essentially, it prefers to partition

projections with large spread and small spatial frequency

such that the large variance projections can be reused. As
illustrated in Fig. 5(b), the fist principal component can be

reused in spectral hashing to divide the data into four parts

while being encoded with only one bit. In addition, shift-

invariant kernel-based hashing chooses fð�Þ to be a shifted

cosine function and samples the projection vector in the

same way as standard LSH does [33]. Another category of

nonlinear hashing techniques employs kernel functions

[21], [22], [28], [82]. Anchor graph hashing proposed by
Liu et al. [28] uses a kernel function to measure similarity of

each points with a set of anchors resulting in nonlinear

hashing. Kernerlized LSH uses a sparse set of data points to

compute a kernel matrix and preform random projection in

the kernel space to compute binary codes [21]. Based on

similar representation of kernel metric, Kulis and Darrell

propose learning of hash functions by explicitly minimizing

the reconstruction error in the kernel space and Hamming
space [27]. Liu et al. apply kernel representation but

optimize the hash functions by exploring the equivalence

between optimizing the code inner products and the

Hamming distances to achieve scale invariance [22].

E. Single-Shot Learning Versus Multiple-Shot
Learning

For learning-based hashing methods, one first for-
mulates an objective function reflecting desired character-

istics of the hash codes. In a single-shot learning paradigm,

the optimal solution is derived by optimizing the objective

function in a single shot. In such a learning-to-hash

framework, the K hash functions are learned simulta-

neously. In contrast, the multiple-shot learning procedure

considers a global objective, but optimizes a hash function

considering the bias generated by the previous hash
functions. Such a procedure sequentially trains hash

functions one bit at a time [25], [83], [84]. The

multiple-shot hash function learning is often used in

supervised or semisupervised settings since the given label

information can be used to assess the quality of the hash

functions learned in previous steps. For instance, the

sequential-projection-based hashing aims to incorporate
Fig. 5. Comparison of hash bits generated using (a) PCA hashing and

(b) spectral hashing.

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 41



the bit correlations by iteratively updating the pairwise
label matrix, where higher weights are imposed on point

pairs violated by the previous hash functions [25]. In the

complementary projection learning approach [84], Jin et al.
present a sequential learning procedure to obtain a series

of hash functions that cross the sparse data region, as well

as generate balanced hash buckets. Column generation

hashing learns the best hash function during each iteration

and updates the weights of hash functions accordingly.
Other interesting learning ideas include two-step learning

methods which treat hash bit learning and hash function

learning separately [85], [86].

F. Nonweighted Versus Weighted Hashing
Given the Hamming embedding defined in (2),

traditional-hashing-based indexing schemes map the

original data into a nonweighted Hamming space, where
each bit contributes equally. Given such a mapping, the

Hamming distance is calculated by counting the number of

different bits. However, it is easy to observe that different

bits often behave differently [14], [32]. In general, for

linear-projection-based hashing methods, the binary code

generated from large variance projection tends to perform

better due to its superior discriminative power. Hence, to

improve discrimination among hash codes, techniques
were designed to learn a weighted hamming embedding as

H : X ! �1h1ðxÞ; . . . ; �KhKðxÞf g: (13)

Hence, the conventional hamming distance is replaced by

a weighted version as

dWH ¼
XK

k¼1

�k hkðxiÞ � hkðxjÞ
�� ��: (14)

One of the representative approaches is boosted similarity
sensitive coding (BSSC) [18]. By learning the hash

functions and the corresponding weights f�1; . . . ; �kg
jointly, the objective is to lower the collision probability of

nonneighbor pair ðxi;xjÞ 2 C while improving the colli-

sion probability of neighboring pair ðxi;xjÞ 2 M. If one

treats each hash function as a decision stump, the

straightforward way of learning the weights is to directly

apply adaptive boosting algorithm [87], as described in
[18]. In [88], a boosting-style method called BoostMAP is

proposed to map data points to weighted binary vectors

that can leverage both metric and semantic similarity

measures. Other weighted hashing methods include

designing specific bit-level weighting schemes to improve

the search accuracy [74], [89]–[92]. In addition, a recent

work about designing a unified bit selection framework

can be regarded as a special case of weighted hashing
approach, where the weights of hash bits are binary [93].

Another effective hash code ranking method is the query-

sensitive hashing, which explores the raw feature of the

query sample and learns query-specific weights of hash bits

to achieve accurate �-nearest neighbor search [94].

IV. Methodology Review and Analysis

In this section, we will focus on a review of several

representative hashing methods that explore various

machine learning techniques to design data-specific
indexing schemes. The techniques consist of unsupervised,

semisupervised, as well as supervised approaches, includ-

ing spectral hashing, anchor graph hashing, angular

quantization, binary-reconstructive-embedding-based

hashing, metric-learning-based hashing, semisupervised

hashing, column generation hashing, and ranking super-

vised hashing. Table 2 summarizes the surveyed hashing

techniques, as well as their technical merits.

Table 2 Summary of the Surveyed Hashing Techniques

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

42 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



Note that this section mainly focuses on describing the
intuition and formulation of each method, as well as

discussing their pros and cons. The performance of each

individual method highly depends on practical settings,

including learning parameters and data set itself. In

general, the nonlinear and supervised techniques tend to

generate better performance than linear and unsupervised

methods, while being more computationally costly [14],

[19], [21], [22], [27].

A. Spectral Hashing
In the formulation of spectral hashing, the desired

properties include keeping neighbors in input space as

neighbors in the hamming space and requiring the codes to

be balanced and uncorrelated [32]. Hence, the objective of

spectral hashing is formulated as

min
X

ij

1

2
Aijkyi � yjk

2 ¼ 1

2
trðY>LYÞ

subject to: Y 2 f�1; 1gN�K

1>yk� ¼ 0; k ¼ 1; . . . ;K

Y>Y ¼ nIK�K (15)

where A ¼ fAijgN
i;j¼1

is a pairwise similarity matrix and the
Laplacian matrix is calculated as L ¼ diagðA1Þ �A. The

constraint 1>yk ¼ 0 ensures that the hash bit yk reaches a

balanced partitioning of the data and the constraint

Y>Y ¼ nIK�K imposes orthogonality between hash bits

to minimize the redundancy.

The direct solution for the above optimization is

nontrivial for even a single bit since it is essentially a

balanced graph partition problem, which is NP hard. The
orthogonality constraints for K-bit balanced partitioning

make the above problem even harder. Motivated by the

well-known spectral graph analysis [95], Fowlkes et al.
suggest to minimize the cost function with relaxed

constraints. In particular, with the assumption of uniform

data distribution, the spectral solution can be efficiently

computed using 1-D Laplacian eigenfunctions [32]. The

final solution for spectral hashing equals to apply a
sinusoidal function with precomputed angular frequency

to partition data along PCA directions. Note that the

projections are computed using data but learned in an

unsupervised manner. As most of the orthogonal-projection-

based hashing methods, spectral hashing suffers from the

low-quality binary coding using low-variance projections.

Hence, a ‘‘kernel trick’’ is used to alleviate the degraded

performance when using long hash bits [96]. Moreover, the
assumption of uniform data distribution usually hardly holds

for real-world data.

B. Anchor Graph Hashing
Following the similar objective as spectral hashing,

anchor graph hashing was designed to solve the problem

from a different perspective without the assumption of

uniform distribution [28]. Note that the critical bottleneck

for solving (15) is the cost of building a pairwise similarity

graph A, the computation of associated graph Laplacian, as

well as solving the corresponding eigensystem, which at

least has a quadratic complexity. The key idea is to use a
small set of MðM� NÞ anchor points to approximate the

graph structure represented by the matrix A such that the

similarity between any pair of points can be approximated

using point-to-anchor similarities [97]. In particular, the

truncated point-to-anchor similarity Z 2 RN�M gives the

similarities between N database points to the M anchor

points. Thus, the approximated similarity matrix Â can be

calculated as Â ¼ ZmZ>, where m ¼ diagðZ1Þ is the
degree matrix of the anchor graph Z. Based on such an

approximation, instead of solving the eigensystem of the

matrix Â ¼ ZmZ>, one can alternatively solve a much

smaller eigensystem with an M�M matrix m1=2Z>Zm1=2.

The final binary codes can be obtained through calculating

the sign function over a spectral embedding as

Y ¼ sgn Zm
1
2V2

1
2

� �
: (16)

Here we have the matrices V ¼ ½v1; . . . ;vk; . . . ; vK� 2
RM�K and 2 ¼ diagð�1; . . . ; �k; . . . ; �KÞ 2 RK�K , where

fvk; �kg are the eigenvector–eigenvalue pairs [28]. Fig. 6

shows the two-bit partitioning on a synthetic data with

nonlinear structure using different hashing methods,

including spectral hashing, exact graph hashing, and anchor

graph hashing. Note that since spectral hashing computes

two smoothest pseudograph Laplacian eigenfunctions in-
stead of performing real spectral embedding, it cannot

handle such type of nonlinear data structures. The exact

graph hashing method first constructs an exact neighbor-

hood graph, e.g., k-NN graph, and then performs partition-

ing with spectral techniques to solve the optimization

problem in (15). The anchor graph hashing archives a good

separation (by the first bit) of the nonlinear manifold and

balancing partitioning, and even performs better than the
exact graph hashing, which loses the property of balancing

partitioning for the second bit. The anchor graph hashing

approach was recently further improved by leveraging a

discrete optimization technique to directly solve binary hash

codes without any relaxation [98].

C. Angular-Quantization-Based Hashing
Since similarity is often measured by the cosine of the

angle between pairs of samples, angular quantization is thus

proposed to map nonnegative feature vectors onto a vertex of

the binary hypercube with the smallest angle [63]. In such a

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 43



setting, the vertices of the hypercube are treated as

quantization landmarks that grow exponentially with the

data dimensionality D. As shown in Fig. 7, the nearest binary

vertex b in a hypercube to the data point x is given by

b� ¼ arg max
b

b>x

kbk2

subject to: b 2 f0; 1gK: (17)

Although it is an integer programming problem, its global

maximum can be found with a complexity ofOðD log DÞ. The

optimal binary vertices will be used as the binary hash codes

for data points as y ¼ b�. Based on this angular quantization

framework, a data-dependent extension is designed to learn a

rotation matrix R 2 RD�D to align the projected data R>x
to the binary vertices without changing the similarity
between point pairs. The objective is formulated as follows:

b�i ;R
�� �
¼ arg max

bi;R

X
i

b>i
kbik2

R>xi

subject to: b 2 f0; 1gK

R>R ¼ ID�D: (18)

Note that the above formulation still generates a D-bit

binary code for each data point, while compact codes are

often desired in many real-world applications [14]. To

generate a K ¼ bit code, a projection matrix S 2 RD�K

with orthogonal columns can be used to replace the

rotation matrix R in the above objective with additional

normalization, as discussed in [63]. Finally, the optimal

binary codes and the projection/rotation matrix are
learned using an alternating optimization scheme.

D. Binary Reconstructive Embedding
Instead of using data-independent random projections

as in LSH or principal components as in SH, Kulis and

Darrell [27] proposed data-dependent and bit-correlated

hash functions as

hkðxÞ ¼ sgn
Xs

q¼1

Wkq�ðxkq;xÞ
 !

: (19)

Fig. 6. Comparison of partitioning a two-moon data by the first two hash bits using different methods: (a) the first bit using spectral hashing;

(b) the first bit using exact graph hashing; (c) the first bit using anchor graph hashing; (d) the second bit using spectral hashing; (e) the second bit

using exact graph hashing; and (f) the second bit using anchor graph hashing.

Fig. 7. Illustration of angular-quantization-based hashing method

[63]. The binary code of a data point x is assigned as the nearest binary

vertex in the hypercube, which is b4 ¼ ½0 1 1�> in the illustrated

example [63].

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

44 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



The sample set fxkqg, q ¼ 1; . . . ; s, is the training data for
learning hash function hk and �ð�Þ is a kernel function, and

W is a weight matrix.

Based on the above formulation, a method called binary

reconstructive embedding (BRE) was designed to mini-

mize a cost function measuring the difference between the

metric and reconstructed distance in hamming space. The

Euclidean metric dM and the binary reconstruction

distance dR are defined as

dMðxi;xjÞ ¼
1

2
kxi � xjk2

dRðxi;xjÞ ¼
1

K

XK

k¼1

hkðxiÞ � hkðxjÞ
� �2

: (20)

The objective is to minimize the following reconstruction

error to derive the optimal W:

W� ¼ arg min
W

X
ðxi;xjÞ2N

dMðxi;xjÞ � dRðxi;xjÞ
� �2

(21)

where the set of sample pairs N is the training data.

Optimizing the above objective function is difficult due to

the nondifferentiability of sgnð�Þ function. Instead, a

coordinate-descent algorithm was applied to iteratively

update the hash functions to a local optimum. This hashing

method can be easily extended to a supervised scenario by

setting pairs with the same labels to have zero distance and

pairs with different labels to have a large distance. However,
since the binary reconstruction distance dR is bounded in

½0; 1� while the metric distance dM has no upper bound, the

minimization problem in (21) is only meaningful when input

data are appropriately normalized. In practice, the original

data point x is often mapped to a hypersphere with unit

length so that 0\dM\1. This normalization removes the

scale of data points, which is often not negligible for practical

applications of nearest neighbor search. In addition,
Hamming-distance-based objective is hard to optimize due

to its nonconvex and nonsmooth properties.

Therefore, Liu et al. proposed to take advantage of the

equivalence between code inner products and Hamming

distances to design kernel-based hash functions and learn

them under a supervised manner [22]. The objective of the

proposed approach, namely kernel-based supervised hash-

ing (KSH), is to ensure the inner products of hash codes
consistent with the supervised pairwise similarities. The

strategy of optimizing hash code inner products in KSH

rather than Hamming distances like what is done in BRE

pays off nicely and leads to major performance gains in

similarity-based retrieval tasks, which has been consis-

tently confirmed through extensive experiments reported

in [22] and recent studies [99].

E. Metric-Learning-Based Hashing
The key idea for metric-learning-based hashing method

is to learn a parameterized Mahalanobis metric using

pairwise label information. Such learned metrics are then

employed to the standard-random-projection-based hash

functions [19]. The goal is to preserve the pairwise

relationship in the binary code space, where similar data

pairs are more likely to collide in the same hash buck and

dissimilar pairs are less likely to share the same hash codes,
as illustrated in Fig. 8.

The parameterized inner product is defined as

simðxi;xjÞ ¼ x>i Mxj

where M is a positive–definite d� d matrix to be learned

from the labeled data. Note that this similarity measure

corresponds to the parameterized squared Mahalanobis
distance dM. Assume that M can be factorized as

M ¼ G>G. Then, the parameterized squared Mahalano-

bis distance can be written as

dMðxi;xjÞ ¼ ðxi � xjÞ>Mðxi � xjÞ
¼ ðGxi �GxiÞ>ðGxi �GxiÞ: (22)

Based on the above equation, the distance dMðxi;xjÞ can
be interpreted as the Euclidian distance between the

projected data points Gxi and Gxj. Note that the matrix

M can be learned through various metric learning method

such as information-theoretic metric learning [100]. To

accommodate the learned distance metric, the randomized

hash function is given as

hkðxÞ ¼ sgnðwkG
>xÞ: (23)

It is easy to see that the above hash function generates the
hash codes which preserve the parameterized similarity

Fig. 8. Illustration of the hashing-method-based on metric learning.

The left shows the partitioning using standard LSH method and the

right shows the partitioning of the metric-learning-based LSH method

(modified from the original figure in [19]).

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 45



measure in the Hamming space. Fig. 8 demonstrates the
difference between standard-random-projection-based LSH

and the metric-learning-based LSH, where it is easy to see that

the learned metric help assign the same hash bit to the similar

sample pairs. Accordingly, the collision probability is given as

Pr hkðxiÞ ¼ hkðxiÞ½ � ¼ 1� 1

�
cos�1 x>i G>Gxj

kGxikkGxjk
: (24)

Realizing that the pairwise constraints often come to be

available incrementally, Jain et al. exploit an efficient
online LSH with gradually learned distance metrics [70].

F. Semisupervised Hashing
Supervised hashing techniques have been shown to be

superior to unsupervised approaches since they leverage the

supervision information to design task-specific hash codes.

However, for a typical setting of large-scale problem, the

human annotation process is often costly and the labels can

be noisy and sparse, which could easily lead to overfitting.

Considering a small set of pairswise labels and a large

amount of unlabled data, semisupervised hashing aims in

designing hash functions with minimum empirical loss
while maintaining maximum entropy over the entire data

set. Specifically, assume the pairwise labels are given as

two type of sets M and C. A pair of data point

ðxi;xjÞ 2 M indicates that xi and xj are similar and

ðxi;xjÞ 2 C means that xi and xj. Hence, the empirical

accuracy on the labeled data for a family of hash functions

H ¼ ½h1; . . . ; hK� is given as

JðHÞ ¼
X

k

X
ðxi;xjÞ2M

hkðxiÞhkðxjÞ

2
4

�
X
ðxi;xjÞ2C

hkðxiÞhkðxjÞ

3
5: (25)

We define a matrix S 2 Rl�l incorporating the pairwise

labeled information from Xl as

Sij ¼
1 : ðxi;xjÞ 2 M
�1 : ðxi;xjÞ 2 C

0 : otherwise.

(
(26)

The above empirical accuracy can be written in a compact

matrix form after dropping off the sgnð�Þ function

JðHÞ ¼ 1

2
tr W>XlS W>X>l
� �

: (27)

However, only considering the empirical accuracy during
the design of the hash function can lead to undesired results.

As illustrated in Fig. 9(b), although such a hash bit partitions

the data with zero error over the pairwise labeled data, it

results in imbalanced separation of the unlabeled data, thus

being less informative. Therefore, an information-theoretic

regularization is suggested to maximize the entropy of each

hash bit. After relaxation, the final objective is formed as

W� ¼ arg max
W

1

2
tr W>XlSX>l W
� �

þ �
2

trðW>XX>WÞ (28)

where the first part represents the empirical accuracy and

the second component encourages partitioning along large

variance projections. The coefficient � weighs the contri-
bution from these two components. The above objective

can be solved using various optimization strategies,

resulting in orthogonal or correlated binary codes, as

described in [14] and [25]. Fig. 9 illustrates the comparison

of one-bit linear partition using different learning para-

digms, where the semisupervised method tends to produce

balanced yet accurate data separation. Finally, Xu et al.
employ similar semisupervised formulation to sequentially
learn multiple complementary hash tables to further

improve the performance [31].

G. Column Generation Hashing
Beyond pairwise relationship, complex supervision like

ranking triplets and ranking lists has been exploited to

learn hash functions with the property of ranking

preserving. In many real applications such as image

retrieval and recommendation system, it is often easier

to receive the relative comparison instead of instance-wise

or pairwise labels. For a general claim, such relative

comparison information is given in a triplet form.
Formally, a set of triplets are represented as

E ¼ qi;x
þ
i ;x

�
i

� �
jsim qi;x

þ
i

� �
> sim qi;x

�
i

� �� �

Fig. 9. Illustration of one-bit partitioning of different linear-

projection-based hashing methods: (a) unsupervised hashing;

(b) supervised hashing; and (c) semisupervised hashing. The similar

point pairs are indicated in the green rectangle shape, and the

dissimilar point pairs are with a red triangle shape.

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

46 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



where the function ð�Þ could be an unknown similarity
measure. Hence, the triplet ðqi;x

þ
i ;x

�
i Þ indicates that the

sample point xþi is more semantically similar or closer to a

query point q than the point x�i , as demonstrated in Fig. 4(b).

As one of the representative methods falling into this

category, column generation hashing explores the large-margin

framework to leverage such type of proximity comparison

information to design weighted hash functions [74]. In

particular, the relative comparison information
simðqi;x

þ
i Þ > simðqi;x

�
i Þ will be preserved in a weighted

Hamming space as dWHðqi;x
þ
i Þ G dWHðqi;x

�
i Þ, where

dWH is the weighted Hamming distance as defined in

(14). To impose a large margin, the constraint

dWHðqi;x
þ
i Þ G dWHðqi;x

�
i Þ should be satisfied as well as

possible. Thus, a typical large-margin objective with ‘1-norm

regularization can be formulated as

arg min
w;	

XjEj
i¼1

	i þ Ckwk1

subject to: w 	 0; X 	 0;

dWH qi;x
�
i

� �
�dWH qi;x

�
i

� �
[1�	i; 8i (29)

where w is the random projection for computing the hash

codes. To solve the above optimization problem, the authors

proposed using the column generation technique to learn the

hash function and the associated bit weights iteratively. For
each iteration, the best hash function is generated and the

weight vector is updated accordingly. In addition, different

loss functions with other regularization terms such as ‘1 are

also suggested as alternatives in the above formulation.

H. Ranking Supervised Hashing
Different from other methods that explore the triplet

relationship [65], [74], [75], the ranking supervised hashing

method attempts to preserve the ranking order of a set of

database points corresponding to the query point [76].

Assume that the training data set X ¼ fxng has N points

with xn 2 RD. In addition, a query set is given asQ ¼ fqmg,
and qm 2 RD, m ¼ 1; . . . ;M. For any specific query point

qm, we can derive a ranking list overX , which can be written

as a vector as rðqm;XÞ ¼ ðrm
1 ; . . . ; rm

n ; . . . ; rm
NÞ. Each element

rm
n falls into the integer range ½1;N� and no two elements share

the same value for the exact ranking case. If rm
i G rm

j

ði; j ¼ 1; . . . ;NÞ, it indicates that sample xi has higher rank

than xj, which means xi is more relevant or similar to qm than

xj. To represent such a discrete ranking list, a ranking triplet
matrix S 2 RN�N is defined as

Sðqm; xi;xjÞ ¼
1 : r

q
i G r

q
j

�1 : r
q
i > r

q
j

0 : r
q
i ¼ r

q
j .

8<
: (30)

Hence, for a set of query pointsQ ¼ fqmg, we can derive a
triplet tensor, i.e., a set of triplet matrices

S ¼ SðqmÞ
� �

2 RM�N�N:

In particular, the element of the triplet tensor is defined

as Smij ¼ SðqmÞði; jÞ ¼ Sðqm; xi;xjÞ, m ¼ 1; . . . ;M, i; j ¼ 1;
. . . ;N. The objective is to preserve the ranking lists in
the mapped Hamming space. In other words, if Sðqm;
xi;xjÞ ¼ 1, we tend to ensure dHðqm;xiÞ G dHðqm;xiÞ,
otherwise dHðqm;xiÞ > dHðqm;xiÞ. Assume the hash

code has the value as f�1; 1g, such ranking order is

equivalent to the similarity measurement using the inner

products of the binary codes, i.e.,

dHðqm;xiÞ G dHðqm;xiÞ,HðqmÞ>HðxiÞ> HðqmÞ>HðxjÞ:

Then, the empirical loss function LH over the ranking list
can be represented as

LH ¼ �
X

m

X
i;j

HðqmÞ> HðxiÞ � HðxjÞ
� �

Smij:

Assume that we utilize linear hash functions, then the final

objective is formed as the following constrained quadratic

problem:

W� ¼ arg max
W

LH ¼ arg max
W

trðWW>BÞ

subject to: W>W ¼ I (31)

where the constant matrix B is computed as B ¼P
m pmq>m with pm ¼

P
i;j½xi � xj�Smij. The orthogonality

constraint is utilized to minimize the redundancy between

different hash bits. Intuitively, the above formulation is to

preserve the ranking list in the Hamming space, as shown

in the conceptual diagram in Fig. 10. The augmented

Lagrangian multiplier method was introduced to derive

feasible solutions for the above constrained problem, as

discussed in [76].

I. Circulant Binary Embedding
Realizing that most of the current hashing techniques

rely on linear projections, which could suffer from very

high computational and storage costs for high-dimensional

data, circulant binary embedding was recently developed

to handle such a challenge using the circulant projection

[81]. Briefly, given a vector r ¼ fr0; . . . ; rd�1g, we can

generate its corresponding circulant matrix R ¼ circðrÞ

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 47



[101]. Therefore, the binary embedding with the circulant

projection is defined as

hðxÞ ¼ sgnðRxÞ ¼ sgn circðrÞ � xð Þ: (32)

Since the circulant projection circðrÞx is equivalent to
circular convolution r
� x, the computation of linear

projection can be eventually realized using fast Fourier

transform as

circðrÞx ¼ r
� x ¼ F�1 FðrÞ � FðxÞð Þ: (33)

Thus, the time complexity is reduced from d2 to d log d.

Finally, one could randomly select the circulant vector r or

design specific ones using supervised learning methods.

V. Deep Learning for Hashing

During the past decade (since around 2006), deep learning

[102], also known as deep neural networks, has drawn

increasing attention and research efforts in a variety of

artificial intelligence areas including speech recognition,

computer vision, machine learning, text mining, etc. Since

one main purpose of deep learning is to learn robust and
powerful feature representations for complex data, it is

very natural to leverage deep learning for exploring

compact hash codes which can be regarded as binary

representations of data. In this section, we briefly

introduce several recently proposed hashing methods

that employ deep learning. In Table 3, we compare eight

deep-learning-based hashing methods in terms of four key

characteristics that can be used to differentiate the

approaches.

The earliest work in deep-learning-based hashing may

be semantic hashing [103]. This method builds a deep
generative model to discover hidden binary units (i.e.,

latent topic features) which can model input text data (i.e.,

word-count vectors). Such a deep model is made as a stack

of restricted Boltzmann machines (RBMs) [104]. After

learning a multilayer RBM through pretraining and fine

tuning on a collection of documents, the hash code of any

document is acquired by simply thresholding the output of

the deepest layer. Such hash codes provided by the deep
RBM were shown to preserve semantically similar

relationships among input documents into the code space,

in which each hash code (or hash key) is used as a memory

address to locate corresponding documents. In this way,

semantically similar documents are mapped to adjacent

memory addresses, thereby enabling efficient search via

hash table lookup. To enhance the performance of deep

RBMs, a supervised version was proposed in [66], which
borrows the idea of nonlinear neighborhood component

analysis (NCA) embedding [105]. The supervised infor-

mation stems from given neighbor/nonneighbor relation-

ships between training examples. Then, the objective

function of NCA is optimized on top of a deep RBM,

making the deep RBM yield discriminative hash codes.

Note that supervised deep RBMs can be applied to broad

data domains other than text data. In [66], supervised deep
RBMs using a Gaussian distribution to model visible units

in the first layer were successfully applied to handle

massive image data.

A recent work named sparse similarity-preserving

hashing [99] tried to address the low recall issue

pertaining to relatively long hash codes, which affect

Fig. 10. Conceptual diagram of the rank supervised hashing method. The top left component demonstrates the procedure of deriving ground

truth ranking list r using the semantic relevance or feature similarity/distance, and then converting it to a triplet matrix SðqÞ for a given query q.

The bottom left component describes the estimation of relaxed ranking triplet matrix
~
SðqÞ from the binary hash codes. The right component

shows the objective of minimizing the inconsistency between the two ranking triplet matrices.

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

48 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



most of previous hashing techniques. The idea is enforcing

sparsity into the hash codes to be learned from training
examples with pairwise supervised information, that is,

similar and dissimilar pairs of examples (also known as

side information in the machine learning literature). The

relaxed hash functions, actually nonlinear embedding

functions, are learned by training a tailored feedforward

neural network. Within this architecture, two ISTA-type

networks [110] that share the same set of parameters and

conduct fast approximations of sparse coding are coupled
in the training phase. Since each output of the neural

network is continuous albeit sparse, a hyperbolic tangent

function is applied to the output followed by a threshold-

ing operation, leading to the final binary hash code. In

[99], an extension to hashing multimodal data, e.g., web

images with textual tags, was also presented.

Another work named deep hashing [106] developed a

deep neural network to learn a multiple hierarchical
nonlinear transformation which maps original images to

compact binary hash codes and hence supports large-scale

image retrieval with the learned binary image represen-

tation. The deep hashing model is established under three

constraints which are imposed on the top layer of the deep

neural network: 1) the reconstruction error between an

original real-valued image feature vector and the resulting

binary code is minimized; 2) each bit of binary codes has a
balance; and 3) all bits are independent from each other.

Similar constraints have been adopted in prior unsuper-

vised hashing or binary coding methods such as iterative

quantization (ITQ) [111]. A supervised version called

supervised deep hashing3 was also presented in [106],

where a discriminative term incorporating pairwise

supervised information is added to the objective function

of the deep hashing model. Liong et al. [106] showed the
superiority of the supervised deep hashing model over its

unsupervised counterpart. Both of them produce hash

codes through thresholding the output of the top layer in

the neural network, where all activation functions are

hyperbolic tangent functions.
It is worthwhile to point out that the above methods,

including sparse similarity-preserving hashing, deep hash-

ing, and supervised deep hashing, did not include a

pretraining stage during the training of the deep neural

networks. Instead, the hash codes are learned from scratch

using a set of training data. However, the absence of

pretraining may make the generated hash codes less

effective. Specifically, the sparse similarity-preserving
hashing method is found to be inferior to the state-of-

the-art supervised hashing method, i.e., kernel-based

supervised hashing (KSH) [22], in terms of search

accuracy on some image data sets [99]; the deep hashing

method and its supervised version are slightly better than

ITQ and its supervised version CCA þ ITQ, respectively

[106], [111]. Note that KSH, ITQ, and CCA þ ITQ exploit

relatively shallow learning frameworks.
Almost all existing hashing techniques including the

aforementioned ones relying on deep neural networks take

a vector of handcrafted visual features extracted from an

image as input. Therefore, the quality of produced hash

codes heavily depends on the quality of handcrafted

features. To remove this barrier, a recent method called

convolutional neural network hashing [107] was developed

to integrate image feature learning and hash value learning
into a joint learning model. Given pairwise supervised

information, this model consists of a stage of learning

approximate hash codes and a stage of training a deep

convolutional neural network (CNN) [112] that outputs

continuous hash values. Such hash values can be generated

by activation functions like sigmoid, hyperbolic tangent or

softmax, and then quantized into binary hash codes

through appropriate thresholding. Thanks to the power
of CNNs, the joint model is capable of simultaneously

learning image features and hash values, directly working

on raw image pixels. The deployed CNN is composed of

three convolution-pooling layers that involve rectified

linear activation, max pooling, and local contrast normal-

ization, a standard fully connected layer, and an output

layer with softmax activation functions.

3It is essentially semisupervised as abundant unlabeled examples are
used for training the deep neural network.

Table 3 Characteristics of Eight Recently Proposed Deep-Learning-Based Hashing Methods

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 49



Also based on CNNs, a latest method called as deep
semantic ranking hashing [108] was presented to learn

hash values such that multilevel semantic similarities

among multilabeled images are preserved. Like the

convolutional neural network hashing method, this

method takes image pixels as input and trains a deep

CNN, by which image feature representations and hash

values are jointly learned. The deployed CNN consists of

five convolution-pooling layers, two fully connected layers,
and a hash layer (i.e., output layer). The key hash layer is

connected to both fully connected layers and in the

function expression as

hðxÞ ¼ 2� w> f1ðxÞ; f2ðxÞ½ �
� �

� 1

in which x represents an input image, hðxÞ represents the

vector of hash values for image x, f1ðxÞ and f2ðxÞ,
respectively, denote the feature representations from the

outputs of the first and second fully connected layers, w is

the weight vector, and �ðÞ is the logistic function. The

deep semantic ranking hashing method leverages listwise

supervised information to train the CNN, which stems

from a collection of image triplets that encode the
multilevel similarities, i.e., the first image in each triplet

is more similar to the second one than the third one. The

hash code of image x is finally obtained by thresholding

the output hðxÞ of the hash layer at zero.

The above convolutional neural network hashing

method [107] requires separately learning approximate

hash codes to guide the subsequent learning of image

representation and finer hash values. The latest method
called deep neural network hashing [109] goes beyond, in

which the image representation and hash values are

learned in one stage so that representation learning and

hash learning are tightly coupled to benefit each other.

Similar to the deep semantic ranking hashing method

[108], the deep neural network hashing method incorpo-

rates listwise supervised information to train a deep CNN,

giving rise to a currently deepest architecture for
supervised hashing. The pipeline of the deep hashing

architecture includes three building blocks: 1) a triplet of

images (the first image is more similar to the second one

than the third one) which are fed to the CNN, and upon

which a triplet ranking loss is designed to characterize the

listwise supervised information; 2) a shared subnetwork

with a stack of eight convolution layers to generate the

intermediate image features; and 3) a divide-and-encode
module to divide the intermediate image features into

multiple channels, each of which is encoded into a single

hash bit. Within the divide-and-encode module, there are

one fully connected layer and one hash layer. The former

uses sigmoid activation, while the latter uses a piecewise

thresholding scheme to produce a nearly discrete hash

values. Eventually, the hash code of any image is yielded by

thresholding the output of the hash layer at 0.5. In [109],
the deep neural network hashing method was shown to

surpass the convolutional neural network hashing method

as well as several shallow-learning-based supervised

hashing methods in terms of image search accuracy.

Last, a few observations are worth mentioning about

deep-learning-based hashing methods introduced in this

section.

1) The majority of these methods did not report the
time of hash code generation. In real-world search

scenarios, the speed for generating hashes should

be substantially fast. There might be concern

about the hashing speed of those deep neural-

network-driven approaches, especially the ap-

proaches involving image feature learning, which

may take much longer time to hash an image

compared to shallow-learning-driven approaches
like ITQ and KSH.

2) Instead of employing deep neural networks to

seek hash codes, another interesting problem is to

design a proper hashing technique to accelerate

deep neural network training or save memory

space. The latest work [113] presented a hashing

trick named HashedNets, which shrinks the

storage costs of neural networks significantly
while mostly preserving the generalization per-

formance in image classification tasks.

VI. Advanced Methods and Related
Applicat ions

In this section, we further extend the survey scope to cover

a few more advanced hashing methods that are developed
for specific settings and applications, such as point-to-

hyperplane hashing, subspace hashing, and multimodality

hashing.

A. Hyperplane Hashing
Distinct from the previously surveyed conventional

hashing techniques all of which address the problem of fast

point-to-point nearest neighbor search [see Fig. 11(a)], a
new scenario ‘‘point-to-hyperplane’’ hashing emerges to

tackle fast point-to-hyperplane nearest neighbor search

[see Fig. 11(b)], where the query is a hyperplane instead of

a data point. Such a new scenario requires hashing the

hyperplane query to near database points, which is difficult

to accomplish because point-to-hyperplane distances are

quite different from routine point-to-point distances in

terms of the computation mechanism. Despite the bulk of
research on point-to-point hashing, this special hashing

paradigm is rarely touched. For convenience, we call

point-to-hyperplane hashing as hyperplane hashing.

Hyperplane hashing is actually fairly important for

many machine learning applications such as large-scale

active learning with SVMs [114]. In SVM-based active

learning [115], the well-proven sample selection strategy is

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

50 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



to search in the unlabeled sample pool to identify the

sample closest to the current hyperplane decision bound-

ary, thus providing the most useful information for

improving the learning model. When making such active

learning scalable to gigantic databases, exhaustive search

for the point nearest to the hyperplane is not efficient for

the online sample selection requirement. Hence, novel

hashing methods that can principally handle hyperplane
queries are called for.

We demonstrate the geometric relationship between a

data point x and a hyperplane Pw with the vector normal

as w in Fig. 12(a). Given a hyperplane query Pw and a set

of points X , the target nearest neighbor is

x� ¼ arg min
x2X

Dðx;PwÞ

where Dðx;PwÞ ¼ jw>xj=kwk is the point-to-hyperplane

distance. The existing hyperplane hashing methods [116],

[117] all attempt to minimize a slightly modified ‘‘distance’’

jw>xj=kwkkxk, i.e., the sine of the point-to-hyperplane

angle �x;w ¼ j�x;w � ð�=2Þj. Note that �x;w 2 ½0; �� is the
angle between x and w. The angle measure

�x;w 2 ½0; �=2� between a database point and a hyperplane

query turns out to be reflected into the design of hash

functions.

As shown in Fig. 12(b), the goal of hyperplane hashing

is to hash a hyperplane query Pw and the desired

neighbors (e.g., x1;x2) with narrow �x;w into the same or

nearby hash buckets, meanwhile avoiding to return the
undesired nonneighbors (e.g., x3;x4) with wide �x;w.

Because �x;w ¼ j�x;w � ð�=2Þj, the point-to-hyperplane

search problem can be equivalently transformed to a

specific point-to-point search problem where the query is

the hyperplane normal w and the desired nearest

neighbor to the raw query Pw is the one whose angle

�x;w from w is closest to �=2, i.e., most closely

perpendicular to w (we write ‘‘perpendicular to w’’ as

? w for brevity). This is very different from traditional

point-to-point nearest neighbor search which returns the

most similar point to the query point. In the following,

several existing hyperplane hashing methods will be

briefly discussed.
Jain et al. [116] devised two different families of

randomized hash functions to attack the hyperplane

hashing problem. The first one is angle-hyperplane hash

(AH-Hash) A, of which one instance function is

hAðzÞ

¼ sgnðu>zÞ; sgnðv>zÞ½ �; z is a database point

sgnðu>zÞ; sgnð�v>zÞ½ �; z is a hyperplane normal



(34)

where z 2 Rd represents an input vector, and u and v are

both drawn independently from a standard d-variate

Gaussian, i.e., u;v � Nð0; Id�dÞ. Note that hA is a two-bit
hash function which leads to the probability of collision for a

hyperplane normal w and a database point x

Pr hAðwÞ ¼ hAðxÞ
� �

¼ 1

4
�
�2

x;w

�2
: (35)

This probability monotonically decreases as the point-to-

hyperplane angle �x;w increases, ensuring angle-sensitive
hashing.

The second family proposed by Jain et al. is embedding-

hyperplane hash (EH-Hash) function family E of which

one instance is

hEðzÞ ¼ sgn U>Vðzz>Þ
� �

; z is a database point

sgn �U>Vðzz>Þ
� �

; z is a hyperplane normal



(36)

Fig. 12. Hyperplane hashing problem. (a) Point-to-hyperplane

distance Dðx;PwÞ and point-to-hyperplane angle �x;w. (b) Neighbors

ðx1; x2Þ and nonneighbors ðx3; x4Þ of the hyperplane query Pw, and

the ideal neighbors are the points ? w.

Fig. 11. Two distinct nearest neighbor search problems. (a) Point-to-

point search; the blue solid circle represents a point query, and the red

circle represents the found nearest neighbor point. (b) Point-to-

hyperplane search; the blue plane denotes a hyperplane queryPw with

w being its normal vector, and the red circle denotes the found nearest

neighbor point.

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 51



where VðAÞ returns the vectorial concatenation of matrix
A, and U � Nð0; Id2�d2Þ. The EH hash function hE yields

hash bits on an embedded space Rd2

resulting from

vectorizing rank-one matrices zz> and �zz>. Compared

with hA; hE gives a higher probability of collision

Pr hEðwÞ ¼ hEðxÞ
� �

¼ cos�1 sin2ð�x;wÞ
�

(37)

which also bears the angle-sensitive hashing property.

However, it is much more expensive to compute than

AH-Hash.

More recently, Liu et al. [117] designed a randomized
function family with bilinear bilinear-hyperplane hash

(BH-Hash) as

B¼ hBðzÞ¼sgnðu>zz>vÞ; i.i.d. u;v � Nð0; Id�dÞ
� �

:

(38)

As a core finding, Liu et al. proved in [117] that the

probability of collision for a hyperplane query Pw and a

database point x under hB is

Pr hBðPwÞ ¼ hBðxÞ
� �

¼ 1

2
�

2�2
x;w

�2
: (39)

Specifically, hBðPwÞ is prescribed to be �hBðwÞ. Equation
(39) endows hB with the angle-sensitive hashing property.

It is important to find that the collision probability given

by the BH hash function hB is always twice the collision

probability by the AH hash function hA, and also greater

than the collision probability by the EH hash function hE .

As illustrated in Fig. 13, for any fixed r, BH-Hash

accomplishes the highest probability of collision, which

indicates that the BH-Hash has a better angle-sensitive
property.

In terms of the formulation, the bilinear hash function

hB is correlated yet differently from the linear hash

functions hA and hE . 1) hB produces a single hash bit which

is the product of the two hash bits produced by hA. 2) hB

may be a rank-one special case of hE in algebra if we write

u>zz>v ¼ trðzz>vu>Þ and U>Vðzz>Þ ¼ trðzz>UÞ. 3)

hB appears in a universal form, while both hA and hE treat a
query and a database item in a distinct manner. The

computation time of hB is Qð2dÞ which is the same as that

of hA and one order of magnitude faster than Qð2d2Þ of hE .

Liu et al. further improved the performance of hB through

learning the bilinear projection directions u;v in hB from

the data. Gong et al. extended the bilinear formulation to

the conventional point-to-point hashing scheme through

designing compact binary codes for high-dimensional

visual descriptors [118].

B. Subspace Hashing
Beyond the aforementioned conventional hashing

which tackles searching in a database of vectors, subspace

hashing [119], which has been rarely explored in the

literature, attempts to efficiently search through a large

database of subspaces. Subspace representation is very

common in many computer vision, pattern recognition,

and statistical learning problems, such as subspace

representations of image patches, image sets, video clips,

etc. For example, face images of the same subject with
fixed poses but different illuminations are often assumed

to reside near linear subspaces. A common use scenario is

to use a single face image to find the subspace (and the

corresponding subject ID) closest to the query image [120].

Given a query in the form of vector or subspace, searching

for a nearest subspace in a subspace database is frequently

encountered in a variety of practical applications including

example-based image synthesis, scene classification,
speaker recognition, face recognition, and motion-based

action recognition [120].

However, hashing and searching for subspaces are both

different from the schemes used in traditional vector

hashing and the latest hyperplane hashing. Basri et al. [119]

presented a general framework to the problem of

approximate nearest subspace (ANS) search, which

uniformly deals with the cases that query is a vector or
subspace, query and database elements are subspaces of

fixed dimension, query and database elements are

subspaces of different dimension, and database elements

are subspaces of varying dimension. The critical technique

exploited by [119] has two steps: 1) a simple mapping that

maps both query and database elements to ‘‘points’’ in a

new vector space; and 2) doing approximate nearest

Fig. 13. Comparison of the collision probabilities of the three

randomized hyperplane hashing schemes using p1 (probability of

collision) versus r (squared point-to-hyperplane angle).

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

52 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



neighbor search using conventional vector hashing algo-
rithms in the new space. Consequently, the main contri-

bution of [119] is reducing the difficult subspace hashing

problem to a regular vector hashing task. Basri et al. [119]

used LSH for the vector hashing task. While simple, the

hashing technique (mapping þ LSH) of [119] perhaps

suffers from the high dimensionality of the constructed

new vector space.

More recently, Wang et al. [120] exclusively addressed
the point-to-subspace query where query is a vector and

database items are subspaces of arbitrary dimension.

Wang et al. [120] proposed a rigorously faster hashing

technique than that of [119]. Their hash function can hash

D-dimensional vectors (D is the ambient dimension of the

query) or D� r-dimensional subspaces (r is arbitrary) in a

linear time complexity OðDÞ, which is computationally

more efficient than the hash functions devised in [119].
Wang et al. [120] further proved the search time under the

OðDÞ hashes to be sublinear in the database size.

Based on the nice finding of [120], we would like to

achieve faster hashing for the subspace-to-subspace query

by means of crafted novel hash functions to handle

subspaces in varying dimension. Both theoretical and

practical explorations in this direction will be beneficial to

the hashing area.

C. Multimodality Hashing
Note that the majority of the hash learning methods are

designed for constructing the Hamming embedding for a

single modality or representation. Some recent advanced

methods are proposed to design the hash functions for

more complex settings, such as that the data are

represented by multimodal features or the data are formed
in a heterogeneous way [121]. Hashing methods of such

type are closely related to the applications in social

network, whether multimodality and heterogeneity are

often observed. Below we survey several representative

methods that are proposed recently.

Realizing that data items like webpage can be

described from multiple information sources, composing

hashing was recently proposed to design hashing scheme
using several information sources [122]. Besides the

intuitive way of concatenating multiple features to derive

hash functions, Zhang et al. [122] also presented an

iterative weighting scheme and formulated convex com-

bination of multiple features. The objective is to ensure

the consistency between the semantic similarity and the

Hamming similarity of the data. Finally, a joint optimi-

zation strategy is employed to learn the importance of
individual type of features and the hash functions.

Coregularized hashing was proposed to investigate the

hashing learning across multiparity data in a supervised

setting, where similar and dissimilar pairs of intramod-

ality points are given as supervision information [123].

One such typical setting is to index images and the text

jointly to preserve the semantic relations between the

image and the text. Zhen and Yeung [123] formulate their
objective as a boosted coregularization framework with

the cost component as a weighted sum of the intramod-

ality and intermodality loss. The learning process of the

hash functions is performed via a boosting procedure so

that the bias introduced by previous hash function can be

sequentially minimized. Dual-view hashing attempts to

derive a hidden common Hamming embedding of data

from two views, while maintaining the predictability of
the binary codes [124]. A probabilistic model called

multimodal latent binary embedding was recently pre-

sented to derive binary latent factors in a common

Hamming space for indexing multimodal data [125].

Other closely related hashing methods include the design

of multiple feature hashing for near-duplicate detection

[126], submodular hashing for video indexing [127], and

probabilistic attributed hashing for integrating low-level
features and semantic attributes [128].

D. Applications With Hashing
Indexing massive multimedia data, such as images and

video, are the natural applications for learning-based

hashing. Especially, due to the well-known semantic gap,

supervised and semisupervised hashing methods have been

extensively studied for image search and retrieval [29],
[41], [69], [129]–[131], and mobile product search [132].

Other closely related computer vision applications include

image patch matching [133], image classification [118],

face recognition [134], [135], pose estimation [71], object

tracking [136], and duplicate detection [51], [52], [126],

[137], [138]. In addition, this emerging hash learning

framework can be exploited for some general machine

learning and data mining tasks, including cross-modality
data fusion [139], large-scale optimization [140], large-

scale classification and regression [141], collaborative

filtering [142], and recommendation [143]. For indexing

video sequences, a straightforward method is to indepen-

dently compute binary codes for each key frames and use a

set of hash code to represent video index. More recently,

Ye et al. proposed a structure learning framework to derive

a video hashing technique that incorporates both temporal
and spatial structure information [144]. In addition,

advanced hashing methods are also developed for docu-

ment search and retrieval. For instance, Wang et al.
proposed to leverage both tag information and semantic

topic modeling to achieve more accurate hash codes [145].

Li et al. designed a two-stage unsupervised hashing

framework for fast document retrieval [146].

Hashing techniques have also been applied to the active
learning framework to cope with big data applications.

Without performing exhaustive test on all the data points,

hyperplane hashing can help significantly speed up the

interactive training sample selection procedure [114],

[117], [116]. In addition, a two-stage hashing scheme is

developed to achieve fast query pair selection for large-

scale active learning to rank [147].

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 53



VII. Open Issues and Future Directions

Despite the tremendous progress in developing a large

array of hashing techniques, several major issues remain
open. First, unlike the locality sensitive hashing family,

most of the learning-based hashing techniques lack the

theoretical guarantees on the quality of returned neigh-

bors. Although several recent techniques have presented

theoretical analysis of the collision probability, they are

mostly based on randomized hash functions [19], [116],

[117]. Hence, it is highly desired to further investigate such

theoretical properties. Second, compact hash codes have
been mostly studied for large-scale retrieval problems. Due

to their compact form, the hash codes also have great

potential in many other large-scale data modeling tasks

such as efficient nonlinear kernel SVM classifiers [148]

and rapid kernel approximation [149]. A bigger question

is: Instead of using the original data, can one directly use

compact codes to do generic unsupervised or supervised

learning without affecting the accuracy? To achieve this,
theoretically sound practical methods need to be devised.

This will make efficient large-scale learning possible with

limited resources, for instance, on mobile devices. Third,

most of the current hashing technicals are designed for

given feature representations that tend to suffer from the

semantic gap. One of the possible future directions is to

integrate representation learning with binary code learn-

ing using advanced learning schemes such as deep neural
network. Finally, since heterogeneity has been an impor-

tant characteristics of the big data applications, one of the

future trends will be to design efficient hashing approaches

that can leverage heterogeneous features and multimodal

data to improve the overall indexing quality. Along those

lines, developing new hashing techniques for composite

distance measures, i.e., those based on combinations of

different distances acting on different types of features,
will be of great interest.

REF ERENCE S

[1] R. Datta, D. Joshi, J. Li, and J. Z. Wang,
‘‘Image retrieval: Ideas, influences, trends of
the new age,’’ ACM Comput. Surv., vol. 40,
no. 2, pp. 1–60, 2008.

[2] G. Shakhnarovich, T. Darrell, and P. Indyk,
Nearest-Neighbor Methods in Learning and
Vision: Theory and Practice. Cambridge,
MA, USA: MIT Press, 2006.

[3] R. Bellman, Dynamic Programming, Princeton,
NJ, USA: Princeton Univ. Press, 1957.

[4] J. Bentley, ‘‘Multidimensional binary search
trees used for associative searching,’’ Commun.
ACM, vol. 18, no. 9, pp. 509–517, 1975.

[5] S. Omohundro, ‘‘Efficient algorithms with
neural network behavior,’’ Complex Syst.,
vol. 1, no. 2, pp. 273–347, 1987.

[6] J. Uhlmann, ‘‘Satisfying general proximity/
similarity queries with metric trees,’’ Inf.
Process. Lett., vol. 40, no. 4, pp. 175–179,
1991.

[7] P. Yianilos, ‘‘Data structures and algorithms
for nearest neighbor search in general metric
spaces,’’ in Proc. 4th Annu. ACM-SIAM
Symp. Discrete Algorithms, 1993, pp. 311–321.

[8] P. Indyk, ‘‘Nearest-neighbor searching in
high dimensions,’’ in Handbook of Discrete
and Computational Geometry, J. E. Goodman
and J. O’Rourke, Eds. Boca Raton, FL,
USA: CRC Press, 2004.

[9] H. Jegou, M. Douze, and C. Schmid,
‘‘Product quantization for nearest neighbor
search,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 1, pp. 117–128, Jan. 2011.

[10] T. Ge, K. He, Q. Ke, and J. Sun, ‘‘Optimized
product quantization for approximate
nearest neighbor search,’’ in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit., Portland,
OR, USA, 2013, pp. 2946–2953.

[11] A. Torralba, R. Fergus, and W. Freeman,
‘‘80 million tiny images: A large data set for
nonparametric object and scene recognition,’’
IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 11, pp. 1958–1970, Nov. 2008.

[12] D. Knuth, Art of Computer Programming,
Volume 3: Sorting and Searching. Reading,
MA, USA: Addison-Wesley, 1997.

[13] A. Gionis, P. Indyk, and R. Motwani,
‘‘Similarity search in high dimensions via
hashing,’’ in Proc. 25th Int. Conf. Very Large
Data Bases, 1999, pp. 518–529.

[14] J. Wang, S. Kumar, and S.-F. Chang,
‘‘Semi-supervised hashing for large scale
search,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 12, pp. 2393–2406,
Dec. 2012.

[15] A. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain, ‘‘Content-based image
retrieval at the end of the early years,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 12, pp. 1349–1380, Dec. 2000.

[16] L. Cayton and S. Dasgupta, ‘‘A learning
framework for nearest neighbor search,’’ in
Advances in Neural Information Processing
Systems 20, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. Cambridge, MA, USA: MIT
Press, 2008, pp. 233–240.

[17] J. He, S.-F. Chang, R. Radhakrishnan, and
C. Bauer, ‘‘Compact hashing with joint
optimization of search accuracy and time,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Colorado Springs, CO, USA, 2011,
pp. 753–760.

[18] G. Shakhnarovich, ‘‘Learning task-specific
similarity,’’ Ph.D. dissertation, Dept. Electr.
Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, 2005.

[19] B. Kulis, P. Jain, and K. Grauman, ‘‘Fast
similarity search for learned metrics,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 12, pp. 2143–2157, Dec. 2009.

[20] A. Gordo and F. Perronnin:, ‘‘Asymmetric
distances for binary embeddings,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,
Colorado Springs, CO, USA, 2011,
pp. 729–736.

[21] B. Kulis and K. Grauman, ‘‘Kernelized
locality-sensitive hashing,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 6,
pp. 1092–1104, Jun. 2011.

[22] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and
S.-F. Chang, ‘‘Supervised hashing with
kernels,’’ in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Providence, RI, USA,
2012, pp. 2074–2081.

[23] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li,
‘‘Compressed hashing,’’ in Proc. IEEE Int.
Conf. Comput. Vis. Pattern Recognit., Portland,
OR, USA, 2013, pp. 446–451.

[24] A. Joly and O. Buisson, ‘‘Random maximum
margin hashing,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Colorado Springs,
CO, USA, 2011, pp. 873–880.

[25] J. Wang, S. Kumar, and S.-F. Chang,
‘‘Sequential projection learning for hashing
with compact codes,’’ in Proc. 27th Int. Conf.
Mach. Learn., 2010, pp. 1127–1134.

[26] K. He, F. Wen, and J. Sun, ‘‘K-means
hashing: An affinity-preserving quantization
method for learning binary compact
codes,’’ in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Portland, OR, USA,
2013, pp. 2938–2945.

[27] B. Kulis and T. Darrell, ‘‘Learning to hash
with binary reconstructive embeddings,’’ in
Advances in Neural Information Processing
Systems 20, Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and
A. Culotta, Eds. Cambridge, MA, USA:
MIT Press, 2009, pp. 1042–1050.

[28] W. Liu, J. Wang, S. Kumar, and S.-F. Chang,
‘‘Hashing with graphs,’’ in Proc. Int. Conf.
Mach. Learn., Bellevue, WA, USA, 2011,
pp. 1–8.

[29] J. Wang, S. Kumar, and S.-F. Chang,
‘‘Semi-supervised hashing for scalable image
retrieval,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., San Francisco,
CA, USA, 2010, pp. 3424–3431.

[30] M. Norouzi and D. Fleet, ‘‘Minimal loss
hashing for compact binary codes,’’ in Proc.
27th Int. Conf. Mach. Learn., 2011,
pp. 353–360.

[31] H. Xu et al., ‘‘Complementary hashing for
approximate nearest neighbor search,’’ in
Proc. IEEE Int. Conf. Comput. Vis., 2011,
pp. 1631–1638.

[32] Y. Weiss, A. Torralba, and R. Fergus,
‘‘Spectral hashing,’’ in Advances in Neural
Information Processing Systems 21, D. Koller,
D. Schuurmans, Y. Bengio, and
L. Bottou, Eds. Cambridge, MA, USA: MIT
Press, 2008, pp. 1753–1760.

[33] M. Raginsky and S. Lazebnik,
‘‘Locality-sensitive binary codes from
shift-invariant kernels,’’ in Advances in Neural
Information Processing Systems 22,
Y. Bengio, D. Schuurmans, J. Lafferty,
C. K. I. Williams, and A. Culotta, Eds.
Cambridge, MA, USA: MIT Press, 2009,
pp. 1509–1517.

[34] M. S. Charikar, ‘‘Similarity estimation
techniques from rounding algorithms,’’ in
Proc. 34th Annu. ACM Symp. Theory Comput.,
2002, pp. 380–388.

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

54 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



[35] M. Datar, N. Immorlica, P. Indyk, and
V. Mirrokni, ‘‘Locality-sensitive hashing
scheme based on p-stable distributions,’’ in
Proc. 20th Annu. Symp. Comput. Geometry,
2004, pp. 253–262.

[36] M. Bawa, T. Condie, and P. Ganesan, ‘‘LSH
forest: Self-tuning indexes for similarity
search,’’ in Proc. 14th Int. Conf. World Wide
Web, Chiba, Japan, 2005, pp. 651–660.

[37] Q. Lv, W. Josephson, Z. Wang, M. Charikar,
and K. Li, ‘‘Multi-probe LSH: Efficient
indexing for high-dimensional similarity
search,’’ in Proc. 33rd Int. Conf. Very Large
Data Bases, 2007, pp. 950–961.

[38] W. Dong, Z. Wang, W. Josephson,
M. Charikar, and K. Li, ‘‘Modeling LSH for
performance tuning,’’ in Proc. 17th ACM Conf.
Inf. Knowl. Manage., 2008, pp. 669–678.

[39] A. Dasgupta, R. Kumar, and T. Sarlos,
‘‘Fast locality-sensitive hashing,’’ in Proc. 17th
ACM SIGKDD Int. Conf. Knowl. Disc. Data
Mining, 2011, pp. 1073–1081.

[40] V. Satuluri and S. Parthasarathy, ‘‘Bayesian
locality sensitive hashing for fast similarity
search,’’ Proc. VLDB Endowment, vol. 5, no. 5,
pp. 430–441, 2012.

[41] B. Kulis and K. Grauman, ‘‘Kernelized
locality-sensitive hashing for scalable image
search,’’ in Proc. IEEE Int. Conf. Comput.
Vis., Kyoto, Japan, 2009, pp. 2130–2137.

[42] Y. Mu, J. Shen, and S. Yan,
‘‘Weakly-supervised hashing in kernel
space,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., San Francisco,
CA, USA, 2010, pp. 3344–3351.

[43] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian,
‘‘Super-bit locality-sensitive hashing,’’ in
Advances in Neural Information Processing
Systems 25. Cambridge, MA, USA:
MIT Press, 2012, pp. 108–116.

[44] Y. Mu and S. Yan, ‘‘Non-metric
locality-sensitive hashing,’’ in Proc. 24th AAAI
Conf. Artif. Intell., 2010, pp. 539–544.

[45] A. Broder, ‘‘On the resemblance and
containment of documents,’’ in Proc.
Compression Complexity Sequences, 1997,
pp. 21–29.

[46] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher, ‘‘Min-wise independent
permutations,’’ in Proc. 13th Annu. ACM
Symp. Theory Comput., 1998, pp. 327–336.

[47] A. Rajaraman and J. D. Ullman, Mining of
Massive Datasets. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[48] S. Ioffe, ‘‘Improved consistent sampling,
weighted Minhash and L1 sketching,’’ in
Proc. IEEE Int. Conf. Data Mining, 2010,
pp. 246–255.

[49] M. Henzinger, ‘‘Finding near-duplicate web
pages: A large-scale evaluation of
algorithms,’’ in Proc. 29th Annu. Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2006,
pp. 284–291.

[50] A. S. Das, M. Datar, A. Garg, and S. Rajaram,
‘‘Google news personalization: Scalable
online collaborative filtering,’’ in Proc. 16th
Int. Conf. World Wide Web, 2007,
pp. 271–280.

[51] O. Chum, J. Philbin, and A. Zisserman,
‘‘Near duplicate image detection: Min-hash
and TF-IDF weighting,’’ in Proc. British
Mach. Vis. Conf., 2008, vol. 810, pp. 812–815.

[52] D. C. Lee, Q. Ke, and M. Isard, ‘‘Partition
Min-hash for partial duplicate image
discovery,’’ in Proc. Eur. Conf. Comput. Vis.,
Heraklion, Greece, 2012, pp. 648–662.

[53] P. Li and C. König, ‘‘B-bit minwise hashing,’’
in Proc. 19th Int. Conf. World Wide Web, 2010,
pp. 671–680.

[54] P. Li, A. Konig, and W. Gui, ‘‘B-bit minwise
hashing for estimating three-way
similarities,’’ in Advances in Neural
Information Processing Systems 23, J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds. Cambridge, MA,
USA: MIT Press, 2010, pp. 1387–1395.

[55] P. Li, A. Owen, and C.-H. Zhang, ‘‘One
permutation hashing,’’ in Advances in
Neural Information Processing Systems 25,
P. Bartlett, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds. Cambridge, MA,
USA: MIT Press, 2012, pp. 3122–3130.

[56] O. Chum, M. Perdoch, and J. Matas,
‘‘Geometric Min-hashing: Finding a (thick)
needle in a haystack,’’ in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit.,
Miami, FL, USA, 2009, pp. 17–24.

[57] O. Chum and J. Matas, ‘‘Fast computation
of min-Hash signatures for image
collections,’’ in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Providence, RI,
USA, 2012, pp. 3077–3084.

[58] P. Indyk and R. Motwani, ‘‘Approximate
nearest neighbors: Towards removing the
curse of dimensionality,’’ in Proc. 30th ACM
Symp. Theory Comput., 1998, pp. 604–613.

[59] M. Norouzi, A. Punjani, and D. J. Fleet, ‘‘Fast
search in hamming space with multi-index
hashing,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, 2012,
pp. 3108–3115.

[60] F. Shen, C. Shen, Q. Shi, A. van den Hengel,
and Z. Tang, ‘‘Inductive hashing on
manifolds,’’ in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Portland, OR, USA,
2013, pp. 1562–1569.

[61] Y. Gong and S. Lazebnik, ‘‘Iterative
quantization: A procrustean approach to
learning binary codes,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Colorado
Springs, CO, USA, 2011, pp. 817–824.

[62] W. Kong and W.-J. Li, ‘‘Isotropic hashing,’’ in
Advances in Neural Information Processing
Systems 25. Cambridge, MA, USA: MIT
Press, 2012, pp. 1655–1663.

[63] Y. Gong, S. Kumar, V. Verma, and
S. Lazebnik, ‘‘Angular quantization based
binary codes for fast similarity search,’’ in
Advances in Neural Information Processing
Systems 25. Cambridge, MA, USA:
MIT Press, 2012, pp. 1205–1213.

[64] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and
S.-E. Yoon, ‘‘Spherical hashing,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, 2012, pp. 2957–2964.

[65] M. Norouzi, D. Fleet, and R. Salakhutdinov,
‘‘Hamming distance metric learning,’’ in
Advances in Neural Information Processing
Systems. Cambridge, MA, USA: MIT Press,
2012, pp. 1070–1078.

[66] A. Torralba, R. Fergus, and Y. Weiss, ‘‘Small
codes and large image databases for
recognition,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Anchorage, Alaska, USA,
2008, DOI: 10.1109/CVPR.2008.4587633.

[67] L. Fan, ‘‘Supervise binary hash code learning
with Jensen Shannon divergence,’’ in Proc.
IEEE Int. Conf. Comput. Vis., 2013,
pp. 2616–2623.

[68] F. Shen, C. Shen, W. Liu, and H. T. Shen,
‘‘Supervised discrete hashing,’’ in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit.,
Boston, MA, USA, 2015, pp. 37–45.

[69] P. Jain, B. Kulis, and K. Grauman, ‘‘Fast
image search for learned metrics,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,
Anchorage, AK, USA, 2008, DOI: 10.1109/
CVPR.2008.4587841.

[70] P. Jain, B. Kulis, I. S. Dhillon, and
K. Grauman, ‘‘Online metric learning and
fast similarity search,’’ in Advances in Neural
Information Processing Systems. Cambridge,
MA, USA: MIT Press, 2008, pp. 761–768.

[71] G. Shakhnarovich, P. Viola, and T. Darrell,
‘‘Fast pose estimation with
parameter-sensitive hashing,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Nice, France,
2003, pp. 750–757.

[72] M. Rastegari, A. Farhadi, and D. A. Forsyth,
‘‘Attribute discovery via predictable
discriminative binary codes,’’ in Proc. Eur.
Conf. Comput. Vis., Florence, Italy, 2012,
pp. 876–889.

[73] M. Ou, P. Cui, F. Wang, J. Wang, and W. Zhu,
‘‘Non-transitive hashing with latent similarity
components,’’ in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2015,
pp. 895–904.

[74] X. Li, G. Lin, C. Shen, A. V. den Hengel, and
A. Dick, ‘‘Learning hash functions using
column generation,’’ in Proc. 30th Int. Conf.
Mach. Learn., 2013, pp. 142–150.

[75] J. Wang, J. Wang, N. Yu, and S. Li, ‘‘Order
preserving hashing for approximate
nearest neighbor search,’’ in Proc. 21st ACM
Int. Conf. Multimedia, 2013, pp. 133–142.

[76] J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang,
‘‘Learning hash codes with listwise
supervision,’’ in Proc. IEEE Int. Conf. Comput.
Vis., 2013, pp. 3032–3039.

[77] H. Jégou, M. Douze, C. Schmid, and P. Pérez,
‘‘Aggregating local descriptors into a compact
image representation,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2010,
pp. 3304–3311.

[78] J. He, S. Kumar, and S.-F. Chang, ‘‘On the
difficulty of nearest neighbor search,’’ in
Proc. 29th Int. Conf. Mach. Learn., 2012,
pp. 1127–1134.

[79] C. Strecha, A. M. Bronstein,
M. M. Bronstein, and P. Fua, ‘‘LDAHash:
Improved matching with smaller
descriptors,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 1, pp. 66–78, Jan. 2012.

[80] T. Trzcinski and V. Lepetit, ‘‘Efficient
discriminative projections for compact
binary descriptors,’’ in Proc. Eur.
Conf. Comput. Vis., Florence, Italy, 2012,
pp. 228–242.

[81] F. Yu, S. Kumar, Y. Gong, and S.-F. Chang,
‘‘Circulant binary embedding,’’ in Proc. Int.
Conf. Mach. Learn., Beijing, China, 2014,
pp. 946–954.

[82] J. He, W. Liu, and S.-F. Chang, ‘‘Scalable
similarity search with optimized kernel
hashing,’’ in Proc. 16th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2010,
pp. 1129–1138.

[83] R.-S. Lin, D. A. Ross, and J. Yagnik, ‘‘Spec
hashing: Similarity preserving algorithm
for entropy-based coding,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., San Francisco, CA, USA, 2010,
pp. 848–854.

[84] Z. Jin et al., ‘‘Complementary projection
hashing,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
2013, pp. 257–264.

[85] G. Lin, C. Shen, A. V. den Hengel, and
D. Suter, ‘‘A general two-step approach to
learning-based hashing,’’ in Proc. IEEE Int.
Conf. Comput. Vis., 2013, pp. 2552–2559.

[86] D. Zhang, J. Wang, D. Cai, and J. Lu,
‘‘Self-taught hashing for fast similarity
search,’’ in Proc. 33rd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2010, pp. 18–25.

[87] Y. Freund and R. Schapire, ‘‘A
decision-theoretic generalization of on-line

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 55



learning and an application to boosting,’’ in
Computational Learning Theory, vol. 904,
Berlin, Germany: Springer-Verlag, 1995,
pp. 23–37.

[88] V. Athitsos, J. Alon, S. Sclaroff, and
G. Kollios, ‘‘Boostmap: An embedding
method for efficient nearest neighbor
retrieval,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 1, pp. 89–104, Jan. 2008.

[89] Y.-G. Jiang, J. Wang, X. Xue, and S.-F. Chang,
‘‘Query-adaptive image search with hash
codes,’’ IEEE Trans. Multimedia, vol. 15, no. 2,
pp. 442–453, Feb. 2013.

[90] Y.-G. Jiang, J. Wang, and S.-F. Chang, ‘‘Lost
in binarization: Query-adaptive ranking for
similar image search with compact codes,’’ in
Proc. ACM Int. Conf. Multimedia Retrieval,
2011, DOI: 10.1145/1991996.1992012.

[91] Q. Wang, D. Zhang, and L. Si, ‘‘Weighted
hashing for fast large scale similarity
search,’’ in Proc. 22nd ACM Conf. Inf. Knowl.
Manage., 2013, pp. 1185–1188.

[92] L. Zhang, Y. Zhang, X. Gu, and Q. Tian,
‘‘Binary code ranking with weighted
hamming distance,’’ in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recognit., Portland, OR,
USA, 2013, pp. 1586–159.

[93] X. Liu, J. He, B. Lang, and S.-F. Chang,
‘‘Hash bit selection: A unified solution for
selection problems in hashing,’’ in Proc. IEEE
Int. Conf. Comput. Vis. Pattern Recognit.,
Portland, OR, USA, 2013, pp. 1570–1577.

[94] X. Zhang, L. Zhang, and H.-Y. Shum,
‘‘Qsrank: Query-sensitive hash code ranking
for efficient�-neighbor search,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, 2012, pp. 2058–2065.

[95] C. Fowlkes, S. Belongie, F. Chung, and
J. Malik, ‘‘Spectral grouping using the
Nyström method,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 26, no. 2, pp. 214–225,
Feb. 2004.

[96] Y. Weiss, R. Fergus, and A. Torralba,
‘‘Multidimensional spectral hashing,’’ in
Proc. Eur. Conf. Comput. Vis., Florence, Italy,
2012, pp. 340–353.

[97] W. Liu, J. He, and S.-F. Chang, ‘‘Large graph
construction for scalable semi-supervised
learning,’’ in Proc. 27th Int. Conf. Mach.
Learn., 2010, pp. 679–686.

[98] W. Liu, C. Mu, S. Kumar, and S.-F. Chang,
‘‘Discrete graph hashing,’’ in Advances in
Neural Information Processing Systems.
Cambridge, MA, USA: MIT Press, 2014,
pp. 3419–3427.

[99] J. Masci, A. Bronstein, M. Bronstein,
P. Sprechmann, and G. Sapiro, ‘‘Sparse
similarity-preserving hashing,’’ in Proc. Int.
Conf. Learn. Represent., 2014, pp. 1–13.

[100] J. V. Davis, B. Kulis, P. Jain, S. Sra, and
I. S. Dhillon, ‘‘Information-theoretic metric
learning,’’ in Proc. 24th Int. Conf. Mach.
Learn., 2007, pp. 209–216.

[101] R. M. Gray, Toeplitz and Circulant Matrices:
A Review. New York, NY, USA: Now
Publishers, 2006.

[102] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep
learning,’’ Nature, vol. 521, pp. 436–444,
2015.

[103] R. Salakhutdinov and G. Hinton, ‘‘Semantic
hashing,’’ Int. J. Approx. Reason., vol. 50,
no. 7, pp. 969–978, 2009.

[104] G. Hinton and R. Salakhutdinov, ‘‘Reducing
the dimensionality of data with neural
networks,’’ Science, vol. 313, no. 5786,
pp. 504–507, 2006.

[105] R. Salakhutdinov and G. Hinton, ‘‘Learning a
nonlinear embedding by preserving class

neighbourhood structure,’’ in Proc. Int. Conf.
Artif. Intell. Stat., 2007, pp. 412–419.

[106] V. E. Liong, J. Lu, G. Wang, P. Moulin, and
J. Zhou, ‘‘Deep hashing for compact
binary codes learning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015,
pp. 2475–2483.

[107] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan,
‘‘Supervised hashing for image retrieval via
image representation learning,’’ in Proc. AAAI
Conf. Artif. Intell., 2014, pp. 2156–2162.

[108] F. Zhao, Y. Huang, L. Wang, and T. Tan,
‘‘Deep semantic ranking based hashing for
multi-label image retrieval,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 1556–1564.

[109] H. Lai, Y. Pan, Y. Liu, and S. Yan,
‘‘Simultaneous feature learning and hash
coding with deep neural networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 3270–3278.

[110] K. Gregor and Y. LeCun, ‘‘Learning fast
approximations of sparse coding,’’ in Proc.
Int. Conf. Mach. Learn., 2010, pp. 399–406.

[111] Y. Gong, S. Lazebnik, A. Gordo, and
F. Perronnin, ‘‘Iterative quantization: A
procrustean approach to learning binary
codes for large-scale image retrieval,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 12, pp. 2916–2929, Dec. 2013.

[112] A. Krizhevsky, I. Sutskever, and G. Hinton,
‘‘Imagenet classification with deep
convolutional neural networks,’’ Advances in
Neural Information Processing Systems 25.
Cambridge, MA, USA: MIT Press, 2012,
pp. 1106–1114.

[113] W. Chen, J. T. Wilson, S. Tyree,
K. Q. Weinberger, and Y. Chen,
‘‘Compressing neural networks with the
hashing trick,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 2285–2294.

[114] S. Vijayanarasimhan, P. Jain, and
K. Grauman, ‘‘Hashing hyperplane queries to
near points with applications to large-scale
active learning,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 2,
pp. 276–288, Feb. 2013.

[115] S. Tong and D. Koller, ‘‘Support vector
machine active learning with applications
to text classification,’’ J. Mach. Learn. Res.,
vol. 2, pp. 45–66, 2001.

[116] P. Jain, S. Vijayanarasimhan, and
K. Grauman, ‘‘Hashing hyperplane queries to
near points with applications to large-scale
active learning,’’ in Advances in Neural
Information Processing Systems 23, J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds. Cambridge, MA,
USA: MIT Press, 2010, pp. 928–936.

[117] W. Liu, J. Wang, Y. Mu, S. Kumar, and
S.-F. Chang, ‘‘Compact hyperplane hashing
with bilinear functions,’’ in Proc. 29th Int.
Conf. Mach. Learn., 2012, pp. 17–24.

[118] Y. Gong, S. Kumar, H. Rowley, and
S. Lazebnik, ‘‘Learning binary codes for
high-dimensional data using bilinear
projections,’’ in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Portland, OR, USA,
2013, pp. 484–491.

[119] R. Basri, T. Hassner, and L. Zelnik-Manor,
‘‘Approximate nearest subspace search,’’
IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 2, pp. 266–278, Feb. 2011.

[120] X. Wang, S. Atev, J. Wright, and G. Lerman,
‘‘Fast subspace search via grassmannian
based hashing,’’ in Proc. IEEE Int. Conf.
Comput. Vis., 2013, pp. 2776–2783.

[121] S. Kim, Y. Kang, and S. Choi, ‘‘Sequential
spectral learning to hash with multiple

representations,’’ in Proc. Eur. Conf. Comput.
Vis., Florence, Italy, 2012, pp. 538–551.

[122] D. Zhang, F. Wang, and L. Si, ‘‘Composite
hashing with multiple information
sources,’’ in Proc. 34th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2011,
pp. 225–234.

[123] Y. Zhen and D.-Y. Yeung, ‘‘Co-regularized
hashing for multimodal data,’’ in Advances
in Neural Information Processing Systems 25,
P. Bartlett, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds. Cambridge,
MA, USA: MIT Press, 2012, pp. 1385–1393.

[124] M. Rastegari, J. Choi, S. Fakhraei, D. Hal,
and L. Davis, ‘‘Predictable dual-view
hashing,’’ in Proc. 30th Int. Conf. Mach. Learn.,
2013, pp. 1328–1336.

[125] Y. Zhen and D.-Y. Yeung, ‘‘A probabilistic
model for multimodal hash function
learning,’’ in Proc. 18th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2012,
pp. 940–948.

[126] J. Song, Y. Yang, Z. Huang, H. T. Shen, and
R. Hong, ‘‘Multiple feature hashing for
real-time large scale near-duplicate video
retrieval,’’ in Proc. 19th ACM Int. Conf.
Multimedia, 2011, pp. 423–432.

[127] L. Cao, Z. Li, Y. Mu, and S.-F. Chang,
‘‘Submodular video hashing: A unified
framework towards video pooling and
indexing,’’ in Proc. 20th ACM Int.
Conf. Multimedia, 2012, pp. 299–308.

[128] M. Ou, P. Cui, J. Wang, F. Wang, and W. Zhu,
‘‘Probabilistic attributed hashing,’’ in Proc.
29th AAAI Conf. Artif. Intell., 2015,
pp. 2894–2900.

[129] K. Grauman and R. Fergus, ‘‘Learning binary
hash codes for large-scale image search,’’ in
Machine Learning for Computer Vision.
New York, NY, USA: Springer-Verlag, 2013,
pp. 49–87.

[130] K. Grauman, ‘‘Efficiently searching for
similar images,’’ Commun. ACM, vol. 53,
no. 6, pp. 84–94, 2010.

[131] W. Kong, W.-J. Li, and M. Guo, ‘‘Manhattan
hashing for large-scale image retrieval,’’ in
Proc. 35th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2012, pp. 45–54.

[132] J. He et al., ‘‘Mobile product search with bag
of hash bits and boundary reranking,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, 2012, pp. 3005–3012.

[133] S. Korman and S. Avidan, ‘‘Coherency
sensitive hashing,’’ in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 1607–1614.

[134] Q. Shi, H. Li, and C. Shen, ‘‘Rapid face
recognition using hashing,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., San Francisco, CA, USA, 2010,
pp. 2753–2760.

[135] Q. Dai, J. Li, J. Wang, Y. Chen, and
Y.-G. Jiang, ‘‘Optimal Bayesian hashing for
efficient face recognition,’’ in Proc. 24th Int.
Joint Conf. Artif. Intell., 2015, pp. 3430–3437.

[136] X. Li, C. Shen, A. Dick, and
A. van den Hengel, ‘‘Learning compact
binary codes for visual tracking,’’ in Proc.
IEEE Int. Conf. Comput. Vis. Pattern
Recognit., Portland, OR, USA, 2013,
pp. 2419–2426.

[137] J. Yuan, G. Gravier, S. Campion, X. Liu, and
H. Jgou, ‘‘Efficient mining of repetitions
in large-scale TV streams with product
quantization hashing,’’ in Proc. Eur. Conf.
Comput. Vis., Florence, Italy, 2012,
pp. 271–280.

[138] G. S. Manku, A. Jain, and A. Das Sarma,
‘‘Detecting near-duplicates for web

Wang et al. : Learning to Hash for Indexing Big DataVA Survey

56 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



crawling,’’ in Proc. 16th Int. Conf. World Wide
Web, 2007, pp. 141–150.

[139] M. M. Bronstein, A. M. Bronstein, F. Michel,
and N. Paragios, ‘‘Data fusion through
cross-modality metric learning using
similarity-sensitive hashing,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., San Francisco, CA, USA, 2010,
pp. 3594–3601.

[140] Y. Mu, J. Wright, and S.-F. Chang,
‘‘Accelerated large scale optimization by
concomitant hashing,’’ in Proc. Eur. Conf.
Comput. Vis., Florence, Italy, 2012,
pp. 414–427.

[141] P. Li, A. Shrivastava, J. L. Moore, and
A. C. Knig, ‘‘Hashing algorithms for
large-scale learning,’’ in Advances in Neural
Information Processing Systems 24,
J. Shawe-Taylor, R. Zemel, P. Bartlett,

F. Pereira, and K. Weinberger, Eds.
Cambridge, MA, USA: MIT Press, 2011,
pp. 2672–2680.

[142] K. Zhou and H. Zha, ‘‘Learning binary codes
for collaborative filtering,’’ in Proc. 18th
ACM SIGKDD Int. Conf. Knowl. Disc. Data
Minings, 2012, pp. 498–506.

[143] M. Ou et al., ‘‘Comparing apples to oranges:
A scalable solution with heterogeneous
hashing,’’ in Proc. 19th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, 2013,
pp. 230–238.

[144] G. Ye, D. Liu, J. Wang, and S.-F. Chang,
‘‘Large-scale video hashing via structure
learning,’’ in Proc. IEEE Int. Conf. Comput.
Vis., 2013, pp. 2272–2279.

[145] Q. Wang, D. Zhang, and L. Si, ‘‘Semantic
hashing using tags and topic modeling,’’ in

Proc. 36th Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2013, pp. 213–222.

[146] H. Li, W. Liu, and H. Ji, ‘‘Two-stage hashing
for fast document retrieval,’’ in Proc. Annu.
Meeting Assoc. Comput. Linguistics, Baltimore,
MD, USA, 2014, pp. 495–501.

[147] B. Qian et al., ‘‘Fast pairwise query selection
for large-scale active learning to rank,’’ in
Proc. IEEE Int. Conf. Data Mining, 2013,
pp. 607–616.

[148] Y. Mu, G. Hua, W. Fan, and S.-F. Chang,
‘‘Hash-SVM: Scalable kernel machines for
large-scale visual classification,’’ in Proc.
IEEE Int. Conf. Comput. Vis. Pattern Recognit.,
Columbus, OH, USA, 2014, pp. 446–451.

[149] Q. Shi et al., ‘‘Hash kernels for structured
data,’’ J. Mach. Learn. Res., vol. 10,
pp. 2615–2637, 2009.

ABOUT T HE AUTHO RS

Jun Wang (Member, IEEE) received the Ph.D.

degree in electrical engineering from Columbia

University, New York, NY, USA, in 2011.

Currently, he is a Professor at the School of

Computer Science and Software Engineering, East

China Normal University, Shanghai, China and an

adjunct faculty member of Columbia University.

He is also affiliated with the Institute of Data

Science and Technology, Alibaba Group, Seattle,

WA, USA. From 2010 to 2014, he was a Research

Staff Member at IBM T. J. Watson Research Center, Yorktown Heights, NY,

USA. His research interests include machine learning, data mining,

mobile intelligence, and computer vision.

Dr. Wang has been the recipient of several awards, including the

award of the ‘‘Thousand Talents Plan’’ in 2014, the Outstanding Technical

Achievement Award from IBM Corporation in 2013, and the Jury Thesis

Award from Columbia University in 2011.

Wei Liu (Member, IEEE) received the M.Phil. and

Ph.D. degrees in electrical engineering from

Columbia University, New York, NY, USA, in 2012.

He has been a Research Scientist at IBM T. J.

Watson Research Center, Yorktown Heights, NY,

USA, since 2012. He holds adjunct faculty positions

at the Rensselaer Polytechnic Institute (RPI), Troy,

NY, USA and Stevens Institute of Technology,

Hoboken, NJ, USA. He has published more than 80

peer-reviewed journal and conference papers. His

research interests include machine learning, data mining, information

retrieval, computer vision, pattern recognition, and image processing.

His current research work is geared to large-scale machine learning, Big

Data analytics, multimedia search engine, mobile computing, and parallel

and distributed computing.

Dr. Liu is the recipient of the 2011–2012 Facebook Fellowship and the

2013 Jury Award for best thesis of the Department of Electrical

Engineering, Columbia University.

Sanjiv Kumar (Member, IEEE) received the Ph.D.

degree from the School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA, USA, in

2005.

He joined Google Research, New York, NY, USA,

in 2005, where he is currently a lead researcher

working on theory and applications in Big Data.

His recent research interests have included binary

embeddings for large-scale machine learning,

nearest neighbor search in massive data sets,

low-rank decompositions of huge matrices, and high-throughput online

clustering. He has also been an adjunct faculty member at Columbia

University, New York, NY, USA, where he developed and taught a new

course on large-scale machine learning in 2010. In the past, he held

various research positions at the National Robotics Engineering Consor-

tium, Pittsburgh, PA, USA; and the Department of Surgery, National

University of Singapore, Singapore, in medical and industrial robotics.

Shih-Fu Chang (Fellow, IEEE) received the Ph.D.

degree in electrical engineering and computer

sciences from the University of California at

Berkeley, Berkeley, CA, USA, in 1993.

In his current capacity as Senior Executive Vice

Dean of Columbia Engineering School, Columbia

University, New York, NY, USA, he plays a key role in

strategic planning, research initiatives, and faculty

development. He is a leading researcher in multi-

media information retrieval, computer vision, signal

processing, and machine learning. His work set trends in areas such as

content-based image search, video recognition, image authentication,

hashing for large image database, and novel application of visual search

in brain–machine interface and mobile systems. Impact of his work can be

seen in more than 300 peer-reviewed publications, best paper awards, 25

issued patents, and technologies licensed to many companies.

Dr. Chang has been recognized with the IEEE Signal Processing Society

Technical Achievement Award, the ACM Multimedia SIG Technical

Achievement Award, the IEEE Kiyo Tomiyasu Award, the ONY YIA award,

the IBM Faculty Award, and the Great Teacher Award from the Society of

Columbia Graduates. He served as the Editor-in-Chief of the IEEE SIGNAL

PROCESSING MAGAZINE during 2006–2008. He is a Fellow of the American

Association for the Advancement of Science.

Wang et al.: Learning to Hash for Indexing Big DataVA Survey

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 57



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


