
Spherical Hashing: Binary Code Embedding
with Hyperspheres

Jae-Pil Heo,Member, IEEE, Youngwoon Lee,Member, IEEE, Junfeng He,Member, IEEE,

Shih-Fu Chang, Fellow, IEEE, and Sung-Eui Yoon, Senior Member, IEEE

Abstract—Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity

search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding

techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel

hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to

hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for

our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced

partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to

support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique

significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to

75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over

the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity

regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

Index Terms—Hashing, binary codes, large-scale image search

Ç

1 INTRODUCTION

THANKS to rapid advances of digital camera and various
image processing tools, we can easily create new pic-

tures and images for various purposes. This in turn results
in a huge amount of images available online. These huge
image databases pose a significant challenge in terms of
scalability to many computer vision applications, especially
those applications that require efficient similarity search.

For similarity search, nearest neighbor search techni-
ques have been widely studied and tree-based techniques
[2], [3], [4], [5] have been used for low-dimensional data.
Unfortunately, these techniques are not scalable to high-
dimensional data. Hence recently binary code embedding
techniques have been actively studied to provide efficient
solutions for such high-dimensional data [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23].

Encoding high-dimensional data points into binary codes
based on hashing techniques enables higher scalability
thanks to both its compact data representation and efficient
indexing mechanism. Similar high-dimensional data points
are mapped to similar binary codes and thus by looking
into only those similar binary codes (based on the Hamming

distance), we can efficiently identify approximate nearest
neighbors.

Existing hashing techniques can be broadly categorized
as data-independent and data-dependent schemes. In data-
independent techniques, hashing functions are chosen inde-
pendently from the data points. Locality-Sensitive Hashing
(LSH) [6] is one of the most widely known techniques in
this category. This technique is extended to various hashing
functions [7], [8], [11], [12], [13]. Recent research attentions
have been shifted to developing data-dependent techniques
to consider the distribution of data points and design better
hashing functions. Notable examples include spectral hash-
ing [10], semi-supervised hashing [17], iterative quantiza-
tion [20], joint optimization [21], and random maximum
margin hashing (RMMH) [22].

In all of these existing hashing techniques, hyperplanes
are used to partition the data points into two sets and assign
two different binary codes (e.g., �1 or þ1) depending on
which set each point is assigned to. Departing from this con-
ventional approach, we propose a novel hypersphere-based
scheme, spherical hashing, for computing binary codes. Intui-
tively, hyperspheres provide much stronger power in defin-
ing a tighter closed region than hyperplanes (See Fig. 1). For
example, at least dþ 1 hyperplanes are needed to define a
closed region for a d-dimensional space, while only a single
hypersphere can form such a closed region even in an arbi-
trarily high dimensional space.

Our paper has the following contributions:

1) We propose a novel spherical hashing scheme, ana-
lyze its ability in terms of similarity search, and com-
pare it against the state-of-the-art hyperplane-based
techniques (Section 3.1).

� J.-P. Heo, Y. Lee, and S.-E. Yoon are with the Department of Computer
Science, KAIST (Korea Advanced Institute of Science and Technology),
South Korea. E-mail: {jaepilheo, lywoon89, sungeui}@gmail.com.

� J. He is with the Facebook. E-mail: hejunf@gmail.com.
� S.-F. Chang is with the Department of Electrical Engineering, Columbia

University, New York, NY. E-mail: sfchang@ee.columbia.edu.

Manuscript received 7 Mar. 2013; revised 12 July 2014; accepted 30 Jan. 2015.
Date of publication 26 Feb. 2015; date of current version 7 Oct. 2015.
Recommended for acceptance by S. Avidan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2015.2408363

2304 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

0162-8828� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2) We develop a new binary code distance function tai-
lored for the spherical hashing method (Section 3.2).

3) We formulate an optimization problem that achieves
both balanced partitioning for each hashing function
and the independence between any two hashing
functions (Section 3.3). Also, an efficient, iterative
process is proposed to construct spherical hashing
functions (Section 3.4).

4) We design an adaptive scheme to set the distance
threshold of the hyperspheres by a maximal margin
principle (Section 3.5).

5) We generalize spherical hashing to support arbitrary
kernel functions, and reformulate the optimization
process into a kernelized one (Section 4).

In order to highlight benefits of our method, we have
tested our method against different benchmarks that consist
of one to 75 million image descriptors with varying dimen-
sions. We have also compared our method with many state-
of-the-art techniques and found that our method signifi-
cantly outperforms all the tested techniques, confirming the
superior ability of defining closed regions with tighter
bounds compared to conventional hyperplane-based hash-
ing functions (Section 5).

2 RELATED WORK

In this section we discuss prior work related to nearest
neighbor search techniques.

2.1 Hierarchical Methods

Space partitioning based tree structures such as kd-trees [2],
[3], R-trees [4], Vantage Point Trees (VPT) [24] have been
used to find nearest neighbors. Excellent surveys for such
tree-based indexing and nearest neighbor search methods
are available [25], [26]. Using kd-trees is one of the most
popular approaches, and thus there have been a lot of opti-
mization efforts such as randomized kd-trees [27], relaxed
orthogonality of partitioning axes [28], and minimizing
probabilistic search cost [29]. It has been widely known,
however, that kd-tree based search can run slower even
than the linear scan for high dimensional data. Nist�er and
Stew�enius [30] proposed another tree-based nearest neigh-
bor search scheme based on hierarchical k-means trees.
Muja and Lowe [5] have proposed an automatic parameter

selection algorithm of some of techniques mentioned in
above.

Although these techniques achieve reasonably high accu-
racy and efficiency, they have been demonstrated in small
image databases consisting of about one million images.
Also, these techniques do not consider compressions of
image descriptors to handle large-scale image databases.

2.2 Binary Code Embedding Methods

Binary code embedding methods that embed high dimen-
sional points to compact binary codes have been actively
studied recently, since they provide both high compression
efficiency and fast similarity computation. Binary code
embedding methods aim to embed points in binary codes,
while preserving relative distances among them. Most
methods compute a binary value using a hash function that
preserves distance among data points. Distances among the
data points are then approximated by similarity among
their binary codes such as Hamming distance.

Binary code embedding methods can be broadly catego-
rized as data-independent and data-dependent schemes. In
data-independent methods, the hash functions are defined
independently from the data. One of the most popular hash-
ing techniques in this category is Locality Sensitive Hashing
[6]. Its hash function is based on projection onto random
vectors drawn from a specific distribution. Many variations
and extensions of LSH have been proposed for Lp norms
[8], learned metrics [12], min-hash [11], inner products [7],
and multi-probe [31]. Kulis and Grauman [32] generalized
LSH to Kernelized LSH that supports arbitrary kernel func-
tions defining similarity. Raginsky and Lazebnik [13] have
proposed a binary code embedding scheme based on ran-
dom Fourier features for shift-invariant kernels.

There have been a number of research efforts to develop
data-dependent hashing methods that reflect data distribu-
tions to improve the performance. Weiss et al. [10] have pro-
posed spectral hashing motivated by spectral graph
partitioning. Liu et al. [33] applied the graph Laplacian tech-
nique by interpreting a nearest neighbor structure as an
anchor graph. Strecha et al. [34] used linear discriminant
analysis (LDA) for binarization of image descriptors. Wang
et al. [17] proposed a semi-supervised hashing method to
improve image retrieval performance by exploiting label
information of the training set. Gong and Lazebnik [20]
introduced a procrustean approach that directly minimizes
quantization error by rotating zero-centered PCA-projected
data. He et al. [21] presented a hashing method that jointly
optimizes both search accuracy and search time by incorpo-
rating a similarity preserving term into the independent
component analysis (ICA). Joly and Buisson [22] con-
structed hash functions by using large margin classifiers
such as the support vector machine (SVM) with arbitrarily
sampled data points that are randomly separated into two
sets. In most cases, data-dependent methods outperform
data-independent ones with short binary codes.

The efficiency of each hash function in data-dependent
methods is, however, getting lower as they allocate longer
binary codes. The main cause of this trend is the growing
difficulty of defining independent and informative set of
projections as the number of hash functions increases. To

Fig. 1. The difference between our hypersphere-based binary code
embedding method and hyperplane-based one. The left and right figures
show partitioning examples of hypersphere-based and hyperplane-
based methods respectively, for 3 bit binary codes in the 2D space.
Each function hi determines the value of ith bit of binary codes. The
hypersphere-based binary code embedding scheme gives a higher num-
ber of tightly closed regions compared to hyperplane-based one.

HEO ET AL.: SPHERICAL HASHING: BINARY CODE EMBEDDINGWITH HYPERSPHERES 2305

avoid the issue there have been a few approaches that use a
single hash function to determine multiple bits and use less
hash functions [33], [35], [36], [37].

All the mentioned techniques compute binary codes by
partitioning data points into two different sets based on
hyperplanes. Departing from this conventional approach,
we adopt a novel approach of partitioning data points by
hyperspheres.

There is another category of compact data representation
techniques based on the quantization. J�egou et al. have pro-
posed product quantization (PQ) [38], which decomposes a
high-dimensional space into multiple lower-dimensional
spaces and constructs k-means clusters in each subspace
separately. They encode a high dimensional data as a con-
catenation of cluster indices over the subspaces. In [39], PQ
is further improved by the dimension reduction and balanc-
ing the variance of components.

3 SPHERICAL HASHING

Let us first define notations. Given a set ofN data points in a

D-dimensional space, we use X ¼ fx1; . . . ; xNg, xi 2 RD to
denote those data points. A binary code corresponding to

each data point xi is defined by bi ¼ f�1;þ1gl, where l is
the length of the code.1

3.1 Binary Code Embedding Function

Our binary code embedding function HðxÞ ¼ ðh1ðxÞ; . . . ;
hlðxÞÞmaps points in RD into the binary cube f�1;þ1gl. We
use a hypersphere to define a spherical hashing function.
Each spherical hashing function hiðxÞ is defined by a pivot

pi 2 RD and a distance threshold ti 2 Rþ as the following:

hiðxÞ ¼ �1 when dðpi; xÞ > ti
þ1 when dðpi; xÞ � ti;

�
(1)

where dð�; �Þ denotes the euclidean distance between two

points in RD; various distance metrics (e.g., Lp metrics) can
be used instead of the euclidean distance. The value of each
spherical hashing function hiðxÞ indicates whether the point
x is inside the hypersphere whose center is pi and radius is
ti. Fig. 1a shows an example of a space partitioning and
assigned binary codes with three hyperspheres in 2D space.

The key difference between using hyperplanes and
hyperspheres for computing binary codes is their abilities to
define a closed region in RD that can be indexed by a binary
code. To define a closed region in a d-dimensional space, at
least dþ 1 hyperplanes are needed, while only a single
hypersphere is sufficient to form such a closed region in an
arbitrarily high dimensional space. Furthermore, unlike
using multiple hyperplanes a higher number of closed
regions can be constructed by using multiple hyperspheres,
while the distances between points located in each region
are bounded. For example, the number of bounded regions

by having l hyperspheres goes up to l�1
d

� �þPd
i¼0

l
i

� �
[40]. In

addition, we can approximate a hyperplane with a large
hypersphere that has a large radius and a far-away center.

In nearest neighbor search the capability of forming closed
regions with tighter distance bounds is very important in
terms of effectively locating nearest neighbors from a query
point.Whenwe construct such tighter closed regions, a region
indexed by the binary code of the query point can contain
more promising candidates for the nearest neighbors.

We also empirically measure how tightly hyperspheres
and hyperplanes bound regions. For this purpose, we
measure the maximum distance between any two points
that have the same binary code and take the average of
the maximum distances among different binary codes. As
can be seen in Fig. 2a, hyperspheres bound regions of
binary codes more tightly compared to hyperplanes used
in LSH [8]. Across all the tested code lengths, hyper-
spheres show about two times tighter bounds over the
hyperplane-based approach.

3.2 Distance between Binary Codes

Most hyperplane-based binary code embedding methods
use the Hamming distance between two binary codes,
which measures the number of different bits, i.e. jbi � bjj,
where � is the XOR bit operation and j � j denotes the num-
ber of þ1 bit in a given binary code. This distance metric
measures the number of hyperplanes that two given points
reside in the opposing side of them. The Hamming distance,
however, does not well reflect the property related to defin-
ing closed regions with tighter bounds, which is the core
benefit of using our spherical hashing functions.

To fully utilize desirable properties of our spherical hash-
ing function, we propose the following distance metric,
spherical Hamming distance (SHD) (dSHDðbi; bjÞ), between two
binary codes bi and bj computed by spherical hashing:

dSHDðbi; bjÞ ¼ jbi � bjj
jbi ^ bjj ; (2)

where jbi ^ bjj denotes the number of common þ1 bits
between two binary codes which can be easily computed
with the AND bit operations.

Fig. 2. The left figure shows how the avg. of the max. distances among
points having the same binary code changes with different code lengths
based on hyperspheres or hyperplanes. We randomly sample 1,000 dif-
ferent binary codes to compute avg. of the max. distances. The right
figure shows how having more commonþ1 bits in our method effectively
forms tighter closed regions. For the right curve we randomly sample
one million pairs of binary codes. For each pair of binary codes ðbi; bjÞ
we compute the max. distance between pairs of points, ðxi; xjÞ, where
HðxiÞ ¼ bi and HðxjÞ ¼ bj. We report the avg. of the max. distances as
a function of the number of common þ1 bits, i.e. jbi ^ bjj. Both figures
are obtained with GIST-1M-960D dataset (Section 5.1).

1. ð�1;þ1Þ� codes are conceptual expression. Codes are stored and
processed as ð0; 1Þ� codes in practice.

2306 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

Having the common þ1 bits in two binary codes gives us
tighter bound information than having the common �1 bits
in our spherical hashing functions. This is mainly because
each common þ1 bit indicates that two data points are
inside its corresponding hypersphere, giving a stronger
cue in terms of distance bounds of those two data points;
see Fig. 3 for intuition. In order to see the relationship
between the distance bound and the number of the common
þ1 bits, we measure the average distance bounds of data
points as a function of the number of the common þ1 bits.
As can be seen in Fig. 2b, the average distance bound
decreases as the number of the common þ1 bits in two
binary codes increases. As a result, we put jbi ^ bjj in the
denominator of our spherical Hamming distance.

In implementation we add a small value (e.g. 0.1) to the
denominator to avoid the division-by-zero. Also, we can
construct a pre-computed SHD table T ðjbi ^ bjj; jbi � bjjÞ
whose size is ðlþ 1Þ2 and refer the table, when computing
SHD to avoid expensive division operations.

The common þ1 bits between two binary codes define a
closed region with a distance bound as mentioned above.
Within this closed region we can further differentiate the
distance between two binary codes based on the Hamming
distance jbi � bjj, the numerator of our distance function.
The numerator affects our distance function in the same
manner to the Hamming distance, since the distance
between two binary codes increases as we have more differ-
ent bits between two binary codes.

In hyperplane based methods, the common þ1 bits do
not give strong cue on estimating the real distance. As a
resulot, SHD does not provide any benefit for hyperplane
based methods as reported in Table 1.

An alternative definition of SHD can be constructed
based on the subtraction as following:

dSHD-SUBðbi; bjÞ ¼ jbi � bjj � jbi ^ bjj: (3)

SHD-SUB is intuitive and free from the division by zero.
However, the estimated distance is linearly decreasing with
respect to jbi ^ bjj and thus a little bit different from our
observation in Fig. 2b. We also provide experimental com-
parison between SHD and SHD-SUB in Table 2. Since SHD
provides slightly better performance compared to SHD-
SUB, we have used SHD in all the experiments in this paper
instead of SHD-SUB.

3.3 Independence between Hashing Functions

Achieving balanced partitioning of data points for each
hashing function and the independence between hashing
functions has been known to be important [10], [21], [22],
since independent hashing functions distribute points in a
balanced manner to different binary codes. It has been
known that achieving such properties lead to minimizing
the search time [21] and improving the accuracy even for
longer code lengths [22]. We also aim to achieve this inde-
pendence between our spherical hashing functions.

We define each hashing function hi to have the equal
probability for þ1 and �1 bits respectively as the following:

Pr½hiðxÞ ¼ þ1� ¼ 1

2
; x 2 X; 1 � i � l: (4)

Let us define a probabilistic event Vi to represent the case
of hiðxÞ ¼ þ1. Two events Vi and Vj are independent if and
only if Pr½Vi \ Vj� ¼ Pr½Vi� � Pr½Vj�. Once we achieve bal-
anced partitioning of data points for each bit (Eq. (4)), then
the independence between two bits can satisfy the following
equation given x 2 X and 1 � i < j � l:

Pr½hiðxÞ ¼ þ1; hjðxÞ ¼ þ1� ¼ Pr½hiðxÞ ¼ þ1�
� Pr½hjðxÞ ¼ þ1� ¼ 1

2
� 1
2
¼ 1

4
:

(5)

Fig. 3. Intuition of the spherical hamming distance. If both two points xi and xj are located in one of colored regions then their binary codes bi and bj
have at least 1, 2, or 3 common þ1 bits, respectively. As the number of common þ1 bits of bi and bj increases, the size of the region containing both
points xi and xj are expected to become smaller. As a result, the expected distance between xi and xj also gets smaller.

TABLE 1
Experimental Results of Hyperplane Based Methods

Combined with SHD

1,000-NNmAP with GIST-1M-960D

bits 32 64 128 256

RMMH-SHD 0.0279 0.0603 0.0976 0.1466
RMMH-HD 0.0266 0.0576 0.0993 0.1483
ITQ-SHD 0.0385 0.0578 0.0860 0.1060
ITQ-HD 0.0380 0.0620 0.0875 0.1101

TABLE 2
Comparisons between SHD and SHD-SUB

Described in Section 3.2

100-NN mAP with GIST-1M-384D

bits 32 64 128 256 512

SHD 0.0153 0.0426 0.981 0.1760 0.2572
SHD-SUB 0.0139 0.0398 0.0931 0.1656 0.2402

HEO ET AL.: SPHERICAL HASHING: BINARY CODE EMBEDDINGWITH HYPERSPHERES 2307

In general the pair-wise independence between hashing
functions does not guarantee the higher-order indepen-
dence among three or more hashing functions. We can also
formulate the independences among more than two hash-
ing functions and aim to satisfy them in addition to con-
straints shown in Eq. (4) and Eq. (5). However we found
that considering such higher-order independence hardly
improves the search quality.

3.4 Iterative Optimization

We now propose an iterative process for computing l differ-
ent hyperspheres, i.e. their pivots pi and distance thresholds
ti. During this iterative process we construct hyperspheres
to satisfy constraints shown in Eq. (4) and Eq. (5).

As the first phase of our iterative process, we sample a
subset S ¼ fs1; s2; . . . ; sng from data points X to approxi-
mate its distribution. We then initialize the pivots of l hyper-
spheres with randomly chosen l data points in the subset S;
we found that other alternatives of initializing the pivots
(e.g., using center points of K-means clustering performed
on the subset S) do not affect the results of our optimization
process. However, we observe that the optimization process
converges slightly quicker, when initial pivots are closely
located in the center of the training points. This is mainly
because by locating hyperspheres closely to each other, we
can initialize hyperspheres to have overlaps. For this acceler-
ation, we set the pivot position of a hypersphere to be the

median of randomly chosen multiple samples, i.e. pi ¼ 1
gPg

j¼1 qj, where qj are randomly selected points from S and g

is the number of such points. Too small g does not locate piv-
ots closely to the data center, and too large g locates pivots to
be in almost similar positions. In practice, g ¼ 10 provides a
reasonable acceleration rate, given its trade-off space.

As the second phase of our iterative process, we refine
pivots of hyperspheres and compute their distance thresh-
olds. To help these computations, we compute the following
two variables, oi and oi;j, given 1 � i; j � l:

oi ¼ jfsgjhiðsgÞ ¼ þ1; 1 � g � ngj;
oi;j ¼ jfsgjhiðsgÞ ¼ þ1; hjðsgÞ ¼ þ1; 1 � g � ngj; (6)

where j � j is the cardinality of the given set. oi measures how
many data points in the subset S have þ1 bit for ith hashing
function and will be used to satisfy balanced partitioning
for each bit (Eq. (4)). Also, oi;j measures the number of data
points in the subset S that are contained within both of two
hyperspheres corresponding to ith and jth hashing func-
tions. oi;j will be used to satisfy the independence between

ith and jth hashing functions during our iterative optimiza-
tion process.

Once we compute these two variables with data points in
the subset of S, we adopt two alternating steps to refine piv-
ots and distance thresholds for hyperspheres in order to
meet our optimization goal:

oi ¼ n

2
and oi;j ¼ n

4
: (7)

First, we adjust the pivot positions of two hyperspheres in a
way that oi;j becomes closer to or equal to n

4. Intuitively, for
each pair of two hyperspheres i and j, when oi;j is greater
than n

4, a repulsive force is applied to both pivots of those

two hyperspheres (i.e. pi and pj) to place them farther away.
Otherwise an attractive force is applied to locate them
closer. Second, once pivots are computed, we adjust the dis-
tance threshold ti of ith hypersphere such that oi becomes n

2

to meet balanced partitioning of the data points for the
hypersphere (Eq. (4)).

We perform our iterative process until the computed
hyperspheres do not make further improvements in terms
of satisfying constraints. Specifically, we consider the sam-
ple mean and standard deviation of oi;j as a measure of the
convergence of our iterative process. Ideal values for the
mean and standard deviation of oi;j are

n
4 and zero respec-

tively. However, in order to avoid over-fitting, we stop our
iterative process when the mean and standard deviation of
oi;j are within �m and �s percent, error tolerances, of the ideal
mean of oi;j respectively.

For these parameters, we conducted the following exper-
imental tests to find suitable values. We compute mean
Average Precisions (mAPs) of k-nearest neighbor search
with various experiment settings, and they are shown in
Fig. 5. According to the experimental results, we pick �m
and �s that provide the empirical maximum. Based on these
experimental tests, we have chosen (�m ¼ 10%, �s ¼ 15%) for
GIST-1M-384D, GIST-1M-960D, and 1,000 dimensional BoW
descriptors. We have, however, found that we need stricter
termination conditions of the optimization process for
higher dimensional data. The convergence rate of the objec-
tive functions is much faster in higher dimensional space,
since we have more degrees of freedom of pivot positions,
and this can cause an undesired under-fitting. We have
therefore chosen (�m ¼ 4%, �s ¼ 6%) for 8192 dimensional
VLAD descriptors (Section 5.1).

Force computation. A (repulsive or attractive) force from pj
to pi, fi j, is defined as the following (Fig. 4):

fi j ¼ 1

2

oi;j � n=4

n=4
ðpi � pjÞ: (8)

An accumulated force, fi, is then the average of all the
forces computed from all the other pivots as the following:

fi ¼ 1

l

Xl
j¼1

fi j: (9)

Once we apply the accumulated force fi to pi, then pi is
updated simply as pi þ fi. Our iterative optimization pro-
cess is shown in Algorithm 1. A simple example of the

Fig. 4. These two images show how a force between two pivots is com-
puted. In the left image a repulsive force is computed since their overlap
oi;j is larger than the desired amount. On the other hand, the attractive
force is computed in the right image because their overlap is smaller
than the desired amount.

2308 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

optimization process in the 2D space is presented in Fig. 7.

The value of
oi;j�n=4

n=4 is getting smaller during the iterative

optimization process, and it has a similar role to the learn-
ing rate.

Algorithm 1. Our Iterative Optimization Process

Input: sample points S ¼ fs1; . . . ; sng, error tolerances �m and
�s, and the number of hash functions l

Output: pivot positions p1; . . . ; pl and distance thresholds
t1; . . . ; tl for l hyperespheres

1: Initialize p1; . . . ; pl with randomly chosen l data points from
the set S
(It can be replaced with pi ¼ 1

g

Pg
j¼1 qj for quicker conver-

gence, where qj are randomly selected points from S)

2: Determine t1; . . . ; tl to satisfy oi ¼ n
2 (Section 3.5)

3: Compute oi;j for each pair of hashing functions
4: repeat
5: for i ¼ 1 to l� 1 do
6: for j ¼ iþ 1 to l do

7: fi j ¼ 1
2

oi;j�n=4
n=4 ðpi � pjÞ

8: fj i ¼ �fi j

9: end for
10: end for
11: for i ¼ 1 to l do
12: fi ¼ 1

l

Pl
j¼1 fi j

13: pi ¼ pi þ fi
14: end for
15: Determine t1; . . . ; tl to satisfy oi ¼ n

2 (Section 3.5)
16: Compute oi;j for each pair of hashing functions
17: until avgð j oi;j � n

4 j Þ � �m
n
4 and std-devðoi;jÞ � �s

n
4

The time complexity of our iterative process is O

ððl2 þ lDÞnÞ, which is comparable to those of the state-of-

the-art techniques (e.g., OðD2nÞ of spectral hashing [10]).
In practice, our iterative process is finished within 30 iter-
ations. Also, its overall computation time is less than 30
seconds even for 128 bits code lengths. The convergence
rate with respect to the number of iterations is shown in
Fig. 6.

One may wonder why we do not use k-means to com-
pute centers of hyperspheres. Using k-means clustering to
obtain centers of hyperspheres is very intuitive, since k-
means locates the centers in dense regions and assigning
the same hash value to those dense regions seems an appro-
priate direction. However, this alternative does not ensure
the independence between hashing functions. The cluster
centers obtained by k-means clustering in a high dimen-
sional space are highly likely to be close to the data mean. It
leads that hyperspheres are highly overlapped, and a high
portion of regions are not covered by any hypersphere. As a
result, the alternative optimization scheme does not meet
our independence criteria, since hashing functions corre-
sponding to highly overlapped hyperspheres will generated
correlated hash values.

3.5 Max-Margin Based Distance Thresholding

In each iteration step, we need to determine distance thresh-
olds t1; . . . ; tl to satisfy oi ¼ n

2 for the balanced partitioning.
For this we could simply set each ti as dðpi; sn=2Þ the distance
from pi to sn=2, when samples of S are sorted into s1; . . . ; sn
in terms of distance from pi. However, this simple approach
could lead to undesirable partitioning, especially when sn=2
is located in a dense region. To alleviate this concern, we set
the distance threshold ti to maximize the margin from
points to to the hypersphere without severely comprising
the balance partition criterion. For our max-margin based
threshold optimization, we first sort samples of S into

Fig. 5. mAP curves for k-nearest neighbor search with respect to various
parameters. A pair of values in x-axis are used for two parameters of �m
and �s, and y-axis represents their corresponding mAP values. Each leg-
end consists of four experiment settings ‘dataset / k / binary code length
/ distance metric type (HD: Hamming distance, SHD: spherical Hamming
distance)’.

Fig. 6. Convergence rates of our iterative optimization with three individ-
ual trials. The optimization processes are finished within 30 iterations
when we se we set �m as 0.1 and �s as 0.15. This graph also shows that
both objectives converge to 0 when we increase the number of itera-
tions. This result is obtained with the GIST-1M-384D dataset at the 64-
bit code length.

Fig. 7. Visualization of our optimization process with three hyperspheres
and 500 points in 2D space.

HEO ET AL.: SPHERICAL HASHING: BINARY CODE EMBEDDINGWITH HYPERSPHERES 2309

ss1; . . . ; s
s
n according to dðpi; ssjÞ the distance to the pivot.

Instead of simply using the median point ssn=2 with its index,

n=2, indicating a sample in the ordered list, we compute a
set J containing candidate indices near the median n

2 for the

optimization:

J ¼ jj 1

2
� b

� �
n � j � 1

2
þ b

� �
n; j 2 Zþ

� �
; (10)

where b is a parameter that controls the degree of tolerance
for breaking the balance partition criterion. We set b ¼ 0:05

in practice. We then compute an index ĵ of a sample among
the sorted list that maximizes the margin to the hypersphere
as the following:

ĵ ¼ argmax
j2J

dðti; ssjþ1Þ � dðti; ssjÞ: (11)

The distance threshold ti is finally determined such that
the hypersphere partitions ss

ĵ
and ss

ĵþ1 as the following:

ti ¼ 1

2
ðdðti; ssĵÞ þ dðti; ssĵþ1ÞÞ: (12)

Table 3 shows that the max-margin based distance
thresholding can lead to performance improvement of 3.8
percent mAPs in average.

4 GENERALIZED SPHERICAL HASHING

Many applications benefit from the use of domain-specific
kernels that define data similarities [41], [42]. In this section
we generalize our basic spherical hashing (Section 3) to a
kernelized one.

Let us first define notations. Given a set of N data ele-
ments in an input space X , we use X ¼ fx1; x2; . . . ; xNg 2 X
to denote those data elements. We use a non-linear map
F : X ! F from the input space X to a kernel spaceF . We
denote kðx; yÞ ¼ hFðxÞ;FðyÞi as a kernel function corre-
sponding to the map F, where h�; �i is the inner product
operator.

4.1 Kernelized Binary Code Embedding Function

The squared distance between two points FðxÞ and FðyÞ in
the kernel space F can be expressed with the kernel func-
tion as the following:

k FðxÞ �FðyÞ k2
¼ hFðxÞ;FðxÞi � 2hFðxÞ;FðyÞi þ hFðyÞ;FðyÞi
¼ kðx; xÞ � 2kðx; yÞ þ kðy; yÞ:

(13)

Our binary code construction function HðxÞ ¼ ðh1

ðxÞ; . . . ; hlðxÞÞ maps a data element in the input space into

the Hamming space f�1;þ1gl. Each kernelized spherical
hashing function hiðxÞ is defined with the pivot point pi in
the kernel space and distance threshold ti as the following:

hiðxÞ ¼ �1 when k FðxÞ � pi k2> t2i
þ1 when k FðxÞ � pi k2� t2i :

�
(14)

Intuitively, each kernelized spherical hashing function
hiðxÞ determines whether FðxÞ, the point xmapped into the
kernel space, is inside the hypersphere defined by its center
pi and radius ti.

To represent the center of a hypersphere in the kernel
space, we use a set of m landmark samples Z ¼ fz1; . . . ;
zmg 2 X, where m 	 n. We now express the center pi by a
linear combination of fFðz1Þ; . . . ;FðzmÞg as the following:

pi ¼
Xm
j¼1

wi
jFðzjÞ; (15)

where wi
j 2 R denotes a weight of FðzjÞ for pi.

The squared distance between a point FðxÞ and the pivot
pi used in our kernelized spherical hashing function is com-
puted as the following:

k FðxÞ � pi k2
¼ hFðxÞ;FðxÞi � 2h FðxÞ; pii þ hpi; pii ½by Eq: ð13Þ�

¼ hFðxÞ;FðxÞi � 2 FðxÞ;
Xm
j¼1

wi
jFðzjÞ

* +

þ
Xm
j¼1

wi
jFðzjÞ;

Xm
j¼1

wi
jFðzjÞ

* +
½by Eq: ð15Þ�

¼ hFðxÞ;FðxÞi � 2
Xm
j¼1

wi
jhFðxÞ;FðzjÞi

þ
Xm
j¼1

Xm
g¼1

wi
jw

i
ghFðzjÞ;FðzgÞi

¼ kðx; xÞ � 2
Xm
j¼1

wi
jkðx; zjÞ þ

Xm
j¼1

Xm
g¼1

wi
jw

i
gkðzj; zgÞ:

(16)

Note that the last term
Pm

j¼1
Pm

g¼1 w
i
jw

i
gkðzj; zgÞ can be

pre-computed for each hypersphere, since it is independent
of x [43].

4.2 Kernelized Iterative Optimization

We first sample a training set S ¼ fs1; . . . ; sng from X to
approximate its distribution, and also sample a subset

TABLE 3
The Effect of Our Max-Margin Based Distance Thresholding

(Section 3.5) Indicated byM

100-NNmAP with GIST-1M-384D

bits 32 64 128 256 512
SHD+M 0.0153 0.0426 0.0981 0.1760 0.2572
SHD 0.0147 0.0409 0.0938 0.1678 0.2434
HD+M 0.0113 0.0310 0.0665 0.1152 0.1648
HD 0.0107 0.0290 0.0653 0.1113 0.1583

1,000-NNmAP with GIST-1M-960D

bits 32 64 128 256 512
SHD+M 0.0460 0.0982 0.1782 0.2738 0.3560
SHD 0.0439 0.0945 0.1756 0.2641 0.3398
HD+M 0.0322 0.0660 0.1132 0.1669 0.2103
HD 0.0310 0.0636 0.1126 0.1644 0.2058

The max-margin based distance thresholding improves mAPs 3.8 percent on
average over the median based distance thresholding across various settings of
experiments.

2310 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

Z ¼ fz1; . . . ; zmg from S as landmarks that are used for
defining center positions of hyperspheres, as described in
Eq. (15).

As an initial step of our optimization process, we sample a
training set T ¼ ft1; . . . ; tng from the dataset X to approxi-
mate its distribution, and also sample a subset Z ¼ fz1; :::zmg
from T as landmarks that are used for defining center posi-
tions of hyperspheres, as described in Eq. (15).

Initial center positions pi of hyperspheres are chosen ran-
domly. Specifically we initialize each element of the weight

vectors wi that define centers pi of hyperspheres with ran-
domly drawn values from the uniform distribution Uð�1; 1Þ
and normalize the weight vectors according to L2 norm.

To express the constraints specified in Eq. (4) and Eq. (5)
with the training set X, we recall the following two varia-
bles oi and oi;j defined in Eq. (7).

We perform the procedure described in Section 3.4 and
Algorithm 1 with the following kernelized force model:

fi j ¼ 1

2

oi;j � n=4

n=4
ðpi � pjÞ

¼ 1

2

oi;j � n=4

n=4

Xm
g¼1

wi
gFðzgÞ �

Xm
g¼1

wj
gFðzgÞ

 !

¼ 1

2

oi;j � n=4

n=4

Xm
g¼1
ðwi

g � wj
gÞFðzgÞ:

(17)

5 EVALUATION

In this section we evaluate our method and compare it with
the state-of-the-art methods [8], [10], [13], [20], [21], [22]. All
experiments are conducted on a single Xeon X5690 machine
with 144 GB memory where the complete data set can be
stored.

5.1 Datasets

We perform various experiments with the following four
datasets:

� GIST-1M-384D. A set of 384 dimensional, one million
GIST descriptors, which consist of a subset of Tiny
Images [9].

� GIST-1M-960D. A set of 960 dimensional, one million
GIST descriptors that are also used in [38].

� GIST-75M-384D. A set of 384 dimensional, 75 million
GIST descriptors, which consist of a subset of 80 mil-
lion Tiny Images [9].

� ILSVRC. One million of 1,000 dimensional BoW
descriptors which is a subset of the ImageNet data-
base [44].

� VLAD-1M-8192D. One million of 8,192 dimensional
VLAD [39] descriptors (128 dimensional SIFT fea-
tures and 64 codebook vectors).

5.2 Evaluation on Euclidean Space

We first present results with the euclidean space, followed
by ones with the kernel space.

5.2.1 Protocol

We tested with randomly chosen 1,000 queries for datasets
GIST-1M-384D, GIST-1M-960D, and VLAD-1M-8192D,

and 500 queries for GIST-75M-384D that do not have any
overlap with data points. The performance is measured by
mean Average Precision. The ground truth is defined by k
nearest neighbors that are computed by the exhaustive, lin-
ear scan based on the euclidean distance. When calculating
precisions, we consider all the items having lower or the
equal Hamming distance (or spherical Hamming distance)
from given queries.

5.2.2 Compared Methods

� LSH and LSH-ZC. Locality Sensitive Hashing [8]
with/without Zero Centered data points.

� LSBC. Locality Sensitive Binary Codes [13]. The
bandwidth parameter used in experiment is the
inverse of the mean distance between the points in
the dataset, as suggested in [45].

� SpecH. Spectral Hashing [10].
� PCA-ITQ. Iterative Quantization [20].
� RMMH-L2. random maximum margin hashing [22]

with the triangular L2 kernel. We experiment
RMMH with the triangular L2 kernel since the
authors reported the best performance on k nearest
neighbor search with this kernel. We use 32 for the
parameter M that is the number of samples for each
hash function, as suggested by [22].

� GSPICA-RBF. Generalized Similarity Preserving
Independent Component Analysis (GSPICA) [21]
with the RBF kernel. We experiment GSPICA with
the RBF kernel, since the authors reported the best
performance on k nearest neighbor search with this
kernel. The parameter used in the RBF kernel is deter-
mined by the mean distance of kth nearest neighbors
within training samples as suggested by [22]. The
parameters g and P are 1 and the dimensionality of
the dataset respectively, as suggested in [21].

� Ours-HD and Ours-SHD. We have tested two differ-
ent versions of our method. Ours-HD represents our
method with the common Hamming distance, while
Ours-SHD uses our spherical Hamming distance
(Section 3.2). Max-margin based distance threshold-
ing scheme (Section 3.5) is also applied to both ver-
sions of our method.

For all the data-dependent hashing methods, we randomly
choose 100 K data points from the original dataset as a train-
ing set. We also use the same training set to estimate param-
eters of each method. We report the average mAP and recall
values by repeating all the experiments five times, in order
to gain statistically meaningful values; for GIST-75M-384D
benchmark, we repeat experiments only three times because
of its long experimentation time. Note that we do not report
results of two PCA-based methods SpecH and PCA-ITQ
for 512 hash bits at 384 dimensional datasets, since they do
not support bit lengths larger than the dimension of the
data space.

5.2.3 Results

Fig. 8 shows the mAP of k nearest neighbor search of all the
tested methods when k ¼ 100. Our method with the spheri-
cal Hamming distance, Ours-SHD, shows better results

HEO ET AL.: SPHERICAL HASHING: BINARY CODE EMBEDDINGWITH HYPERSPHERES 2311

over all the tested methods across all the tested bit lengths
ranging from 32 to 512 bits. Furthermore, our method shows
increasingly higher benefits over all the other tested meth-
ods as we allocate more bits. This increasing improvement
is mainly because using multiple hyperspheres can effec-
tively create closed regions with tighter distance bounds
compared to hyperplanes.

Given 0.1 mAP in Fig. 8, our method needs to use 128 bits
to encode each image. On the other hand, other tested meth-
ods should use more than 256 bits. As a result, our method
provides over two times more compact data representations
than other methods. We would like to point out that low
mAP values of our method are still very meaningful, as dis-
cussed in [22]. Once we identify nearest neighbor images
based on binary codes, we can employ additional re-rank-
ing processes on those images. As pointed out in [22], 0.1
mAP given k ¼ 100 nearest neighbors, for example, indi-
cates that 1,000 images on average need to be re-ranked.

Performances of our methods with two different binary
code distance functions are also shown in Fig. 8. Our method
with the Hamming distance Ours-HD shows better results
than most of other methods across different bits, especially
higher bits. Furthermore, the spherical Hamming distance
Ours-SHD shows significantly improved results even than
Ours-HD. The spherical Hamming distance function also
shows increasingly higher improvement over the Hamming
distance, as we addmore bits for encoding images.

Our technique can be easily extended to use multiple
hash tables; for example, we can construct a new hash table
by recomputing S, the subset of the original dataset. Fig. 10
shows recall curves of different methods with varying num-
bers of hash tables, when we allocate 64 bits for encoding
each image. Our method (with our spherical Hamming dis-
tance) improves the accuracy as we use more tables. More
importantly, our method only with a single table shows sig-
nificantly improved results over all the other tested meth-
ods that use four hash tables.

We have also performed all the tests against the 960
dimensional, one million GIST dataset GIST-1M-960D with
k ¼ 1;000 (Fig. 9). We have found that our method shows
similar trends even with this dataset, compared to what we
have achieved inGIST-1M-384D.

We have performed each test multiple times, since our
method can be impacted by different initializations.

However, our method shows robust results against different
initializations. For example, the standard deviation of mAPs
of five experiments with GIST-1M-960D when the code
length is 64 bits is only 0.0017, while the average mAP is
0.0982. The standard deviation with 256 bits is 0.0035, while
the average is 0.2738.

In order to evaluate our method with very high dimen-
sional data, we have performed the tests with 8,192 dimen-
sional, one million VLAD dataset VLAD-1M-8192D with
k ¼ 1;000 (Fig. 12). Ours-SHD consistently provides the
best performance among the tested techniques.

We have also performed all the tests against the 384
dimensional, 75 million GIST dataset GIST-75M-384D
with k ¼ 10;000 (Fig. 11). We have found that our method
shows significantly higher results than all the other tested
methods across all the tested bit lengths even with this
large-scale dataset.

Since many applications use L2-normalized data, we
have performed an experiment with L2-normalized
GIST-1M-960D with k ¼ 1;000 (Fig. 13). Ours-HD pro-
vides similar accuracy to RMMH, but lower accuracy with
short code lengths and higher accuracy with long code
lengths compared to PCA-ITQ. It implies that minimizing
quantization error is important in the short code lengths,
but independence among hash functions is more impor-
tant in the long code lengths. Nevertheless, Ours-SHD
outperformed the tested state-of-the-art methods in most

Fig. 8. Comparison between our method and the-state-of-the-art meth-
ods with the GIST-1M-384D dataset when k ¼ 100.

Fig. 9. Comparison between our method and the-state-of-the-art meth-
ods with the GIST-1M-960D dataset when k ¼ 1;000.

Fig. 10. Recall curves of different methods when k ¼ 100 for the GIST-
1M-384D dataset. Each hash table is constructed by 64 bits code
lengths. The recall (y-axis) represents search accuracy and the number
of retrieved samples (x-axis) represents search time.

2312 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

configurations. Note that hyperplane based hashing tech-
niques do not receive any benefit by using SHD even in
the normalized data. This result confirms that we can still
exploit the benefit of using hyperspheres over hyperplanes
even with the L2-normalized dataset.

In order to see how each component of our method affects
the accuracy, we measure mAP by disabling the spherical
Hamming distance, the independence constraint, and the
balanced partitioning criterion in our method (Fig. 14). In the
case of using 64 bits, mAP of our method goes down 28, 83,
and 90 percent by disabling the spherical Hamming distance,
the independence constraint, and the balanced partitioning/
independence constraints respectively. From these, we can
see all proposed ideas are critical for the effectiveness of the
proposed method, while the criteria of hash code indepen-
dence and balance partition aremost important.

Finally, we also measure how efficiently our hyper-
sphere-based hashing method generates binary codes given
a query image. Our method takes 0.08 ms for generating a
256 bit-long binary code. This cost is same to that of the
LSH.

5.3 Evaluation on Kernel Space

5.3.1 Datasets

We normalizedGIST-1M-384D andGIST-1M-960D datasets
according to L2-norm to make exact k-nearest neighbors with
the linear kernel to be equivalent to the k-nearest neighbors
with the RBF kernel as did in [22]. As a result, we can compare
results acquired by using two different kernels in the same
ground. We also normalized ILSVRC dataset according to
L1-norm as suggested in [46]. For all the experiments, we

tested with randomly chosen one thousand queries that do
not overlap with data elements. We report the average result
by repeating all the experiments three times.

5.3.2 Compared Methods

� RMMH. Random Maximum Margin Hashing [22].
We used 32 for the parameter M that is the number
of samples for each hash function as suggested by
[22].

� GSPICA. Generalized Similarity Preserving Indepen-
dent Component Analysis [21]. We set the parameter
P as the dimensionality of the dataset and g to 1 as
suggested in the paper.

For our methodOurs, we set the number of landmarksm as
the dimensionality of input data.

5.3.3 Used Kernels

We have tested our method with the following four popular
kernels:

� Linear. Linear kernel, kðx; yÞ ¼ hx; yi.
� RBF. RBF kernel, kðx; yÞ ¼ expð�g k x� y k2Þ. We set

the bandwidth parameter g as an inverse of the
mean distance between randomly sampled points as
suggested by [45].

� HI. Histogram Intersection kernel, kðx; yÞ ¼PD
i¼1

minðxi; yiÞ, whereD is the dimensionality of x and y.
� CS. Chi Square kernel, kðx; yÞ ¼ 2

PD
i¼1

xiyi
xiþyi.

Fig. 12. Comparison between our method and the-state-of-the-art meth-
ods with the VLAD-1M-8192D dataset when k ¼ 1;000.

Fig. 11. Comparison between our method and the-state-of-the-art meth-
ods with the GIST-75M-384D dataset when k ¼ 10;000.

Fig. 13. Comparison between our method and the-state-of-the-art meth-
ods with the L2-normalized GIST-1M-960D dataset when k ¼ 1;000.

Fig. 14. This figure shows how each component of our method affects
the accuracy. The mAP curves are obtained with GIST-1M-384D dataset
when k ¼ 100.

HEO ET AL.: SPHERICAL HASHING: BINARY CODE EMBEDDINGWITH HYPERSPHERES 2313

5.3.4 Results

We evaluated our method with k-nearest neighbor search.
The ground truth is defined by top k data elements based
on each tested kernel function. The performance is mea-
sured by mAP. When calculating precisions, we consider all
the items having lower or equal Hamming distance from
given queries.

Fig. 15 shows the mAP of k-nearest neighbor search of all
the tested methods when k ¼ 1;000; other cases (e.g.
k ¼ 50; 100; 500; 2;000) show similar trends. We evaluated
the performance of our method with Linear and RBF in
GIST384D and GIST960D datasets (Figs. 15a and 15b); we
report results of compared methods only with RBF, since
RBF gives better results than Linear.

We also experimented with CS and HI in ILSVRC data-
set (Fig. 15c). Since RMMH performed better than GSPICA
in this experiment, we report results of RMMH in this
graph. We have found that our method consistently shows
higher performance than the state-of-the-art methods in all
the tested benchmarks with various kernels.

5.4 Evaluation on Image Retrieval

We evaluated image retrieval performance of our method
by using the ILSVRC, which has 1,000 different classes. We
followed the evaluation protocol of [22]. For each query we
run a k-nearest neighbor classifier on the top 1,000 results
retrieved by each method. As suggested in ILSVRC, we

evaluated tested methods with the five best retrieved classes
(i.e. recognition rate@5). Specifically we first perform 1,000-
nearest neighbor search for a given query with binary codes.
We then evaluate the correctness of the five most frequent
classes within the 1,000-nearest neighbor images contain the
ground truth class.

Fig. 16 shows the recognition rates of our method com-
pared to RMMH with CS and HI kernels. Our method con-
sistently gives better retrieval performance with both
kernels over the other tested methods.

5.5 Discussion

SHD (Section 3.2) drastically improves mAPs in the euclid-
ean space (Section 5.2). However, we observed that SHD
does not provide significant accuracy improvements with
the generalized spherical hashing. Table 4 shows how much
the SHD improves mAPs of the generalized spherical hash-
ing over HD with two popular kernels, and SHD provides
3.5 percent benefits on the mAPs over the Hamming dis-
tance. The reason why SHD shows a relatively small benefit
for generalized spherical hashing is that SHD does not
directly reflect inner product, since it is designed to better
reflect the euclidean distance. Nonetheless, generalized
spherical hashing with both of HD and SHD outperforms
state-of-the-art kernelized binary code embedding methods.

6 CONCLUSION

In this work we have proposed a novel hypersphere-based
binary embedding technique, spherical hashing, for provid-
ing a compact data representation and highly scalable

Fig. 15. k-nearest neighbor search performances on three different datasets when k ¼ 1;000.

Fig. 16. Image retrieval performances over the ILSVRC dataset. Exact-
CS and Exact-HI are the upper bound of recognition rates obtained by
the exact 1,000-nearest neighbor classifier based on the corresponding
kernel functions.

TABLE 4
The Effect of SHD with Generalized Spherical Hashing

1,000-NNmAP with GIST-1M-384D

bits 32 64 128 256 512
RBF-SHD 0.0358 0.0789 0.1336 0.1992 0.2587
RBF-HD 0.0330 0.0725 0.1318 0.1997 0.2575
Linear-SHD 0.0345 0.0671 0.1385 0.1974 0.2424
Linear-HD 0.0325 0.0736 0.1295 0.1958 0.2450

1,000-NNmAP with GIST-1M-960D

bits 32 64 128 256 512
RBF-SHD 0.0316 0.0672 0.1198 0.1757 0.2451
RBF-HD 0.0308 0.0680 0.1220 0.1811 0.2331
Linear-SHD 0.0335 0.0733 0.1270 0.1932 0.2517
Linear-HD 0.0332 0.0682 0.1194 0.1824 0.2321

2314 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

nearest neighbor search with high accuracy. We have found
that spherical hashing significantly outperforms the tested six
state-of-the-art binary code embedding techniques based on
hyperplanes with one and 75million high-dimensional image
descriptors. We have also proposed generalized spherical
hashing to support various similarity metrics defined by arbi-
trary kernel functions, and we have demonstrated on three
datasets with four popular kernels that generalized spherical
hashing improves the state-of-the-art techniques.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers
for constructive comments. This work was supported
in part by IT R&D program of MSIP/IITP (10044970),
NRF-2013R1A1A2058052, DAPA/ADD (UD140022PD), and
MSIP/NRF (2013-067321). This manuscript is extended
from the conference paper version [1]. Sung-Eui Yoon is the
corresponding author.

REFERENCES

[1] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012,
pp. 2957–2964.

[2] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, pp. 509–517, Sep. 1975.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM Trans.
Math. Softw., vol. 3, no. 3, pp. 209–226, 1977.

[4] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” SIGMOD Rec., vol. 14, no. 2, pp. 47–57, Jun. 1984.

[5] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in Proc. Int. Conf. Com-
put. Vis. Theory Appl., 2009, pp. 331–340.

[6] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Toward removing the curse of dimensionality,” in Proc. 30th
Annu. ACM Symp. Theory Comput., 1998, pp. 604–613.

[7] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,
pp. 380–388.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,”
in Proc. 20th Annu. Symp. Comput. Geometry, 2004, pp. 253–262.

[9] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large
image databases for recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2008, pp. 1–8.

[10] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
Adv. Neural Inf. Process. Syst., 2008, pp. 1753–1760.

[11] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image
detection: Min-hash and tf-idf weighting,” in Proc. Brit. Mach. Vis.
Conf., 2008, pp. 50.1–50.10.

[12] P. Jain, B. Kulis, and K. Grauman, “Fast image search for learned
metrics,” inProc. IEEEConf. Comput. Vis. Pattern Recog., 2008, pp. 1–8.

[13] M. Raginsky and S. Lazebnik, “Locality sensitive binary codes from
shift-invariant kernels,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1509–1517.

[14] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J.
Approximate Reasoning, vol. 50, pp. 969–978, 2009.

[15] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learn-
ing for hashing with compact codes,” in Proc. 27th Int. Conf. Mach.
Learning, 2010, pp. 1127–1134.

[16] L. Pauleve, H. J�egou, and L. Amsaleg, “Locality sensitive hashing:
A comparison of hash function types and querying mechanisms,”
Pattern Recog. Lett., vol. 31, pp. 1348–1358, 2010.

[17] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2010, pp. 3424–3431.

[18] R.-S. Lin, D. Ross, and J. Yangik, “SPEC hashing: Similarity pre-
serving algorithm for entropy-based coding,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2010, pp. 848–854.

[19] M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact
binary codes,” in Proc. Int. Conf. Mach. Learning, 2011, pp. 353–360.

[20] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean
approach to learning binary codes,” in Proc. CVPR, 2011.

[21] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer, “Compact
hashing with joint optimization of search accuracy and time,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2011, pp. 817–824.

[22] A. Joly and O. Buisson, “Random maximum margin hashing,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2011, pp. 873–880.

[23] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2012, pp. 2074–2081.

[24] T. cker Chiueh, “Content-based image indexing,” in Proc. 20th
VLDB Conf., 1994, pp. 582–593.

[25] C. B€ohm, S. Berchtold, and D. A. Keim, “Searching in high-
dimensional spaces: Index structures for improving the perfor-
mance of multimedia databases,” ACM Comput. Surv., vol. 33,
no. 3, pp. 322–373, Sep. 2001.

[26] E. Ch�avez, G. Navarro, R. Baeza-Yates, and J. L. Marroqu�ın,
“Searching in metric spaces,” ACM Comput. Surv., vol. 33, no. 3,
pp. 273–321, Sep. 2001.

[27] C. Silpa-Anan, R. Hartley, S. Machines, and A. Canberra,
“Optimised kd-trees for fast image descriptor matching,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2008, pp. 1–8.

[28] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua, “Optimizing kd-
trees for scalable visual descriptor indexing,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2010, pp. 3392–3399.

[29] K. Kim, M. K. Hasan, J.-P. Heo, Y.-W. Tai, and S.-E. Yoon,
“Probabilistic cost model for nearest neighbor search in image
retrieval,” Comput. Vision Image Understanding, vol. 116, pp. 991–
998, 2012.

[30] D. Nist�er and H. Stew�enius, “Scalable recognition with a vocabu-
lary tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2006,
pp. 2161–2168.

[31] A. Joly and O. Buisson, “A posteriori multi-probe locality sensi-
tive hashing,” in Proc. 16th ACM Int. Conf. Multimedia, 2008,
pp. 209–218.

[32] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing
for scalable image search,” in Proc. IEEE 12th Int. Conf. Comput.
Vis., 2009, pp. 2130–2137.

[33] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with
graphs,” in Proc. Int. Conf. Mach. Learning, 2011, pp. 1–8.

[34] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua,
“LDAHash: Improved matching with smaller descriptors,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1, pp. 66–78, Jan. 2010.

[35] W. Kong and W.-J. Li, “Double-bit quantization for hashing,”
in Proc. 26th AAAI Conf. Artif. Intell., 2012, pp. 634–640.

[36] Y. Lee, J.-P. Heo, and S.-E. Yoon, “Quadra-embedding: Binary
code embedding with low quantization error,” in Proc. Asian Conf.
Comput. Vis., 2012, pp. 214–227.

[37] W. Kong, W.-J. Li, and M. Guo, “Manhattan hashing for large-
scale image retrieval,” in Proc. 35th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2012.

[38] H. J�egou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 117–128, Jan. 2011.

[39] H. J�egou, M. Douze, C. Schmid, and P. P�erez, “Aggregating local
descriptors into a compact image representation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2010, pp. 3304–3311.

[40] A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems
with Elementary Solutions. New York, NY, USA: Dover, 1987.

[41] K. Grauman and T. Darrell, “The pyramid match kernel: Discrimi-
native classification with sets of image features,” in Proc. IEEE Int.
Conf. Comput. Vis., 2005, pp. 1458–1465.

[42] J. Zhang, M. Marszalek, S. Lazebnic, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A com-
prehensive study,” Int. J. Comput. Vis., vol. 73, pp. 213–228, 2007.

[43] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: Spectral
clustering and normalized cuts,” in Proc. 10th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2004, pp. 551–556.

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2009, pp. 248–255.

[45] A. Gordo and F. Perronnin, “Asymmetric distances for binary
embeddings,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2011,
pp. 729–736.

[46] F. Perronnin, J. S�anchez, and Y. Liu, “Large-scale image categori-
zation with explicit data embedding,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2010, pp. 2297–2304.

HEO ET AL.: SPHERICAL HASHING: BINARY CODE EMBEDDINGWITH HYPERSPHERES 2315

Jae-Pil Heo received the BS and MS degrees in
computer science from Korea Advanced Institute
of Science and Technology (KAIST), South
Korea, in 2008 and 2010, respectively. He is cur-
rently working toward the PhD degree in KAIST.
His research interests include large-scale image
retrieval, scalable nearest neighbor search, com-
pact data representation for high-dimensional
data. He is a member of the IEEE.

Youngwoon Lee received the BS and MS
degrees in computer science from Korea
Advanced Institute of Science and Technology
(KAIST) in 2011 and 2013, respectively. He is a
researcher in Electronics and Telecommunica-
tions Research Institute (ETRI), South Korea. His
research interests include computer vision,
machine learning, and their applications to infor-
mation retrieval such as image search and large-
scale retrieval. He is a member of the IEEE.

Junfeng He received the BS and MS degrees
from Tsinghua University. He received the PhD
degree from Columbia University. He is a
research scientist at Facebook. His research
interests include image/video indexing and
search, search engine, machine learning, data
mining, mobile computing and applications, com-
puter vision and photography, and social net-
works. He is a member of the IEEE.

Shih-Fu Chang is the Richard Dicker professor
and director of the Digital Video and Multimedia
Lab at Columbia University. He is an active
researcher leading development of innovative
technologies for multimedia information extrac-
tion and retrieval, while contributing to fundamen-
tal advances of the fields of machine learning,
computer vision, and signal processing. Recog-
nized by many paper awards and citation
impacts, his scholarly work set trends in several
important areas, such as content-based visual

search, compressed-domain video manipulation, image authentication,
large-scale high-dimensional data indexing, and semantic video search.
He co-led the ADVENT university-industry research consortium with par-
ticipation of more than 25 industry sponsors. He has received IEEE
Signal Processing Society Technical Achievement Award, ACM SIG
Multimedia Technical Achievement Award, IEEE Kiyo Tomiyasu Award,
Service Recognition Awards from IEEE and ACM, and the Great
Teacher Award from the Society of Columbia Graduates. He served as
the editor-in-chief of the IEEE Signal Processing Magazine (2006-2008),
the chairman of Columbia Electrical Engineering Department (2007-
2010), a senior vice dean of Columbia Engineering School (2012-date),
and an advisor for several companies and research institutes. His
research has been broadly supported by government agencies as well
as many industry sponsors. He is a fellow of the IEEE and the American
Association for the Advancement of Science.

Sung-Eui Yoon received the BS and MS
degrees in computer science from Seoul National
University in 1999 and 2001, respectively. He
received the PhD degree in computer science
from the University of North Carolina at Chapel
Hill in 2005. He is currently an associate profes-
sor at Korea Advanced Institute of Science and
Technology (KAIST). He was a postdoctoral
scholar at Lawrence Livermore National Labora-
tory. His main research interest is on designing
scalable graphics and geometric algorithms. He

wrote a monograph on real-time massive model rendering with other
three co-authors. He also gave numerous tutorials on proximity queries
and large-scale rendering at various conferences including ACM SIG-
GRAPH and IEEE Visualization. Some of his work received a distin-
guished paper award at Pacific Graphics, invitations to IEEE TVCG, an
ACM student research competition award, and other domestic research-
related awards. He is a senior member of the IEEE, and a member of
ACM and Eurographics.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2316 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 11, NOVEMBER 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

