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ABSTRACT

Scalable Machine Learning for Visual Data

Xinnan (Felix) Yu

Recent years have seen a rapid growth of visual data produced by social media, large-scale

surveillance cameras, biometrics sensors, and mass media content providers. The unprece-

dented availability of visual data calls for machine learning methods that are effective and

efficient for such large-scale settings.

The input of any machine learning algorithm consists of data and supervision. In a

large-scale setting, on the one hand, the data often comes with a large number of samples,

each with high dimensionality. On the other hand, the unconstrained visual data requires

a large amount of supervision to make machine learning methods effective. However, the

supervised information is often limited and expensive to acquire. The above hinder the

applicability of machine learning methods for large-scale visual data. In the thesis, we

propose innovative approaches to scale up machine learning to address challenges arising

from both the scale of the data and the limitation of the supervision. The methods

are developed with a special focus on visual data, yet they are also widely applicable to

other domains that require scalable machine learning methods.

Learning with high-dimensionality. The “large-scale” of visual data comes not

only from the number of samples but also from the dimensionality of the features. While a

considerable amount of effort has been spent on making machine learning scalable for more

samples, few approaches are addressing learning with high-dimensional data. In Part I, we

propose an innovative solution for learning with very high-dimensional data. Specifically,

we use a special structure, the circulant structure, to speed up linear projection, the most

widely used operation in machine learning. The special structure dramatically improves

the space complexity from quadratic to linear, and the computational complexity from



quadratic to linearithmic in terms of the feature dimension. The proposed approach is suc-

cessfully applied in various frameworks of large-scale visual data analysis, including binary

embedding, deep neural networks, and kernel approximation. The significantly improved

efficiency is achieved with minimal loss of the performance. For all the applications, we fur-

ther propose to optimize the projection parameters with training data to further improve

the performance.

The scalability of learning algorithms is often fundamentally limited by the amount of

supervision available. The massive visual data comes unstructured, with diverse distribution

and high-dimensionality — it is required to have a large amount of supervised information

for the learning methods to work. Unfortunately, it is difficult, and sometimes even impos-

sible to collect a sufficient amount of high-quality supervision, such as instance-by-instance

labels, or frame-by-frame annotations of the videos.

Learning from label proportions. To address the challenge, we need to design algo-

rithms utilizing new types of supervision, often presented in weak forms, such as relatedness

between classes, and label statistics over the groups. In Part II, we study a learning set-

ting called Learning from Label Proportions (LLP), where the training data is provided

in groups, and only the proportion of each class in each group is known. The task is to

learn a model to predict the class labels of the individuals. Besides computer vision, this

learning setting has broad applications in social science, marketing, and healthcare, where

individual-level labels cannot be obtained due to privacy concerns. We provide theoreti-

cal analysis under an intuitive framework called Empirical Proportion Risk Minimization

(EPRM), which learns an instance level classifier to match the given label proportions on

the training data. The analysis answers the fundamental question, when and why LLP is

possible. Under EPRM, we propose the proportion-SVM (∝SVM) algorithm, which jointly

optimizes the latent instance labels and the classification model in a large-margin framework.

The approach avoids making restrictive assumptions on the data, leading to the state-of-

the-art results. We have successfully applied the developed tools to challenging problems

in computer vision including instance-based event recognition, and attribute modeling.

Scaling up mid-level visual attributes. Besides learning with weak supervision,



the limitation on the supervision can also be alleviated by leveraging the knowledge from

different, yet related tasks. Specifically, “visual attributes” have been extensively studied in

computer vision. The idea is that the attributes, which can be understood as models trained

to recognize visual properties can be leveraged in recognizing novel categories (being able

to recognize green and orange is helpful for recognizing apple). In a large-scale setting, the

unconstrained visual data requires a high-dimensional attribute space that is sufficiently

expressive for the visual world. Ironically, though designed to improve the scalability of

visual recognition, conventional attribute modeling requires expensive human efforts for

labeling the detailed attributes and is inadequate for designing and learning a large set

of attributes. To address such challenges, in Part III, we propose methods that can be

used to automatically design a large set of attribute models, without user labeling burdens.

We propose weak attribute, which combines various types of existing recognition models

to form an expressive space for visual recognition and retrieval. In addition, we develop

category-level attribute to characterize distinct properties separating multiple categories.

The attributes are optimized to be discriminative to the visual recognition task over known

categories, providing both better efficiency and higher recognition rate over novel categories

with a limited number of training samples.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Motivation

Recent years have seen a rapid growth of all types of visual data produced by social me-

dia, large-scale surveillance cameras, biometrics sensors, and mass media content providers.

The unprecedented availability of visual data calls for machine learning methods that are

effective and efficient for such large-scale settings. The input of any machine learning al-

gorithm consists of data and supervision. We, therefore, motivate the thesis by identifying

the challenges in both the data and the supervision.

1.1.1 Large-Scale of Data

It is obvious that the “large-scale” of visual data comes from the number of samples. As

of early 2015, 300 hours of videos are uploaded to Youtube every minute1, billions of photos

are uploaded to major social media websites everyday2. Even the standard computer vision

dataset for benchmarking vision recognition algorithms grew from tens of images to millions

of images. Moreover, this is just the beginning – we are experiencing an exponential growth

of the visual data.

The “large-scale” of visual data also comes from the dimensionality of the features. The

1https://www.youtube.com/yt/press/statistics.html

2http://www.kpcb.com/internet-trends

https://www.youtube.com/yt/press/statistics.html
http://www.kpcb.com/internet-trends
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widely used image representation such as the bag-of-words models and Fisher vectors often

consist of tens of thousands of dimensions [183]. The raw image now consists of millions

or tens of millions of pixels. In fact, the resolution of image sensors follows the Moore’s

law: the number of pixels is growing at an exponential rate. While a considerable amount

of effort has been devoted to making the machine learning methods scalable to the number

of samples [97, 58, 187, 110], few works are addressing making learning methods more

applicable for very high-dimensional data. Therefore, with the scalability in the number of

samples in mind, one focus of the thesis is to study the scalability in terms of the feature

dimension.

1.1.2 Limited Supervision

The scalability of learning algorithms is often fundamentally limited by the amount of su-

pervision available. The massive visual data comes unstructured, with diverse distributions

and high-dimensionality — it is required to have a large amount of supervised informa-

tion to train reliable machine learning models. Unfortunately, it is difficult, and sometimes

even impossible to collect sufficient amount of high-quality supervised information, such as

instance labels, and detailed annotations on the videos.

One observation is that the massive visual data often comes with some weak forms

of supervision, such as the label statistics on the groups. The natural question to ask is

whether one can design learning methods to utilize such weak supervision. For example, in

recognition of video events, only the event labels on the video level (a group of frames) is

given – can we learn a model to pinpoint the frames in which the event actually happens?

In modeling attributes, only some semantic similarities between a set of known categories

and a set of new attributes are provided – can we leverage such information to model the

attributes? Conventional learning methods are not designed to incorporate such forms of

supervision.

From another point of view, the limitation of supervision can also be alleviated by

leveraging the knowledge learned from different, yet related tasks. In specific, “visual at-

tributes” have been extensively studied in computer vision. The idea is that models trained

by other tasks can be leveraged in new tasks (being able to recognize green and orange
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should be helpful in recognizing apple). In a large-scale setting, the unconstrained visual

data requires a high-dimensional attribute space that is sufficiently expressive for the visual

world. Ironically, though designed to improve the scalability of visual recognition, conven-

tional attribute modeling requires expensive human labeling efforts, and it is inadequate for

designing and learning a large set of attributes.

1.2 The Thesis Overview

In the thesis, we propose innovative approaches to scale up machine learning considering

both the scale of the data and the limitation of the supervision. Part I addresses the problem

of learning with high-dimensional data. Part II and Part III address scalable learning with

limited supervision. The methods are developed with a special focus on visual data, yet

they are also widely applicable to other domains where scalable machine learning methods

are required. We provide an overview of the proposed approaches in this section.

1.2.1 Scalable Learning for High-Dimensional Data (Part I)

The first part of the thesis is dedicated to improving the scalability of machine learning

on high-dimensional data. We tackle this problem by studying and improving the most

widely used operation in machine learning — linear projection. In a large number of ap-

plication domains in computer vision, data is typically high-dimensional, and the output

of linear projection is required to be comparable to the input dimension to preserve the

discriminative power of the input space. In such cases, the linear projection becomes a

bottleneck: both the computational complexity and the space complexity are O(d2), where

d is the dimensionality of the data. Such a high cost makes linear projection prohibitive

for very high-dimensional data. For example, when applying the method to data with 1

million dimensions, it is required to use terabytes to store the projection matrix, making

the method impractical for real-world use. To address this problem, we use the circulant

projection to improve the space and computation complexities of linear projections. It oper-

ates by imposing a special structure called the circulant structure on the projection matrix.

The circulant structure enables the use of Fast Fourier Transformation (FFT) to speed up
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the computation. Compared with methods that use unstructured matrices, the proposed

method improves the time complexity from O(d2) to O(d log d), and the space complexity

from O(d2) to O(d).

We provide an introduction to the problem and the proposed approach in Chapter 2.

We apply the circulant projection to three machine learning frameworks widely used in

computer vision: binary embedding [234] (Chapter 3), neural networks [37] (Chapter 4),

and kernel approximation/ nonlinear map [235] (Chapter 5). For all three learning settings,

we study both randomized circulant projections, and optimization methods to improve the

quality of the projection. The proposed approaches can dramatically improve the speed

and space efficiency, yet without hurting the performance.

1.2.2 Learning from Label Proportions (Part II)

The second part of the thesis addresses the problem of learning with weak supervision.

In specific, we consider supervision provided on the group level. To incorporate such infor-

mation, we study a learning setting called Learning from Label Proportions (LLP), where

the training data is provided in groups, and only the proportion of each class in each group

is known. The task is to learn a model to predict the class labels of the individuals. This

learning setting can be applied in solving various computer vision problems. It is also useful

in a broader spectrum of applications of social science, marketing, and healthcare, where

individual labels are often confidential due to privacy concerns.

We provide an introduction of the problem and the proposed approach in Chapter 6.

To understand when and why LLP is possible, we provide theoretical analysis under an

intuitive framework called Empirical Proportion Risk Minimization (EPRM), which learns

an instance label classifier to match the given label proportions on the training data [233]

(Chapter 7). Under EPRM, we propose the ∝SVM algorithm [231] (Chapter 8), which

jointly optimizes the latent instance labels and the classification model in a large-margin

framework. The approach avoids making restrictive assumptions on the data, leading to

state-of-the-art results. We have applied the developed tools to solving challenging problems

in computer vision including pinpointing discriminative video shots for video events [118]

(Chapter 9) and attribute modeling [232] (Chapter 10).
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1.2.3 Scalable Design and Learning of Mid-Level Attributes (Part III)

The third part of the thesis studies improving the scalability of mid-level representation

of visual data. The goal of the study is to provide methods that can be used to design and

model a large set of useful visual attributes without human efforts. The “usefulness” of

the attributes calls for methods that can take the objective of the task such as the quality

of retrieval and classification into consideration. The goal of “no human efforts” requires

innovative solutions that can leverage data distribution and related tasks.

We provide an introduction to the problem and the proposed approaches in Chapter 11.

We first introduce weak attributes [229] (Chapter 12), a collection of mid-level representa-

tions which can be easily acquired without additional labeling process. It leverages various

types of existing recognition tasks to form an expressive visual attribute space. To make

the mid-level representations more discriminative to the task, we have further developed

the category-level attributes [230] (Chapter 13), which can be understood as key properties

separating multiple categories, e.g., unique attributes shared by “whale” and “sea lion” in

contrast from “dog” and “cat”. The proposed framework consists of attribute-encoding

and category-decoding steps for recognition, generalizing the classic Error Correcting Out-

put Code (ECOC). The category-level attributes provide both efficiency and performance

improvements in recognition with few or zero examples.
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Part I

Scalable Learning for

High-dimensional Data
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Chapter 2

Fast Linear Projections with

Circulant Matrices

2.1 Introduction

In numbers of application domains, especially computer vision, data is typically very

high-dimensional. For example, the raw images often consist of millions or tens of millions of

pixels, and the widely used image representation such as the bag-of-words models, and the

Fisher vectors often consist of tens of thousands of dimensions [183]. While a considerable

amount of efforts have been devoted to making machine learning method scalable to the

number of samples [97, 58, 187, 110], relatively fewer works have been proposed to make

learning methods more applicable for very high-dimensional data. The first part of the thesis

studies improving the scalability of machine learning for high-dimensional data. In specific,

our goal is to improve the space and computational complexities of linear projection, the

most widely used operation, and often the bottleneck, in machine learning.

Given a vector x ∈ Rd, and a projection matrix R ∈ Rk×d, the linear projection com-

putes h(x) ∈ Rk:

h(x) = Rx. (2.1)

The linear projections play a key role in learning visual representations. For example, in

the task of dimensionality reduction (2.1) maps a d-dimensional vector to a k-dimensional
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vector (k < d). The projection matrix can either be randomized (where it can be shown that

the distance can be approximately preserved in the mapped space) [99], or optimized based

on certain objectives on the training data. Some examples are the Linear Discriminative

Analysis (LDA) [64, 173], and metric learning [220].

As another example, in the task of binary embedding, the real-valued data is transformed

into binary code for faster processing. A widely used paradigm, linear projection based

binary embedding, computes

h(x) = sign(Rx). (2.2)

The elements of the projection matrix R can be randomly generated from a probability

distribution, in which case the resulting binary code can preserve the angle of the original

space [32]. The projection matrix can also be optimized in terms of certain objectives, such

as distance preservation or low reconstruction error [112, 152, 218, 153, 72, 216].

The third example is deep neural networks, which recently received renewed attention

in the computer vision community. In the neural network architecture, a fully connected

layer can be seen as performing an operation

h(x) = φ(Rx), (2.3)

where φ(·) is a nonlinear activation function, such as the sigmoid or rectified linear unit

(ReLU). The projection matrix R is optimized in terms of certain objective function on the

training data, such as the multi-class recognition rate. The fully connected layer captures

global information of the image, and it is important in neural network architectures for

visual recognition [110].

Another example comes from kernel approximation. One widely used method, Random

Fourier Features [171], maps the input feature x by

h(x) = cos(Rx), (2.4)

where elements of the projection matrix R is generated iid from a probability distribution

whose probability density function corresponds to the Fourier transformation of a kernel

function. It can be shown that such a nonlinear map can be used to approximate a positive-

definite shift-invariance kernel, such as the Gaussian kernel.
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In a large number of application domains, data is typically high-dimensional, and the

required output is also required to be high-dimensional to preserve the discriminative power

of the input space. In fact, the required dimensionality k often needs to be O(d), where d is

the input dimensionality. In such case, both the computational and the space complexities

are O(d2). This makes the linear projection operation very expensive in both space and

computation. For example, when applying the method to data with 1 million dimensions,

it requires terabytes to store the projection matrix, making the method impractical for

real-world use.

To address this problem, we use the circulant projection to improve the space and

computation complexities of linear projections. It operates by imposing a special structure

called the circulant structure on the projection matrix. The circulant structure enables

the use of Fast Fourier Transformation (FFT) to speed up the computation. Compared

with methods that use unstructured matrices, the proposed method improves the time

complexity from O(d2) to O(d log d), and the space complexity from O(d2) to O(d) where

d is the input dimensionality.

In the thesis, we apply the circulant structure to applications including the aforemen-

tioned binary embedding, deep neural networks, and kernel approximation. In all the

application scenarios, we show that the randomized circulant project leads to competitive

performance compared with the unstructured fully randomized projections, yet with dra-

matically improved space and computation cost. To further improve the performance, we

also propose to optimize the circulant projection based on the training data.

2.2 Related Works

Using structured matrices to speed up linear projections, especially for dimensionality

reduction, is not a new topic. We begin by reviewing the related works in this section.

2.2.1 Randomized Matrices for Dimensionality Reduction

The celebrated Johnson-Lindenstrauss lemma states that [99]:

Lemma 2.1 (Johnson-Lindenstrauss). Let x1, ...,xN ∈ Rd be N points. For a given ε ∈
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(0, 1/2) and a natural number k = O(ε−2 logN), there exists a linear map f : Rd → Rk,

such that

(1− ε)||xi||22 ≤ ||f(xi)||22 ≤ (1 + ε)||xi||22,

for any i ∈ {1, ..., N}.

The Johnson-Lindenstruss lemma is a remarkable result as it states that the dimension-

ality for any N samples can be dramatically reduced to O(logN/ε2), while approximately

preserving the pair-wise `2 distances within a factor of (1± ε).

The proof of the Johnson-Lindenstruss lemma (see, for example, [99, 45]) is by using

randomized matrices generated from certain distribution as the linear map f : Rd → Rk.

It then shows that with a certain probability the Johnson-Lindenstruss lemma is true with

standard concentration inequalities. For example, the elements of the projection matrix

can be generated iid from a standard Gaussian distribution. Due to the simplicity and

theoretical support, random projection based dimensionality reduction has been applied

in broad applications including approximate nearest neighbor research [89], dimensionality

reduction in databases [1], and bi-Lipschitz embeddings of graphs into normed spaces [65].

When using an unstructured randomized matrix to compute the random projection,

both the space and computational complexities are O(kd), making the method prohibitively

expensive for very high-dimensional datasets. Therefore, approaches have been proposed to

show the Johnson-Lindenstruss-type results with structured randomized matrices, including

Hadamard matrices with a sparse random Gaussian matrix [3], sparse matrices [142], and

Lean Walsh Transformations [131]. The advantage of using a structured matrix is that

the space and computation cost can be dramatically reduced, yet the distance preserving

property remains to be competitive.

2.2.2 Circulant Projection for Dimensionality Reduction

Recently, the randomized circulant matrices were used to achieve the Johnson-Lindenstruss

results. The projection comprises of a randomized circulant matrix and a random sign flip-

ping operation on the input features. For d-dimensional input, and k-dimensionally output

(k < d), the method has computation complexity O(d log d) and space complexity O(d).
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Showing the distance preserving property for the randomized circulant projections is not

a trivial task. Since the projections are highly dependent, the classic concentration inequali-

ties does not hold. The initial result suggested an embedding dimensionO(ε−2 log3N) (com-

pared with O(ε−2 logN) in the original Johnson-Lindenstauss) [82], with the decoupling

lemma. This was subsequently improved to O(ε−2 log2N) [212] by considering the projec-

tion in the Fourier domain. Recently, the result was further improved to O(ε−2 log(1+δ)N)

[239] using matrix-valued Bernstein inequalities.

2.2.3 Randomized Structured Matrices in Other Applications

There have been methods proposed to apply structured randomized matrices in locality

sensitive hashing for approximate nearest neighbor search [44], and kernel approximation

[123]. Different from the above works, we study using the circulant matrices in applications

including binary embedding, neural network, and kernel approximation. Although circu-

lant matrices have been demonstrated to achieve satisfactory properties for dimensionality

reduction, whether such structure is helpful in other applications has not been previously

studied. More importantly, there are two advantages of the circulant projection compared

with other choices. First, both the space and computational complexities are superior to

the alternatives [44, 123]. Second, the circulant projection is equivalent to an element-wise

multiplication in the Fourier domain. This makes optimizing the parameters simple and

efficient. As shown in our experiments, very efficient optimization procedures exist for all

the three applications, and the optimization can significantly improve the performance.

2.3 Fast Linear Projections with Circulant Matrices

We present the framework of using circulant matrices to perform linear projections in

this section. We first show how to compute circulant projection when the input and the

output dimension are the same, i.e., k = d (Section 2.3). We then show how to deal with

the situation where k 6= d (Section 2.3.2). Table 2.2.3 summarizes the key notations of Part

I.
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r A column vector

ri The i-th element of r

R A matrix

Ri,j Element of i-th row, and j-th column of R

RT , rT Transpose of real-valued matrix or vector

RH , rH , r̄ Conjugate transpose of R, r, r, respectively

Ri· i-th row vector of R

R·j j-th column vector of R

circ(r) The circulant matrix formed by r

Tr(·) Trace of a matrix

|| · ||F Frobenius norm of a matrix

|| · ||p `p Norm

◦ Hadamard product

~ Circular convolution

F(·) Discrete Fourier Transform (DFT)

F−1(·) Inverse DFT (IDFT)

<(·) The real part of a scalar, vector, or matrix

=(·) The imaginary part of a scalar, vector, or matrix

diag(r) Diagonal matrix with r as the diagonal vector

d Dimensionality of the feature

k Dimensionality after the projection

N Number of samples in training

sign(·) Element-wise binarization

P(·) Probability of an event

E(·) Expectation

var(·) Variance

s→j(r) Vector formed by downwards circularly shifting r by j elements

span(x,y) The span of x and y

Table 2.1: Key Notations of Part I.



CHAPTER 2. FAST LINEAR PROJECTIONS WITH CIRCULANT MATRICES 13

2.3.1 The Framework

A circulant matrix R ∈ Rd×d is a matrix defined by a vector r = (r0, r1, · · · , rd−1)T [78].

R = circ(r) :=



r0 rd−1 · · · r2 r1

r1 r0 rd−1 r2

... r1 r0
. . .

...

rd−2
. . .

. . . rd−1

rd−1 rd−2 · · · r1 r0


. (2.5)

Let D be a diagonal matrix with each diagonal entry being a Rademacher variable (±1

with probability 1/2). For x ∈ Rd, its d-dimensional circulant projection with r ∈ Rd is

defined as:

h(x) = RDx, (2.6)

where R = circ(r).

The above framework follows from using circulant matrices in dimensionality reduction

[212, 82]. The sign flipping matrix D is required to show the Johnson-Lindenstrauss type

results. In other words, D is helpful in order for the circulant projection to “simulate” a

fully randomized projection. Empirically, we found that omitting such an operation will

lead to inferior performance in all applications and most datasets. Note that applying D to

x is equivalent to applying random sign flipping to each dimension of x. Since sign flipping

can be carried out as a preprocessing step for each input x, here onwards for simplicity in

presenting the algorithms, we will drop explicit mention of D. Hence the circulant projection

is given as h(x) = Rx.

The main advantage of circulant binary embedding is its ability to use Fast Fourier

Transformation (FFT) to speed up the computation.

Proposition 2.1. For d-dimensional data, circulant projection has space complexity O(d),

and time complexity O(d log d).

Since a circulant matrix is defined by a single column/row, clearly the storage needed

is O(d). Given a data point x, the d-dimensional circulant projection can be efficiently
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computed as follows. Denote ~ as operator of the circulant convolution. Based on the

definition of circulant matrix,

Rx = r ~ x. (2.7)

The above can be computed based on Discrete Fourier Transformation (DFT), for which

fast algorithm (FFT) is available.

The DFT of a vector t ∈ Cd is a d-dimensional vector with each element defined as

F(t)l =
d−1∑
m=0

tn · e−i2πlm/d, l = 0, · · · , d− 1. (2.8)

The above can be expressed equivalently in a matrix form as

F(t) = Fdt, (2.9)

where Fd is the d-dimensional DFT matrix. Let FH
d be the conjugate transpose of Fd. It is

easy to show that F−1
d = (1/d)FH

d . Similarly, for any t ∈ Cd, the Inverse Discrete Fourier

Transformation (IDFT) is defined as

F−1(t) = (1/d)FH
d t. (2.10)

The introduced matrix notation is useful in the Circulant Binary Embedding (CBE) (Chap-

ter 3).

Since the convolution of two signals in their original domain is equivalent to the Hadamard

product in their frequency domain [154],

F(Rx) = F(r) ◦ F(x). (2.11)

Therefore,

h(x) = F−1(F(r) ◦ F(x)). (2.12)

As both DFT and IDFT can be efficiently computed in O(d log d) with FFT [154], circulant

projection has time complexity O(d log d).
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2.3.2 When k 6= d

We have proposed the framework of circulant projection when the output dimensionality

k is equivalent to the input dimensionality d. Such a setting is commonly used in all the

applications considered in the thesis including binary embedding, neural network, and kernel

approximation. In this section, we provide extensions to handle the case where k 6= d.

When k < d, a “compression”, or dimensionality reduction is performed. In such a case,

we still use the circulant matrix R ∈ Rd×d with d parameters, and the output is simply

set to be the first k elements in (2.6). One may notice that the circulant projection is not

computationally more efficient in this situation compared with k = d. But when k is larger

than O(log d), circulant projection still has better computational complexity (O(d log d) vs.

O(dk)) and space complexity (O(d) vs. O(dk)).

When k > d, an “expansion” is performed. In such a case, the simplest solution is

to use multiple circulant projections, and concatenate the output of them. This gives the

computational complexity O(k log d), and space complexity O(k). Note that the DFT of the

feature vector can be reused in this case. An alternative approach is to extend every feature

vector to a k-dimensional vector, by padding (k − d) zeros at the end. Then the problem

becomes the conventional setting described in Section 2.3. This gives space complexity

O(k), and computational complexity O(k log k). In practice, k is usually at most a few

times larger than d. Empirically the two approaches give similar computational time and

performance in all the applications.

2.4 Overview of the Proposed Approaches

We have applied the circulant projection to three applications: binary embedding for

high-dimensional data [234] (Chapter 3), fully connected layers in neural networks [37]

(Chapter 4), and kernel approximation/ nonlinear map for high-dimensional data [235]

(Chapter 5). For all the applications, we show that the randomized circulant matrices

lead to faster computation and much lower memory cost without hurting the performance

compared with randomized unstructured projections. We also propose to optimize the

parameters of the circulant matrices based on the training data, leading to significantly
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improved performance, i.e., better recall using binary embedding, better recognition using

neural network and nonlinear maps.

2.4.1 Circulant Binary Embedding

Binary embedding of high-dimensional data requires long codes to preserve the discrim-

inative power of the input space. Traditional binary coding methods often suffer from very

high computation and storage costs in such a scenario. To address this problem, we propose

Circulant Binary Embedding (CBE) which generates binary codes by projecting the data

with a circulant matrix. The circulant structure enables the use of Fast Fourier Trans-

formation to speed up the computation. Compared with methods that use unstructured

matrices, the proposed method improves the time complexity from O(d2) to O(d log d), and

the space complexity from O(d2) to O(d) where d is the input dimensionality. We first

analyze the angle preserving properties of CBE with the randomized projection matrix.

We then propose a novel time-frequency alternating optimization to learn data-dependent

circulant projections, which alternatively minimizes the objective in original and Fourier

domains. We show by extensive experiments that the proposed approach gives much better

performance than the state-of-the-art approaches for fixed time and provides much faster

computation with no performance degradation for fixed number of bits. The work was

originally presented in [234].

2.4.2 Circulant Neural Networks

The basic computation of a fully-connected neural network layer is a linear projection

of the input signal followed by a non-linear transformation. The linear projection step

consumes the bulk of the processing time and memory footprint. In this work, we propose

to replace the conventional linear projection with the circulant projection. The circulant

structure enables the use of the Fast Fourier Transform to speed up the computation.

Considering a neural network layer with d input nodes, and d output nodes, this method

improves the time complexity from O(d2) to O(d log d) and space complexity from O(d2)

to O(d). We further show that the gradient computation and optimization of the circulant

projections can be performed very efficiently. Our experiments on three standard datasets
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show that the proposed approach achieves this significant gain in efficiency and storage with

minimal loss of accuracy compared with neural networks with unstructured projections. The

work was originally presented in [37].

2.4.3 Compact Nonlinear Map with Circulant Extensions

Kernel approximation via nonlinear random feature maps is widely used in speeding up

kernel machines. There are two main challenges for the conventional kernel approximation

methods. First, before performing kernel approximation, a good kernel has to be chosen.

Picking a good kernel is a very challenging problem in itself. Second, high-dimensional maps

are often required in order to achieve good performance. This leads to high computational

cost in both generating the nonlinear maps, and in the subsequent learning and prediction

process. In this work, we propose to optimize the nonlinear maps directly with respect to the

classification objective in a data-dependent fashion. This achieves kernel approximation and

kernel learning in a joint framework, leading to much more compact maps without hurting

the performance. As a by-product, the same framework can also be used to achieve more

compact kernel maps to approximate a known kernel. Under the above CNM framework, we

introduce Circulant Nonlinear Maps, which uses a circulant-structured projection matrix to

speed up the nonlinear maps for high-dimensional data. This leads to better computational

complexity and space complexity without hurting the performance. The work was originally

presented in [235].
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Chapter 3

Circulant Binary Embedding

3.1 Introduction

Embedding input data in binary spaces is becoming popular for efficient retrieval and

learning on massive data sets [127, 73, 170, 71, 134]. Moreover, in a large number of

application domains such as computer vision, biology, and finance, data is typically high-

dimensional. When representing such high dimensional data by binary codes, it has been

shown that long codes are required in order to achieve good performance. In fact, the

required number of bits is O(d), where d is the input dimensionality [127, 73, 183]. The

goal of binary embedding is to well approximate the input distance as Hamming distance so

that efficient learning and retrieval can happen directly in the binary space. It is important

to note that another related area called hashing is a special case with slightly different goal:

creating hash tables such that points that are similar fall in the same (or nearby) bucket

with high probability. In fact, even in hashing, if high accuracy is desired, one typically

needs to use hundreds of hash tables involving tens of thousands of bits.

Most of the existing linear binary coding approaches generate the binary code by ap-

plying a projection matrix, followed by a binarization step. Formally, given a data point,

x ∈ Rd, the k-bit binary code, h(x) ∈ {+1,−1}k is generated as

h(x) = sign(Rx), (3.1)
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where R ∈ Rk×d, and sign(·) is a binary map which returns element-wise sign1. Several

techniques have been proposed to generate the projection matrix randomly without taking

into account the input data [32, 170]. These methods are very popular due to their simplicity

but often fail to give the best performance due to their inability to adapt the codes with

respect to the input data. Thus, a number of data-dependent techniques have been proposed

with different optimization criteria such as reconstruction error [112], data dissimilarity [152,

218], ranking loss [153], quantization error after PCA [72], and pairwise misclassification

[216]. These methods are shown to be effective for learning compact codes for relatively low-

dimensional data. However, the O(d2) computational and space costs prohibit them from

being applied to learning long codes for high-dimensional data. For instance, to generate

O(d)-bit binary codes for data with d ∼1M, a huge projection matrix will be required

needing TBs of memory, which is not practical2.

In order to overcome these computational challenges, [73] proposed a bilinear projection

based coding method for high-dimensional data. It reshapes the input vector x into a matrix

Z, and applies a bilinear projection to get the binary code:

h(x) = sign(RT
1 ZR2). (3.2)

When the shapes of Z,R1,R2 are chosen appropriately, the method has time and space

complexity of O(d1.5) and O(d), respectively. Bilinear codes make it feasible to work with

datasets with very high dimensionality and have shown good results in a variety of tasks.

In this work, we propose a novel Circulant Binary Embedding (CBE) technique which

is even faster than the bilinear coding. It is achieved by imposing a circulant structure on

the projection matrix R in (3.1). This special structure allows us to use Fast Fourier Trans-

formation (FFT) based techniques, which have been extensively used in signal processing.

The proposed method further reduces the time complexity to O(d log d), enabling efficient

binary embedding for very high-dimensional data3. Table 3.1 compares the time and space

complexity for different methods. This work makes the following contributions:

1A few methods transform the linear projection via a nonlinear map before taking the sign [218, 170].

2In principle, one can generate the random entries of the matrix on-the-fly (with fixed seeds) without

needing to store the matrix. But this will increase the computational time even further.

3One could in principal use other structured matrices like Hadamard matrix along with a sparse random
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Method Time Space Time (Learning)

Full projection O(d2) O(d2) O(Nd3)

Bilinear projection O(d1.5) O(d) O(Nd1.5)

Circulant projection O(d log d) O(d) O(Nd log d)

Table 3.1: Comparison of the proposed method (Circulant projection) with other methods

for generating long codes (code dimension D comparable to input dimension d). N is the

number of instances used for learning data-dependent projection matrices.

• We propose the circulant binary embedding method, which has space complexity O(d)

and time complexity O(d log d) (Section 3.2, 3.3).

• We analyze the angle preserving properties of CBE with randomized circulant matrix.

We show that the quality of randomized CBE is almost identical to LSH with mild

assumptions.

• We propose to learn the data-dependent circulant projection matrix by a novel and effi-

cient time-frequency alternating optimization, which alternatively optimizes the objective

in the original and frequency domains (Section 3.4).

• Extensive experiments show that, compared with the state-of-the-art, the proposed method

improves the result dramatically for a fixed time cost, and provides much faster compu-

tation with no performance degradation for a fixed number of bits (Section 3.5).

3.2 Circulant Binary Embedding

For x ∈ Rd, its d-dimensional Circulant Binary Embedding with r ∈ Rd is defined as:

h(x) = sign(RDx), (3.3)

where R = circ(r), and D is the random sign flipping matrix as in (2.6). When k < d,

we simply use the first k bits as the result. Following the analysis in Section 2.3, CBE has

computational complexity O(d log d) and space complexity O(d).

Gaussian matrix to achieve fast projection as was done in fast Johnson-Lindenstrauss transform[3, 44], but

it is still slower than circulant projection and needs more space.
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3.3 Randomized Circulant Binary Embedding

A simple way to obtain CBE is by generating the elements of r in (2.6) independently

from the standard normal distribution N (0, 1). We call this method randomized CBE

(CBE-rand). In this section, we show that the angle preserving property of randomized

CBE is almost as good as Locality Sensitive Hashing (LSH) under mild assumptions for

high-dimensional data.

The analysis is based on two fixed data points, x,y ∈ Rd. As sign(rTx) = sign(rTx/||x||),

without loss of generality, we assume ||x|| = 1, ||y|| = 1. Let the angle between x and y be

θ. Given a projection matrix R, and a random sign flipping matrix D,

Xi =
1− sign(Ri·Dx) sign(Ri·Dy)

2
− θ

π
. (3.4)

Therefore 1
k

∑k
i=1Xi+

θ
π is the averaged hamming distance for k-bit code. We are interested

in the expectation and the variance of 1
k

∑k
i=1Xi.

3.3.1 Properties of Locality Sensitive Hashing (LSH).

We begin by reviewing the properties of the LSH (simhash) [32]. In LSH, all the elements

of the projection matrix R ∈ Rk×d are drawn iid from N (0, 1). For all i = 0, · · · , k− 1, we

have4

P(sign(Ri·Dx) = sign(Ri·Dy)) = 1− θ

π
, P(sign(Ri·Dx) 6= sign(Ri·Dy)) =

θ

π
. (3.5)

Therefore

E

[
1

k

k∑
i=1

Xi

]
= 0. (3.6)

In other words, the expectation of the average hamming distance is θ/π. As the averaged

hamming distance is defined as the mean over k independent variables, the variance can be

obtained based on that of the binomial distribution:

var

[
1

k

k∑
i=1

Xi

]
=

1

k

θ

π

(
1− θ

π

)
. (3.7)

4Note that the matrix D does not influence the properties of the projection, as RD is also a matrix with

every elements drawn iid from N (0, 1). We put D here to make analysis of CBE more consistent.
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The above shows that longer code will lead to better estimation of the angle. Note that

the variance is a function of k, the number of bits. It is independent on d, the feature

dimension. This makes one wonder why long code is required for high-dimensional data.

The reason is that there is the well-known “curse of dimensionality” for real-world data: in

high-dimensional space, all the angles of the data points tend to be close to π/2. In order

to discriminate the subtle difference of the angles, lower angle estimation error, therefore,

longer code, is required.

3.3.2 Properties of Randomized CBE

For randomized CBE, the elements of the first column of R is drawn iid. from N (0, 1).

First, we also have

E

[
1

k

k∑
i=1

Xi

]
= 0. (3.8)

This is based on the fact that EXi = 0, for i = 0, · · · , k − 1. Following the analysis of

LSH, we would hope that var( 1
k

∑k
i=1Xi) decreases as a function of k. Unfortunately, the

variance is no longer a straightforward computation, as the codes are dependent. We show

in Theorem 3.1 that, under mild assumptions, the variance is almost identical to that of

LSH for high-dimensional data.

Theorem 3.1. For any x,y ∈ Rd, such that ‖x‖ = 1, ‖y‖ = 1, max{‖x‖∞, ‖y‖∞} ≤ ρ,

for some parameter ρ < 1. Then with probability at least 1 − δ over the choice of D, we

have

var

[
1

k

k−1∑
i=0

Xi

]
≤ 1

k

θ

π

(
1− θ

π

)
+ 8ρ

√
ln

4k2

δ
.

The variance above is over the choice of r.

Remarks. The small infinity norm constraint means that the data should be sufficiently

“spread-out”. A stronger constraint will lead to a stronger result. For example let ρ =

O( log d√
d

), then var
[

1
k

∑k−1
i=0 Xi

]
= 1

k
θ
π

(
1− θ

π

)
+O

(
log1.5 d√

d

)
.
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Proof. To show the theorem:

var

[
1

k

k−1∑
i=0

Xi

]
= E

 1

k2

(
k−1∑
i=0

Xi

)2
− E

[
1

k

k−1∑
i=0

Xi

]2

= E

 1

k2

(
k−1∑
i=0

Xi

)2
 = E

[∑k−1
i=0 X

2
i +

∑
i 6=j XiXj

k2

]

=
1

k2

kEX2
1 +

∑
i 6=j

E(XiXj)

 =
1

k

θ

π

(
1− θ

π

)
+

1

k2

∑
i 6=j

E(XiXj).

Thus it is sufficient to show that E(XiXj) ≤ 8ρ
√

ln 4k2

δ , for all i 6= j, with probability at

least 1 − δ. Note that a more careful consideration of all the terms may lead to a tighter

bound (since there are both positive and negative terms). We leave this for our future

works.

Without loss of generality, we assume i = 0. With a slight abuse of notation, we assume

that the first row (instead of the column in Section 2.3) of the circulant projection matrix

R is rT . Let s→j(r) be the vector formed by downwards circular shifting r by j element,

and let t = d− i. Note that s→j(r)Tx = rT s→(d−j)(x). We have,

E(X0Xj) (3.9)

=E
[(

1− sign(rTDx) sign(rTDy)

2
− θ

π

)(
1− sign(rT s→t(Dx)) sign(rT s→t(Dy))

2
− θ

π

)]
.

For a moment, suppose s→t(Dx) and s→t(Dy) are orthogonal to the span of Dx and Dy,

the above is 0, based on the following lemma.

Lemma 3.1. Let a,b,u,v be unit vectors in Rd such that u and v are orthogonal to the

subspace spanned by a and b. Let r be a random Gaussian vector. Then we have

E
[(

1− sign(rTa) sign(rTb)

2
− ∠(a,b)

π

)(
1− sign(rTu) sign(rTv)

2
− ∠(u,v)

π

)]
= 0.

Proof. The two dimensional subspace spanned by u and v is orthogonal to the two dimen-

sional subspace spanned by a and b. Then the hyperplanes defined by r in the two subspaces

are independent. Therefore the two terms in the expectation are independent. The expec-

tation of the multiplication of them is equal to the multiplication of the expectations of

each of them, which is 0.
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The following lemma extends Lemma 3.1, by showing that with near orthogonality, the

expectation is close to 0.

Lemma 3.2. Let a,b,u,v be unit vectors in Rd such that ∠(a,b) = ∠(u,v) = θ, and let

Π be the projector onto the span of a, b. Suppose max{‖Πu‖, ‖Πv‖} ≤ δ < 1. Let r be a

random Gaussian vector. Then we have

E
[(

1− sign(rTa) sign(rTb)

2
− θ

π

)(
1− sign(rTu) sign(rTv)

2
− θ

π

)]
≤ 2δ.

Here again, the expectation is over the choice of r.

The proof is shown in the Appendix. Next, we show that s→t(Dx) and s→t(Dy) are

actually close to orthogonal to the span of Dx and Dy, by a general lemma.

Lemma 3.3. Let x, z ∈ Rd be unit vectors, and ||x||∞ ≤ ρ, for some parameter ρ. Suppose

σ0, σ1, · · · , σd−1 are random signs taking ±1 with equal probabilities. Let γ > 0 be some

fixed offset. Then

P[s→t(Dx)TDz ≥ γ] ≤ e−γ2/8ρ2 .

The proof of the above lemma is shown in the Appendix. We can now complete the

proof using the lemmas above. First, for any two shifts i 6= j, we would like to show that

the projection of s→iDx onto span(Dx,Dy) is small. In other words, we need to show that

the projection is small onto any unit vector in the span. Let z be any given unit vector in

S := span(Dx,Dy). We can now apply Lemma 3.3, to conclude that

P[|s→i(Dx)T z| ≤ γ] ≤ 1− e−γ2/8ρ2 . (3.10)

Thus if we consider an orthogonal basis z1, z2 for S, (3.10) is true for both z1 and z2. Note

that z1 and z2 can be picked independently on D, by setting z1 = Dz′1, z2 = Dz′2, such

that z′1 and z′2 are a set of orthogonal bases in span(x,y). Thus by a union bound, we have

that

P[max{|s→i(Dx)T z1|, ||s→i(Dx)T z2|} ≤ γ] ≥ 1− 2e−γ
2/8ρ2 . (3.11)
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Now suppose we have max{|s→i(Dx)T z1|, ||s→i(Dx)T z2|} ≤ γ. For any unit vector z,

it can be written as z = c1z1 + c2z2, where c2
1 + c2

2 = 1. Thus by Cauchy-Schwartz, we get

(s→i(Dx)T z)2 = (c1s→i(Dx)T z1 + c2s→i(Dx)T z2)2

≤ (c2
1 + c2

2)((s→i(Dx)T z1)2 + (s→i(Dx)T z2)2)

≤ 2γ2.

This implies that the projection onto S has length at most γ
√

2, whenever the event in

(3.11) holds.

We can thus take a union over such events for all i 6= j (there are k2 such choices), to

conclude that,

P[max
i,j
‖proj(Dx, span(s→iDx, s→iDy‖) ≤

√
2γ] ≥ 1− 2k2e−γ

2/8ρ2 . (3.12)

The same can be done replacing x with y, and hence the joint event holds with probability

1− 4k2e−γ
2/8ρ2 .

Finally, we can appeal to Lemma 3.2 to conclude that E(XiXj) ≤ 2
√

2γ for all i, j

(where expectation is now over the choice of r), with probability at least 1 − 4k2e−γ
2/8ρ2

over the choice of D. Thus, with probability at least 1 − δ, E(XiXj) ≤ 8ρ
√

ln 4k2

δ , for all

i, j. This concludes the proof.

3.4 Learning Circulant Binary Embedding

In the previous section, we showed the randomized CBE has LSH-like angle preserving

properties, especially for high-dimensional data. One problem with the randomized CBE

method is that it does not utilize the underlying data distribution while generating the

matrix R. In the next section, we propose to learn R in a data-dependent fashion, to

minimize the distortions due to circulant projection and binarization.

We propose data-dependent CBE (CBE-opt), by optimizing the projection matrix with a

novel time-frequency alternating optimization. We consider the following objective function

in learning the d-bit CBE. The extension of learning k < d bits will be shown in Section
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3.4.2.

argmin
B,r

||B−XRT ||2F + λ||RRT − I||2F (3.13)

s.t. R = circ(r),

where X ∈ RN×d, is the data matrix containing n training points: X = [x0, · · · ,xN−1]T ,

and B ∈ {−1, 1}N×d is the corresponding binary code matrix.5

In the above optimization, the first term minimizes distortion due to binarization. The

second term tries to make the projections (rows of R, and hence the corresponding bits)

as uncorrelated as possible. In other words, this helps to reduce the redundancy in the

learned code. If R were to be an orthogonal matrix, the second term would vanish, and

the optimization would find the best rotation such that the distortion due to binarization is

minimized. However, being a circulant matrix, R, in general, will not be orthogonal6. The

similar objective has been used in previous works including [72, 73] and [216].

3.4.1 The Time-Frequency Alternating Optimization

The above is a difficult non-convex combinatorial optimization problem. In this section,

we propose a novel approach to efficiently find a local solution. The idea is to alternatively

optimize the objective by fixing r, and B, respectively. For a fixed r, optimizing B can be

easily performed in the input domain (“time” as opposed to “frequency”). For a fixed B,

the circulant structure of R makes it difficult to optimize the objective in the input domain.

Hence we propose a novel method, by optimizing r in the frequency domain based on DFT.

This leads to a very efficient procedure.

For a fixed r. The objective is independent on each element of B. Denote Bij as the

5If the data is `2 normalized, we can set B ∈ {−1/
√
d, 1/
√
d}N×d to make B and XRT more comparable.

This does not empirically influence the performance.

6We note that the rank of the circulant matrices can range from 1 (an all-1 matrix) to d (an identity

matrix).
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element of the i-th row and j-th column of B. It is easy to show that B can be updated as:

Bij =


1 if Rj·xi ≥ 0

−1 if Rj·xi < 0

, (3.14)

i = 0, · · · , N − 1. j = 0, · · · , d− 1.

For a fixed B. Define r̃ as the DFT of the circulant vector r̃ := F(r). Instead of solving

r directly, we propose to solve r̃, from which r can be recovered by IDFT.

The key to our derivation is the fact that DFT projects the signal to a set of orthogonal

basis. Therefore the `2 norm can be preserved. Formally, according to Parseval’s theorem

, for any t ∈ Cd [154],

||t||22 = (1/d)||F(t)||22. (3.15)

Denote diag(·) as the diagonal matrix formed by a vector. Denote <(·) and =(·) as

the real and imaginary parts, respectively. We use Bi· to denote the i-th row of B. With

complex arithmetic, the first term in (3.13) can be expressed in the frequency domain as:

||B−XRT ||2F =
1

d

N−1∑
i=0

||F(BT
i· −Rxi)||22 (3.16)

=
1

d

N−1∑
i=0

||F(BT
i· )− r̃ ◦ F(xi)||22 =

1

d

N−1∑
i=0

||F(BT
i· )− diag(F(xi))r̃||22

=
1

d

N−1∑
i=0

(
F(BT

i· )− diag(F(xi))r̃
)T (F(BT

i· )− diag(F(xi))r̃
)

=
1

d

[
<(r̃)TM<(r̃) + =(r̃)TM=(r̃) + <(r̃)Th + =(r̃)Tg

]
+ ||B||2F ,

where,

M = diag
(N−1∑
i=0

<(F(xi)) ◦ <(F(xi)) + =(F(xi)) ◦ =(F(xi))
)
, (3.17)

h = −2

N−1∑
i=0

<(F(xi)) ◦ <(F(BT
i· )) + =(F(xi)) ◦ =(F(BT

i· )), (3.18)

g = 2
N−1∑
i=0

=(F(xi)) ◦ <(F(BT
i· ))−<(F(xi)) ◦ =(F(BT

i· )). (3.19)
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The above can be derived based on the following fact. For any Q ∈ Cd×d, s, t ∈ Cd,

||s−Qt||22 = (s−Qt)H(s−Qt) (3.20)

=sHs− sHQt− tHQHs + tHQHAt

=<(s)T<(s) + =(s)T=(s)− 2<(t)T (<(Q)T<(s) + =(Q)T=(s))

+ 2=(t)T (=(Q)T<(s)−<(Q)T=(s)) + <(t)T (<(Q)T<(Q) + =(Q)T=(Q))<(t)

+ =(t)T (<(Q)T<(Q) + =(Q)T=(Q))=(t) + 2<(t)T (=(Q)T<(Q)−<(Q)T=(Q))=(t).

For the second term in (3.13), we note that the circulant matrix can be diagonalized by

DFT matrix Fd and its conjugate transpose FH
d . Formally, for R = circ(r), r ∈ Rd,

R = (1/d)FH
d diag(F(r))Fd. (3.21)

Let Tr(·) be the trace of a matrix. Therefore,

||RRT − I||2F = ||1
d
FH
d (diag(r̃)Hdiag(r̃)− I)Fd||2F (3.22)

= Tr

[
1

d
FH
d (diag(r̃)Hdiag(r̃)− I)H(diag(r̃)Hdiag(r̃)− I)Fd

]
= Tr

[
(diag(r̃)Hdiag(r̃)− I)H(diag(r̃)Hdiag(r̃)− I)

]
=||r̃H ◦ r̃− 1||22 = ||<(r̃)2 + =(r̃)2 − 1||22.

Furthermore, as r is real-valued, additional constraints on r̃ are needed. For any u ∈ C,

denote u as its complex conjugate. We have the following result [154]: For any real-valued

vector t ∈ Cd, F(t)0 is real-valued, and

F(t)d−i = F(t)i, i = 1, · · · , bd/2c. (3.23)

From (3.16) − (3.23), the problem of optimizing r̃ becomes

argmin
r̃

<(r̃)TM<(r̃) + =(r̃)TM=(r̃) + <(r̃)Th

+ =(r̃)Tg + λd||<(r̃)2 + =(r̃)2 − 1||22 (3.24)

s.t. =(r̃0) = 0

<(r̃i) = <(r̃d−i), i = 1, · · · , bd/2c

=(r̃i) = −=(r̃d−i), i = 1, · · · , bd/2c.
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The above is non-convex. Fortunately, the objective function can be decomposed, such that

we can solve two variables at a time. Denote the diagonal vector of the diagonal matrix M as

m. The above optimization can then be decomposed to the following sets of optimizations.

argmin
r̃0

m0r̃
2
0 + h0r̃0 + λd

(
r̃2

0 − 1
)2
, s.t. r̃0 = r̃0. (3.25)

argmin
r̃i

(mi +md−i)(<(r̃i)
2 + =(r̃i)

2) + 2λd
(
<(r̃i)

2 + =(r̃i)
2 − 1

)2
+ (hi + hd−i)<(r̃i) + (gi − gd−i)=(r̃i), i = 1, · · · , bd/2c.

In (3.25), we need to minimize a 4th order polynomial with one variable, with the closed

form solution readily available. In (3.26), we need to minimize a 4th order polynomial with

two variables. Though the closed form solution is hard to find (requiring solution of a cubic

bivariate system), a local minima can be found by gradient descent, which in practice has

constant running time for such small-scale problems. The overall objective is guaranteed

to be non-increasing in each step. In practice, we find that a good solution can be reached

within just 5-10 iterations. Therefore in practice, the proposed time-frequency alternating

optimization procedure has running time O(Nd log d).

3.4.2 Learning with Dimensionality Reduction

In the case of learning k < d bits, we need to solve the following optimization problem:

argmin
B,r

||BPk −XPT
kRT ||2F + λ||RPkP

T
kRT − I||2F (3.26)

s.t. R = circ(r),

in which Pk =

Ik O

O Od−k

, Ik is a k × k identity matrix, and Od−k is a (d− k)× (d− k)

all-zero matrix.

In fact, the right multiplication of Pk can be understood as a “temporal cut-off”, which

is equivalent to a frequency domain convolution. This makes the optimization difficult, as

the objective in the frequency domain can no longer be decomposed. To address this issue,

we propose a simple solution in which Bij = 0, i = 0, · · · , N − 1, j = k, · · · , d− 1 in (3.13).

Thus, the optimization procedure remains the same, and the cost is also O(Nd log d). We

will show in experiments that this heuristic provides good performance in practice.
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3.5 Experiments

To compare the performance of the circulant binary embedding techniques, we conducte

experiments on three real-world high-dimensional datasets used by the current state-of-the-

art method for generating long binary codes [73]. The Flickr-25600 dataset contains 100K

images sampled from a noisy Internet image collection. Each image is represented by a

25, 600-dimensional vector. The ImageNet-51200 contains 100k images sampled from 100

random classes from ImageNet [47], each represented by a 51, 200 dimensional vector. The

third dataset (ImageNet-25600) is another random subset of ImageNet containing 100K

images in 25, 600-dimensional space. All the vectors are normalized to be of the unit norm.

We compare the performance of the randomized (CBE-rand) and learned (CBE-opt)

versions of our circulant embeddings with the current state-of-the-art for high-dimensional

data, i.e., bilinear embeddings. We use both the randomized (bilinear-rand) and learned

(bilinear-opt) versions. Bilinear embeddings have been shown to perform similarly or bet-

ter than another promising technique called Product Quantization [92]. Finally, we also

compare against the binary codes produced by the baseline LSH method [32], which is

still applicable to 25,600 and 51,200-dimensional feature but with much longer running

time and much more space. We also show an experiment with a relatively low-dimensional

feature (2048, with Flickr data) to compare against techniques that perform well for low-

dimensional data but do not scale to the high-dimensional scenario. Example techniques

include ITQ [72], SH [218], SKLSH [170], and AQBC [71].

Following [73, 152, 74], we use 10,000 randomly sampled instances for training. We then

randomly sample 500 instances, different from the training set as queries. The performance

(recall@1-100) is evaluated by averaging the recalls of the query instances. The ground-

truth of each query instance is defined as its 10 nearest neighbors based on `2 distance. For

each dataset, we conduct two sets of experiments: fixed-time where code generation time is

fixed and fixed-bits where the number of bits is fixed across all techniques. We also show

an experiment where the binary codes are used for classification.

The proposed CBE method is found robust to the choice of λ in (3.13). For example,

in the retrieval experiments, the performance difference for λ = 0.1, 1, 10, is within 0.5%.

Therefore, in all the experiments, we simply fix λ = 1. For the bilinear method, in order
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d Full projection Bilinear projection Circulant projection

215 5.44× 102 2.85 1.11

217 - 1.91× 101 4.23

220 (1M) - 3.76× 102 3.77× 101

224 - 1.22× 104 8.10× 102

227 (100M) - 2.68× 105 8.15× 103

Table 3.2: Computational time (ms) of full projection (LSH, ITQ, SH etc.), bilinear pro-

jection (Bilinear), and circulant projection (CBE). The time is based on a single 2.9GHz

CPU core. The error is within 10%. An empty cell indicates that the memory needed for

that method is larger than the machine limit of 24GB.

to get fast computation, the feature vector is reshaped to a near-square matrix, and the

dimension of the two bilinear projection matrices are also chosen to be close to square.

Parameters for other techniques are tuned to give the best results on these datasets.

3.5.1 Computational Time

When generating k-bit code for d-dimensional data, the full projection, bilinear projec-

tion, and circulant projection methods have time complexity O(kd), O(
√
kd), and O(d log d),

respectively. We compare the computational time in Table 3.2 on a fixed hardware. Based

on our implementation, the computational time of the above three methods can be roughly

characterized as d2 : d
√
d : 5d log d. Note that faster implementation of FFT algorithms will

lead to better computational time for CBE by further reducing the constant factor. Due

to the small storage requirement O(d), and the wide availability of highly optimized FFT

libraries, CBE is also suitable for implementation on GPU. Our preliminary tests based

on GPU shows up to 20 times speedup compared with CPU. In this chapter, for a fair

comparison, we use same CPU based implementation for all the methods.
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(a) #bits(CBE) = 6,400
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(b) #bits(CBE) = 12,800
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(c) #bits(CBE) = 25,600
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(d) # bits (all) = 6,400
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Figure 3.1: Recall on Flickr-25600. The standard deviation is within 1%. First Row:

Fixed time. “# bits” is the number of bits of CBE. Other methods are using fewer bits

to make their computational time identical to CBE. Second Row: Fixed number of bits.

CBE-opt/CBE-rand are 2-3 times faster than Bilinear-opt/Bilinear-rand, and hundreds of

times faster than LSH.

3.5.2 Retrieval

The recalls of different methods are compared on the three datasets, shown in Figure

3.1 – 3.3. The top row in each figure shows the performance of different methods when

the code generation time for all the methods is kept the same as that of CBE. For a

fixed time, the proposed CBE yields much better recall than other methods. Even CBE-

rand outperforms LSH and Bilinear code by a large margin. The second row compares

the performance for different techniques with codes of the same length. In this case, the

performance of CBE-rand is almost identical to LSH even though it is hundreds of time
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(b) #bits(CBE) = 12,800
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(c) #bits(CBE) = 25,600
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(d) # bits (all) = 64,00

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

 

 

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(e) # bits (all) = 12,800
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Figure 3.2: Recall on ImageNet-25600. The standard deviation is within 1%. First Row:

Fixed time. “# bits” is the number of bits of CBE. Other methods are using fewer bits

to make their computational time identical to CBE. Second Row: Fixed number of bits.

CBE-opt/CBE-rand are 2-3 times faster than Bilinear-opt/Bilinear-rand, and hundreds of

times faster than LSH.

faster. This is consistent with our analysis in Section 3.3. Moreover, CBE-opt/CBE-rand

outperform Bilinear-opt/Bilinear-rand in addition to being 2-3 times faster.

There exist several techniques that do not scale to the high-dimensional case. To com-

pare our method with those, we conduct experiments with fixed number of bits on a rela-

tively low-dimensional dataset (Flickr-2048), constructed by randomly sampling 2,048 di-

mensions of Flickr-25600. As shown in Figure 3.4, though CBE is not designed for such

scenario, the CBE-opt performs better or equivalent to other techniques except ITQ which

scales very poorly with d (O(d3)). Moreover, as the number of bits increases, the gap be-
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(a) #bits(CBE) = 12,800
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(b) #bits(CBE) = 25,600
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(c) #bits(CBE) = 51,200
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(d) # bits (all) = 12,800
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(e) # bits (all) = 25,600

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

Number of retrieved points

 

 

LSH

Bilinear−rand

Bilinear−opt

CBE−rand

CBE−opt

(f) # bits (all) = 51,200

Figure 3.3: Recall on ImageNet-51200. The standard deviation is within 1%. First Row:

Fixed time. “# bits” is the number of bits of CBE. Other methods are using fewer bits

to make their computational time identical to CBE. Second Row: Fixed number of bits.

CBE-opt/CBE-rand are 2-3 times faster than Bilinear-opt/Bilinear-rand, and hundreds of

times faster than LSH.

tween ITQ and CBE becomes much smaller suggesting that the performance of ITQ is not

expected to be better than CBE even if one could run ITQ on high-dimensional data.

3.5.3 Classification

Besides retrieval, we also test the binary codes for classification. The advantage is to

save on storage, allowing even large-scale datasets to fit in memory [127, 183]. We follow the

asymmetric setting of [183] by training linear SVM on binary code sign(Rx), and testing

on the original Rx. Empirically, this has been shown to give better accuracy than the
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Original LSH Bilinear-opt CBE-opt

25.59±0.33 23.49±0.24 24.02±0.35 24.55 ±0.30

Table 3.3: Multiclass classification accuracy (%) on binary coded ImageNet-25600. The

binary codes of same dimensionality are 32 times more space efficient than the original

features (single-float).
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Figure 3.4: Performance comparison on relatively low-dimensional data (Flickr-2048) with

fixed number of bits. CBE gives comparable performance to the state-of-the-art even on

low-dimensional data as the number of bits is increased. However, these other methods do

not scale to very high-dimensional data setting which is the main focus of this work.

symmetric procedure. We use ImageNet-25600, with randomly sampled 100 images per

category for training, 50 for validation and 50 for testing. The code dimension is set as

25,600. As shown in Table 3.3, CBE, which has much faster computation, does not show

any performance degradation compared with LSH or bilinear codes in the classification task.

3.6 Semi-supervised Extension

In some applications, one can have access to a few labeled pairs of similar and dissimilar

data points. Here we show how the CBE formulation can be extended to incorporate such
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information in learning. This is achieved by adding an additional objective term J(R).

argmin
B,r

||B−XRT ||2F + λ||RRT − I||2F + µJ(R) (3.27)

s.t. R = circ(r),

J(R) =
∑
i,j∈M

||Rxi −Rxj ||22 −
∑
i,j∈D

||Rxi −Rxj ||22. (3.28)

Here M and D are the set of “similar” and “dissimilar” instances, respectively. The

intuition is to maximize the distances between the dissimilar pairs and minimize the dis-

tances between the similar pairs. Such a term is commonly used in semi-supervised binary

coding methods [216]. We again use the time-frequency alternating optimization procedure

of Section 3.4. For a fixed r, the optimization procedure to update B is the same. For

a fixed B, optimizing r is done in frequency domain by expanding J(R) as below, with

similar techniques used in Section 3.4.

||Rxi −Rxj ||22 = (1/d)||diag(F(xi)−F(xj))r̃||22. (3.29)

Therefore,

J(R) = (1/d)(<(r̃)TA<(r̃) + =(r̃)TA=(r̃)), (3.30)

where A = A1 + A2 −A3 −A4, and

A1 =
∑

(i,j)∈M

<(diag(F(xi)−F(xj)))
T<(diag(F(xi)−F(xj))), (3.31)

A2 =
∑

(i,j)∈M

=(diag(F(xi)−F(xj)))
T=(diag(F(xi)−F(xj))), (3.32)

A3 =
∑

(i,j)∈D

<(diag(F(xi)−F(xj)))
T<(diag(F(xi)−F(xj))), (3.33)

A4 =
∑

(i,j)∈D

=(diag(F(xi)−F(xj)))
T=(diag(F(xi)−F(xj))). (3.34)

Hence, the optimization can be carried out as in Section 3.4, where M in (3.16) is

simply replaced by M + µA. Our experiments show that the semi-supervised extension

improves over the non-semi-supervised version by 2% in terms of averaged AUC on the

ImageNet-25600 dataset.
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3.7 Conclusion and Future Works

We proposed Circulant Binary Embedding (CBE) for generating long codes for very

high-dimensional data. We showed that the angle preserving property of randomized CBE

can be as good as LSH when applied on high-dimensional data. A novel time-frequency

alternating optimization was also introduced to learn the model parameters from the train-

ing data. The proposed method has time complexity O(d log d) and space complexity O(d),

while showing no performance degradation on real-world data compared with more expen-

sive approaches (O(d2) or O(d1.5)). On the contrary, for the fixed time, it showed significant

accuracy gains. The full potential of the method can be unleashed when applied to ultra-

high dimensional data (say d ∼100M), for which no other methods are applicable.

For the future works, we are exploring alternative structured projections which can be

even more flexibility in terms of the computation and space cost. It is also worthwhile to

explore generalized FFT or FFTs defined on other finite groups [108, 140, 175].
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Chapter 4

Circulant Neural Network

4.1 Introduction

Deep neural network-based methods have recently achieved dramatic accuracy improve-

ments in many areas of computer vision, including image classification [110, 237, 132],

object detection [69, 185], face recognition [200, 198], and text recognition [18, 91]. These

high-performing methods rely on deep networks containing millions or even billions of pa-

rameters. For example, the work by Krizhevsky et al.[110] achieved breakthrough results

on the 2012 ImageNet challenge using a network containing 60 million parameters with

five convolutional layers and three fully-connected layers. The “DeepFace” system [200]

obtained face verification results close to human performance on the Labeled Faces in the

Wild (LFW) dataset with a network containing 120 million parameters and a mix of con-

volutional, locally-connected, and fully-connected layers. If only fully-connected layers are

applied, the number of parameters can grow to billions [46]. During the training stage, in

order to avoid overfitting, usually millions of training samples are required to train such

high-dimensional models, demanding heavy computational processing.

As larger neural networks are considered, with more layers and also more nodes in

each layer, reducing their storage and computational costs become critical to meet the

requirements of practical applications. Current efforts towards this goal focus mostly on the

optimization of convolutional layers [90, 141, 56], which consume the bulk of computational

processing in modern convolutional architectures. We instead explore the redundancy of
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parameters in fully-connected layers, which are often the bottleneck in terms of memory

consumption. In this chapter, we propose a solution based on circulant projections to

significantly reduce the storage and computational costs of fully-connected neural network

layers while maintaining competitive error rates.

A basic computation in a fully-connected neural network layer is

h(x) = φ(Rx), (4.1)

where R ∈ Rk×d, and φ(·) is a element-wise nonlinear activation function. The above oper-

ation connects a layer with d nodes and a layer with k nodes. In a multi-layer perceptron,

for example, all the layers are fully-connected. In convolutional neural networks, the fully

connected layers are often used before the final softmax output layer, in order to capture

global properties of the image. The computational complexity and space complexity of this

linear projection are O(dk). In practice, k is usually comparable or even larger than d.

This leads to computation and space complexity at least O(d2), creating a bottleneck for

many neural network architectures. In fact, fully-connected layers in modern convolutional

architectures typically contain over 90% of the network parameters.

In this work, we propose to impose a circulant structure on the projection matrix R in

(4.1). This special structure allows us to use the Fast Fourier Transform (FFT) to speed

up the computation. Considering a neural network layer with d input nodes, and d output

nodes, the proposed method reduces dramatically the complexity from O(d2) to O(d log d),

and space complexity from O(d2) to O(d). Table 4.1 compares the computation and space

complexity of the proposed approach with the conventional method.

Although the circulant matrix is highly structured with very small amount of parameters

(O(d)), it captures the global information well and does not impact the final performance

much. We show by experiments that our method can provide a significant reduction of

storage and computational costs while achieving very competitive error rates. Our work

makes the following contributions:

• We propose to impose the circulant structure on the linear projection matrix of fully-

connected layers of neural networks in order to speed up computations and reduce storage

costs. (Section 4.3)
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Method Time Space Time (Learning)

Conventional NN O(d2) O(d2) O(Nd2)

Circulant NN O(d log d) O(d) O(Nd log d)

Table 4.1: Comparison of the proposed method with neural networks based on unstructured

projections. We assume a fully-connected layer, and the number of input nodes and number

of output nodes are both d. N is the number of training examples.

• We propose a method which can efficiently optimize the neural network while keeping

the circulant structure. (Section 4.5)

• We demonstrate by experiments on visual data that the proposed method can speed up

the computation and reduce memory needs while maintaining competitive error rates. In

addition, with much fewer parameters, our method is empirically shown to require less

training data. (Section 4.6)

4.2 Related Works

Compressing Neural Networks. The work of Collins and Kohli [39] addressed the

problem of memory usage in deep networks by applying sparsity-inducing regularizers dur-

ing training to encourage zero-weight connections in the convolutional and fully-connected

layers. Different from the above methods where memory consumption is reduced only at

test time, our method cuts down storage costs at both training and testing times. Other

approaches exploited low-rank matrix factorization [182, 48] to reduce the number of neural

network parameters. In contrast, our approach exploits the redundancy in the parametriza-

tion of deep architectures by imposing a circulant structure on the projection matrix, re-

ducing its storage to a single column vector, while allowing the use of FFT for faster

computation.

Techniques based on knowledge distillation [84] aimed to compress the knowledge of a

network with a large set of parameters into a compact and fast-to-execute network model.

This can be achieved by training a compact model to imitate the soft outputs of a larger

model. Romero et al. [177] further showed that the intermediate representations learned by
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the large model serve as hints to improve the training process and final performance of the

compact model. In contrast, our work does not require the training of an auxiliary model.

Network in Network [132] was recently proposed as a tool for richer local patch mod-

eling in convolutional networks, where linear convolutions in each layer were replaced by

convolving the input with a micro-network filter defined, for example, by a multi-layer per-

ceptron. The inception architecture [199] extended this work by using these micro-networks

as dimensionality reduction modules to remove computational bottlenecks and reduce stor-

age costs. A key differentiating aspect is that we focus on modeling global dependencies

and reducing the cost of fully connected layers, which usually contain the large majority

of parameters in standard configurations. Therefore, our work is complementary to these

methods. Although Lin et al. [132] suggested that fully-connected layers could be replaced

by average pooling without hurting performance for general image classification, other work

in computer vision [200] and speech recognition [193] highlighted the importance of these

layers to capture global dependencies and achieve state-of-the-art results.

Speeding up Neural Networks. Several recent methods have been proposed to

speed-up the computation of neural networks, with the focus on convolutional architectures

[90, 141, 56, 49]. Related to our work, Mathieu et al. [141] used the Fast Fourier Transform

to accelerate the computation of convolutional layers, through the well-known Convolution

Theorem. In contrast, our work focuses on the optimization of fully-connected layers by

imposing the circulant structure on the weight matrix of each layer to speed up the com-

putation in both training and testing stages. In the context of object detection, many

techniques such as detector cascades or segmentation-based selective search [205, 56] have

been proposed to reduce the number of candidate object locations in which a deep neural

network is applied. Our proposed approach is complementary to these techniques. Other

approaches for speeding up neural networks rely on hardware-specific optimizations. For

example, fast neural network implementations have been proposed for GPUs [51], CPUs

[206], and FPGAs [59]. Our method is also related to the recent efforts of “shallow” neural

networks, which showed that sometimes shallow structures can match the performance of

deep structures [143, 144, 88, 235].
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4.3 Circulant Neural Network

We present the general framework of using circulant projections to speed up fully con-

nected layers of a neural network. For x ∈ Rd, defined its d-dimensional output with

r ∈ Rd:

h(x) = φ(RDx), R = circ(r), (4.2)

where the circulant matrix R and the sign flipping matrix D in defined as in Section 2.3.

For d-dimensional data, the 1-layer circulant neural network has space complexity O(d),

and time complexity O(d log d). Following the former section, because the multiplication

with D can be seen as an O(d) pre-processing step, we will omit it for clear presentation.

The setting of k = d is commonly used in fully connected layers of recent convolutional

neural network architectures. When k 6= d, the framework can be adapted based on Section

2.3.21.

It is shown in previous works that when the parameters of the circulant projection matrix

are generated iid from the standard normal distribution, the circulant projection (with the

random sign flipping matrix) mimics an unstructured randomized projection [82, 212, 234].

It is then reasonable to conjecture that randomized circulant projections can also achieve

good performance in neural networks (compared with using unstructured randomized matri-

ces). This is indeed true as shown in the experiment section. And same as binary embedding

and kernel approximation, by optimizing the parameters of the projection matrix, we can

significantly improve the performance.

4.4 Randomized Circulant Neural Networks

We first consider the case where the elements of r in (4.2) are generated independently

from a standard normal distribution N (0, 1). We refer to these models as randomized

circulant neural networks. In this case, the parameters of the circulant projections are

defined by random weights, without optimization. In other words, in the optimization

process, only the parameters of convolutional layers and the softmax classification layer are

1For k > d, our experimental results are based on the “padding zero” approach.
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optimized. This setting is interesting to study as it provides insight on the “capacity” of

the model, independent on specific optimization mechanisms.

We will show by experiments that compared with unstructured randomized neural net-

works, the circulant neural network is faster with the same amount of nodes while keeping

similar performance. This surprising result is in line with the recent theoretical/empirical

discoveries of using circulant projections on dimensionality reduction [212], and binary

embedding [234]. It has been shown that the circulant projection behaves very similarly

compared with fully randomized projections in terms of the distance preserving properties.

In other words, the randomized circulant projection can be seen as a simulation of the

unstructured randomized projection, both of which can capture global information of the

data.

In addition, we will show that with the optimizations described in Section 4.5.1, the error

rate of the neural networks decreases significantly, meaning that the circulant structure is

flexible and powerful enough to be used in a data-dependent fashion.

4.5 Training Circulant Neural Networks

4.5.1 Gradient Computation

The most critical step for optimizing a neural network given a training set is to compute

the gradient of the error function with respect to the network weights. Let us consider

the conventional neural network with two layers, where the first layer computes the linear

projection followed by a nonlinear activation function:

h(x) = φ(Rx), (4.3)

where R is an unstructured matrix. We assume the second layer is a linear classifier with

weights w. Therefore the output of the two-layer neural network is

J(x) = wTφ(Rx) (4.4)

When training the neural network, computing the gradient of the error function involves
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computing the gradient of J(x) with respect to each entry of R. It is easy to show that

∂J(x)

∂Rij
= wiφ

′(Ri·x)xj , i = 0, · · · , d− 1, j = 0, · · · , d− 1. (4.5)

where φ′(·) is the derivative of φ(·).

Note that (4.5) suffices for the gradient-based optimization of neural networks, as the

gradient w.r.t. networks with more layers can simply be computed with the chain rule,

leading to the well-known “back-propagation” scheme.

In the circulant case, we need to compute the gradient of the following objective function:

J(x) = wTφ(Rx) =
d−1∑
i=0

wiφ (Ri·x) , R = circ(r). (4.6)

It is easy to show that

∂wTφ(Rx)

∂ri
= wT

(
φ′(Rx) ◦ s→i(x)

)
= s→i(x)T (w ◦ φ′(Rx)) (4.7)

s→i(·) : Rd → Rd, right (downwards for a column vector) circularly shifts the vector by one

element. Therefore,

∇rJ(x) =[s→0(x), s→1(x), · · · , s→(d−1)(x)]T (w ◦ φ′(Rx)) (4.8)

= circ(s→1(rev(x)))(w ◦ φ′(Rx))

=s→1(rev(x)) ~ (w ◦ φ′(r ~ x)),

where rev(x) = (xd−1, xd−2, · · · , x0), s→1(rev(x)) = (x0, xd−1, xd−2, · · · , x1). The above uses

the same trick of converting the circulant matrix multiplication to circulant convolution.

Therefore, computing the gradient takes only O(d log d) time with FFT. Training a multi-

layer neural network is nothing more than applying (4.7) in each layer with the chain rule.

Note that when k < d, we can simply set the last d− k entries of w in (4.4) to be zero.

And when k > d, the above derivations can be applied with minimal changes.

4.6 Experiments

We apply our model to three standard datasets in our experiments: MNIST, CIFAR-10,

and ImageNet. We note that it is not our goal to obtain state-of-the-art results on these
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Method Train Error Test Error Memory (MB) Testing Time (sec.)

LeNet 0.35% 0.92% 1.56 3.06

Circulant LeNet 0.47% 0.95% 0.27 2.14

Table 4.2: Experimental results on MNIST.

datasets, but rather to provide a fair analysis of the effectiveness of circulant projections

in the context of deep neural networks, compared with unstructured projections. Next

we describe our implementation and analysis of accuracy and storage costs on these three

datasets, followed by an experiment on reduced training set size.

4.6.1 Experiments on MNIST

The MNIST digit dataset contains 60,000 training and 10,000 test images of ten hand-

written digits (0 to 9), with 28 × 28 pixels. We use the LeNet network [124] as our basic

CNN model, which is known to work well on digit classification tasks. LeNet consists of

a convolutional layer followed by a pooling layer, another convolution layer followed by a

pooling layer, and then two fully connected layers similar to the conventional multilayer

perceptrons. We used a slightly different version from the original LeNet implementation,

where the sigmoid activations are replaced by Rectified Linear Unit (ReLU) activations for

the neurons.

Our implementation is extended from Caffe [93], by replacing the weight matrix with

the proposed circulant projections with the same dimensionality. The results are compared

and shown in Table 4.2. Our fast circulant neural network achieves an error rate of 0.95%

on the full MNIST test set, which is very competitive to the 0.92% error rate from the

conventional neural network. At the same time, the circulant LeNet is 5.7x more space

efficient and 1.43x more time efficient than LeNet.

4.6.2 Experiments on CIFAR

CIFAR-10 is a dataset of natural 32x32 RGB images covering 10-classes with 50,000

images for training and 10,000 for testing. Images in CIFAR-10 vary significantly not only

in object position and object scale within each class, but also in object colors and textures.
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Method Train Error Test Error Memory (MB) Testing Time (sec.)

CIFAR-10 CNN 4.45% 15.60% 0.45 4.56

Circulant CIFAR-10 CNN 6.57% 16.71% 0.12 3.92

Table 4.3: Experimental results on CIFAR-10.

Method Top-5 Error Top-1 Error Memory (MB)

Randomized AlexNet 33.5% 61.7% 233

Randomized Circulant CNN 1 35.2% 62.8% 12.5

AlexNet 17.1 % 42.8% 233

Circulant CNN 1 19.4 % 44.1% 12.5

Circulant CNN 2 17.8 % 43.2% 12.7

Reduced-AlexNet 37.2 % 65.3% 12.7

Table 4.4: Classification error rate and memory cost on ILSVRC-2010.

The CIFAR10-CNN network [83] used in our test consists of 3 convolutional layers, 1

fully-connected layer and 1 softmax layer. Rectified linear units (ReLU) are used as the ac-

tivation units. The circulant CIFAR10-CNN is implemented by adding the circulant weight

matrix into the the fully connected layer. Images are cropped to 24x24 and augmented with

horizontal flips, rotation, and scaling transformations. We use an initial learning rate of

0.001 and train for 700-300-50 epochs with their default weight decay.

A comparison of the error rates obtained by circulant and unstructured projections is

shown in Table 4.3. Our efficient approach based on circulant networks obtains test error

of 16.71% on this dataset, compared with 15.60% obtained by the conventional model. At

the same time, the circulant networks is 4x more space efficient and 1.2x more time efficient

than the conventional CNN.

4.6.3 Experiments on ImageNet (ILSVRC-2010)

ImageNet is a dataset containing over 15 million labeled high-resolution images be-

longing to roughly 22,000 categories. Starting in 2010, as part of the Pascal Visual Object
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Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Chal-

lenge (ILSVRC) has been held. A subset of ImageNet with roughly 1000 images in each of

1000 considered categories is used in this challenge. Our experiments were performed on

the ILSVRC-2010 dataset.

We use a standard CNN network – “AlexNet” [110] as the building block. The AlexNet

consists of 5 convolutional layers, 2 fully-connected layers and 1 final softmax layer. Rec-

tified linear units (ReLU) are used as the activation units. Pooling layers and response

normalization layers are also used between convolutional layers. Our circulant network

version involves three components: 1) a feature extractor, 2) fully circulant layers, and 3)

a softmax classification layer. For 1 and 3 we utilize the Caffe package [93]. For 2, we

implement it with Cuda FFT.

All models are trained using mini-batch stochastic gradient descent (SGD) with momen-

tum on batches of 128 images with the momentum parameter fixed at 0.9. We set the initial

learning rate to 0.01 and manually decrease the learning rate if the network stops improving

as in [110] according to a schedule determined on a validation set. Dataset augmentation

is also exploited.

Table 4.4 shows the error rate of various models. We have used two types of structures for

the proposed method. Circulant CNN 1 replaces the fully connected layers of AlexNet with

circulant layers. Circulant CNN 2 uses “fatter” circulant layers compared with Circulant

CNN 1: d of Circulant CNN 2 is set to be 214. In “Reduced AlexNet”, we reduce the

parameters size on the fully-connected layer of the original AlexNet to the similar size of

our Circulant CNN by cutting d. We have the following observations.

• The performance of Randomized Circulant CNN 12 is very competitive to the Randomized

AlexNet. This is expected as the circulant projection closely simulates a fully randomized

projection (Section 4.3).

• Optimization significantly improves the performance for both unstructured projections

and circulant projections. The performance of Circulant CNN 1 is very competitive to

AlexNet, yet with a fraction of the space cost.

2This is Circulant CNN 1 with randomized circulant projections. In other words, only the convolutional

layer is optimized.
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d Full proj. Circulant proj. Speedup Space Saving (in fully connected layer)

210 2.97 2.52 1.18x 1,000x

212 3.84 2.79 1.38x 4,000x

214 19.5 5.43 3.60x 30,000x

Table 4.5: Comparison of training time (ms/per image) and space of full projection and

circulant projection. The speedup is defined as the time of circulant projection divided

by the time of unstructured projection. Space saving is defined as the space of storing

the circulant model by the space of storing the unstructured matrix. The unstructured

projection matrix in conventional neural networks takes more than 90% of the space cost.

In AlexNet, d is 212.

• By tweaking the structure to include more parameters, Circulant CNN 2 further drops

the error rate to 17.8%, yet it takes only marginally larger amount of space compared

with Circulant CNN 1, an 18x space saving compared with AlexNet.

• With the same memory cost, the Reduced AlexNet performs much worse than Circulant

CNN 1.

In addition, one interesting finding is that “dropout”, which is widely used in training

CNN, does not improve the performance of circulant neural networks. In fact, it increases

the error rate from 19.4% (without dropout) to 20.3% (not shown in the figure). This

indicates that the proposed method is more immune to over-fitting.

We also show the training time (per image) on standard and the circulant version of

AlexNet. We vary the number of hidden nodes d in the fully connected layers and compare

the training time until the model converges (ms/per image). Table 4.5 shows the result.

Our method provides dramatic space saving, and significant speedup compared with the

conventional approach.

4.6.4 Reduced Training Set Size

Compared with the neural network model with unstructured projections, the circulant

neural network has fewer parameters. Intuitively, this may bring the benefit of better model
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Figure 4.1: Test error when training with reduced dataset sizes of circulant CNN and

conventional CNN.

generalization. In other words, the circulant neural network might be less data hungry

compared with the conventional neural networks. To verify our assumption, we report the

performance of each model under different training sizes on MINST and CIFAR-10 datasets.

Figure 4.1 shows test error rate when training on a random selection of 1,000, 2,000, 3,000,

5,000, 10,000, and half of training set. On the MNIST set, to achieve a fixed error rate, the

circulant models need less data. On CIFAR-10, this improvement is limited as the circulant

layer only occupies a small part of the model.

4.7 Discussions

Fully Connected Layer vs. Convolution Layer. The goal of the method developed

in this paper is to improve the efficiency of the fully connected layers of neural networks.

In convolutional architectures, the fully connected layers are often the bottleneck in terms

of the space cost. For example, in “Alexnet”, the fully connected layers take 95% of the

storage. Remarkably, the proposed method enables dramatic space saving in the fully

connected layer (4000x as shown in Table 4.5), making it negligible in memory compared

with the convolutional layers. Our discovery resonates with the recent works showing that

the fully connected layers can be compressed, or even completely removed [132, 199].
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In addition, the fully connected layer costs roughly 20% – 30% of the computation time

based on our implementation. The FFT-based implementation can further improve the time

cost, though not as impressive as the space saving aspect. Our method is complementary

to the works improving the time and space cost of convolutional layers [90, 141, 56, 49].

Circulant Projection vs. 2D Convolution. One may notice that although our

approach leverages convolutions for speeding up computations, it is fundamentally differ-

ent from the convolutions performed in CNNs. The convolution filters in CNNs are all

small 2D filters aiming at capturing local information of the images, whereas the proposed

method is used to replace the fully connected layers, which are often “big” layers capturing

global information. The operation involved is large 1D convolutions rather than small 2D

convolutions. The circulant projection can be understood as “simulating” an unstructured

projection, with much less cost. Note that one can also apply FFT to compute the convo-

lutions on the 2D convolutional layers, but due to the computational overhead, the speed

improvement is generally limited on small-scale problems. In contrast, our method can

be used to dramatically speed up and scale the processing in fully connected layers. For

instance, when the number of input nodes and output nodes are both 1 million, the con-

ventional linear projection is essentially impossible, as it requires TBs of memory. On the

other hand, doing a convolution of two 1 million dimensional vector is a light computation

task with FFT.

Towards Larger Neural Networks. Currently, deep neural network models usually

contain hundreds of millions of parameters. In real world applications, there exist problems

which involve an increasing amount of data. We may need larger and deeper networks

to learn better representations from large amounts of data. Compared with unstructured

projections, the circulant projection significantly reduces the computation and storage cost.

Therefore, with the same amount of resources, circulant neural networks can use deeper,

as well as larger fully-connected networks. We have conducted preliminary experiments

showing that the circulant model can be extended at least 10x deeper than conventional

neural networks with the same scale of computational resources.
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4.8 Conclusion and Future Works

We proposed to use circulant projections to replace the unstructured projections in or-

der to optimize fully connected layers of neural networks. This dramatically improves the

computational complexity from O(d2) to O(d log d) and space complexity from O(d2) to

O(d). An efficient approach was proposed for optimizing the parameters of the circulant

projections. We showed by experiments that this optimization can lead to much faster

convergence and training time compared with conventional neural networks. Our exper-

imental analysis was carried out on three standard datasets, showing the effectiveness of

the proposed approach. We also reported experiments on randomized circulant projections,

achieving performance similar to that of unstructured randomized projections. Our ongoing

work includes exploring different matrix structures for circulant neural networks.
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Chapter 5

Compact Nonlinear Maps with

Circulant Extension

5.1 Introduction

Kernel methods such as the Support Vector Machines (SVMs) [40] are widely used in

machine learning to provide nonlinear decision function. The kernel methods use a positive-

definite kernel function K to induce an implicit nonlinear map ψ such that K(x,y) =

〈ψ(x), ψ(y)〉, x,y ∈ Rd. This implicit feature space could potentially be an infinite dimen-

sional space. Fortunately, kernel methods allow one to utilize the power of these rich feature

spaces without explicitly working in such high dimensions. Kernel methods are also widely

used in solving computer vision problems [120].

Despite their popularity, the kernel machines come with high computational cost due

to the fact that at the training time it is necessary to compute a large kernel matrix of size

N × N where N is the number of training points. Hence, the overall training complexity

varies from O(N2) to O(N3), which is prohibitive when training with millions of samples.

Testing also tends to be slow due to the linear growth in the number of support vectors

with training data, leading to O(Nd) complexity for d-dimensional vectors.

On the other hand, linear SVMs are appealing for large-scale applications since they can

be trained in O(N) time [97, 58, 187] and applied in O(d) time, independent of N . Hence,

if the input data can be mapped nonlinearly into a compact feature space explicitly, one
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can utilize fast training and testing of linear methods while still preserving the expressive

power of kernel methods.

Following this reasoning, kernel approximation via explicit nonlinear maps has become

a popular strategy for speeding up kernel machines [171]. Formally, given a kernel K(x,y),

kernel approximation aims at finding a nonlinear map Z(·), such that

K(x,y) ≈ Z(x)TZ(y) (5.1)

In the computer vision community in specific, different types of nonlinear maps have been

developed to approximate intersection kernels [137], additive kernels [208], skewed multi-

plicative histogram kernels [125] etc.

However, there are two main issues with the existing nonlinear mapping methods. Before

the kernel approximation, a “good” kernel has to be chosen. Choosing a good kernel is

perhaps an even more challenging problem than approximating a known kernel. In addition,

the existing methods are designed to approximate the kernel in the whole space independent

on the data. As a result, the feature mapping often needs to be high-dimensional in order

to achieve low kernel approximation error.

In this chapter, we first propose the Compact Nonlinear Map (CNM), a formulation

that optimizes the nonlinear maps directly in a data-dependent fashion. Specifically, we

adopt the Random Fourier Feature framework [171] for approximating positive definite

shift-invariant kernels. Instead of generating the parameter of the nonlinear map randomly

from a distribution, we learn the parameters by minimizing the classification loss based

on the training data (Section 5.4). The proposed method can be seen as approximating

an “optimal kernel” for the classification task. The method results in significantly more

compact maps with very competitive classification performance. As a by-product, the

same framework can also be used to achieve compact kernel approximation if the goal is

to approximate some predefined kernels (Section 5.4.3). The proposed compact nonlinear

maps are fast to learn and compare favorably to the baselines.

To make the method scalable for very high-dimensional data, we then propose to use

circulant structured projection matrices under the CNM framework (Section 5.7). This

further improves the computational complexity from O(kd) to O(k log d) and the space
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complexity from O(kd) to O(k), where k is the number of nonlinear maps, and d is the

input dimensionality.

5.2 Related Works

Kernel Approximation. Following the seminal work on explicit nonlinear feature

maps for approximating positive definite shift-invariant kernels [171], nonlinear mapping

techniques have been proposed to approximate other forms of kernels such as the polynomial

kernel [103, 168], generalized RBF kernels [195], intersection kernels [137], additive kernels

[208], skewed multiplicative histogram kernels [125], and semigroup kernel [224]. Techniques

have also been proposed to improve the speed and compactness of kernel approximations

by using structured projections [123], better quasi Monte Carlo sampling [223], binary code

[239, 147], and dimensionality reduction [80]. Our method in this chapter is built upon the

Random Fourier Feature [171] for approximating shift-invariant kernel, a widely used kernel

type in machine learning. Besides explicit nonlinear maps, kernel approximation can also

be achieved using sampling-based low-rank approximations of the kernel matrices such as

the Nystrom method [219, 53, 115]. In order for these approximations to work well, the

eigenspectrum of the kernel matrix should have a large gap [225].

Kernel Learning. There have been significant efforts in learning a good kernel for the

kernel machines. Works have been proposed to optimize the hyperparameters of a kernel

function [30, 105], and finding the best way of combining multiple kernels, i.e., Multiple

Kernel Learning (MKL) [10, 7, 66, 41]. A summary of MKL can be found in [70]. Related to

our work, methods have been proposed to optimize shift-invariant kernels [13, 67]. Different

from the above, the approach in this chapter can be seen as learning an optimal kernel by

directly optimizing its nonlinear maps. Therefore, it is a joint kernel approximation and

kernel learning.

Fast Nonlinear Models. Besides kernel approximation, there have been other types

of works aiming at speeding up kernel machine [24]. Such techniques include decomposition

methods [155, 29], sparsifying kernels [2], limiting the number of support vectors [104, 164],

and low-rank approximations [63, 11]. Unfortunately, none of the above can be scaled to
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truly large-scale data. Another alternative is to consider the local structure of the data

to train and apply the kernel machines locally [116, 85, 100, 86]. However, partitioning

becomes unreliable in high-dimensional data. Our work is also related to shallow neural

networks as we will discuss in a later part of this chapter.

5.3 Random Fourier Features: A Review

We begin by reviewing the Random Fourier Feature method [171], which is widely used

in approximating positive-definite shift-invariant kernels. A kernel K is shift-invariant, if

K(x,y) = K(z) where z = x − y. For a function K(z) which is positive definite on Rd, it

guarantees that the Fourier transform of K(z),

K(θ) =
1

(2π)d/2

∫
ddzK(z) eiθ

T z , (5.2)

admits an interpretation as a probability distribution. This fact follows from Bochner’s

celebrated characterization of positive definite functions,

Theorem 5.1. [22] A function K ∈ C(Rd) is positive definite on Rd if and only if it is the

Fourier transform of a finite non-negative Borel measure on Rd.

A consequence of Bochner’s theorem is that the inverse Fourier transform of K(θ), i.e.,

K(z), can be interpreted as the computation of an expectation, i.e.,

K(z) =
1

(2π)d/2

∫
ddθK(θ) e−iθ

T z (5.3)

=Eθ∼p(θ) e
−iθT (x−y)

=2E θ∼p(θ)
b∼U(0,2π)

[
cos(θTx + b) cos(θTy + b)

]
,

where p(θ) = (2π)−d/2K(θ) and U(0, 2π) is the uniform distribution on [0, 2π). If the above

expectation is approximated using Monte Carlo with k random samples {θi, bi}ki=1, then

K(x,y) ≈ 〈Z(x), Z(y)〉 with

Z(x) =
√

2/k
[
cos(θT1 x + b1), ..., cos(θTk x + bk)

]T
. (5.4)

Such Random Fourier Features have been used to approximate different types of positive

definite shift-invariant kernels, including the Gaussian kernel, the Laplacian kernel, and the
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Cauchy kernel [171]. Despite the popularity and success of Random Fourier Feature, the

notable issues for all kernel approximation methods are that:

• Before performing the kernel approximation, a known kernel has to be chosen. This is

a very challenging task. As a matter of fact, the classification performance is influenced

by both the quality of the kernel, and the error in approximating it. Therefore, better

kernel approximation in itself may not lead to better classification performance.

• The Monte-Carlo sampling technique tries to approximate the kernel for any pair of

points in the entire input space without considering the data distribution. This usually

leads to very high-dimensional maps in order to achieve low kernel approximation error

everywhere.

In this chapter, we follow the Random Fourier Feature framework. Instead of sampling

the kernel approximation parameters θi and bi from a probability distribution to approxi-

mate a known kernel, we propose to optimize them directly with respect to the classification

objective. This leads to very compact maps as well as higher classification accuracy.

5.4 The Compact Nonlinear Map (CNM)

5.4.1 The Framework

Consider the following feature maps, and the resulted kernel based on the Random

Fourier Features proposed in [171]1:

K̂Θ(x,y) = Z(x)TZ(y), Zi(x) =
√

2/k cos(θTi x), i = 1, ..., k. (5.5)

By representing Θ = [θ1, · · · ,θk], we can write Z(x) = cos(ΘTx), where cos(·) is the

element-wise consine function.

Proposition 5.1. For any Θ, the kernel function K̂, defined as K̂Θ(x,y) = Z(x)TZ(y),

is a positive-definite shift-invariant kernel.

Proof. The shift-invariance follows from the fact that, for any x, y ∈ R

cos(x) cos(y) =
cos(x− y)− sin(x− y)

2
, is a function of x− y.

1For simplicity, we do not consider the bias term which can be added implicitly by augmenting the

dimension to the feature x.
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Algorithm 1 Optimizing w with fixed Θ

1: INPUT: initialized w, ||w|| < 1/
√
λ.

2: OUTPUT: updated w.

3: for t = 1 to T1 do

4: Sample M points to get A, and compute the gradient ∇w.

5: w← w − (1/λt)∇w.

6: w← min {1, 1/λ||w||}w.

7: end for

The positive definiteness follows from a direct computation and the definition.

In addition, it has been shown in the Bochner’s theorem that such a cosine map can

be used to approximate any positive shift-invariant kernels. Therefore, if we optimize the

“kernel approximation” parameters directly, it can be seen as approximating an optimal

positive definite shift-invariant kernel for the task. In this chapter, we consider the task of

binary classification using SVM. The proposed approach can be easily extended to other

scenarios such as multi-class classification and regression.

Suppose we have N samples with +1/-1 labels as training data (x1, y1), ..., (xN , yN ).

The Compact Nonlinear Maps (CNM) jointly optimize the nonlinear map parameters Θ

and the linear classifier w in a data-dependent fashion.

argmin
w,Θ

λ

2
wTw +

1

N

N∑
i=1

L
(
yi,w

TZ(xi)
)

(5.6)

In this chapter, we use the hinge loss as the loss function: L(yi,w
TZ(xi)) = max(0, 1 −

yiw
TZ(xi)).

5.4.2 The Alternating Minimization

Optimizing (5.6) is a challenging task. A large number of parameters need to be opti-

mized, and the problem is nonconvex. In this chapter, we propose to find a local solution

of the optimization problem with Stochastic Gradient Descent (SGD) in an alternating

fashion.
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For a fixed Θ, the optimization of w is simply the traditional linear SVM learning

problem.

argmin
w

λ

2
wTw +

1

N

N∑
i=1

L
(
yi,w

TZ(xi)
)
. (5.7)

We use the Pegasos procedure [187] to perform SGD. In each step, we sample a small

set of data points A. The data points with non-zero loss are denoted as A+. Therefore, the

gradient can be written as

∇w = λw − 1

|A|
∑

(x,y)∈A+

y cos(ΘTx). (5.8)

Each step of the Pegasos procedure consists of gradient descent and a projection step. The

process is summarized in Algorithm 1.

For a fixed w, optimizing Θ becomes

argmin
w

1

N

N∑
i=1

L
(
yi,w

TZ(xi)
)
. (5.9)

We also preform SGD with sampled mini-batches. Let the set of sampled data points

be A, the gradient can be written as

∇θi =
wi
|A|

∑
(x,y)∈A+

y sin(θTi x)x, (5.10)

where A+ is the set of samples with non-zero loss, and wi is the i-th element of w. The

process is summarized in Algorithm 2.

The overall algorithm is shown in Algorithm 3. The sampled gradient descent steps

are repeated to optimize w and Θ alternatively. We use a Θ obtained from sampling the

Gaussian distribution (same as Random Fourier Feature) as initialization.

5.4.3 CNM for Kernel Approximation

In the previous sections, we presented the Compact Nonlinear Maps (CNM) optimized

to achieve low classification error. This framework can also be used to achieve compact

kernel approximation. The idea is to optimize with respect to kernel approximation error.

For example, given a kernel function K, we can minimize Θ in terms of the MSE on the
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Algorithm 2 Optimizing Θ with fixed w

1: INPUT: initialized Θ.

2: OUTPUT: updated Θ.

3: for t = 1 to T2 do

4: Sample M points to get A, and compute the gradient ∇Θ.

5: Θ← Θ− (1/λt)∇Θ.

6: end for

Algorithm 3 The Compact Nonlinear Map (CNM)

1: Initialize Θ as the Random Fourier Feature.

2: Choose w such that ||w|| < 1/
√
λ.

3: for iter= 1 to T do

4: Perform T1 SGD (Pegasos [187]) steps to optimize w, shown in Algorithm 1.

5: Perform T2 SGD steps with to optimize Θ, shown in Algorithm 2.

6: end for

training data:

argmin
Θ

N∑
i=1

N∑
j=1

(
K(xi,xj)− Z(xi)

TZ(xj)
)2
. (5.11)

This can be used to achieve more compact kernel approximation by considering the

data under consideration. Note that the ultimate goal of a nonlinear map is to improve the

classification performance. Therefore, this section should be viewed only as a by-product

of the proposed method.

For the optimization, we can also perform SGD similar to the former section. Let A be

the set of random samples, we only need to compute the gradient in terms of Θ:

∇θi =
8

k

∑
x,x′∈A

(
K(x,x′)− 2

k
cos(ΘTx)T cos(θTx′)

)
sin(θTi x) cos(θTi x′)xi. (5.12)

5.5 Discussions

We presented Compact Nonlinear Maps (CNM) with an alternating optimization al-

gorithm for the task of binary classification. CNM can be easily adapted to other tasks
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such as regression and multi-class classification. The only difference is that the gradient

computation of the algorithm needs to be changed. We provide a brief discussion regarding

adding regularization, and the relationship of CNM to neural networks.

Regularization. One interesting fact is that the cos function has an infinite VC di-

mension. In the proposed method, with a fixed w, if we only optimize Θ with SGD, the

magnitude of Θ will grow unbounded, and this will lead to near-perfect training accuracy,

and obviously, overfitting. Therefore, a regularizer over Θ should lead to better perfor-

mance. We have tested different types of regularizations of Θ such as the Frobenius norm,

and the `1 norm. Interestingly, such a regularization could only marginally improve the

performance. It appears that early stopping in the alternating minimization framework

provides reasonable regularization in practice on the tested datasets.

CNM as Neural Networks. One can view the proposed CNM framework from a

different angle. If we ignore the original motivation of the work i.e., kernel approximation

via Random Fourier Features, the proposed method can be seen as a shallow neural net-

work with one hidden layer, with cos(·) as the activation function, and the SVM objective.

It is interesting to note that such a “two-layer neural network”, which simulates certain

shift-invariant kernels, leads to very good classification performance as shown in the ex-

perimental section. Under the neural network view, one can also use back-propagation as

the optimization method, similar to the proposed alternating SGD, or use other types of

activation functions such as the sigmoid, and ReLU functions. However the “network” then

will no longer correspond to a shift-invariant kernel.

5.6 Experiments

We conduct experiments using 6 UCI datasets summarized in Table 5.1. Four of them

are image datasets (USPS, MNIST, CIFAR, LETTER). The size of the mini batches in the

optimization is empirically set as 500. The number of SGD steps in optimizing Θ and w

is set as 100. We find that satisfactory classification accuracy can be achieved within a few

hundred iterations. The bandwidth of the RBF kernel in classification experiments, and the

kernel approximation experiments is set to be γ = 2/σ2, where σ is the average distance to
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Table 5.1: 8 UCI datasets used in the experiments

Dataset # Training Samples # Testing Samples Dimensionality

USPS 7,291 2,007 256

MNIST 60,000 10,000 784

CIFAR 50,000 10,000 400

FOREST 522,910 58,102 54

LETTER 12,000 6,000 16

MAGIC04 14,226 4,795 10

the 50th nearest neighbor estimated from 1,000 samples of the dataset. Further fine tuning

of γ may lead to even better performance.

5.6.1 CNM for Classification

Figure 5.1 shows the classification accuracies. CNM-classification is the proposed method.

We compare it with three baselines: linear SVM based on the original features (Linear),

kernel SVM based on RBF (RBF), and the Random Fourier Feature method (RFFM). As

shown in the figures, all the datasets are not linearly separable, as the RBF SVM perfor-

mance is much better than the linear SVM performance.

• For all the datasets, CNM is much more compact than the Random Fourier Feature

to achieve the same classification accuracy. For example, on the USPS dataset, to get

90% accuracy, the dimensionality of CNM is 8, compared with 512 of RFFM, a 60x

improvement.

• As the dimensionality k grows, accuracies of both the RFFM and CNM improve, with

the RFFM approaching the RBF performance. In a few cases, the CNM performance

can be even higher than the RBF performance. This is due to the fact that CNM is

“approximating” an optimal kernel, which could be better than the fixed RBF kernel.
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Figure 5.1: Compact Nonlinear Map (CNM) for classification. RFFM: Random Fourier

Feature Map based on RBF kernel. CNM-kerapp: CNM for kernel approximation (Section

5.4.3). CNM-classification: CNM for classification (Section 5.4). RBF: RBF kernel SVM.

Linear: linear SVM based on the original feature.

5.6.2 CNM for Kernel Approximation

We conduct experiments on using the CNM framework to approximate a known kernel

(Section 5.4.3). The kernel approximation performance (measured by MSE) is shown in

Figure 5.2. CNM is computed with dimensionality up to 128. For all the datasets, CNM

achieves more compact kernel approximations compared with the Random Fourier Features.

We further use such features in the classification task. The performance is shown as the

green curve (CNM-kerapp) in Figure 5.1. Although CNM-kerapp has lower MSE in kernel

approximation than RFFM, its accuracy is only comparable or marginally better than

RFFM. This verifies the fact that better kernel approximation may not necessarily lead to
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Figure 5.2: Compact Nonlinear Map (CNM) for kernel approximation. RFFM: Random

Fourier Feature based on RBF kernel. CNM-kerapp: CNM for kernel approximation (Sec-

tion 5.4.3).

better classification.

5.7 Circulant Extension

Kernel approximation with nonlinear maps comes with an advantage that SVM can

be trained in O(N), and evaluated in O(k) time, leading to scalable learning and infer-

ence in terms of the number of samples. In this chapter, we have presented CNM where

the projection matrix of the Random Fourier Features is optimized to achieve high clas-

sification performance. For d-dimensional inputs and k-dimensional nonlinear maps, the

computational and space complexities of both CNM and RFFM are O(kd). CNM comes

with the advantage that k can be much smaller than that for RFFM to achieve a similar
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performance. One observation from Section 5.6 is that though CNM can lead to much more

compact maps, it still has better performance when higher-dimensional maps are used. In

many situations, it is required that the number of nonlinear map k is comparable to the

feature dimension d. This will lead to both space and computational complexities O(d2),

which is not suitable for high-dimensional datasets. One natural question to ask is whether

it is possible to improve further the scalability in terms of the input dimension d.

In this section, we show that by imposing the circulant structure on the projection ma-

trix, one can achieve similar kernel approximation performance compared with the fully

randomized matrix. The proposed approach reduces the computational complexity to

O(k log d), and the space complexity to O(k), when k ≥ d.

5.7.1 Circulant Nonlinear Maps

Following Section 2.3, for x ∈ Rd, its d-dimensional circulant nonlinear map is defined

as:

Z(x) =
√

2/d cos(RDx), R = circ(r), (5.13)

where D is a diagonal matrix with each diagonal entry being a Bernoulli variable (±1

with probability 1/2). Same as the former chapters, we omit the D matrix in the following

discussion. Following the analysis in Section 2.3, the proposed approach has time complexity

O(d log d). Following Section 2.3, when k < d, we can still use the circulant matrix R ∈

Rd×d with d parameters, but the output is set to be the first k elements in (5.13). When

k > d, we use multiple circulant projections, and concatenate their outputs. This gives the

computational complexity O(k log d), and space complexity O(k). Note that in such case,

(5.13) should be normalized by
√

2/k instead of
√

2/d.

5.7.2 Randomized Circulant Nonlinear Maps

Similar to the Random Fourier Features, one can generate the parameters of the circulant

projection, i.e., the elements of vector r in (5.13), by random sampling from a Gaussian dis-

tribution. We term such a method randomized circulant nonlinear maps. Figure 5.3 shows

the kernel approximation MSE of the randomized circulant nonlinear maps and compares
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Figure 5.3: MSE of Random Fourier Feature, and randomized circulant nonlinear map.

it with the Random Fourier Features. Although with much lower computational and space

complexities, it is interesting that the circulant nonlinear map can achieve almost identical

MSE compared with the Random Fourier Features.

5.7.3 Optimized Circulant Nonlinear Maps

Following the CNM framework, one can optimize the parameters in the projection matrix

to improve the performance using alternating minimization procedure with the classification

objective. The step to optimize classifier parameters w is the same as described in section

5.4.2. The parameters of the projection are now given by circulant matrix R. Thus, the

step of optimizing R requires computing the gradient w.r.t. each element of vector r as:

∂wT cos(Rx)

∂ri
= −wT (sin(Rx) ◦ s→i(x)) = −s→i(x)T (w ◦ sin(Rx)), (5.14)

where s→i(·) : Rd → Rd, circularly (downwards) shifts the vector x by one element. There-

fore,

∇r(wT cos(Rx)) = −[s→0(x), s→1(x), · · · , s→(d−1)(x)]T (w ◦ sin(Rx)) (5.15)

= − circ(s→1(rev(x)))(w ◦ sin(Rx))

= −s→1(rev(x)) ~ (w ◦ sin(r ~ x)),

where rev(x) = (xd−1, xd−2, · · · , x0), s→1(rev(x)) = (x0, xd−1, xd−2, · · · , x1).

The above uses the same trick of converting the circulant matrix multiplication to cir-

culant convolution, and this has also been used in the circulant neural networks (Chapter
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Dataset (k) Random Fourier Feature Circulant-random Circulant-optimized

USPS (d) 89.05± 0.65 89.40± 1.02 91.96± 0.45

USPS (2d) 91.90± 0.29 91.87± 0.11 93.08± 0.96

MNIST (d) 91.33± 0.05 91.01± 0.03 92.73± 0.21

MNIST (2d) 92.95± 0.42 93.22± 0.30 94.11± 0.24

CIFAR (d) 69.14± 0.64 65.21± 0.18 71.17± 0.68

CIFAR (2d) 71.15± 0.28 68.56± 0.70 71.11± 0.46

Table 5.2: Classification accuracy (%) using circulant nonlinear maps. The randomized

circulant nonlinear maps have similar performance as of the Random Fourier Features but

with significantly reduced storage and computation time. Optimization of circulant matrices

tends to further improve the performance.

4). Therefore, computing the gradient of r takes only O(d log d) time. The classification

accuracy on three datasets with relatively large feature dimensions is shown in Table 5.2.

The randomized circulant nonlinear maps give similar performance to that from the Ran-

dom Fourier Features but with much less storage and computation time. Optimization of

circulant matrices tends to further improve the performance.

5.8 Conclusion and Future Works

We have presented Compact Nonlinear Maps (CNM), which are motivated by the recent

works on kernel approximation that allow very large-scale learning with kernels. This work

shows that instead of using randomized feature maps, learning the feature maps directly,

even when restricted to shift-invariant kernel family, can lead to substantially compact maps

with similar or better performance. The improved performance can be attributed mostly

to simultaneous learning of kernel approximation along with the classifier parameters. This

framework can be seen as a shallow neural network with a specific nonlinearity (cosine)

and provides a bridge between two seemingly unrelated streams of works. To make the

proposed approach more scalable for high-dimensional data, we further introduced an ex-

tension, which imposes the circulant structure on the projection matrix. This improves the

computation complexity from O(kd) to O(k log d) and the space complexity from O(kd) to



CHAPTER 5. COMPACT NONLINEAR MAPS WITH CIRCULANT EXTENSION 67

O(k), where d is the input dimension, and k is the output map dimension.

In the future, it will be interesting to explore if the complex data transforms captured

by multiple layers of a deep neural network can be captured by learned nonlinear maps

while remaining compact with good training and testing efficiency.
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Part II

Learning from Label Proportions
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Chapter 6

Learning from Label Proportions

6.1 Introduction

The scalability of learning algorithms is often fundamentally limited by the amount of

supervision available. For the massive visual data, it is difficult, and sometimes impossible

to collect sufficient amount of conventional supervised information, such as labels on the

images, and detailed annotations on the videos. On the other hand, the massive visual

data often comes with some weak forms of supervision, such as group-level labels, or label

statistics on the groups. The natural question to ask is whether one can utilize such weak

supervision in machine learning. For example, in recognition of video events, only the event

labels on the video level (a group of frames) are given – can we learn a model to pinpoint the

frames in which the event actually happens? In modeling attributes, only some semantic

similarities between a set of known categories and a set of attributes are provided – can we

leverage such information to model the attributes? Conventional learning algorithms are

not designed to incorporate such forms of supervision.

In this part of the thesis, we address machine learning with supervision provided on the

group level. To incorporate such types of supervision, we study a learning setting called

Learning from Label Proportions (LLP), where the training data is provided in groups, or

“bags”, and only the proportion of each class in each bag is known. The task is to learn a

model to predict the class labels of the individuals. In particular, we study LLP under a

binary setting. Figure 6.1 illustrates a toy example of LLP.
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Figure 6.1: Illustration of learning from label proportions (LLP). In this examples, the

training data is provided in 4 bags, each with its label proportions. The learned model is a

separating hyperplane to classify the individual instances.

This learning setting can be adapted in solving various computer vision problems men-

tioned above. Besides computer vision, LLP also has broad applications in social science,

marketing, healthcare and computer vision. For example, after election, the proportions of

votes of each demographic area are released by the government. In healthcare, the propor-

tions of diagnosed diseases of each ZIP code area are available to the public. Is it possible

to learn a model to predict the individual labels based on only the group-level label pro-

portions? As non-confidential attributes of individuals can be easily acquired from census

survey, digital footprint, shopping history etc., LLP leads to not only promising new appli-

cations, but also serious privacy concerns as releasing label proportions may result in the

discovery of sensitive personal information.

Learning from label proportion has recently received attentions from the machine learn-

ing community. For example, Musicant et al. [149] formulated the problem of learning from

aggregative values, with special focus on adapting a few different algorithms under the re-

gression setting. Quadrianto et al. [169] proposed a solution by estimating the mean of each

class. Rüeping [179] proposed treating the mean of each bag as a “super-instance”, which

was assumed to have a soft label corresponding to the label proportion. We will provide a

more comprehensive review of the related works in Chapter 7 and Chapter 8.

We note that although this problem has been studied before with various types of algo-

rithms, the previous works lack the fundamental understanding of when and why learning
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from label proportion is possible. In the thesis, we provide our answers with an intuitive

framework called Empirical Proportion Risk Minimization (EPRM) (Chapter 7). Under

such a framework, we provide positive results on the sample complexity of such a learning

setting. Motivated from EPRM, we further propose the ∝SVM algorithm as an extension

of the classic SVM (Chapter 8). We show that the algorithm and its extensions can be suc-

cessfully applied in computer vision applications, including video event detection (Chapter

9), and attribute learning (Chapter 10).

6.2 Related Works

We begin by reviewing the related learning settings in this section. Note that the

limitation of supervised information can also be alleviated by methods such as transfer

learning, and more efficient ways of collecting supervision, e.g., by crowdsourcing. We will

review those methods in Part III since they are more related to the proposed attribute-based

approaches.

6.2.1 Semi-Supervised Learning

Semi-supervised learning addresses the problem of machine learning with limited super-

vised information. We refer the reader to Zhu [241] for a literature survey. Considering the

classification task, for example, semi-supervised learning usually studies the cases of train-

ing a classifier with a small set of labeled samples, and a large set of unlabeled samples. The

question of interest is whether the unlabeled samples can be used to improve the learning

process. There are many ways of addressing semi-supervised learning, including genera-

tive models [138], self-training [227], co-training and multiview training [21], transductive

learning [96], and graph-based methods [19]. Due to the strong connection to real-world

scenario, semi-supervised learning has been applied in solving many computer vision prob-

lems including large-scale image search [215], tracking [76], objective detection [178], and

face recognition [26]. Due to the difference in the learning setting, semi-supervised learning

methods cannot be directly applied to solving learning from label proportions. Yet, the

proposed ∝SVM algorithm is motivated from the transductive SVM [96] (Chapter 8).
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6.2.2 Multiple Instance Learning

In learning with weak supervision, the “weakness” comes not only from the quantity but

also from the format of the supervision. In many scenarios, the learning algorithm has only

access to labels on the groups (or “bags”) of instances. One extensively studied learning

setting is Multiple Instance Learning (MIL) [50]. In MIL, the learner has access to bags

with their labels generated by the Boolean OR operator on the unobserved instance labels,

i.e., a bag is positive iff it has at least one positive instance. The task is to learn a binary

predictor for the bags. The two most popular algorithms for MIL are mi-SVM and MI-SVM

[5]. The first algorithm emphasizes searching max-margin hyperplanes to separate positive

and negative instances, while the second algorithm selects the most representative positive

instance for each positive bag and uses it for classification. In computer vision, MIL has

been applied in scene classification [139], content-based image retrieval [240], and image

classification [35]. In the thesis, the theoretical analysis of learning from label proportions

is inspired by the analysis of MIL [181, 180] (Chapter 7). We also use MIL as the baseline

method in the video event detection task (Chapter 9).

6.3 Overview of the Proposed Approaches

6.3.1 On Empirical Proportion Risk Minimization (EPRM)

As learning with label proportions is very different from conventional supervised learn-

ing, it is important to understand when and why such learning is possible. We have con-

ducted an analysis to answer the above question, and to understand how the parame-

ters, such as group size and group proportions, affect the performance of the new learning

paradigm. In Chapter 7, we introduce an intuitive framework, Empirical Proportion Risk

Minimization (EPRM). EPRM learns an instance label classifier to match the given label

proportions on the training data. Our result is based on a two-step analysis. First, we

provide a VC bound on the generalization error of the bag proportions. We show that

the bag sample complexity is only mildly sensitive to the bag size. Second, we show that

under some mild assumptions, good bag proportion prediction guarantees good instance

label prediction. The results together provide a formal guarantee that the individual labels
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can indeed be learned in the LLP setting. We also demonstrate the feasibility of LLP based

on a case study in real-world setting: predicting income based on census data. The study

provides not only theoretical support on the feasibility of learning with label proportions,

but also guidance on designing new algorithms, and protecting privacies when releasing

group statistics. This work was originally presented in [233].

6.3.2 The proportion-SVM (∝SVM) Algorithm

Based on the theoretical analysis in Chapter 7, we propose a new method called proportion-

SVM, or ∝SVM, which explicitly models the latent unknown instance labels in a large-

margin framework (Chapter 8). Unlike the existing works, our approach avoids making

restrictive assumptions about the data. The ∝SVM model leads to a non-convex integer

programming problem. In order to solve it efficiently, we propose two algorithms: one

based on simple alternating optimization and the other based on a convex relaxation. Ex-

periments on standard datasets show that ∝SVM outperforms the state-of-the-art. This

work was originally presented in [231].

6.3.3 Applications in Computer Vision

There are many challenging problems in vision, where the supervised information is only

provided at group level, and the task is to learn a model to classify the individuals. We

have applied the proposed LLP tools in solving two of them.

Video Event Recognition by Discovering Discriminative Visual Segments

(Chapter 9). In video event detection, usually only the video-level event labels are given.

Can we learn a model to localize the event in each video? In this work, we propose an

instance-based video event detection approach based on LLP. We treat each video as a

bag, each with multiple instances, defined as video segments of different temporal intervals.

Different from LLP, for each bag we do not know the exact proportion. Our key assumption

is that the positive videos have a large number of positive instances while negative videos

have few ones. The ∝SVM algorithm is then applied in this setting. Experiments on large-

scale video event datasets demonstrate significant performance gains. The proposed method

is also useful in explaining the detection results by localizing the temporal segments in a
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video which is responsible for the positive detection. The work was originally presented in

[118].

Attribute Modeling from Category-Attribute Proportions (Chapter 10). Attribute-

based representation has been widely used in visual recognition and retrieval due to its inter-

pretability and cross-category generalization properties. However, classic attribute learning

requires manually labeling attributes on the images, which is very expensive, and not scal-

able. In this work, we propose to model attributes from category-attribute proportion. The

proposed framework can model attributes without attribute labels on the images. Specifi-

cally, given a multi-class image datasets with M categories, we model an attribute, based

on an M -dimensional category-attribute proportion vector, where each element of the vec-

tor loosely characterizes the proportion of images in the corresponding category having the

attribute. The attribute learning can then be formulated as an LLP problem, where images

of one category form a bag. We show that the category-attribute proportions can be esti-

mated from multiple modalities such as human commonsense knowledge, NLP tools, and

other domain knowledge. The value of the proposed approach is demonstrated by various

applications including modeling animal attributes, visual sentiment attributes, and scene

attributes. The work was originally presented in [232].
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Chapter 7

On Empirical Proportion Risk

Minimization

7.1 Introduction

This chapter studies when and why individual labels can be learned from label propor-

tions, by analyzing a general framework, namely Empirical Proportion Risk Minimization

(EPRM). EPRM optimizes the instance-level classifier to minimize the empirical propor-

tion loss. In other words, it tries to find an instance hypothesis to match the given label

proportions. The main contribution is a formal guarantee that under some mild assump-

tions, the individual instance labels can be recovered (learned), with the EPRM framework.

Specifically, we provide a two-step analysis.

Our first result bounds the generalization error of bag proportions by the empirical

bag proportion error (Section 7.5). We show that the sample complexity is only mildly

sensitive to the bag size. In other words, given enough training bags, it is possible to learn

a bag proportion predictor, which generalizes well to unseen bags. This conclusion in itself

is interesting as in some applications we are simply interested in getting good proportion

estimates for bags: doctors may want to predict the rate of disease on certain geographical

area, and companies may want to predict attrition rate of certain department.

Second, we show that under some mild conditions, the instance label error can be

controlled by the bag proportion error (Section 7.6). In other words, “good” bag proportion
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predictions imply “good” instance label predictions. This finding is more crucial, as it

enables interesting applications, and from the privacy protection point of view, the ability

to learn a good instance label predictor given label proportions is of concern. Finally, we

demonstrate the feasibility of LLP in a case study: predicting income based on census data

(Section 7.8).

7.2 Related Works

In their seminal work, Quadrianto et al. [169] proposed to estimate the mean of each

class using the mean of each bag and the label proportions. These estimates are then

used in a conditional exponential model to maximize the log likelihood. The algorithm is

under a restrictive assumption that the instances are conditionally independent given the

label. Rüeping [179] proposed to use a large-margin regression method by assuming the

mean instance of each bag having a soft label corresponding to the label proportion. As an

extension to multiple-instance learning, Kuck and de Freitas [111] designed a hierarchical

probabilistic model to generate consistent label proportions. Similar ideas have also been

shown in [33] and [149]. Different from the above works, this paper provides theoretical

results addressing when and why bag proportion and instance labels can be learned. Our

result is independent of the algorithms.

A related, yet more extensively studied learning setting is Multiple Instance Learning

(MIL) [50]. In MIL, the learner has access to bags, with their labels generated by the

Boolean OR operator on the unobserved instance labels, i.e., a bag is positive iff it has

at least one positive instance. The task is to learn a binary predictor for the bags. It has

been shown that if all the instances are drawn iid from a single distribution, MIL is as easy

as learning from iid. instances with one-sided label noise [20]. In real-world applications,

the instances inside each bag can have arbitrary dependencies or a manifold structure. The

learnability and sample complexity results in the above scenarios are given by [181, 180],

and [9], respectively. In this chapter, we use the tools in [180] to analyze the generalization

error of bag proportions. More importantly, we show that under some conditions, a good

bag proportion predictor implies a good instance label predictor.



CHAPTER 7. ON EMPIRICAL PROPORTION RISK MINIMIZATION 77

X Domain of the instances

Y Domain of the labels, {−1, 1}

x Instance (the feature of an instance)

B Bag. {x|x ∈ B} are all the instances inside

y(x) Ground-truth label of x

ȳ(B) Ground-truth label proportion of B

h(x) Predicted label of x based on hypothsis (classifier) h

h̄(B) Predicted label proportion of B based on h

H Instance label hypothesis class

H̄ Bag label proportion hypothesis class

L Loss function on the label proportion

D Distribution of bags

erLS (h) Empirical proportion error on S with L and h

erLD(h) Expected proportion error on D with L and h

M The number of bags in training

Table 7.1: Key Notations of Chapter 7.

7.3 The Learning Setting: Learning from Label Proportions

The notation of the learning setting is shown in Table 7.1. Denote by X the domain of

instance attributes, and denote by Y = {−1, 1} the domain of the instance labels. We use

x ∈ X as an instance, and y(x) ∈ Y as the binary ground-truth label1 of x. A bag B is

defined as a set of instances2. For simplicity, we assume that the bags are of the same size

r. Our result can be easily generalized to bags with variable sizes as described in Section

7.7.

The label proportion of bag B is defined as:

ȳ(B) =
1

r

∑
x∈B

y(x) + 1

2
. (7.1)

1Strictly speaking, the label may not be a function of x. In such case, one should define a separate label

for each instance. Note that the analysis will remain the same.

2Or a multiset if there are duplicates.
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In training, for a bag B, the learner receives B, and ȳ(B). Note that y(x),x ∈ B, the

group-truth labels, are not observed by the learner. Let the training set received by the

learner be M bags S. For each bag B ∈ S. We use H ⊆ YX to denote a hypothesis class

on the instances. The learning task is to find an h ∈ H which gives low prediction error for

unseen instances generated by the above process.

In the conventional supervised learning, where all the labels of the training instances are

known, a popular framework is the Empirical Risk Minimization (ERM), i.e. finding the

instance hypothesis h ∈ H to minimize the empirical instance label error. In LLP, however,

the instance labels are not available at the training time. Therefore, we can only try to find

h ∈ H to minimize the empirical proportion error.

7.4 The Framework: Empirical Proportion Risk Minimiza-

tion

Definition 7.1. For h ∈ H, and a bag B of size r define an operator to predict bag

proportion based on the instances h̄,

h̄(B) =
1

r

∑
x∈B

h(x) + 1

2
.

And defined the hypothesis class on the bags H̄ := {h̄|h ∈ H}.

The Empirical Proportion Risk Minimization (EPRM) selects the instance label hypoth-

esis h ∈ H to minimize the empirical bag proportion loss on the training set S. It can be

expressed as follows.

argmin
h∈H

∑
B∈S

L
(
h̄(B), ȳ(B)

)
(7.2)

Here, L is a loss function to compute the error of the predicted proportion h̄(B), and the

given proportion ȳ(B). In this chapter, we assume that L is 1-Lipschitz in ξ := h̄(B)− ȳ(B).

EPRM is a very general framework for LLP. One immediate question is whether the instance

labels can be learned by EPRM. In the following sections, we provide affirmative results.

We first bound the generalization error of bag proportions based on the empirical bag

proportions. We show that the sample complexity of learning bag proportions is only mildly
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sensitive to the bag size (Section 7.5). We then show that, under some mild conditions,

instance hypothesis h which can achieve low error of bag proportions with high probability,

is guaranteed to achieve low error on instance labels with high probability (Section 7.6).

7.5 Generalization Error of Predicting the Bag Proportions

Given a training set S and a hypothesis h ∈ H, denote by erLS (h) the empirical bag

proportion error with a loss function L, and denote by erLD(h) the generalization error of

bag proportions with a loss function L over distribution D:

erLS (h) =
1

|S|
∑
B∈S

L(h̄(B), ȳ(B)), erLD(h) = EB∼DL(h̄(B), ȳ(B)). (7.3)

In this section, we show that good proportion prediction is possible for unseen bags. Note

that learning the bag proportion is basically a regression problem on the bags. Therefore,

without considering the instance label hypothesis, for a smooth loss function L, the gen-

eralization error of bag proportions can be bounded in terms of the empirical proportion

error and some complexity measure, e.g., fat shattering dimension [6], of the hypothesis

class on the bags. Unfortunately, the above does not provide us insights into LLP, as it

does not utilize the structure of the problem. As we show later, such structure is important

in relating the error of bag proportion to the error of instance labels.

Based on the definitions in Section 7.3, our main intuition is that the complexity (or

“capacity”) of bag proportion hypothesis class H̄ should be dependent on the complexity

of the instance label hypothesis class H. Formally, we adapt the MIL analysis in [181, 180],

to bound the covering number [6] of H̄, by the covering number of H. As in our case H

is a binary hypothesis class, we further bound the covering number of H based on its VC-

dimension [207]. This leads to the following theorem on the generalization error of learning

bag proportions.

Theorem 7.1. For any 0 < δ < 1, 0 < ε < 1, h ∈ H, with probability at least 1 − δ,

erLD(h) ≤ erLS(h) + ε, if

M ≥ 64

ε2
(2V C(H) ln(12r/ε) + ln(4/δ)),
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in which V C(H) is the VC dimension of the instance label hypothesis class H, and M is

the number of training bags, and r is the bag size.

The proof is given in the appendix. From the above, the generalization error of bag

proportions can be bounded by the empirical proportion error if there are a sufficient number

of bags in training. Note that the sample complexity (smallest sufficient size of M above)

grows in terms of the bag size. This is intuitive as larger bags create more “confusions”.

Fortunately, the sample complexity grows at most logarithmically with r. It means that

the generalization error is only mildly sensitive to r. We also note that the above theorem

generalizes to the well-known result of binary supervised learning, as shown below.

Corollary 7.1. When bag size r = 1, for any 0 < δ < 1, 0 < ε < 1, h ∈ H, with probability

at least 1− δ, erLD(h) ≤ erLS(h) + ε, if

M ≥ 64

ε2
(2V C(H) ln(12/ε) + ln(4/δ)).

7.6 Bounding the Instance Label Error by Bag Proportion

Error

From the analysis above, we know that the generalization error of bag proportions can

be bounded. The result is without any additional assumptions other than that the bags

are iid. In this section, based on assumptions on the instances, and the proportions, we

present results bounding the error of predicting instance labels by the error of predicting

bag proportions. In specific, Section 7.6.1 considers the simple case when all instances are

drawn iid from a distribution. Section 7.6.2 generalizes to a more general case in which

instances are conditionally independent given the bag. Section 7.6.3 justifies the intuition

that “pure” bags (bags with proportions close to 0 or 1) are easier. We also discuss the

limitations of LLP under our framework, providing insights into protecting the instance

labels when releasing label proportions.

The analysis in this section is based on the assumption that we already have an instance

hypothesis h, which predicts the proportions well on a bag B: P
(
|h̄(B)− ȳ(B)| ≤ ε

)
≥ 1−δ

with some small 0 < ε, δ < 1. From Section 7.5, the above is true when we have a sufficient
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Figure 7.1: (a)-(e): Relationship of the probability of making wrong label prediction,

P(h(x) 6= y(x)), and the probability of bag proportion prediction error is small than ε,

P
(
|h̄(B)− ȳ(B)| ≤ ε

)
, under the assumption that the instances are drawn iid, and the

prior can be matched by the hypothesis, i.e., P(h(x) = 1) = P(y(x) = 1). P(h(x) 6= y(x))

is a monotonically decreasing function of P
(
|h̄(B)− ȳ(B)| ≤ ε

)
, if P

(
|h̄(B)− ȳ(B)| ≤ ε

)
∈

(u(r, ε), 1]. u(r, ε) is shown in (f). Larger r and larger ε will result in larger u(r, ε).

number of training bags, and a good algorithm to achieve small empirical bag proportion

error. Formally, from Theorem 7.1, suppose we have a hypothesis h, such that erLD(h) ≤ ε′.

Then PB∼D(|h̄(B)−ȳ(B)| ≤ ε′′) for some other small ε′′ can also be bounded. With Markov’s

inequality: for any 0 < δ < 1, define ε′′ = ε′/δ, then PB∼D(|h̄(B)− ȳ(B)| ≤ ε′′) ≥ 1− δ.

7.6.1 Instances Are Generated IID

Let’s first consider a special case, where all the instances are drawn iid over a distribution

of the instances. In addition, we assume that the prior of the instances can be matched by
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the hypothesis, i.e., P(h(x) = 1) = P(y(x) = 1). This assumption is not too restrictive, as

the small empirical bag proportion error already implies that the priors are approximately

matched, and for most learning models, we can adjust the hypothesis by a bias term to

match the empirical prior estimated on the training data.

Proposition 7.1. Assuming the instances are generated iid, and P(h(x) = 1) = P(y(x) =

1), P
(∣∣h̄(B)− ȳ(B)

∣∣ ≤ ε) can be expressed analytically as a function of P(h(x) 6= y(x)).

Let β = P(h(x) 6= y(x)):

P
(∣∣h̄(B)− ȳ(B)

∣∣ ≤ ε) = θr1

r∑
i=0

(
r

i

)
θi2

(
Q(i+ bεrc; r − i, θ2)−Q(i− bεrc − 1; r − i, θ2)

)
,

where b·c is the floor operator, θ1 = (2 − β)/2, θ2 = β/(2 − β), 0 < β < 1, 0 < ε < 1 and

Q is the CDF of binomial distribution.

As what we actually want is to bound P(h(x) 6= y(x)) based on P
(∣∣h̄(B)− ȳ(B)

∣∣ ≤ ε),
we show the “inverse” function in Figure 7.1. From the curves, we see that β is a monotoni-

cally decreasing function of P
(∣∣h̄(B)− ȳ(B)

∣∣ ≤ ε), when P
(
|h̄(B)− ȳ(B)| ≤ ε

)
∈ (u(r, ε), 1].

u(r, ε) is shown in Figure 7.1 (f). In other words, the instance label error can be controlled

by the bag proportion error, when the later is small. The results are of course the “tightest”

under the above assumptions.

7.6.2 Instances Are Conditionally Independent Given Bag

One important observation from Figure 7.1 is that the curves are independent of P(y(x) =

1). Therefore, the analytical results can be directly applied to the case when the instances

are conditionally independent given the bag. A lot of real-world applications follow this

assumption. For example, to model the voting behavior, each bag is generated by randomly

sampling a number of individuals from a certain location. It is reasonable to assume that

the individuals are iid given the location. Assume that the bags are generated from D, a

“mixture” of multiple components D1, ...,DT , where each Di is also a distribution over bags.

We consider the process of drawing a bag from D as firstly picking a distribution Di and

then generating a bag from Di. We assume for Di, i = 1, · · · , T , there exists an instance

distribution D′i, such that generating a bag from Di is by drawing r iid instances from D′i,
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and Px∼D′i(y(x) = 1) = Px∼D′i(h(x) = 1). In such case, Proportion 7.1 and all the analysis

in Section 7.6.1 can be directly applied.

7.6.3 Learning with Pure Bags

Intuitively, if the bags are very “pure”, i.e., their proportions are either very low or very

high, the instance label error can be well controlled by the bag proportion error. The case

that all the bags are with proportions 0 or 1 should be the easiest, as it is identical to the

conventional supervised learning setting. We justify the intuition in this section. Different

from Section 7.6.1 and Section 7.6.2, no generative assumptions are used.

Definition 7.2. For 0 < η < 1, we say that a bag is (1 − η)-pure if at least a fraction

(1− η) of all instances have the same label.

Based on the definition above, our results are summarized as below.

Proposition 7.2. Let h be a hypothesis satisfying PB∼D(|h̄(B) − ȳ(B)| ≤ ε) ≥ 1 − δ for

some 0 < ε, δ < 1. Assume that the probability that a bag is (1−η)-pure is at least 1−ρ for

some 0 < η, ρ < 1. Then for a bag, with probability at least (1− δ− ρ), h classifies correctly

at least r(1− 2η − ε) instances.

Proposition 7.3. There exists a distribution D over all bags of size r and a learner h such

that h̄(B) = ȳ(B), each bag is (1 − η)-pure, but h misclassifies a fraction 2η instances of

each bag.

Proposition 7.2 is shown to be tight based on Proposition 7.3. Proposition 7.3 also

shows limitations of LLP. It is interesting to consider an extreme case, where all the bags

are with label proportion 50% (they are the least “pure”). Then there exists a hypothesis h

which can achieve zero bag proportion prediction error, yet with 100% instance label error.

In other words, it is hopeless to learn or recover the instance labels. The result provided

in this section is interesting in two ways. On the one hand, it provides us a failure case, in

which even perfect bag proportion prediction does not guarantee low error on the instance

labels. On the other hand, it provides guidance when releasing sensitive information. For

example, it might be safer for the curator to release bags with proportions closer to 50%,

compared with those with proportions closer to 0% or 100%.
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7.7 Discussions

Extending the Results to Variable Bag Size. For simplicity in our analysis, we

assumed that all the bags were of size r. In fact, our results also hold for variable bag size.

For the result on the bag proportion error, Theorem 7.1 holds immediately by replacing r

with the average bag size in training r̄. This is based on the fact that the covering number

bound holds (shown in the proof of Theorem 7.1 in the appendix) with average bag size

[180]. For results on the instance label error, our results in Section 7.6.3 and Section 7.6.2

hold for any bag size.

Learning with Population Proportions. Considering the scenario of modeling vot-

ing behavior based on government released statistics: the government releases the popula-

tion proportion (e.g. 62.6% in New York voted for Obama in 2012 election) of each location,

and we only have a subset of randomly sampled instances for each location. Can LLP be

applied to correctly predict labels of the individuals? In such a scenario, EPRM can only

minimize the proportion error in terms of the population proportions because the actual

proportions of the sampled subsets are not available. We can assume that a bag is formed

by randomly sampling r instances from a location with a true (population) proportion p∗,

which is released. The Chernoff bound ensures that the sampled proportion is concentrated

to the released population proportion: when r ≥ ln(2/δ)/(2ε2), with probability at least

1− δ, |ȳ(B)− p∗| ≤ ε. Therefore, with enough training bags, and enough samples per bag,

the generalization error can be bounded.

7.8 A Case Study: Predicting Income based on Census Data

So far we have provided formal guarantees that under some conditions, labels of indi-

vidual instances can be learned or recovered. In this section, we conduct a case study to

demonstrate the feasibility of LLP on real-world data. The task is to predict individual

income based on census data, and label proportions. We use a dataset which covers a sub-

set of the 1994 census data3. It contains 32,561 instances (individual persons), each with

123 binary attributes about education, marital status, sex, occupation, working hours per

3http://archive.ics.uci.edu/ml/datasets/Adult

http://archive.ics.uci.edu/ml/datasets/Adult
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(d) Race

Figure 7.2: Predicting income based on census data. (a) All the instances are iid. (b)-(d)

The instances are conditionally independent given the bag, with the title of each figure as

its grouping attributes. The number of training instances is equal-spaced in log-scale, with

the smallest number 500, and the largest number 50,000.

week etc. Each individual has a binary label indicating whether his/her income > 50k. We

consider this label as sensitive information, for which we only know its proportions on some

bags of people. Next we will show the feasibility of LLP based on different ways of forming

the bags. We first divide the dataset to use 80% of the instances for training, and 20%

for testing. For all the experiments below, the bags are formed on the 80% training data.

The proportion of each training bag is computed based on the ground-truth labels. The

experiments are based on ∝SVM [231] with linear kernel, and `1 loss. We use the algorithms

proposed in [179] and [169] as the initialization methods for the alter-∝SVM solver. The

parameters, C ′ ∈ [0.1, 1, 10], C ∈ [0.01, 0.1, 1], are tuned on the bag proportion prediction
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Grouping Attribute Native Country Education Occupation Relationship Race

Number of Bags 41 16 15 5 5

∝SVM Error % 18.75 ± 0.25 19.61 ± 0.10 18.19 ± 0.16 18.59 ± 0.82 24.02 ± 0.15

Baseline Error % 24.02 ± 0.56 22.29 ± 0.55 24.28 ± 0.28 24.19 ± 0.72 24.28 ± 0.40

Table 7.2: Error on predicted income based on the census in a real-world setting.

error by performing cross validation. We report mean and standard deviation of error on

the test data based on 5 runs.

All instances are drawn iid. We first simulate a simple case where all the instances

are drawn iid from a distribution of instances. We achieve this by assuming that all the

instances of the dataset form a “distribution” of individuals. For all the bags (with r

instances), each instance is drawn by randomly sampling the whole training set with re-

placement. Figure 7.2 (a) shows the experimental results: more instances (bags) lead to

lower test error. The relatively low test error demonstrates the feasibility of LLP under

such settings. Fewer training bags (and larger training bag size) generally result in larger

test error variance, as the algorithm is more likely to converge to worse local solutions.

Instances are conditionally independent given bag. We simulate the case by

a “hierarchical bag generation” process. The individuals are first grouped by a grouping

attribute. For example, if the grouping attribute is “occupation”, the individuals are groups

into 15 groups, corresponding to the 15 occupations. Each group is assigned a prior, which

is simply uniform in this experiment. To generate a bag of r instances, we first pick a group

based on the priors and then perform random sampling with replacement r times in the

selected group. Figure 7.2 (b)-(d) show the experiment results. The trend of the learning

curves is the same as in Figure 7.2 (a), showing that LLP is indeed possible in such a setting.

A challenging real-world scenario. For real-world applications, the bags are pre-

defined rather than “randomly” generated. In this experiment, we simply group the indi-

viduals defined by different grouping attributes. Different from the setting in the previous

section, the whole group is treated as a single bag, without further sampling process. Table

7.2 shows the performance of LLP. The “Baseline” result is formed by the following: a

new instance is predicted positive if the training bag with the same grouping attribute has
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proportion larger than 50%; otherwise it is predicted as negative. For example, it predicts

a person with elementary education as negative, as the label proportion of elementary edu-

cation group is less than 50%. For most experiments, this result is similar to assigning +1

to all test instances because most training bags are with proportion larger than 50%. This

scheme provides performance gain for “education”, as the label proportion for individuals

with low education level is also low. We find that for most grouping attributes, the per-

formance of LLP significantly improves over the baseline. This is also true for some cases

where the number of bags is very small. We do observe that for a certain way of forming

the bags, e.g., by Race, the improvement is quite limited. This is due to the fact that

the instance distributions of the bags are very similar, and, therefore, most of the bags are

redundant for the task.

7.9 Conclusion and Future Works

This chapter proposed a novel two-step analysis to answer the question whether the

individual labels can be learned when only the label proportions are observed. We showed

how parameters such as bag size and bag proportion affected the bag proportion error and

instance label error. Our first result shows that the generalization error of bag proportions

is only mildly sensitive to the size of the bags. Our second result shows that under differ-

ent mild assumptions, a good bag proportion predictor guarantees a good instance label

predictor. We have also demonstrated the feasibility of LLP based on a case study.

As the future works, we are extending the analysis to cover the multi-class case. Data

dependent measure, e.g., Rademacher complexity [12], may lead to tighter bound for practi-

cal use. Some alternative tools, e.g., sample complexity results of learning {0, ..., n}-valued

functions [81], can be used for analyzing the generalization error of bag proportions. The

failure cases of LLP worth further study as they can be utilized to protect sensitive personal

information when releasing label proportions.

We are also extending the work to an active setting, where the learner can actively query

a group-level label statistic, in addition to the instance labels. This can be seen as extending

combinatorial group testing [54] into a learning scenario. This research direction also has
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strong connection with active learning [186], and compressed sensing [52]. In addition,

we are studying the learning setting from a privacy-preserving perspective. A preliminary

discussion can be found in [233].
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Chapter 8

The ∝SVM Algorithm

8.1 Introduction

In the previous section, we proposed the Empirical Proportion Risk Minimization (EPRM)

framework which is shown to be able to recover the individual labels under the LLP setting

based on mild assumptions. EPRM tries to find a classifier on the individuals to match

the proportions on the bags provided in training. In this Chapter, we propose the ∝SVM1

algorithm, which is motivated from EPRM.

∝SVM explicitly models the unknown instance labels as latent variables. It jointly

optimizes the instance labels as well as the classification model based on the known label

proportions (Section 8.3). In order to solve ∝SVM efficiently, we propose two algorithms -

one based on simple alternating optimization (Section 8.4), and the other based on a convex

relaxation (Section 8.5). We show that our approach outperforms the existing methods for

various datasets and settings (Section 8.6). We begin by reviewing related algorithms in

Section 8.2.

8.2 Related Works

Quadrianto et al. [169] proposed a theoretically sound method to estimate the mean of

each class using the mean of each bag and the label proportions. These estimates are then

1∝ is the symbol for “proportional-to”.
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used in a conditional exponential model to maximize the log likelihood. The key assumption

in MeanMap is that the class-conditional distribution of data is independent of the bags.

Unfortunately, this assumption does not hold for many real world applications. For example,

in modeling voting behaviors, in which the bags are different demographic regions, the data

distribution can be highly dependent on the bags. Very recently, Patrini et al. [162] proposed

an improved version of MeanMap. It drops the conditional independence assumption and

uses a Laplacian regularizer and an alternating minimization to estimate the mean of each

class.

Rüeping [179] proposed treating the mean of each bag as a “super-instance”, which was

assumed to have a soft label corresponding to the label proportion. The “super-instances”

can be poor in representing the properties of the bags. Our work also utilizes a large-

margin framework, but we explicitly model the instance labels. Section 8.3.3 gives a detailed

comparison with InvCal. Figure 8.1 provides a toy example to highlight the problems with

MeanMap and InvCal, which are the state-of-the-art methods.

In semi-supervised learning, Mann and McCallum [138] and Bellare et al. [14] used an

expectation regularization term to encourage model predictions on the unlabeled data to

match the given proportions. Similar ideas were also studied in the generalized regulariza-

tion method [68]. Li et al. [129] proposed a variant of semi-supervised SVM to incorporate

the label mean of the unlabeled data. Unlike semi-supervised learning, the learning setting

we are considering requires no instance labels for training. As an extension of multiple-

instance learning, Kuck and de Freitas [111] designed a hierarchical probabilistic model to

generate consistent label proportions. Besides the inefficiency in optimization, the method

was shown to be inferior to MeanMap [169]. Similar ideas have also been studied by Chen

et al. [33] and Musicant et al. [149]. Stolpe and Morik [196] proposed an evolutionary

strategy paired with a labeling heuristic for clustering with label proportions. Different

from clustering, the proposed ∝SVM framework jointly optimizes the latent instance labels

and a large-margin classification model. The ∝SVM formulation is related to large-margin

clustering [221], with an additional objective to utilize the label proportions. Specifically,

the convex relaxation method we used is inspired by the works of Li et al. [129] and Xu

et al. [221].
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N The number of instances

xi Feature of the i-th instance

y(xi) Ground-truth label of the i-th instance

Bk k-th bag (a set of instances)

Bk Indices of instances in the k-th bag

yi The latent label of xi

y y = (y1, · · · , yM )

C Weight of the label proportion loss

C ′ Weight of the instance label loss

L′ Loss function on the instance label

Table 8.1: Notations in Addition to Table 7.1.

8.3 The ∝SVM Framework

8.3.1 Learning Setting

We introduce subindex of the feature x and the bag B in this chapter to better present

the algorithm. The training set {xi}Ni=1 is given in the form of M bags, B1, · · · , BM . We

use Bk to denote the subindices for the k-th bag:

Bk = {xi|i ∈ Bk}, k = 1, · · · ,M. (8.1)

We assume that the bags are disjoint, i.e., Bk∩Bl = ∅, ∀k 6= l. Note that this assumption is

only introduced for clearer presentation of the algorithm. The approach can be easily used

to handle the case when the bags are overlapped. In that case, one can simply duplicate

the instance for all the bags containing it. Following the notation of Chapter 7, the k-th

bag is with label proportion ȳ(Bk):

ȳ(Bk) =
1

|Bk|
∑
i∈Bk

y(xi) + 1

2
. (8.2)

in which y(xi) ∈ Y denotes the unknown ground-truth label of xi, ∀Ni=1.
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8.3.2 Formulation

Following the EPRM framework proposed in Chapter 7, the goal is to find an instance

label classifiers h, h(x) ∈ Y, such that it is compatible with the given label proportions.

argmin
h∈H

Ψ(h) + C
M∑
k=1

L(h̄(Bk), ȳ(Bk)), (8.3)

where Ψ(h) controls the capacity of the classifier, and the loss term controls the “compatibil-

ity” between the predicted proportion and the given proportion of the training bags. Note

that Ψ(h) is required to improve the generalization power of the classifier. For example, it

could be the VC dimension of h as analyzed in Chapter 7.

In this chapter, we consider using the widely used large-margin framework: h(x) =

sign(wTϕ(x)+b), where ϕ(·) is a map of the input data, and Ψ(h) = 1
2wTw. Unfortunately,

the above problem then becomes very difficult to be optimized due to the non-convex

and discrete nature of the loss term. We instead solve a slightly different problem, which

has very strong connections to the conventional large-margin method. The idea lies in

explicitly modeling the instance labels, and jointly solving both the instance labels as well

the classification model.

We model the unknown instance labels as y = (y1, · · · , yN )T , in which yi ∈ Y denotes

the unknown label of xi, i = 1, · · · , N . Thus the label proportion of the k-th bag can be

modeled as

pk(y) =

∑
i∈Bk yi

2|Bk|
+

1

2
. (8.4)

We formulate the ∝SVM under the large-margin framework as below2.

argmin
y,w,b

1

2
wTw + C ′

N∑
i=1

L′(yi,w
Tϕ(xi) + b) + C

M∑
k=1

L (pk(y), ȳ(Bk)) , (8.5)

in which L′ is the loss function for classic supervised learning. L is a function to penalize the

difference between the true label proportion and the estimated label proportion based on

y. The task is to simultaneously optimize the labels y and the model parameters w and b.

The above formulation permits using different loss functions for L′ and L. One can also add

weights for different bags. Throughout this paper, we consider L′ as the hinge loss, which is

2The constraint, yi ∈ {−1, 1}, i = 1, · · · , N , is omitted throughout this chapter to simplify the notation.
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widely used for large-margin learning: L′(yi,w
Tϕ(xi) + b) = max

(
0, 1− yi(wTϕ(xi) + b)

)
.

We consider L as the absolute loss: L(pk(y), ȳ(Bk)) = |pk(y) − ȳ(Bk)|. Additionally, we

have the following remarks for the proportion ∝SVM.

• When C ′ is set to be very large, yi ≡ h(xi). Thus pk(y) = h̄(Bk), and the bag proportion

loss term in (8.5) is equivalent to that of (8.3).

• The formulation of (8.5) is more flexible than (8.3). The first two terms of the ∝SVM is

exactly the conventional SVM. Therefore, ∝SVM can naturally incorporate any amount

of supervised data without modification. The labels for such instances will be observed

variables instead of being hidden. In the special case where no label proportions are

provided, ∝SVM becomes large-margin clustering [221, 129], whose solution depends

only on the data distribution. Compared with [179, 169], ∝SVM requires no restrictive

assumptions on the data. ∝SVM can also be easily extended to the multi-class case,

similar to [106].

• The strong connection of ∝SVM and conventional SVM enables efficient optimization

algorithms, which will be presented in the following sections.

8.3.3 Connections to InvCal

As stated in Section 8.2, the Inverse Calibration method (InvCal) [179] treats the mean

of each bag as a “super-instance”, which is assumed to have a soft label corresponding to

the label proportion. It is formulated as below.

argmin
w,b,ξ,ξ∗

1

2
wTw + C

K∑
k=1

(ξk + ξ∗k) (8.6)

s.t. ξk ≥ 0, ξ∗k ≥ 0,

wTmk + b ≥ − log(
1

ȳ(B)
− 1)− εk − ξk,

wTmk + b ≤ − log(
1

ȳ(B)
− 1) + εk + ξ∗k,

k = 1, · · · ,M.

(8.7)
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in which the k-th bag mean is mk = 1
|Bk|

∑
i∈Bk ϕ(xi), ∀Kk=1. Unlike ∝SVM, the proportion

of the k-th bag is modeled on top of this “super-instance” mk as:

qk :=
(
1 + exp

(
−wTmk + b

))−1
. (8.8)

The second term of the objective function (8.6) tries to impose qk ≈ ȳ(Bk), ∀Kk=1, albeit in an

inverse way. Though InvCal is shown to outperform other alternatives, including MeanMap

[169] and several simple large-margin heuristics, it has a crucial limitation. Note that (8.8)

is not a good way of measuring the proportion predicted by the model, especially when the

data has high variance, or the data distribution is dependent on the bags. In our formulation

(8.5), by explicitly modeling the unknown instance labels y, the label proportion can be

directly modeled as pk(y) given in (8.4). The advantage of our method is illustrated in a

toy experiment shown in Figure 8.1 (for details see Section 8.6.1).

8.4 The alter-∝SVM Algorithm

The ∝SVM formulation introduced in the previous section is fairly intuitive and straight-

forward. It is, however, a non-convex integer programming problem which is challenging

to solve. In this chapter, we provide two solutions to efficiently find a local solution to it:

a simple alternating optimization method (Section 8.4), and a convex relaxation method

(Section 8.5).

In ∝SVM, the unknown instance labels y can be seen as a bridge between supervised

learning loss and label proportion loss. Therefore, one natural way for solving (8.5) is via

alternating optimization as,

• For a fixed y, the optimization of (8.5) w.r.t w and b becomes a classic SVM problem.

• When w and b are fixed, the problem becomes:

argmin
y

N∑
i=1

L′(yi,w
Tϕ(xi) + b) +

C

C ′

M∑
k=1

L (pk(y), ȳ(Bk)) (8.9)

We show that the second step above can be solved efficiently. Because the influence of

each bag {yi|i ∈ Bk}, ∀Mk=1 on the objective is independent, we can optimize (8.9) on each
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Figure 8.1: An example of learning with two bags to illustrate the drawbacks of the existing

methods. (a) Data of bag 1. (b) Data of bag 2. (c) Learned separating hyperplanes of

MeanMap and InvCal. (d) Learned separating hyperplane of ∝SVM (either alter-∝SVM

or conv-∝SVM). More details are given in Section 8.6.1. Note that the algorithms do not

have access to the individual instance labels.
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bag separately. In particular, solving {yi|i ∈ Bk} yields the following optimization problem:

argmin
{yi|i∈Bk}

∑
i∈Bk

L′(yi,w
Tϕ(xi) + b) +

C

C ′
L (pk(y), ȳ(Bk)) (8.10)

Proposition 8.1. For a fixed pk(y) = θ, (8.10) can be optimally solved by the following

steps.

• Initialize yi = −1, i ∈ Bk. The optimal solution can be obtained by flipping the signs as

below.

• When only flipping the sign of yi, i ∈ Bk, denote the reduction of the first term in (8.10)

is δi. Sort δi, i ∈ Bk.

• Flip the signs of the top-(θ|Bk|) yi’s which have the highest reduction δi.

The proof of the above is shown in the Appendix.

For bag Bk, we only need to sort the corresponding δi, i ∈ Bk once. Sorting takes

O(|Bk| log(|Bk|)) time. After that, for each θ ∈ {0, 1
|Bk| ,

2
|Bk| , · · · , 1}, the optimal solution

can be computed incrementally, each taking O(1) time. We then pick the solution with the

smallest objective value, yielding the optimal solution of (8.10).

Proposition 8.2. Following the above steps, (8.9) can be solved in O(N log(J)) time, where

J = maxk=1···M |Bk|, and N is the number of instances.

As described in the paper, the influences of the bags in the objective function (6) are

independent, and for the k-th bag, the algorithm takes O(|Bk| log(|Bk|), ∀k = 1, · · · ,M .

Overall, the complexity is O(
∑M

k=1 |Bk| log(|Bk|)). We know that
∑M

k=1 |Bk| = N , J =

maxk=1,··· ,M |Bk|. Therefore we have:

M∑
k=1

|Bk| log(|Bk|) ≤
M∑
k=1

|Bk| log(J) = N log(J).

By alternating between solving (w, b) and y, the objective is guaranteed to converge.

This is due to the fact that the objective function is lower bounded and non-increasing.

Furthermore, the objective converges in finite steps as there are finite ways of labeling the

instances. In practice, we terminate the procedure when the objective no longer decreases

(or if its decrease is smaller than a threshold). Empirically, the alternating optimization
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Algorithm 4 alter-∝SVM (with annealing)

Initialize C ′ = 10−5C∗.

Randomly initialize yi ∈ {−1, 1}, ∀Ni=1.

while C ′ < C∗ do

C ′ = min{(1 + ∆)C ′, C∗}

repeat

Fix y to solve w and b.

Fix w and b to solve y (Eq. (8.9) with C ′).

until The decrease of the objective is smaller than a threshold.

end while

typically terminates fast within tens of iterations, but one obvious problem is the possibility

of local solutions.

To alleviate this problem, similar to T-SVM [96, 31], the proposed alter-∝SVM algo-

rithm takes an additional annealing loop to gradually increase C ′. The algorithm is shown

in Algorithm 4. Because the nonconvexity of the objective function mainly comes from the

second term of (8.5), the annealing can be seen as a “smoothing” step to alleviate the local

minima problem. To justify the requirement of the annealing loop, we keep repeating the

alter-∝SVM algorithm with/without the annealing loop, with different random initializa-

tions, on the same dataset. We record the smallest objective value found so far. As shown

in Figure 8.2, alter-∝SVM without the annealing loop is much slower in finding a low ob-

jective value compared with alter-∝SVM with the annealing loop. Similar results can be

found in other datasets, and other bag sizes. Following [31], we set ∆ = 0.5 in Algorithm

4. In addition, to further alleviate the local minima issues, in the experiment section we

empirically choose to initialize alter-∝SVM 10 times, which gives us quite stable results.

Empirically, the inner loop of alter-∝SVM terminates (with a fixed C ′) within a few

iterations. From Proposition 8.2, optimizing y has linear complexity in N (when J is

small). Therefore, the overall complexity of the algorithm depends on the SVM solver.

Specifically, when linear SVM is used [97], alter-∝SVM has linear complexity. In practice,

to further alleviate the influence of the local solutions, similar to clustering, e.g., kmeans, we

repeat alter-∝SVM multiple times by randomly initializing y, and then picking the solution
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Figure 8.2: The smallest objective value with/without the annealing loop. The above results

are based on experiments on the vote dataset with bag size of 32, linear kernel, C∗ = 1,

C = 10.

with the smallest objective value.

8.5 The conv-∝SVM Algorithm

In this section, we show that with proper relaxation of the ∝SVM formulation (8.5), the

objective function can be transformed to a convex function of M := yyT . We then relax

the solution space of M to its convex hull, leading to a convex optimization problem of M .

The conv-∝SVM algorithm is proposed to solve the relaxed problem. Unlike alter-∝SVM,

conv-∝SVM does not require multiple initializations. This method is motivated by the

techniques used in large-margin clustering [130, 221].

8.5.1 Convex Relaxation

We change the label proportion term in the objective function (8.5) as a constraint

y ∈ Y, and we drop the bias term b3. Then at optimality the objective function can be

written as:

3If the bias term is not dropped, there will be constraint αTy = 0 in the dual, leading to non-convexity.

Such a difficulty has also been discussed in [221]. Fortunately, the effect of removing the bias term can be

alleviated by zero-centering the data or augmenting the feature vector with an additional dimension with

value 1.
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min
y∈Y

min
w

1

2
wTw + C ′

N∑
i=1

L′(yi,w
Tϕ(xi)) (8.11)

Y =
{

y
∣∣|pk(y)− ȳ(Bk)| ≤ ε, yi ∈ {−1, 1}, ∀Mk=1

}
,

in which ε controls the compatibility of the label proportions. The constraint y ∈ Y can be

seen as a special loss function:

L(pk(y), ȳ(Bk)) =


0, if |pk(y)− ȳ(Bk)| < ε,

∞, otherwise.

(8.12)

We then write the inner problem of (8.11) as its dual:

min
y∈Y

max
α∈A
−1

2
αT
(
K� yyT

)
α+αT1, (8.13)

in which α ∈ RN , � denotes pointwise-multiplication, K is the kernel matrix with Kij =

ϕ(xi)
Tϕ(xj), ∀Ni,j=1, and A = {α|0 ≤ α ≤ C ′}.

The objective in (8.13) is non-convex in y, but convex in M := yyT . Following [130,

221], we instead solve the optimal M . However, the feasible space of M is

M0 = {yyT |y ∈ Y}, (8.14)

which is a non-convex set. In order to get a convex optimization problem, we relax M0 to

its convex hull, the tightest convex relaxation of M0:

M =
{∑

y∈Y
µ(y)yyT

∣∣∣µ ∈ U}, (8.15)

in which U = {µ|
∑

y∈Y µ(y) = 1, µ(y) ≥ 0}. Thus solving the relaxed M is identical to

finding µ:

min
µ∈U

max
α∈A
−1

2
αT

∑
y∈Y

µ(y)K� yyT

α+αT1. (8.16)

(8.16) can be seen as Multiple Kernel Learning (MKL) [10], which is a widely studied

problem. However, because |Y| is very large, it is not tractable to solve (8.16) directly.
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8.5.2 Cutting Plane Training

Fortunately, we can assume that at optimality only a small number of y’s are active in

(8.16). Define Yactive ⊂ Y as the set containing all the active y’s. We show that y ∈ Yactive

can be incrementally found by the cutting plane method.

Because the objective function of (8.16) is convex in µ, and concave in α, it is equivalent

to solve the following problem [57],

max
α∈A

min
µ∈U
−1

2
αT

∑
y∈Y

µ(y)K� yyT

α+αT1. (8.17)

It is easy to verify that the above is equivalent to:

max
α∈A,β

− β (8.18)

s.t. β ≥ 1

2
αT
(
K� yyT

)
α+αT1,∀y ∈ Y.

This form enables us to apply the cutting plane method [107] to incrementally include the

most violated y into Yactive, and then solve the MKL problem, (8.16) with Y replaced as

Yactive. The above can be repeated until no violated y exists.

In the cutting plane training, the critical step is to obtain the most violated y ∈ Y:

arg max
y∈Y

1

2
αT
(
K� yyT

)
α+αT1, (8.19)

which is equivalent to

arg max
y∈Y

N∑
i,j=1

αiαjyiyjϕ(xi)
Tϕ(xj). (8.20)

This is a 0/1 concave QP, for which there exists no efficient solution. However, instead

of finding the most violated constraint, if we find any violated constraint y, the objective

function still decreases. We therefore relax the objective in (8.20), which can be solved

efficiently. Note that the objective of (8.20) is equivalent to a `2 norm
∑N

i=1 ‖ αiyiϕ(xi) ‖2.

Following [130], we approximate it as the `∞ norm:

N∑
i=1

‖ αiyiϕ(xi) ‖∞≡ max
j=1···d

∣∣∣∣∣
N∑
i=1

αiyix
(j)
i

∣∣∣∣∣ , (8.21)
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Algorithm 5 conv-∝SVM

Initialize αi = 1/N , ∀Ni=1. Yactive = ∅. Output: M ∈M

repeat

Compute y ∈ Y based on (8.20) − (8.23).

Yactive ← Yactive ∪ {y}.

Solve the MKL problem in (8.16) with Yactive to get µ(y), y ∈ Yactive.

until The decrease of the objective is smaller than a threshold.

in which x
(j)
i is the j-th dimension of the i-th feature vector. These can be obtained by

eigendecomposition of the kernel matrix K, when a nonlinear kernel is used. The compu-

tational complexity is O(dN2). In practice, we choose d such that 90% of the variance is

preserved. We further rewrite (8.21) as:

max
j=1···d

max

(
N∑
i=1

αiyix
(j)
i ,−

N∑
i=1

αiyix
(j)
i

)
(8.22)

= max
j=1···d

max

 M∑
k=1

∑
i∈Bk

αiyix
(j)
i ,

M∑
k=1

∑
i∈Bk

−αiyix(j)
i

 .

Therefore the approximation from (8.20) to (8.21) enables us to consider each dimension

and each bag separately. For the j-th dimension, and the k-th bag, we only need to solve

two sub-problems maxy∈Y
∑

i∈Bk αiyix
(j)
i , and maxy∈Y−

∑
i∈Bk αiyix

(j)
i . The former, as an

example, can be written as

min
{yi|i∈Bk}

∑
i∈Bk

(
−αix(j)

i

)
yi, |pk(y)− ȳ(Bk)| ≤ ε. (8.23)

This can be solved in the same way as (8.10), which takes O(|Bk| log |Bk|) time. Because

we have d dimensions, similar to Proposition 8.2, one can show that:

Proposition 8.3. (8.20) with the `2 norm approximated as the `∞ norm can be solved in

O(dN log(J)) time, where J = maxk=1···K |Bk|, d is the feature dimension, and N is the

number of instances.
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8.5.3 The Algorithm

The overall algorithm, called conv-∝SVM, is shown in Algorithm 5. Following [130], we

use an adapted SimpleMKL algorithm [172] to solve the MKL problem. As an additional

step, we need to recover y from M . This is achieved by rank-1 approximation of M (as

yyT )4. Because of the convex relaxation, the computed y is not binary. However, we can

use the real-valued y directly in our prediction model (with dual):

h(x) = sign

(
N∑
i=1

αiyiϕ(xi)
Tϕ(x)

)
. (8.24)

Similar to alter-∝SVM, the objective of conv-∝SVM is guaranteed to converge. In practice,

we terminate the algorithm when the decrease of the objective is smaller than a threshold.

Typically the SimpleMKL converges in less than 5 iterations, and conv-∝SVM terminates

in less than 10 iterations. The SimpleMKL takes O(N2) (computing the gradient) time, or

the complexity of SVM, whichever is higher. Recovering y takes O(N2) time and computing

eigendecomposition with the first d singular values takes O(dN2) time.

8.6 Experiments

MeanMap [169] was shown to outperform alternatives including kernel density esti-

mation, discriminative sorting and MCMC [111]. InvCal [179] was shown to outperform

MeanMap and several large-margin alternatives. Therefore, in the experiments, we only

compare our approach with MeanMap and InvCal.

8.6.1 A Toy Experiment

To visually demonstrate the advantage of our approach, we first show an experiment on a

toy dataset with two bags. Figure 8.1 (a) and (b) show the data of the two bags, and Figure

8.1 (c) and (d) show the learned separating hyperplanes from different methods. Linear

kernel is used in this experiment. For this specific dataset, the restrictive data assumptions

of MeanMap and InvCal do not hold: the mean of the first bag (60% positive) is on the

“negative side”, whereas, the mean of the second bag (40% positive) is on the “positive side”.

4Note that yyT = (−y)(−y)T . This ambiguity can be resolved by validation on the training bags.
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Dataset Size # Attributes # Classes

HEART 270 13 2

COLIC 366 22 2

VOTE 435 16 2

AUSTRALIAN 690 14 2

BREAST-W 699 9 2

DNA 2,000 180 3

SATIMAGE 4,435 36 6

Table 8.2: Datasets used in experiments.

Consequently, both MeanMap and InvCal completely fail, with the classification accuracy

of 0%. On the other hand, our method, which does not make strong data assumptions,

achieves the perfect performance with 100% accuracy.

8.6.2 UCI/LibSVM Datasets

Datasets. We compare the performance of different techniques on various datasets from

the UCI repository5 and the LibSVM collection6. The details of the datasets are listed in

Table 8.2. In this chapter, we focus on the binary classification settings. For the datasets

with multiple classes (DNA and SATIMAGE), we test the one-vs-rest binary classification per-

formance, by treating data from one class as positive, and randomly selecting same amount

of data from the remaining classes as negative. For each dataset, the attributes are scaled

to [−1, 1].

Experimental Setup. Following [179], we first randomly split the data into bags of a

fixed size. Bag sizes of 2, 4, 8, 16, 32, 64 are tested. We then conduct experiments with

5-fold cross validation. The performance is evaluated based on the average classification

accuracy on the individual test instances. We repeat the above processes 5 times (randomly

selecting negative examples for the multi-class datasets, and randomly splitting the data

5http://archive.ics.uci.edu/ml/

6http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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into bags), and report the mean accuracies with standard deviations.

The parameters are tuned by an inner cross-validation loop on the training subset of

each partition of the 5-fold validation. Because no instance-level labels are available during

training, we use the bag-level error on the validation bags to tune the parameters:

Err =

T∑
k=1

|pk − ȳ(Bk)| , (8.25)

in which pk and ȳ(Bk) denote the predicted and the ground-truth proportions for the k-th

validation bag.

For MeanMap, the parameter is tuned from λ ∈ {0.1, 1, 10}. For InvCal, the parameters

are tuned from C ′ ∈ {0.1, 1, 10}, and ε ∈ {0, 0.01, 0.1}. For alter-∝SVM, the parameters

are tuned from C∗ ∈ {0.1, 1, 10}, and C ∈ {1, 10, 100}. For conv-∝SVM, the parameters

are tuned from C ′ ∈ {0.1, 1, 10}, and ε ∈ {0, 0.01, 0.1}. Two kinds of kernels are considered:

linear and RBF. The parameter of the RBF kernel is tuned from γ = {0.01, 0.1, 1}.

We randomly initialize alter-∝SVM 10 times and pick the result with the smallest ob-

jective value. Empirically, the influence of random initialization to other algorithms is

minimal.

Results. Table 8.3 and Table 8.4 show the results with linear kernel, and RBF kernel,

respectively. Our methods consistently outperform MeanMap and InvCal, with p-value

< 0.05 for most of the comparisons (more than 70%). For larger bag sizes, the problem

of learning from label proportions becomes more challenging due to the limited amount

of supervision. For these harder cases, the gains from ∝SVM are typically even more

significant. For instance, on the DNA-2 dataset, with RBF kernel and bag size 64, alter-

∝SVM outperforms the former works by 19.82% and 12.69%, respectively (Table 8.4).

A Large-Scale Experiment. We also conduct a large-scale experiment on the cod-

rna.t dataset containing about 271K points. The performance of InvCal and alter-∝SVM

with linear kernel are compared. The experimental setting is the same as for the other

datasets. The results in Table 8.5 show that alter-∝SVM consistently outperforms InvCal.

For smaller bag sizes also, alter-∝SVM outperforms InvCal, though the improvement margin

reduces due to sufficient amount of supervision.
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Dataset Method 2 4 8 16 32 64

HEART

MeanMap 81.85±1.28 80.39±0.47 79.63±0.83 79.46±1.46 79.00±1.42 76.06±1.25

InvCal 81.78±0.55 80.98±1.35 79.45±3.07 76.94±3.26 73.76±2.69 73.04±6.46

alter-∝SVM 83.41±0.71 81.80±1.25 79.91±2.11 79.69±0.64 77.80±2.52 76.58±2.00

conv-∝SVM 83.33±0.59 80.61±2.48 81.00±0.75 80.72±0.82 79.32±1.14 79.40±0.72

COLIC

MeanMap 80.00±0.80 76.14±1.69 75.52±0.72 74.17±1.61 76.10±1.92 76.74±6.10

InvCal 81.25±0.24 78.82±3.24 77.34±1.62 74.84±4.14 69.63±4.12 69.47±6.06

alter-∝SVM 81.42±0.02 80.79±1.48 79.59±1.38 79.40±1.06 78.59±3.32 78.49±2.93

conv-∝SVM 81.42±0.02 80.63±0.77 78.84±1.32 77.98±1.14 77.49±0.66 76.94±1.07

VOTE

MeanMap 87.76±0.20 91.90±1.89 90.84±2.33 88.72±1.45 87.63±0.26 88.42±0.80

InvCal 95.57±0.11 95.57±0.42 94.43±0.24 94.00±0.61 91.47±2.57 91.13±1.07

alter-∝SVM 95.62±0.33 96.09±0.41 95.56±0.47 94.23±1.35 91.97±1.56 92.12±1.20

conv-∝SVM 91.66±0.19 90.80±0.34 89.55±0.25 88.87±0.37 88.95±0.39 89.07±0.24

AUSTRALIAN

MeanMap 86.03±0.39 85.62±0.17 84.08±1.36 83.70±1.45 83.96±1.96 82.90±1.96

InvCal 85.42±0.28 85.80±0.37 84.99±0.68 83.14±2.54 80.28±4.29 80.53±6.18

alter-∝SVM 85.42±0.30 85.60±0.39 85.49±0.78 84.96±0.96 85.29±0.92 84.47±2.01

conv-∝SVM 85.51±0.00 85.54±0.08 85.90±0.54 85.67±0.24 85.67±0.81 85.47±0.89

BREAST-W

MeanMap 96.11±0.06 95.97±0.25 96.13±0.16 96.26±0.32 95.96±0.42 95.80±0.92

InvCal 95.88±0.33 95.65±0.36 95.53±0.24 95.39±0.57 95.23±0.52 94.31±0.77

alter-∝SVM 96.71±0.29 96.77±0.13 96.59±0.24 96.41±0.50 96.41±0.21 96.25±0.49

conv-∝SVM 92.27±0.27 92.25±0.16 92.32±0.13 94.03±0.18 94.60±0.10 94.57±0.21

DNA-1

MeanMap 86.38±1.33 82.71±1.26 79.89±1.55 78.46±0.53 80.20±1.44 78.83±1.73

InvCal 93.05±1.45 90.81±0.87 86.27±2.43 81.58±3.09 78.31±3.28 72.98±2.33

alter-∝SVM 94.93±1.05 94.31±0.62 92.86±0.78 90.72±1.35 90.84±0.52 89.41±0.97

conv-∝SVM 92.78±0.66 90.08±1.18 85.38±2.05 84.91±2.43 82.77±3.30 85.66±0.20

DNA-2

MeanMap 88.45±0.68 83.06±1.68 78.69±2.11 79.94±5.68 79.72±3.73 74.73±4.26

InvCal 93.30±0.88 90.32±1.89 87.30±1.80 83.17±2.18 79.47±2.55 76.85±3.42

alter-∝SVM 94.74±0.56 94.49±0.46 93.06±0.85 91.82±1.59 90.81±1.55 90.08±1.45

conv-∝SVM 94.35±1.01 92.08±1.48 89.72±1.26 88.27±1.87 87.58±1.54 86.55±1.18

DNA-3

MeanMap 87.57±0.74 83.95±1.34 80.22±0.65 79.14±2.39 75.21±0.89 74.99±1.53

InvCal 91.77±0.42 89.38±0.41 87.98±0.83 84.28±1.63 79.65±3.55 75.22±5.64

alter-∝SVM 93.21±0.33 92.83±0.40 91.80±0.52 88.77±1.10 86.94±0.41 86.39±1.70

conv-∝SVM 91.72±0.26 87.93±1.32 80.13±2.39 73.93±0.46 73.38±0.56 72.87±0.79

SATIMAGE-2

MeanMap 97.21±0.38 96.27±0.77 95.85±1.12 94.65±0.31 94.49±0.37 94.52±0.28

InvCal 88.41±3.14 94.65±0.56 94.70±0.20 94.49±0.31 92.90±1.05 93.82±0.60

alter-∝SVM 97.83±0.51 97.75±0.43 97.52±0.48 97.52±0.51 97.51±0.20 97.11±0.26

conv-∝SVM 96.87±0.23 96.63±0.09 96.40±0.22 96.87±0.38 96.29±0.40 96.50±0.38

Table 8.3: Accuracy with linear kernel, with bag size 2, 4, 8, 16, 32, 64.
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Dataset Method 2 4 8 16 32 64

HEART

MeanMap 82.69±0.71 80.80±0.97 79.65±0.82 79.44±1.21 80.03±2.05 77.26±0.85

InvCal 83.15±0.56 81.06±0.70 80.26±1.32 79.61±3.84 76.36±3.72 73.90±3.00

alter-∝SVM 83.15±0.85 82.89±1.30 81.51±0.54 80.07±1.21 79.10±0.96 78.63±1.85

conv-∝SVM 82.96±0.26 82.20±0.52 81.38±0.53 81.17±0.55 80.94±0.86 78.87±1.37

COLIC

MeanMap 82.45±0.88 81.38±1.26 81.71±1.16 79.94±1.33 76.36±2.43 77.84±1.69

InvCal 82.20±0.61 81.20±0.87 81.17±1.74 78.59±2.19 74.09±5.26 72.81±4.80

alter-∝SVM 83.28±0.50 82.97±0.39 82.03±0.44 81.62±0.46 81.53±0.21 81.39±0.34

conv-∝SVM 82.74±1.15 81.83±0.46 79.58±0.57 79.77±0.84 78.22±1.19 77.31±1.76

VOTE

MeanMap 91.15±0.33 90.52±0.62 91.54±0.20 90.28±1.63 89.58±1.09 89.38±1.33

InvCal 95.68±0.19 94.77±0.44 93.95±0.43 93.03±0.37 87.79±1.64 86.63±4.74

alter-∝SVM 95.80±0.20 95.54±0.25 94.88±0.94 92.44±0.60 90.72±1.11 90.93±1.30

conv-∝SVM 92.99±0.20 92.01±0.69 90.57±0.68 88.98±0.35 88.74±0.43 88.62±0.60

AUSTRALIAN

MeanMap 85.97±0.72 85.88±0.34 85.34±1.01 83.36±2.04 83.12±1.52 80.58±5.41

InvCal 86.06±0.30 86.11±0.26 86.32±0.45 84.13±1.62 82.73±1.70 81.87±3.29

alter-∝SVM 85.74±0.22 85.71±0.21 86.26±0.61 85.65±0.43 83.63±1.83 83.62±2.21

conv-∝SVM 85.97±0.53 86.46±0.23 85.30±0.70 84.18±0.53 83.69±0.78 82.98±1.32

BREAST-W

MeanMap 96.42±0.18 96.45±0.27 96.20±0.27 96.14±0.46 94.91±1.02 94.53±1.24

InvCal 96.85±0.23 96.91±0.13 96.77±0.22 96.75±0.22 96.65±0.29 94.58±1.76

alter-∝SVM 96.97±0.07 97.00±0.18 96.94±0.07 96.87±0.15 96.88±0.25 96.70±0.14

conv-∝SVM 96.71±0.10 96.60±0.06 96.57±0.08 96.54±0.19 96.77±0.17 96.66±0.14

DNA-1

MeanMap 91.53±0.25 90.58±0.34 86.00±1.04 80.77±3.69 77.35±3.59 68.47±4.30

InvCal 89.32±3.39 92.73±0.53 87.99±1.65 81.05±3.14 74.77±2.95 67.75±3.86

alter-∝SVM 95.67±0.40 94.65±0.52 93.71±0.47 92.52±0.63 91.85±1.42 90.64±1.32

conv-∝SVM 93.36±0.53 86.75±2.56 81.03±3.58 75.90±4.56 76.92±5.91 77.94±2.48

DNA-2

MeanMap 92.08±1.54 91.03±0.69 87.50±1.58 82.21±3.08 76.77±4.33 72.56±5.32

InvCal 89.65±4.05 93.12±1.37 89.19±1.17 83.52±2.57 77.94±2.82 72.64±3.89

alter-∝SVM 95.63±0.45 95.05±0.75 94.25±0.50 93.95±0.93 92.74±0.93 92.46±0.90

conv-∝SVM 94.06±0.86 90.68±1.18 87.64±0.76 87.32±1.55 85.74±1.03 85.33±0.79

DNA-3

MeanMap 90.99±0.65 89.45±1.12 88.01±0.65 84.30±1.36 79.59±2.49 73.88±4.89

InvCal 93.23±0.44 91.83±0.63 89.49±0.52 85.47±1.33 78.26±3.57 70.91±3.00

alter-∝SVM 94.36±0.31 93.28±0.25 92.40±0.35 90.04±0.65 87.89±1.10 86.40±1.26

conv-∝SVM 91.75±0.45 87.48±2.02 80.41±0.70 75.91±0.29 75.37±1.66 74.63±0.21

SATIMAGE-2

MeanMap 97.08±0.48 96.82±0.38 96.50±0.43 96.45±1.16 95.51±0.73 94.26±0.22

InvCal 97.53±1.33 98.33±0.13 98.38±0.23 97.99±0.54 96.27±1.15 94.47±0.27

alter-∝SVM 98.83±0.36 98.69±0.37 98.62±0.27 98.72±0.37 98.51±0.22 98.25±0.41

conv-∝SVM 96.55±0.13 96.45±0.19 96.45±0.39 96.14±0.49 96.16±0.35 95.93±0.45

Table 8.4: Accuracy with RBF kernel, with bag size 2, 4, 8, 16, 32, 64.
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Method 211 212 213

InvCal 88.79±0.21 88.20±0.62 87.89±0.79

alter-∝SVM 90.32±1.22 90.28±0.94 90.21±1.53

Table 8.5: Accuracy on cod-rna.t, with linear kernel, with bag size 211, 212, 213.

8.7 Discussions

Robustness to the Given Proportions {ȳ(Bk)}Mk=1. In Section 8.6.2, because the

bags were randomly generated, distribution of {ȳ(Bk)}Mk=1 is approximately Gaussian for

moderate to large K. It is intuitive that the performance will depend on the distribution of

proportions {ȳ(Bk)}Mk=1. If ȳ(Bk) is either 0 or 1, the bags are most informative, because

this leads to the standard supervised learning setting. On the other hand, if ȳ(Bk)’s are

close to each other, the bags will be least informative. In fact, both MeanMap and InvCal

cannot reach a numerically stable solution in such case. For MeanMap, the linear equations

for solving class means will be ill-posed. For InvCal, because all the “super-instances” are

assumed to have the same regression value, the result is similar to random guess. ∝SVM,

on the other hand, can achieve good performance even in this challenging situation. For

example, when using the vote dataset, with bag sizes 8 and 32, ȳ(Bk) = 38.6%, ∀Mk=1(same

as prior), with linear kernel, alter-∝SVM has accuracies(%) 94.23± 1.02 and 86.71± 1.30,

and conv-∝SVM has accuracies(%) 89.60±0.59 and 87.69±0.51, respectively. These results

are close to those obtained for randomly generated bags in Table 8.3. This indicates that

our method is less sensitive to the distribution of {ȳ(Bk)}Mk=1.

Choice of Algorithms. Empirically, when nonlinear kernel is used, the run time

of alter-∝SVM is longer than that of conv-∝SVM, because we are repeating alter-∝SVM

multiple times to pick the solution with the smallest objective value. For instance, on a

machine with 4-core 2.5GHz CPU, on the vote dataset with RBF kernel and 5-fold cross

validation, the alter-∝SVM algorithm (repeating 10 times with the annealing loop, and one

set of parameters) takes 15.0 seconds on average while the conv-∝SVM algorithm takes only

4.3 seconds. But as shown in the experimental results, for many datasets, the performance

of conv-∝SVM is marginally worse than that of alter-∝SVM. This can be explained by

the multiple relaxations used in conv-∝SVM, and also the 10 time initializations of alter-



CHAPTER 8. THE ∝SVM ALGORITHM 108

∝SVM. As a heuristic solution for speeding up the computation, one can use conv-∝SVM

(or InvCal) to initialize alter-∝SVM. For large-scale problems, in which linear SVM is used,

alter-∝SVM is preferred, because its computational complexity is O(N).

8.8 Conclusion and Future Works

We proposed the ∝SVM framework for learning with label proportions, and introduced

algorithms to efficiently solve the optimization problem. Experiments on several standard

and one large-scale dataset showed the advantage of the proposed approach over the existing

methods. The simple, yet flexible form of ∝SVM framework naturally spans supervised,

unsupervised and semi-supervised learning. Due to the usage of latent labels, ∝SVM can

also be potentially used in learning with label errors.

For the future directions, we are working on improving both the efficiency and the

stability of ∝SVM. Due to the usefulness of annealing for ∝SVM, deterministic annealing

[191] can be explored to further improve the algorithm. The speed of both alter-∝SVM and

conv-∝SVM can be improved further by solving the SVM in their inner loops incrementally.

For example, one can use warm start and partial active-set methods [189]. In addition, one

can linearize kernels using explicit feature maps (Chapter 5), so that alter-∝SVM has linear

complexity even for certain nonlinear kernels.
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Chapter 9

Applications: Video Event

Recognition by Discovering

Discriminative Visual Segments

9.1 Introduction

Video event detection is useful in many applications such as video search, consumer

video analysis, personalized advertising, and video surveillance, to name a few [156]. The

most commonly used approach for video event detection is to represent a video as a global

Bag-of-Word (BoW) vector [192]. Representing a video as a single vector is simple and

efficient. Unfortunately, much information may be lost in this paradigm. In fact, a video

is comprised of multiple “instances”, such as frames and shots. Some instances contain key

evidence of the event being considered. For example, event like “birthday party” may be

well detected by frames containing cakes, and candles, and “parkour” may be well detected

by shots of person jumping up and down on the street [17]. Intuitively, by considering the

instances of the videos, more distinctive event patterns can be learned, and better event

recognition can be achieved.

In this chapter, we study instance-based video classification. Each video contains mul-

tiple “instances”, defined as video segments of different temporal lengths. Our goal is to
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Figure 9.1: Illustration of the proposed framework. The event “birthday party” can be

recognized by instances containing “birthday cake” and “blowing candles”. Our method

simultaneously infers hidden instance labels and instance-level classification model (the

separating hyperplane) based on only video labels.

learn an instance-level event detection model, while assuming only a video-level event label

(whether the event happens in the video) is available. Instance labels, on the other hand,

are not available due to the prohibitive cost in the annotation. We model the problem as a

modified LLP setting. We treat one video as a bag. Compared with the conventional LLP

setting, we only know a bag-level label, instead of the exact proportion. Our key assump-

tion is that, for an event, the positive videos usually have a large proportion of positive

instances which are discriminative for the event, while the negative videos have few positive

instances. The idea is illustrated in Figure 9.1. The proposed method not only leads to

more accurate event detection results but also learns the instance-level detector, explaining

when and why a certain event happens in the video.
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9.2 Related Works

Video Event Detection. Video event detection is a widely studied topic in com-

puter vision. A good survey of state-of-the-arts was made in [95]. Generally speaking, a

video event detection system can be divided into three stages: feature extraction, feature

quantization and pooling, training/recognition.

One focus of previous research is on designing new features, including low-level features

of visual features [43, 135], action features [214], audio features [146], and mid-level repre-

sentation including concept feature, attributes [203] etc. There are also significant efforts on

improving the event recognition modeling, such as max-margin based methods, graphical

models, and some knowledge based techniques, as reviewed in [95]. However, most former

approaches rely on a global vector to represent one video. The global approach neglects

important local information of the events. Recently some researchers attempted to address

this problem and proposed several new algorithms. Tang et al. [201] treated video segments

as latent variables and adopted variable-duration hidden Markov model to represent events.

Cao et al. [27] proposed scene aligned pooling, which divides videos into shots with differ-

ent scenes, and pooling local features under each scene. Li et al. [128] proposed dynamic

pooling, which employs various strategies to split videos into segments based on temporal

structures. Different from their methods, which focus on exploiting temporal structures for

pooling, our framework focuses on learning “instance” labels. The proposed approach can

also be seen as complementary to the above pooling strategies, for which the video instances

can be formed by dynamic pooling or scene aligned pooling.

Recently, it has also been shown that visual event recognition can be achieved efficiently

by considering the “key” instances which may sometimes occupy a small portion of the

whole video [17, 117, 197]. It will be worthwhile to compare the discriminative instances

discovered by this work, and those by the works above.

Multiple-Instance Learning. In order to use local patterns in a video, one readily

available learning method is Multiple-Instance Learning (MIL) [50]. In MIL, the training

data is provided in “bags”. And the labels are only provided on the bag-level. A bag is

labeled as positive iff one or more instances inside the bag are positive. In computer vision,

MIL has been applied in scene classification [139], image retrieval [240], and image classifi-
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cation [35]. The two most popular algorithms for MIL are mi-SVM and MI-SVM [5]. The

first algorithm emphasizes searching max-margin hyperplanes to separate positive and neg-

ative instances, while the second algorithm selects the most representative positive instance

for each positive bag during optimization iterations, and concentrates on bag classification.

Several methods have been proposed to address the limitations of MIL. Chen et al. [36]

proposed to embed bags into instance space via instance similarity measure. Zhang et al.

[238] proposed a new method which considers both local (instance) and global (bag) feature

vectors.

In event detection, a video can be seen as a bag containing multiple instances. The labels

are only provided on video-level. Therefore, algorithms of MIL can be directly applied.

However, existing algorithms of MIL are not suitable for video event classification. One

restriction is that MIL relies on a single instance (often computed based on the max function)

in prediction, making the method very sensitive to false alarm outliers; another drawback

is that it assumes that negative bags have no positive instances, leading to unstable results

for complicated events.

9.3 LLP for Video Event Detection

We propose a learning from label proportions (LLP) based framework. Each video is

treated as a bag, containing multiple instances. Hypothetically, for one event, if we know

the proportion of positive instances for each video, the setting is exactly learning from label

proportions, and the ∝SVM algorithm can be used to train a model to predict the binary

label for each instance.

Unfortunately, in this setting, we only have a video-level event label, without knowing

the exact proportions. Our assumption is that any positive video contains a large amount

of positive instances, while any negative video contains few or none of them. To incorpo-

rate such supervision in the ∝SVM framework (8.5), we simply set the proportion of the

positive bags to be 1, and the proportion of the negative bags to be 0. Because the label

proportion loss is a “soft” loss function whose contribution is controlled by a weight C,

this encourages large proportions of positive instances in positive videos while penalizes the
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positive instances in negative videos. In practice, C can be tuned based on cross-validation.

One key question left unanswered is how to design the instances for each video. The

instances can be frames, shots, video segments or even whole videos. Instances with different

temporal lengths can be useful for recognizing different events. For example, “birthday

party” can be identified by single frames containing cakes and candles, whereas sport-

like actions such as “attempting board trick” and ”parkour” are better detected by video

segments characterizing actions.

Motivated by the observation, we consider instances of multiple granularities based on

different length of time intervals. The feature representation of multiple-granular instances

is obtained by pooling the local features into segment-level BoW with specific time lengths.

Note that the video BoW is one special case in our framework. The original ∝SVM frame-

work treats all instances equally and can not differentiate instances of multiple granularities.

Therefore, we modify the formulation by including the weights for each instance. Formally,

for the k-th bag, we modify the modeling of the proportion (8.20) as:

pk(y) =

∑
i∈Bk $iyi

2
∑

i∈Bk $i
+

1

2
, (9.1)

where yi is the latent label of the i-th instance, and $i is the weight of the i-th instance.

In this work, we simply set the weight to be the length of the segment. The optimization

problem can be solved same as alter-∝SVM. The only difference is that for a fixed w, we

flip the sign of the latent labels in a greedy fashion to find a sub-optimal y. We terminate

the optimization when the objective function is no longer decreasing.

9.4 Discussions

Event Detection at Video Level. In the previous section, we propose to learn an

event detection model on the instance level, based on video-level labels. One intrinsic

advantage of our method is that it can naturally discover the key evidence supporting the

existence of a specific event. The top ranked 16 pieces of evidence selected by our method

are shown in Figure 9.3 and Figure 9.6. Some selected single-frame instances are strong

evidence, by which human can confirm the existence of target event by seeing those frames.

In order to perform event detection on video level, we can first apply the instance classifier
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on all instances of the test videos. The video-level detection score can then be obtained

by performing a weighted average of all instance scores. Intuitively, a video containing

more positive instances tend to have a higher probability of being positive. We will later

show by experiment that our approach can lead to significant performance improvement for

video-level event detection.

Learning with Heterogeneous Instances. In the previous section, we are consider-

ing the multiple granularities of instances with the same underlying feature representation.

In practice, the instances may come with different representations. For example, we may

have instances represented by image/audio/action features respectively. In such case, the

proposed approach can be applied with minor changes to learn a classification model for

each type of feature representation. We can also jointly learn the classification models with

a modified objective function. We leave this task to our future work.

9.5 Experiments

Datasets. To evaluate our framework, we conduct experiments on three large-scale

video datasets: TRECVID Multimedia Event Detection (MED) 2011, MED 2012 [156]

and Columbia Consumer Videos (CCV) [94] datasets. All our experiments are based on

linear kernel. In this chapter, we select SIFT [135] as underlying local features for initial

evaluation. Note that our method can be easily extended to include multiple features by

using fusion techniques. For example, we can train different instance-based detection models

for each feature independently, and fuse detected scores of detectors using different features

for final event detection. Additionally, by employing multiple features, we can discover

unique cues, e.g. actions, colors, audio, for each video event.

Settings. For each video, we extract frames at every 2 seconds. Each frame is resized

to 320×240 pixels, and the SIFT features are extracted densely with 10-pixel step size. The

frame features are then quantized into 5,000 Bag-of-Word vectors. The frame-level SIFT

BoWs are used as instance feature vectors. We evaluate four baseline algorithms on the

dataset: mi-SVM, MI-SVM [5], video BOW, and ∝SVM with single frame instance.
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Granularities 1 1 + 3 1 + 3 + 5 3 + all 1 + 3 + 5 + all 1 + all

Mean AP 0.39 0.38 0.37 0.41 0.43 0.41

Table 9.1: Mean APs of multi-granular instances combinations on CCV. The number rep-

resents the number of frames. “all” represents whole video instance.
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Figure 9.2: Experimental results of 20 complex events in Columbia Consumer Videos (CCV)

dataset. The mean APs are 0.26 (mi-SVM), 0.25 (MI-SVM), 0.39 (Video BoW), 0.41

(∝SVM) and 0.43 (multi-granular-∝SVM).

9.5.1 Columbia Consumer Videos (CCV)

The Columbia Consumer Video (CCV) benchmark defines 20 events and contains 9,317

videos downloaded from YouTube. The event names and train/test splits can be found in

[94]. We first evaluate different combinations of instance granularities. Table 9.1 shows the

result with the combinations of single frame, 3-frame shot, and 5-frame shot and whole video.

From the results, combining more granularities leads to better performance. However,

increasing the number of granularities will cause higher computation cost. As a trade-off

between time and performance, in the following experiments, we only use single-frame and

whole video instances.

The experiment results on CCV are shown in Figure 9.2. The mi-SVM and MI-SVM are

inferior to the standard video-level BoW method. This is due to the restrictive assumption

of MIL, which focuses on searching one most representative instance in each video and

treats all instances in a negative video as negatives. On the contrary, ∝SVM doesn’t make

this assumption and outperforms video BoW.
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(a) Attempting bike

trick

(b) Rock climbing (c) Town hall meeting (d) Win race without ve-

hicles

Figure 9.3: The top 16 key positive frames selected for the events in MED12. The proposed

method can successfully detect important visual cues for each event. For example, the top

ranked instances of “winning race without vehicles” are about tracks and fields.
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Figure 9.4: Evaluation results of 25 complex events in TRECVID MED 12 video dataset.

The mean APs are 0.15 (mi-SVM), 0.16 (MI-SVM), 0.28 (Video BoW), 0.31 (∝SVM) and

0.34 (multi-granular-∝SVM).

9.5.2 TRECVID MED 12

The MED12 dataset contains 25 complex events and 5,816 videos. We use two-thirds

of the data in training (3,878 videos) and the rest in testing (1,938 videos). The average

number of extracted frames in each video is 79.4, and the average learning time of one

event on a single Intel 2.53GHz core is around 40 minutes. The experimental results are

shown in Figure 9.4. The conclusions are similar to those observed for the CCV dataset.

The mi-SVM and MI-SVM are inferior to the standard video-level BoW method. The

multi-granular ∝SVM outperforms video BoW by 21.4%.

As mentioned earlier, our method also offers benefits in pinpointing the specific local

segments that signify the events. Figure 9.3 shows the automatically selected key frames in
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Figure 9.5: The APs from Event 6 to Event 15 in MED 2011.

videos that are detected as positive.

9.5.3 TRECVID MED11

There are three parts of the MED11 data: event collection (EC), the development

collection (DEVT) and test collection (DEVO). We train the models based on EC and

DEVO (2,680 + 10,403 videos), and evaluate on DEVT (32,061 videos). The average

number of extracted frames per video is 59.8. The experimental results are shown in Figure

9.5. Because the DEVO set does not include any video of Event 1 to Event 5, only results

of Event 6 to Event 15 are reported. The ∝SVM with single granularity outperforms Video

BoW on “Flash mob gathering”, “Getting vehicle unstuck”, and “Parade”, but produced

worse results for other events. This is an interesting finding which confirms that instances

of different lengths are needed for representing different events. Our method outperforms

other methods by around 20% in this experiment. Some top-ranked frame instances learned

by our method are shown in Figure 9.6.

9.6 Conclusion and Future Works

We proposed a novel approach to conduct video event detection by simultaneously in-

ferring instance labels, and learning the instance-level event detection model. The proposed

method considers multiple granularities of instances, leveraging both local and global pat-

terns to achieve best results, as clearly demonstrated by extensive experiments. The pro-

posed methods also provide an intuitive explanation of detection results by localizing the
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(a) Attempting board

trick

(b) feeding animal (c) Landing a fish (d) Woodworking

project

Figure 9.6: The top 16 key positive frames selected by our algorithm for some events in

TRECVID MED11.

specific temporal frames/segments that signify the presence of the event.

For the future works, we are working on applying the learning setting into object de-

tection with only image-level objective labels. This can be seen as an alternative way of

discovering discriminative image patches for each category [101].
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Chapter 10

Application: Attribute Modeling

based on Category-Attribute

Proportions

10.1 Introduction

Conventional attribute modeling requires expensive human efforts to label the attributes

on a set of images. In this chapter, we apply the learning from label proportion setting in

learning attribute based on category-attribute proportions. The framework requires no

attribute labeling on the images. We refer the reader to Part III for a review of attribute-

based approaches in computer vision. Different from methods in Part III, here we are

modeling attributes with clear semantic names, with weak supervision.

Figure 10.1 illustrates our framework by a conceptual example of modeling the attribute

“has TV”. The input includes two parts:

• A multi-class image datasets of M categories, i.e.igned

• a set of images, each with a category label. Such datasets are widely available in various

visual domains, such as objects, scenes, animals, human faces etc.

• An M -dimensional category-attribute proportion vector, where the i-th dimension of the

vector characterizes the proportion of positive images of the attribute in the i-th category.
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Figure 10.1: Illustration of the proposed framework for modeling the attribute “has TV”.

The input includes a multi-class dataset and a category-attribute proportion vector. The

output is an attribute model to predict “has TV” for new images.

Given the above input, the attribute learning problem naturally fits the machine learning

from label proportions (LLP) framework. We can then use the existing LLP techniques

to train an attribute classifier, whose output can be used to predict whether the attribute

is present in a new image. The framework requires no attribute labels on the images for

training. Intuitively, it is more efficient to collect the category-attribute label proportions

than image-level attribute labels. For example, based on statistics, or commonsense, “80%

bears are black”, “90% Asians are with black hair”, and “70% living rooms have a TV”.

Our work makes the following contributions. We propose a framework to model at-

tributes based on category-attribute proportions, in which no image-level attribute labels

are needed (Section 10.1). Finding the category-attribute proportions is still not a trivial

task. To this end, we propose methods for efficiently estimating the category-attribute pro-

portions based on category-attribute relatedness collected from different modalities, such as

automatic NLP tools, and manual efforts with minimal human interactions (Section 10.3).

The effectiveness of the proportion method is verified by various applications including

modeling animal attribute, sentiment attributes, and scene attributes (Section 10.5).

10.2 LLP for Attribute Modeling

Our problem can be viewed as a learning with label proportion setting. Here the bags

are defined by the M categories, each containing some corresponding images (instances).
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Figure 10.2: Manually defined category-attribute similarity matrix copied from [119]: the

rows are the categories, and the columns are the attributes. This matrix is obtained from

human judgments on the “relative strength of association” between attributes and animal

categories.

The proportions are represented by a category-attribute proportion vector. The task is to

model the attribute based on such information. In the case of modeling l attributes, we will

need an M×l category-attribute proportion matrix, where the i-th column characterizes the

proportion for the i-th attribute, i = 1, · · · , l. For simplicity, the l attributes are modeled

independently in this work. We apply the ∝SVM algorithm (Chapter 8) in solving this

problem.

10.3 Collecting Category-Attribute Proportions

Collecting the exact category-attribute proportion is still a challenging problem. In

this section, we propose several ways of estimating the proportions based on the category-

attribute relatedness collected from different sources.

10.3.1 Human Knowledge

Perhaps the most straightforward method is to estimate the proportions based on human

commonsense. For example, it is easy to know things like “80% bears are black”, “100%

home theater have TVs”. To alleviate the bias of individual user, one can estimate the
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Categories Attributes Source of Proportions Evaluation Method

Animals Animal visual properties Commonsense by human User study

Sentiment attributes Sentiment attributes Commonsense by ConceptNet Test on a labeled set

Scenes Scene properties Borrowed from another dataset Application-based (event detection)

Table 10.1: Summary of the three applications explored in our experiments.

proportion based on averaged value of multiple persons. In addition, to make the human

interaction task easier, one can also discrete the proportion values, for example, into 0, 1/3,

2/3, 1.

A similar method has been used in modeling the category-level attributes in [119].

Figure 10.2 shows a subset of the category-attribute similarity matrix on the AwA dataset.

[119] treats this matrix as a “visual similarity” matrix. When training the attributes,

they binarize the matrix and treat the images of all positive categories as positive for the

corresponding attribute. Unfortunately, the binarization will lead to huge information loss.

Different from the above work, we treat this matrix as a proportion matrix. Based on the

animal dataset provided in [119]. we will show by experiments (based on user study) that

LLP provides better results than the binarization approach.

10.3.2 NLP Tools

To make the above commonsense based approach more efficient and scalable, we can

also use NLP (Neural Language Processing) tools to automatically build such a category-

attribute proportion matrix. For example, the ConceptNet1 can be used to construct a

category-attribute similarity matrix. The ConceptNet is a hypergraph that links a large

amount of concepts (words) by the knowledge discovered from Wikipedia and WordNet, or

provided by community contributors. The concept similarity can be computed by searching

the shortest path in this graph. We apply the association function of the Web API of

ConceptNet 5 to get the semantic similarity between the categories and attributes. After

getting this semantic similarity matrix, we use the normalized similarity as the estimation of

the proportions. We demonstrate this NLP tool based approach in the experiment section

1http://conceptnet5.media.mit.edu/

http://conceptnet5.media.mit.edu/


CHAPTER 10. APPLICATION: ATTRIBUTE MODELING BASED ON
CATEGORY-ATTRIBUTE PROPORTIONS 123

by modeling visual sentiment attributes.

10.3.3 Transferring Domain Knowledge and Domain Statistics

The proportions can also be borrowed from knowledge of other domains. For example,

we can get the “black hair” proportion of different ethnic groups of people based on genetic

research. And by combining such statistics with a multi-ethnic group human face dataset,

we can model the attribute “black hair”. In addition, the proportions can be borrowed

from another dataset where the proportion is available. We will show one application of

this approach, modeling scene attributes, in the experiment section.

10.4 Discussions

The proposed attribute modeling technique provides an efficient alternative to the classic

approaches. However, there are some limitations. First, the estimated category-attribute

proportion has to be close to the exact proportion of the dataset. This may not be true if the

multi-class dataset is biased, or if the number of images in each category is small. Second,

enough number of categories are needed. For example, the method cannot be applied to the

worst case scenario where only a single category and a single category-attribute proportion

value is available.

10.5 Experiments

We demonstrate the power of the proposed framework in three different applications:

modeling animal attributes, modeling sentiment attributes, and modeling scene attributes.

The three applications are summarized in Table 10.3.1. The parameters of the LLP algo-

rithm are tuned based on cross-validation in terms of the proportion loss. The algorithm we

use has the same computational complexity of linear SVM (it scales linearly to the number

of images). In practice, the LLP algorithm is several times slower than linear SVM due to

the alternating minimization process [231].
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10.5.1 Modeling Attributes of Animals

Setting. Our first experiment consists in modeling animal attributes on the AwA

dataset [119], which contains 30,475 images of 50 animal categories. Each image is uniquely

labeled as one of the 50 categories. Associated with the dataset, there is a category-attribute

similarity matrix of 85 attributes based on manual efforts mentioned in Section 10.3.1. A

subset of the category-attribute matrix is shown in Figure 10.2. We use the same set of low-

level features provided in [119]. In order to model the attributes, [119] first thresholds the

matrix to a 0/1 matrix. They then train 85 attribute classifiers, where for each attribute,

all the images belonging to the positive categories are treated as positive, and all images

belonging to negative categories are treated as negative. The binarization step obviously

leads to loss of information.

Method. In this work, we treat the similarity matrix as a category-attribute proportion

matrix, and train the attribute models with ∝SVM. We use 50% images for training and

50% for testing.

Evaluation. As there are no labeled images for the 85 attributes, it is hard to directly

compare our method with the baselines quantitatively. For evaluation, we perform a small-

scale user study. For each attribute, 20 images are randomly selected from the top-100

ranked images for each method. Human subjects are then asked to determine which method

produces better attribute modeling results. The subjects are 5 graduate students majoring

in engineering and business, who are not aware of the underlying learning framework. In

this experiment, the users prefer our results over the baseline ones 74% of the time. This

verifies the plausibility of the newly proposed framework.

10.5.2 Modeling Sentiment Attributes

Setting. We consider the task of modeling object-based sentiment attributes such as

“happy dog”, and “crazy car”. Such attributes are defined in [23, 34]. In this work we

consider three nouns: dog, car, face and the sentiment attributes associated with them.

This results in 77 sentiment attributes (or adjective-noun pairs, ANPs) to be modeled.

Such ANPs appear widely in social media. We use the data and features provided in [23]:

for each ANP, there is a set of images collected by querying that ANP on Flickr. Borth
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Figure 10.3: Experiment result of sentiment attribute modeling. The figure shows AP@20

of our method and the baseline (binary SVM). The AP is computed based on a labeled

evaluation set.

et al. [23] uses such labels to train one-vs-all linear SVMs to model the ANPs. One critical

problem for this approach is that many sentiment attributes are intrinsically ambiguous.

For example, a “cute dog” can also be a “lovely dog”. Therefore, when modeling “lovely

dog”, some images belonging to “cute dog” should also be positive.

Method. To solve the above problem, we first use the method of Section 10.3.2 to

collect the semantic similarity between every pair of ANPs. We then use our framework to

model the ANPs. Different from other applications, both the categories and the attributes

are ANPs. The proposed framework is used to improve the modeling of existing attributes,

rather than learning new ones.

Evaluation. To evaluate the ANP modeling performance, for each ANP, we manually

label 40 positive images, and 100 negative images from a separate set. Multiple people

are involved in the labeling process, and images with inconsistent labels are discarded.

Figure 10.3 compares our ANP modeling performance with [23]. Our approach dramatically

outperforms the baseline for most of the sentiment attributes. Our method provides a

relative performance gain of 30% in terms of the Mean Average Precision.

10.5.3 Modeling Scene Attributes

Setting. Concept classifiers have been successfully used in video event detection [28,

145]. In such systems, concept classifiers (about scenes, objects, activities etc.) are trained

based on a set of labeled images visually related to the event detection task. The trained

classifiers are used as feature extractors to obtain mid-level semantic representations of
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(a) bathing (b) dry

(c) reading (d) rusty

Figure 10.4: Top ranked images of the learned scene attributes classifiers on IMARS.

video frames for event detection. The key to the above event detection paradigm is a set of

comprehensive concepts. In order to model one additional concept, traditional approaches

require an expensive manual labeling process to label the concepts on the images. The

objective of this experiment is to model the 102 scene attributes defined by [163] with the

IMARS images [28, 145], without the requirement of manual labeling. Some examples of

the scene attributes are “cold”, “dry”, and “rusty”. Existing IMARS concepts do not cover

the 102 attributes.

Method. We first compute the empirical category-attribute proportions based on a

separate multi-class scene datasets with 717 categories (“SUN attribute dataset”) [163],

in which each image comes with the attribute labels. Such proportions are then used

on the IMARS set to model the attributes. For each of the 717 categories, we can find

the corresponding set of images on IMARS based on the concept labels2. The supervised

information is a 717 × 102-dimensional category-attribute proportion matrix. We then

2Note that one could train the attribute models based on SUN attribute dataset directly. But such

attribute models do not lead to satisfactory result on IMARS due to cross-domain issues. Instead, the

proportions of the two datasets are empirically very similar, and the proposed method leads to better

performance.
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Figure 10.5: Event detection APs based on our attribute models, and the manual concept

models. The modeled attributes (without manual labeling process) is competitive with the

concepts (with manual labeling process).

train 102 ∝SVM classifiers to model the attributes.

Evaluation. Figure 10.4 visualizes a few modeled attributes by the top ranked images

of IMARS. We can qualitatively see that the attribute classifiers can successfully capture

the corresponding visual properties. We further apply the learned attribute models in the

event detection task. The evaluation is based the TRECVID MED 2011 events with the

evaluation set and pipeline described in [28, 145]. The baseline method is the concepts

trained by manual labels. The attributes modeled by category-attribute proportions are

very competitive compared with the manually labeled concepts in terms of the average pre-

cision on the event detection task. For certain events, e.g., E007, E013, the performance of

the attributes even outperforms the manual concepts. In summary, the proposed technique

provides an efficient way of expanding IMARS concept classifiers for event detection.

10.6 Conclusion and Future Works

We proposed a novel framework of modeling attributes based on category-attribute pro-

portions. The framework is based on a machine learning setting called learning from label

proportions (LLP). We showed that the category-attribute proportion can be efficiently

estimated by various methods. The effectiveness of the proposed scheme has been demon-

strated by various applications including modeling animal attributes, sentiment attributes,

and scene attributes. Our future direction is to study ways of jointly modeling all the
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attributes. It is also worthwhile to study more ways of forming the category-attribute

proportions, as well as combining such proportions formed by multiple knowledge sources.
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Part III

Scalable Design and Learning of

Mid-level Attributes
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Chapter 11

Scalable Design and Learning of

Mid-Level Attributes

11.1 Introduction

To address the limitation of supervised information, we have studied a weakly supervised

learning setting called learning from label proportions (LLP) in Part II. The limitation of

supervision can also be alleviated by knowledge transfer i.e., leveraging knowledge from

different, yet related tasks, In this part, we provide solutions from this perspective.

One widely used paradigm for knowledge transfer for visual data is attribute based

recognition. There is no clear definition of visual attribute – generally speaking, they refer

to a set of human nameable properties (e.g., furry, striped, black for describing animals) that

are shared across categories [148, 60]. Attributes have also been used to denote shareable

properties of objects without concise semantic names (e.g., dogs and cats have it but sharks

and whales don’t [60]) for improved discrimination. Attributes are sometimes referred to

as visual concepts in the multimedia community [150, 222].

The idea of attribute-based recognition closely mimics human vision: humans are ex-

tremely good at recognizing novel categories with the help of knowledge learned from the

past experience. For example, for an unseen animal, human can describe it by comparing it

with other animals, and by associating it with visual properties characterizing body color,

tail shape etc. Therefore, even with very few labeled images, human can build a recognition
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model by relating the animal to some existing visual attributes. If the relationship of the

visual attributes of the new animal is known, from Wikipedia, for example, a human can

also recognize the animal without any training samples.

This is very different from conventional computer vision, where a large number of train-

ing samples with labels are given, and the algorithms try to find the sophisticated relation-

ship between the low-level features and the high-level semantics. It is quite obvious that

there is a huge gap between the low-level features and the high-level semantic meanings (this

is commonly referred to as the “semantic gap”), and being able to describe novel categories

by some mid-level attributes can help to bridge the “semantic gap”, and greatly alleviate the

amount of supervision required. As an intuitive example, recognizing “round” and “green”

is helpful in recognizing apple. Therefore attribute-based recognition has received renowned

attention in the computer vision community, and it has been applied in recognition with

few or zero examples [119] and describing images containing unfamiliar objects [60]. In

addition, visual attributes have also been used in applications such as image retrieval with

intuitive multiple-attribute queries [190], video event recognition and recounting [28], action

recognition [133], image-to-text generation [15], fine-grained visual categorization [55], and

classification with humans-in-the-loop [161, 25].

Ironically, although attributes based recognition, by design, is a way to improve the scal-

ability of visual recognition with limited supervision, conventional attribute modeling suffers

from scalability issues in itself. On the one hand, designing attributes usually involves man-

ually picking a set of words that are descriptive for the images under consideration, either

heuristically [60] or through knowledge bases provided by domain specialists [119]. On the

other hand, after deciding the set of attributes, additional human efforts are needed to label

the attributes on a set of images to train the attribute classifiers. To make attribute-based

recognition applicable to large-scale visual data, it is required to have a high-dimensional

attribute space which is sufficiently expressive for the visual world. Unfortunately, the re-

quired human efforts in both the attribute design and labeling process hinder scaling up

the process to develop a large number of attributes. In addition, a manually defined set of

attributes (and the corresponding attribute classifiers) may be intuitive but not discrimi-

native (therefore useful) for the visual recognition task. A challenging question to answer
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is how to design a large set of mid-level attributes which is useful for the visual recognition

task, as well as easy and cheap to be constructed.

In the thesis, we propose approaches to design and model a large set of useful mid-

level visual attributes without human burdens. In particular, we consider designing the

attributes for two tasks: image retrieval with multi-attribute queries [229], and attribute-

based recognition [230]. For both of the applications, we propose a method which can

automatically design and learn a large set of useful attributes which are weakly interpretable.

Key to both the proposed methods is to leverage the existing supervised information, as

well as considering the data distribution and the task to make the designed attributes

discriminative.

11.2 Related Works

11.2.1 Collection of Supervision based on Crowdsourcing

Perhaps the most straightforward way of learning attribute models (and also for solving

the weakly supervised learning problem) is by scaling up the labeling process which often re-

quires human involvement. For example, Amazon Mechanic Turk, a crowdsourcing system,

has been widely used in the computer vision community to collect supervised information,

such an image labels and object bounding boxes [194, 47]. Crowdsourcing has also been

used to label attributes on the images [163]. Innovative methods, such as reCAPTCHA

[210], was designed to collect human-based recognition on characters when performing the

CAPTCHA test. Certain types of interactive games were proposed such that human can

help labeling images (for free) while being entertained [209, 17]. Different from the above,

we study approaches which require no human labeling process.

11.2.2 Transfer Learning

The method of visual attribute modeling is a widely used paradigm for knowledge trans-

fer in computer vision. In machine learning, there is a group of related methods, which are

generally referred to as transfer learning. There are many other names of transfer learning,

such as life-long learning, learning to learn, cumulative learning, multi-task learning, and
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inductive learning. Similar to visual recognition, the more general transfer learning also

mimic the human learning process: knowing how to play piano can certainly help to learn

playing violin, and learning to speak and to write multiple languages can reinforce each

other. We refer the reader to [158] for a survey on transfer learning. In that, transfer

learning methods are categorized into three classes: inductive learning, where the source

and the target tasks are different, transductive transfer, where the source and target tasks

are the same, but in different domains, and unsupervised transfer, where the target task is

unsupervised. Attribute-based recognition can be understood as a mixture of transductive

transfer and inductive transfer, depending on the settings and formulation.

11.2.3 Designing Semantic Attributes

Conventionally, the attributes are designed by manually picking a set of words that are

descriptive for the images under consideration [60, 119, 136]. Similar way has also been ex-

plored for designing “concepts” in multimedia [150, 222] and computer vision [126, 203, 202].

The concepts are sometimes manually or automatically organized into a hierarchical struc-

ture (ontology) to characterize different levels of semantics [150, 202]. To alleviate the

human burdens, Berg et al. [15] proposed to automatically discover attributes by mining

the text and images on the web, and Rohrbach et al. [176] explored the “semantic related-

ness” through online knowledge source to relate the attributes to the categories. In order to

incorporate discriminativeness for the semantic attributes, Parikh and Grauman [160], Duan

et al. [55] proposed to build nameable and discriminative attributes with human-in-the-loop.

Compared with the above manually designed semantic attributes, our designed attributes

cannot be used to describe images with concise semantic terms, and they may not cap-

ture subtle non-discriminative visual patterns of individual images. However, the proposed

weak attributes and category-level attributes can be automatically and efficiently designed

for discriminative visual recognition and retrieval, leading to effective solutions and even

state-of-the-art performance on the tasks that were traditionally achieved with semantic

attributes.
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11.2.4 Designing Data-Driven Attributes

Non-semantic “data-driven attributes” have been explored to complement semantic at-

tributes with various forms. Kumar et al. [114] combined semantic attributes with “simile

classifiers” for face verification. Yang and Shah [226] proposed data-driven “concepts”

for event detection. Liu et al. [133] extended a set of manually specified attributes with

data-driven attributes for improved action recognition. Sharmanska et al. [188] extended

a semantic attribute representation with extra non-interpretable dimensions for enhanced

discrimination. Bergamo et al. [16], Gordoa et al. [75], Rastegari et al. [174] used the

large-margin framework to model attributes for objective recognition. Wang and Mori

[217], Farhadi et al. [61] used attribute-like latent models to improve object recognition.

For both of the proposed approaches, we utilize the data distribution to make the attribute

more discriminative for the tasks, including multi-attribute image retrieval, and attribute-

based recognition.

11.3 Overview of the Proposed Approaches

11.3.1 Weak Attributes for Large-Scale Image Retrieval

The attribute-based query offers an intuitive way of image retrieval, in which users can

describe the intended search targets with understandable attributes. In this chapter, we

develop a general and powerful framework to solve this problem by leveraging a large pool

of weak attributes comprised of automatic classifier scores or other mid-level representa-

tions that can be easily acquired with little or no human labor. We extend the existing

retrieval model of modeling dependency within query attributes to modeling dependency

of query attributes on a large pool of weak attributes, which is more expressive and scal-

able. To efficiently learn such a large dependency model without overfitting, we further

propose a semi-supervised graphical model to map each multi-attribute query to a subset

of weak attributes. Through extensive experiments over several attribute benchmarks, we

demonstrate consistent and significant performance improvements over the state-of-the-art

techniques. The work was originally presented in [229].
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11.3.2 Designing Category-Level Attributes for Visual Recognition

Attribute-based representation has shown great promises for visual recognition due to

its intuitive interpretation and cross-category generalization property. However, human

efforts are usually involved in the attribute designing process, making the representation

costly to obtain. In this chapter, we propose a novel formulation to automatically design

discriminative “category-level attributes”, which can be efficiently encoded by a compact

category-attribute matrix. The formulation allows us to achieve intuitive and critical design

criteria (category-separability, learnability) in a principled way. The designed attributes can

be used for tasks of cross-category knowledge transfer, achieving superior performance over

well-known attribute dataset Animals with Attributes (AwA) and a large-scale ILSVRC2010

dataset (1.2M images). This approach also leads to state-of-the-art performance on the

zero-shot learning task on AwA. This work was originally introduced in [230].
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Chapter 12

Weak Attributes for Large-Sale

Image Retrieval

12.1 Introduction

In this chapter, we propose the notion of “weak attributes”, under the application of

large-scale image retrieval with multi-attribute queries. In such a scenario, the user provides

multiple attributes, to describe the facets of the query target. For instance, to retrieve

images of a person, one could describe the physical traits of gender, hair color, and presence

of mustache etc. The task is to retrieve images containing all of the query attributes. We

assume only a small portion of the database have the attributes labeled before hand, and

our goal is to search the entire large-scale image corpus.

A straightforward solution to the above problem is to build classifiers for the attributes

of interest and sum the independent classifier scores to answer such multi-attribute queries

e.g. [113]. A promising alternative, as shown in [190], is to analyze the dependencies/

correlations among query attributes and to leverage such multi-attribute interdependence to

mitigate the noise expected from the imperfect automatic classifiers. An illustrative example

of the above dependency model is shown in Figure 12.1. The previous work [190] relied only

on the pre-labeled attributes to design the dependency model, limiting its performance and

scalability. On the one hand, user labeling is a burdensome process; On the other hand, the

number of such pre-labeled attributes is limited: only a small set of words were chosen, for
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instance “car”, “tree”, “road” etc. for street scenes and “beard”, “Asian”, “male” etc. for

human faces. In particular, there are only 27 attributes for face images considered in [190],

and 64 attributes in a-PASCAL benchmark [60]. Such a small amount of attributes are far

from sufficient in forming an expressive feature space, especially for searching a large image

corpus of diverse content.

In this chapter, a Weak Attribute based paradigm is proposed to address the above

challenge, and it provides a principled solution for large-scale image retrieval using multi-

attribute queries:

Weak Attributes are a collection of mid-level representations, which could be comprised

of automatic classifier scores, distances to certain template instances, or even quantization

to certain patterns derived through unsupervised learning, all of which can be easily acquired

with very little or no human labor.

We specifically refer to such attributes as “weak” because they could be easily acquired,

unlike the classifiers specially trained for attributes that require dedicated human labeling

efforts1. For example, hundreds or thousands of visual classifiers such as classemes [203],

Columbia374 [222], and automatic attributes [15], have been developed and made available,

though they typically do not have direct correspondence with the target query attributes.

Different from query attributes, weak attributes may not have clear semantic meanings.

Examples are discriminative attributes [60] (A is more like a dog than a cat); relative

attributes [159] (A is more natural than B); comparative values of visual features [114] (A

is similar to B); and even topic models.

We are interested in the case that the dimensionality of weak attributes (say thousands

or more) is much higher than that of the query attributes. The large cardinality ensures

the weak attribute space to be sufficiently expressive, based on which a robust retrieval

model can be developed. As shown in Figure 12.1, to bridge the gap between the limited

query attribute (for user) and the expressive weak attribute space (for the machine), we

extend the attribute dependency model from the narrow one among query attributes only

1Scores of the attribute classifiers, which are trained based on labeled training data existed before hand,

can also be treated as weak attributes, for the reason that they are easily acquired without additional human

labors.
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Figure 12.1: “Evolution” of approaches for answering multi-attribute queries: (a) Direct

independent matching of query attributes with corresponding classifiers. (b) Modeling

dependency/correlation within query attributes (MARR) [190]. (c) Modeling dependency

of query attributes on a large pool of weak attributes. Our approach also emphasizes

sparsity of the model to avoid overfitting.

to a much more general one that maps query attributes to weak attributes, as detailed in

Section 12.3.1.

Learning a large-scale dependency model with a small number of training labels is not

trivial, due to the complexity of the learning process and the risk of overfitting. To ad-

dress the above issues, we propose to impose query dependent “sparsity” of the dependency

model, so that for both training and prediction, only a limited number of weak attributes

are considered for each multi-attribute query (Section 12.3.2). To achieve this goal, we

further develop a novel semi-supervised graphical model to incorporate statistics from both

the labeled training data and the large amount of unlabeled data (Section 12.3.3). We

will demonstrate through extensive experiments that our approach improves significantly

over existing methods (Section 12.4), and can largely boost the flexibility of the retrieval

model in dealing with cross-dataset variants (Section 12.4.2) and large-scale scenarios (Sec-

tion 12.4.3). Our work has four unique contributions:

• We propose weak attributes that unify various kinds of mid-level image representations

which can be easily acquired with no or little human labor.

• We apply weak attributes to image retrieval, by modeling dependency of query attributes

to weak attributes under the framework of structural learning.

• To achieve efficiency and avoid overfitting, we propose to control query dependent sparsity

with a novel semi-supervised graphical model. This further enables our approach to be

effective for cross-dataset and large-scale scenarios.
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• We compile a large multi-attribute image retrieval dataset, named a-TRECVID, includ-

ing 126 fully labeled query attributes and 6,000 weak attributes of 0.26 million images

extracted from videos used in the 2011 TRECVID Semantic Indexing (SIN) track.

12.2 Related Works

Structural Learning. Tsochantaridis et al. [204] introduced structural SVM to ad-

dress classifier with structural output. Structural SVM has been well advocated in document

retrieval [122] (sometimes also referred as “learning to rank” in the information retrieval

literature) and multi-label learning [167] etc. This is due to its capability to directly incor-

porate different types of loss distortions, such as precision, Fβ score and NDCG, into its op-

timization objective function. Siddiquie et al. [190] proposed to handle the multi-attribute

query based image retrieval problem using a structural learning paradigm [122, 167], by

considering interdependency across query attributes.

Multi-Keyword Queries. Besides the utilization of attributes, there have been works

on image search based on multi-keywords queries [62, 109], in which images are first retrieved

based on textual features and then reranked by classifiers built on visual features. The main

limitation of these works is the requirement that every image in the database is tagged by

hand or automatic yet imperfect classifiers. This limitation could be mitigated by tag

propagation [77, 79]. However, the above works do not take into account the dependencies

between query terms, which were shown to largely affect the search performance [190]. Our

work is also related to “query expansion” for multi-keyword queries [151]. Different from

query expansion, our approach “expands” a query to a sparse subset of weak attributes from

a large pool, and the final dependency model is jointly learned across all possible queries

under the framework of structural learning.

12.3 Weak Attributes for Image Retrieval

In the weak attribute based retrieval paradigm, we first select a sparse subset of weak

attributes for each multi-attribute query, through a novel semi-supervised graphical model

(Section 12.3.3). The selection process is optimized under a formulation of maximizing
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Q Set of attribute queries

Q A multi-attribute query

q A query attribute

qi The i-th query attribute, i = 1, · · · , |Q|

X Set of all the images

X A set of images

x An image

Z Set of all weak attributes

z A weak attribute

zi The i-th weak attribute, i = 1, · · · , |Z|

zi(x) Score of the i-th weak attribute for image x

H(·) Entropy of a probability distribution

I(; ) Mutual information of two probability distributions

Table 12.1: Key Notations of Chapter 12.

mutual information of query attributes and weak attributes (Section 12.3.2). Then, for

each multi-attribute query, only the corresponding subset of weak attributes are considered

in the learning and prediction process (Section 12.3.1), ensuring efficiency and avoiding

overfitting. We begin this section by first introducing the proposed dependency modeling

of query attributes to weak attributes under the structural SVM framework. Table 12.3

shows the key notations of this chapter.

12.3.1 Dependency Modeling

Our dependency modeling is based on an image retrieval scenario. Similar to [190],

it can be easily modified for the image ranking scenario, by some minor changes with an

appropriate query relevance function.

Prediction. Let Q ⊂ Q be a multi-attribute query, where Q is the set of all possible

query attributes. All the possible query attributes are {qi}|Q|i=1. Let Z = {zi}|Z|i=1 be the set

of all weak attributes, and let X be the set of images. The multi-attribute search is to select
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a set of images as the structured response to a given multi-attribute query Q:

argmax
X⊂X

wTψ(Q,X), (12.1)

where2

wTψ(Q,X) =

|Q|∑
i=1

|Z|∑
j=1

I(qi ∈ Q)wij
∑
x∈X

zj(x). (12.2)

Here, I(qj ∈ Q) is the indicator function which outputs 1 if the j-th attribute is in the

query, and 0 otherwise. zj(x) measures the score of the j-th weak attribute of image x.

wij is the dependency of the i-th query attributes to the j-th weak attribute. Compared

with the recent work [190], our key insight is to model the dependency of query attributes

on weak attributes characterized by w, as illustrated earlier in Figure 12.1. (12.1) can be

solved efficiently in O(|X |).

Training. In training, the learner receives N multi-attribute query image set pairs:

{(Qi, Xi)}Ni=1. We follow the standard max-margin training formulation as follows:

argmin
w,ξ

wTw + C
N∑
i=1

ξi (12.3)

s.t. wT (ψ(Qi, Xi)− ψ(Qi, X)) ≥ 4(Xi, X)− ξi, X ⊂ X .

4(Xi, X) is the loss function, which can be set as Hamming loss, precision, recall and Fβ

score etc. [190, 167]. (12.3) can be solved by cutting plane method [204]. It iteratively

solves (12.3) initially without any constraints, and then at each iteration adds the most

violated constraint of the current solution. The most violated constraint at each iteration

is generated by:

argmax
X⊂X

4(Xi, X) + wTψ(Qi, X), (12.4)

which can be solved in O(|X |) with the Hamming loss, and O(|X |2) with loss such as the

Fβ score [167].

2For easier presentation, w is written as matrix form here: w ∈ R|Q|×|Z|, where wij is the dependency

model of the i-th query attributes to the j-th weak attribute.
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Figure 12.2: Semi-supervised graphical model (the dotted line means connected through

other nodes). In this example, the semi-supervised graphical model suggests weak attribute

“gray hair” is related to query attribute “middle age”. This relation is unclear by considering

the supervised graph alone. Note that the latent nodes in the unsupervised graph are also

a kind of weak attribute.

12.3.2 Controlling Query Dependent Sparsity

For a large weak attribute pool, the model (w in (12.1)) contains a large number of

parameters: |Q|× |Z| (500,000 if there are 100 query attributes and 5,000 weak attributes).

It is computationally expensive in learning, and may also cause overfitting.

We solve the above issues by imposing query dependent sparsity on the dependency

model. Given a query Q ⊂ Q, the objective is to get a small set of weak attributes ZQ ⊂ Z

relevant to Q, so that for both training (12.3) and testing (12.1), only the corresponding

elements of w are considered:

wTψ(Q,X) =

|Q|∑
i=1

|Z|∑
j=1

I(qi ∈ Q)I(zj ∈ ZQ)wij
∑
x∈X

zj(x). (12.5)

This idea is important, since, from both intuition and the experiment results which will be

presented later, only a small subset of weak attributes in the large weak attribute pool are

related to a specific multi-attribute query.

We formulate the above weak attribute selection problem as maximizing mutual infor-
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mation, which is a general measurement of relevance:

argmax
ZQ⊂Z

I(Q;ZQ) s.t. |ZQ| = ϑ, (12.6)

where ϑ is the desired number of selected weak attributes controlling the query dependent

sparsity of our model. We call ϑ “sparsity” in this work. General feature selection methods

based on entropy criterions can be found in [165]. (12.6) is hard to solve, because there are(|Z|
ϑ

)
combinations in selecting ZQ ⊂ Z. We instead use a greedy algorithm by considering

z ∈ Z one at a time, and set ZQ as the top-ϑ z with highest mutual information value:

argmax
z∈Z

I(Q; z), (12.7)

where I(Q; z) = H(Q)−H(Q|z). H(Q) is a constant for a given query Q. H(Q|z) can be

expanded as:

H(Q|z) = −
∑
z

P(z)
∑
Q

P(Q|z) logP(Q|z), (12.8)

where P(z) is the marginal distribution of weak, attribute z. P(Q|z) plays a key role in

bridging each weak attribute z ∈ Z to a specific multi-attribute query Q. Direct modeling

of P(Q|z) based on training data that has query attribute ground truth is easy. However,

it will bias the model because the training set can be very small. To address the above

issues, we design a novel semi-supervised graphical model, to get P(Q|z) efficiently with

consideration of statistics from both training and an unlabeled auxiliary set. This further

enables our approach to be effective for cross-dataset and large-scale retrieval tasks. Due

to the utilization of unlabeled set, we term our method “semi-supervised graphical model”

in the next section.

12.3.3 Semi-Supervised Graphical Model

The Model. The semi-supervised graphical model (Figure 12.2) is a two-layer proba-

bility graphical model3. The first layer is called the supervised graph, which is constructed

based on the training data with the ground truth of query attributes. This graphical model

3Before learning this model, weak attributes are binarized in order to use the same discrete format as

the query attributes.
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Algorithm 6 Alternating Inference

Given a query Q ⊂ Q, compute P(Q|zi = 1), i = 1, · · · , |Z|, as needed in (12.8). We

consider a fixed i, without loss of generality.

while Not convergent (the change of Pup(z) is large) do

Inference on the unsupervised graph to get its marginal distribution Pdown(z|zi =

1), ∀z ∈ Z.

Update the margin of z ∈ Z of the supervised graph Pup(z)← Pdown(z|zi = 1).

Inference on the supervised graph, to get updated Pup(z), ∀z ∈ Z.

Update the margin of z ∈ Z of the unsupervised graph: Pdown(z)← Pup(z).

end while

Compute joint distribution Pup(Q) in the supervised graph as output P(Q|zi = 1).

is to characterize the joint distribution of query attributes and weak attributes on the train-

ing set. The second layer is called the unsupervised graph, which is constructed based on all

or subset of an unlabeled set, with no query attribute ground truth available. This graphical

model is to characterize the joint distribution of weak attributes on the large unlabeled set.

The two layers are connected by weak attributes that appear in both layers. Therefore,

the model can leverage information from both the labeled training data and the unlabeled

data, and thus we call it “semi-supervised”. The graphical model can capture the high-

order dependency structure of attributes. It greatly improves the generalization power

of our approach, and enables applications of cross-dataset retrieval (Section 12.4.2), and

large-scale retrieval with very small amount of training data (Section 12.4.3).

We choose latent tree [38] as our graphical model in each layer. Tree models are a class

of tractable graphical models, efficient in inferencing, and widely used in prior works of

context modeling and object recognition [217]. The learned latent variables can be treated

as additional weak attributes, which summarize higher level information (context) of both

weak and query attributes.

Alternating Inference. We now talk about how to get P(Q|z), ∀z ∈ Z of (12.8) from

the above semi-supervised graphical model. In other words, we need to model P(Q|zi), i =

1, · · · , |Z| (recall that Z = {zi}|Z|i=1). The direct inference is difficult because the graphical
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model may not be acyclic and thus intractable. To address the above issue, we have designed

Alternating Inference, summarized in Algorithm 6. We use Pup to denote the probability on

the supervised graph, and use Pdown to denote the probability on the unsupervised graph.

The idea is to iteratively inference on the unsupervised and supervised graph. In each

iteration, margins of the weak attributes are estimated and passed to the other graph. We

set the initial marginal probability of query attributes as uniform. The inference over each

layer can be done efficiently by belief propagation.

To compute the joint probability Pup(Q) in the last step of Algorithm 6, we rewrite it as

the product of conditional probabilities. For example, if query Q = {q1, q2, q3}, Pup(Q) =

Pup(q1|q2, q3)Pup(q2|q3)Pup(q3). It is easy to show that, in general, we can get Pup(Q) by

doing belief propagation 2|Q| − 1 times, which is small given the fact that |Q| is small.

This assumption is valid for the reason that most images are only associated with a limited

number of query attributes. For instance, the average number of attributes of LFW and

a-PASCAL datasets is 6.95 and 7.1 respectively, while this number for a-TRECVID dataset

is only 2.6. In our configuration, we set |Q| ≤ 3.

We found empirically that the convergence of Algorithm 6 is fast, usually within less

than 10 iterations. Therefore, weak attribute selection based on (12.7) can be computed

efficiently.

12.4 Experiments

Our implementation of structural SVM is based on [98] with its Matlab wrapper4, under

the 1-slack formulation. We use regCLRG [38] to learn the latent tree graphical model for

each layer of the semi-supervised graphical model. This method is found to be effective

in terms of both efficiency and performance. Following [190], Hamming loss for binary

classification is used as the loss function throughout the experiments:

4 (Xi, X) = 1− |X ∩Xi|+ |X̄ ∩ X̄i|
|X |

. (12.9)

Our evaluation is based on mean AUC (Area Under Curve), which is a standard measure-

ment commonly used to evaluate the performance of binary classification tasks, in our case,

4http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html

http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
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Figure 12.3: Learnt w for LFW dataset with sparsity ϑ = 40 (best viewed in color).

Vertical labels are query attributes, and horizontal labels are weak attributes. Red, blue

and white represent positive, negative and no dependency respectively. High intensity means

high dependency level. This learned matrix is semantically plausible. For instance, people

“wearing lipstick” (query) is unlikely to be “male” (weak), and “kid” (query) is highly

related to “child” (weak). Compared with [190], our method avoids dubious artifacts in

mappings, e.g. “Asian” (query) to “male” (weak) and “black” (query) to “youth” (weak),

and also results in faster training/testing and less overfitting.

image retrieval. Note that the AUC measure of a random guess system is 0.5.

12.4.1 Labeled Faces in the Wild (LFW)

Our first evaluation is on the Labeled Faces in the Wild (LFW) dataset [87], which

contains 9,992 images with manual annotations of 27 attributes, including “Asian”, “beard”,

“bald”, “gray hair”, etc. Following the setting of [190], we randomly choose 50% of this

dataset for training and the rest for testing. For visualization, the weak attributes for this

dataset contain only attribute classifier scores from [114] (scores of 73 attribute classifiers

designed for human faces) and latent variables from the graphical model5.

In order to get the baseline results of individual classifiers (direct classifiers correspond-

ing to the query attributes), we have omitted three attributes: “long hair”, “short hair”

and “no beard” which are not covered by the classifier scores from [114]. Figure 12.3 shows

5The value of latent variables are acquired by inferencing on the unsupervised graph, conditioned on the

weak attributes. We have transformed the conditional marginal distribution of latent variables back to the

real interval [−1, 1] by linear mapping.
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Figure 12.4: Retrieval performance on LFW dataset. The first three results are copied from

[190], in which different individual classifiers are used. The last three results are based on

our implementation.

the learnt dependency model w using our proposed method with sparsity ϑ = 40. For vi-

sualization, we only show the weak attributes selected by single-attribute queries, i.e. each

query attribute is uniquely mapped to 40 weak attributes only. Note the sparsity considered

in our model is query specific, rather than a fixed sparsity structure across different queries

(Section 12.3.2). For example, for a single query “Asian”, the selected weak attribute might

be “Asian” and “white”, while for a double attribute query “Asian”+“woman”, the selected

weak attributes could be “Asian” and “male”. In both learning and prediction processes

involving the dependency model, only the selected weak attributes will be considered for

each multi-attribute query.

Figure 12.4 shows the comparisons of our method to several existing approaches, in-

cluding TagProp [79], Reverse Multi-Label Learning (RMLL) [167], Multi-Attribute based

Ranking and Retrieval (MARR) [190], individual classifier scores from [114], and our im-

plementation of MARR based on individual classifier scores. Our method outperforms all

the other competing methods consistently for all types of queries including single, double

and triple attributes. It is interesting to note that in this experiment, the weak attributes

are actually not “weak”, in the sense that even individual classifiers outperform TagProp,

RMLL and MARR reported in [190], in which different individual classifiers are used. The
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Figure 12.5: Retrieval performance on a-PASCAL dataset. Left: AUC comparison based

on optimal sparsity (ϑ = 400). The first three results are copied from [190]. Right: AUC

of our approach with varying sparsity.

Figure 12.6: Retrieval performance on a-Yahoo dataset. Left: AUC comparison based on

optimal sparsity (ϑ = 200). Right: AUC of our approach with varying sparsity.

weak attributes are weak in the sense that they are trained from other sources, therefore not

directly related to the specific dataset at hand. Closely following [190], our implementation

of MARR only slightly outperforms individual classifiers: the stronger baseline reduces the

amount of improvement that can be obtained by utilizing dependency information from

within query attributes only.
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12.4.2 a-PASCAL and a-Yahoo

Another dataset a-PASCAL [60] contains 12,695 images (6,340 for training and 6,355

for testing) collected from the PASCAL VOC 2008 challenge6. Each image is assigned

one of the 20 object class labels: people, bird, cat, etc. Each image also has 64 binary

query attribute labels, such as “round”, “head”, “torso”, “label”, “feather” etc. a-Yahoo

is collected for 12 object categories from the Yahoo images search engine. Each image in

a-Yahoo is described by the same set of 64 attributes, but with different category labels

compared with a-PASCAL, including wolf, zebra, goat, donkey, monkey etc.

Following the setting of [60], we use the pre-defined training images of a-PASCAL as the

training set and test on pre-defined test images of a-PASCAL and a-Yahoo respectively. We

use the feature provided in [60]: 9,751-dimensional features of color, texture, visual words,

and edges to train individual classifiers. In addition, weak attributes include:

• Scores from classemes semantic classifiers [203]: 2,659 classifiers trained on images re-

turned by search engines of corresponding query words/phrases;

• Discriminative attributes [60], which are trained using linear SVM by randomly selecting

1-3 categories as positive, and 1-3 categories as negative;

• Random image distances: the distance of each image to some randomly selected images

based on the 9,751-dimensional feature vector;

• Latent variables, as detailed in Section 12.4.1.

This finally results in 5,000 weak attributes for each image.

Figure 12.5 shows performance evaluation results using the a-PASCAL benchmark, in

comparison with the state-of-the-art approaches in [190, 79, 167]. Our approach outperforms

all other methods for all types of queries, especially with large margins for double and triple

query scenarios (Figure 12.5 Left). An example of the retrieval result is shown in Figure

12.8. We also evaluate the effect of the sparsity level ϑ, as shown in Figure 12.5 (Right).

Our approach reaches the best performance with sparsity ϑ = 400 (only 8% of all the weak

attributes). Beyond this point, the performance begins to drop, possibly due to overfitting.

This validates the assumption we made earlier that for each query, only a partial set of

6http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
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weak attributes are related. In terms of speed, our implementation requires 10 hours for

training, with sparsity ϑ = 400, on a 12-core 2.8GHz workstation. The prediction can be

done in real time.

Figure 12.6 shows the performance of our methods on the a-Yahoo benchmark in com-

parison with individual classifiers and MARR. Image categories of a-Yahoo and a-PASCAL

are different, resulting in different data statistics. Therefore, training on a-PASCAL and

testing on a-Yahoo can be understood as a “cross-dataset” task, which is ideal for evaluat-

ing the power of the proposed semi-supervised graphical model. From Figure 12.6 (Left),

the performance of MARR is worse than that of individual classifiers, most likely due to

cross-dataset issues. In turn, our method outperforms individual classifiers for all types of

queries.

To validate the merit of integrating the supervised graph and unsupervised graph into

a semi-supervised model (Section 12.3.3), we have further evaluated the performance of

the same model but without the unsupervised layer. As expected, the performance drops

compared with the semi-supervised model. This is an evidence validating the contribution of

the semi-supervised graphical model in mapping query attributes to a large weak attribute

pool.

From Figure 12.6 (Right), the optimal sparsity of a-Yahoo (ϑ = 200) is lower than

that of a-PASCAL (ϑ = 400), meaning that for cross-dataset scenario, fewer relation-

ships/dependencies from query attribute to weak attributes are generalizable. Nevertheless,

our semi-supervised approach can successfully uncover such dependency structures.

12.4.3 a-TRECVID

To further test the effectiveness of our model, we have compiled a large attribute dataset,

named a-TRECVID7. It contains 126 uniquely labeled attributes, and 6,000 weak attributes,

for 0.26 million images. This dataset is compiled from the TRECVID 2011 Semantic In-

dexing (SIN) track common annotation set8 by discarding attributes with too few positive

7The images, labeled attributes, and computed weak attributes are described in http://www.ee.

columbia.edu/dvmm/a-TRECVID

8http://www-nlpir.nist.gov/projects/tv2011/

http://www.ee.columbia.edu/dvmm/a-TRECVID
http://www.ee.columbia.edu/dvmm/a-TRECVID
http://www-nlpir.nist.gov/projects/tv2011/
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Table 12.2: 126 query attributes of a-TRECVID, selected from a pool of 346 concepts

defined in TRECVID 2011 SIN task.

Figure 12.7: Retrieval performance over the a-TRECVID dataset, with the varying training

size. From left to right: performance of single, double and triple attribute queries.

images, and images with too few local feature detection regions. The original dataset in-

cludes about 0.3 million video frames with 346 fully labeled, unique query attributes [8].

The individual attribute classifiers are trained using bag-of-words SIFT features under

the spatial pyramid configuration [121]. Following the setting of Section 12.4.2, weak at-

tributes include individual classifier scores, classemes, discriminative attributes, distance to

randomly selected images, and latent variables. Different from a-PASCAL dataset, we treat

images from the same video as belonging to the same category. Therefore, the number of

categories of a-TRECVID is much larger than that of a-PASCAL, and we have selected

1,000 more discriminative attributes for this dataset. This leads to 6,000 weak attributes

per image.

Figure 12.7 shows the performance of our approach comparing to individual classifiers
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Figure 12.8: Top-10 results of MARR and our approach based on two query examples of

a-PASCAL and a-TRECVID. Images with red frames are false positives. Note that in the

third image of “Ours” for a-PASCAL, there is a bird in the background. a-TRECVID is

compiled from the dataset used in TRECVID 2011 Semantic Indexing (SIN) track.

and MARR. MARR is only marginally better than individual classifiers, for the reason that

the limited feature space is not scalable for the large-scale setting. Our method significantly

outperforms both individual classifiers and MARR by 5% – 8.5%. This experiment validates

our assumption that the proposed approach can handle the situation when the training size

is extremely small. In particular, when using 2,000 images (0.8% of the whole dataset) for

training, our method already outperforms both individual classifiers and MARR approaches

with 8,000 images for training. An example of retrieval result with 6,000 training images is

shown in Figure 12.8.

12.5 Conclusion and Future Works

We introduced weak attributes that unify different kinds of mid-level image represen-

tations which can be easily acquired with no or little human labor. Based on the large

and expressive weak attribute space, robust retrieval model can be developed. Under the

framework of structural learning, we extended attribute dependency model originally de-

fined over a small close set of query attributes to a more general and powerful one that

maps query to the entire pool of weak attributes. To efficiently learn the dependency model

without overfitting, a novel semi-supervised graphical model was proposed to control the

model sparsity. It ed enables our approach to be effective for cross-dataset and large-scale
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scenarios. We have carried out extensive evaluations on several benchmarks, demonstrating

the superiority of the proposed method.

Although the notion of weak attributes was proposed under the framework of multi-

attribute based image retrieval, the idea of leveraging attribute classifiers trained from

different yet related tasks can also be beneficial to attribute-based recognition. We believe

it is also very useful to study methods which can be used to characterize the semantic

reliability of the weak attributes.
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Chapter 13

Designing Category-Level

Attributes for Visual Recognition

13.1 Introduction

To resolve the scalability issue of forming a high-dimensional expressive attribute space,

we have proposed the weak attributes in Chapter 12 leveraging attribute models learned

from different yet related tasks, under the application of multi-attribute based image re-

trieval. In this chapter, we propose another approach under the application of attribute-

based recognition. The approach is termed as “category-level attributes”, a scalable method

of automatically designing and learning of attribute models for discriminative visual recog-

nition. Our approach is motivated by [119, 157], in which the attributes are defined by

concise semantics, and then manually related to the categories as a category-attribute ma-

trix (Figure 13.2). The elements of the matrix characterize each category (row) by the

pre-defined attributes (columns). For example, polar bear is non-white, black, non-blue.

This matrix is critical for the subsequent process of category-level knowledge transfer.

Similar to characterizing categories as a list of attributes, attributes can also be ex-

pressed as how they relate to the known categories. For example, we can say the second

attribute of Figure 13.2 characterizes the property that has a high association with polar

bear, and a low association with walrus, lion, etc. Based on the above intuition, given

the images with category labels (a multi-category dataset), we propose to automatically
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Figure 13.1: Overview of the proposed approach. ¬: Designing the category-attribute

matrix. ­: Computing the attributes for images of novel categories.

design a category-attribute matrix to define the attributes. Such attributes are termed as

category-level attributes. The designed attributes will not have concise names as the manu-

ally specified attributes, but they can be loosely interpreted as relative associations of the

known categories. Because multi-category datasets are widely available in the computer

vision community, no additional human efforts are needed in the above process.

Figure 13.1 provides an overview of the proposed approach. In the offline phase, given

a set of images with labels of pre-defined categories (a multiclass dataset), our approach

automatically learns a category-attribute matrix, to define the category-level attributes.

Then a set of attribute classifiers are learned based on the defined attributes (not shown in

the figure). Unlike the previous work [119], in which both the attributes and the category-

attribute matrix are pre-defined (as in the “manually defined attributes”), the proposed

process is fully automatic. In the online phase, given an image from the novel categories,

we can compute the designed category-level attributes. The computed values of three

attributes (colored as orange, yellow and green) are shown in Figure 13.1. For example, the
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first image (of a raccoon) has positive responses of the orange and green attributes, and

negative response of the yellow attribute. Because the category-level attributes are defined

based on a category-attribute matrix, they can be interpreted as the relative associations

with the pre-defined categories. For example, the orange attribute has positive associations

with mole and siamese cat, and negative associations with killer whale and blue whale.

The category-level attributes are more intuitive than mid-level representations defined

on low-level features. In fact, our attributes can be seen as soft groupings of categories, with

an analogy to the idea of building taxonomy or concept hierarchy in the library science. We

will further discuss the semantic aspects of the proposed method in Section 13.5.

Our work in this chapter makes the following unique contributions:

• We propose a principled framework of using category-level attributes for visual recognition

(Section 13.3.1).

• We theoretically demonstrate that discriminative category-level attributes should have

the properties of category-separability and learnability (Section 13.3.2).

• Based on this analysis, an efficient algorithm is proposed for the scalable design of at-

tributes (Section 13.4).

• We conduct comprehensive experiments (Section 13.6) to demonstrate the effectiveness

of our approach in recognizing known and novel categories. Our method achieves the

state-of-the-art result on the zero-shot learning task.

13.2 Related Works

Data-Driven Attributes. Traditionally, the semantic attributes are designed by

manually picking a set of words that are descriptive for the images under consideration

[60, 119, 136]. Non-semantic “data-driven attributes” have been explored to complement

semantic attributes with various forms. Kumar et al. [114] combined semantic attributes

with “simile classifiers” for face verification. Yang and Shah [226] proposed data-driven

“concepts” for event detection. Liu et al. [133] extended a set of manually specified at-

tributes with data-driven attributes for improved action recognition. Sharmanska et al.

[188] extended a semantic attribute representation with extra non-interpretable dimensions
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Figure 13.2: Manually defined category-attribute matrix copied from [119]: the rows are the

categories, and the columns are the attributes. This matrix is obtained from human judg-

ments on the “relative strength of association” between attributes and animal categories.

for enhanced discrimination. Bergamo et al. [16], Gordoa et al. [75], Rastegari et al. [174]

used the large-margin framework to model attributes for objective recognition. Wang and

Mori [217], Farhadi et al. [61] used attribute-like latent models to improve object recognition.

The highly efficient algorithm and the unique capability of zero-shot learning, differentiate

the proposed methodology from the above approaches. The category-level attribute defini-

tion can be seen as a generalization of the discriminative attributes used in [60]. Instead of

randomly generating the “category split” as in [60], we propose a principled way to design

the category-level attributes.

Error Correcting Output Code (ECOC). The proposed framework generalizes the

Error Correcting Output Code for multi-class classification [4, 42]. Our method becomes

ECOC if the elements of the category-attribute matrix are binary. Note that both one-vs-

all and one-vs-one multi-class classifications are special cases of ECOC. Different form the

conventional ECOC methods, the values of the category-attribute are real-valued, which

can capture more subtle difference of the visual categories. More importantly, the category-

attribute matrix is learned based on the visual recognition task. In addition, we show how

to build the category-attribute matrix to cover categories without any training data in the

zero-shot setting.
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l The number of category-level attributes

M The number of known categories

A ∈ RM×l The category-attribute matrix

A·i The i-th column of A

Ai· The i-th row of A

X Set of all images

x ∈ X Feature of an image

xi ∈ X Feature of the i-th training sample

Y = {1, · · · ,M} Set of all category labels

y ∈ Y A category label

yi ∈ Y Label of the i-th training sample

f(x) ∈ Rl The l category-level attribute scores of x

ε Average encoding error defined in (13.2)

ρ Minimum row separation defined in (13.3)

r Redundancy defined in (13.4)

S ∈ RM×M Visual similarity matrix

D ∈ RM×M Visual distance matrix

L ∈ RM×M Laplacian of S

wi Linear model for the i-th attribute

Table 13.1: Key Notations of Chapter 13.

13.3 A Learning Framework of Recognition with Category-

Level Attributes

13.3.1 The Framework

The notation of this chapter is shown in Table 13.3.1. We propose a framework of using

attributes as mid-level cues for multi-class classification. And the error of such classification

scheme is used to measure the “discriminativeness” or “usefulness” of attributes. Note that

the framework is defined on recognizing known categories, but the designed attributes are
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expected to useful also to the novel and related categories. This is further discussion in

Section 13.5 and Section 13.6. Suppose there are M categories, and l attributes. The

category-attribute matrix (definition of attributes) is denoted as A ∈ RM×l, in which the

columns {A·i}li=1 define l category-level attributes, and the rows {Ai·}Mi=1 correspond to M

known categories.

Definition 13.1. For an input image x ∈ X (as low-level features), we define the following

two steps to utilize attributes as mid-level cues to predict its category label y ∈ Y.

Attribute Encoding: Compute l attributes by attribute classifiers f(x) = [f1(x), ..., fl(x)]T

in which fi(x) ∈ R models the strength of the i-th attribute for x.

Category Decoding: Choose the closest category (row of A) in the attribute space (column

space of A):

argmin
i
‖ Ai· − f(x)T ‖2 . (13.1)

Because A is real valued, a unique solution for (13.1) can be reached. Figure 13.3

illustrates using two attributes to discriminate cats and dogs.

Definition 13.2. Designing discriminative category-level attributes is to find a category-

attribute matrix A, as well as the attribute classifiers f(·) to minimize the multi-class clas-

sification error.

Motivation. The above framework is motivated by two previous studies: learning at-

tributes based on category-attribute matrix [119], and Error Correcting Output Code

(ECOC) [4, 42]. Multiple previous researches can be unified into the framework by firstly

setting A as a pre-defined matrix, and then modeling f(·) accordingly. For example, in the

previous studies, A was set as a manually defined matrix [119], a random matrix (discrim-

inative attributes [60]), or a M -dimensional square matrix with diagonal elements as 1 and

others as −1. The last case is exactly the one-vs-all approach, in which an attribute is equiv-

alent to a single category. When applied for recognizing novel categories, such attributes

are termed as category-level semantic features, or, classemes [203, 222].

Such attributes are discriminative for known categories (Section 13.6.1). However as

they capture no properties shared across categories, the computed attributes, known as
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category-level semantic features or classemes [203, 222], may not be effective for recognizing

novel categories (Section 13.6.2, Section 13.6.3).

Different from the above ad-hoc solutions, we propose to design A and learn f(·), for

discriminative visual recognition. Unlike the manual attributes and classemes, the designed

attributes are without concise semantics. However, the category-level attributes are more

intuitive than mid-level representations defined on low-level features reviewed in Section

13.2. In fact, our attributes can be seen as soft groupings of categories, with analogy to

the idea of building taxonomy or concept hierarchy in the library science. We provide a

discussion on the semantic aspects of the proposed method in Section 13.5. In addition,

by defining attributes based on a set of known categories, we are able to develop a highly

efficient algorithm to design the attributes (Section 13.4). It also enables a unique and

efficient way for doing zero-shot learning (Section 13.6.3).

Also note that in our model, the matrix A is real-valued, which is more suitable for

vision applications (black bear is totally black; zebra is only partially black), while many

studies on ECOC are based on binary values.

13.3.2 Theoretical Analysis

In this section, we show the properties of good attributes in a more explicit form.

Specifically, we bound the empirical multi-class classification error in terms of attribute

encoding error and a property of the category-attribute matrix, as illustrated in Figure

13.3.

Formally, given training examples {xi, yi}Ni=1, in which xi ∈ X is the feature, and yi ∈ Y

is the category label associated with xi:

Definition 13.3. Define ε as the average encoding error of the attribute classifiers f(·),

with respect to the category-attribute matrix A.

ε =
1

N

N∑
i=1

‖ Ayi· − f(xi) ‖2. (13.2)

Definition 13.4. Define ρ as the minimum row separation of the category-attribute matrix

A
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Figure 13.3: Discriminating dogs and cats, with two attributes. Each category (a row of A)

is a template vector in the attribute space (a column space of A). ρ is the row separation

of the category-attribute matrix. A new image of dog can be represented as an attribute

vector through attribute encoding, and ε is the encoding error. In order for the image not

to be mistakenly categorized as cat, small ε and large ρ are desired.

ρ = min
i 6=j
‖ Ai· −Aj· ‖2 . (13.3)

Proposition 13.1. The empirical error of multi-class classification is upper bounded by

2ε/ρ.

The proof is shown in the Appendix. The message delivered by the bound is very intu-

itive. It tells us discriminative attributes should have the following properties, illustrated

in Figure 13.3:

• Category-separability. We want ρ to be large, i.e. the categories should be separated

in the attribute space.

• Learnability. We want ε to be small, meaning that the attributes should be learnable.

This also implies that attributes should be shared across “similar” categories.

In addition, we also want the attributes to be non-redundant. Otherwise, we may get a

large number of identical attributes. In this chapter, the redundancy is measured as

r =
1

l
‖ ATA− I ‖2F , (13.4)

in which ‖ · ‖F is the Frobenius norm.
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13.4 The Attribute Design Algorithm

Based on the above analysis, we propose an efficient and scalable algorithm to design the

category-attribute matrix A, and to learn the attribute classifiers f(·). The algorithm is fully

automatic given images with category labels. The proposed solution is a two-step process,

where the category-attribute matrix is firstly optimization, and then used in the attribute

learning. Note that one may be tempted to optimize the category-attribute matrix, and the

attribute classifiers jointly. However, it will lead to a very difficult optimization problem,

where some iterative methods (including multiple times of training the attribute classifiers)

need to be used. The proposed approach is much more efficient than the joint scheme.

13.4.1 Designing the Category-Attribute Matrix

To optimize the category-attribute matrix A (definition of attributes), we first consider

the objective function in the following form, without the non-redundancy constraint:

argmax
A

J(A) = J1(A) + λJ2(A), (13.5)

in which J1(A) induces separability (larger ρ), and J2(A) induces learnability (smaller ε).

To benefit the algorithm, we set J1(A) as sum of all distances between every two rows of

A, encouraging every two categories to be separable in the attribute space.

J1(A) =
∑
i,j

‖ Ai· −Aj· ‖22 . (13.6)

We set J2(A) as a proximity preserving regularizer

J2(A) = −
∑
i,j

Sij ‖ Ai· −Aj· ‖22, (13.7)

in which Sij measures the category-level visual proximity between the category i and cate-

gory j. The intuition is that if two categories are visually similar, we expect them to share

more attributes. Otherwise, the attribute classifiers will be hard to learn. The construction

of the visual proximity matrix S ∈ RM×M will be presented in Section 13.4.3.

It is easy to show that

J(A) = Tr(ATQA), Q = P− λL, (13.8)
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Algorithm 7 Designing the category-attribute matrix

Initialize R = Q, and A as an empty matrix, solve (13.9) by sequentially learning l

additional columns.

for i = 1 : l do

Solve (13.10) to get a

Add the new column A← [A,a]

Update1R← R− ηaaT

end for

in which P is with diagonal elements being M − 1 and all the other elements −1, and L is

the Laplacian of S [211].

Considering the non-redundant objective, if we force the designed attributes to be

strictly orthogonal to each other, i.e. ATA = I, the problem can be solved efficiently

by a single step, i.e. A combines the top eigenvectors of Q. However, just like PCA,

the orthogonal constraint will result in low-quality attributes, because of the fast decay of

eigenvalues. So we relax the strict orthogonal constraint, and solve the following problem:

argmax
A

Tr(ATQA)− β ‖ ATA− I ‖2F . (13.9)

Without loss of generality, we require the columns of A (attributes) to be `2 normalized.

We propose to incrementally learn the columns of A. Specifically, given an initialized A,

optimizing an additional column a is to solve the following optimization.

argmax
a

aTRa s.t. aTa = 1, (13.10)

in which R = Q − ηAAT , η = 2β. This is a Rayleigh quotient problem, with the optimal

a as the eigenvector of R with the largest eigenvalue2. The overall algorithm is described

in Algorithm 7. The algorithm greedily finds additional non-redundant attributes, with

desired properties.

1Because AAT =
∑l
i=1 A·iA

T
·i , in each iteration R can be updated as R← R− ηaaT = Q− ηAAT for

efficiency.

2In practice, we also force the optimized a to be a sparse vector, by manually setting the values close to

0 as 0. This can improve the efficiency in attribute learning, which will be detailed in Section 13.4.2.
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13.4.2 Learning the Attribute Classifiers

After getting the real-valued category-attribute matrix A, the next step is to learn the

attribute classifiers f(·). We assume each classifier {fi(·)}li=1 can be learned independently.

Specifically, suppose fi(·) can be represented by a linear model wi, our solution is to solve

a large-margin classification problem with weighted slack variables.

argmin
wi,ξ

‖ wi ‖22 +C

N∑
j=1

|Ayj ,i|ξj (13.11)

s.t. sign(Ayj ,i)w
T
i xj ≥ 1− ξj , ξj ≥ 0, j = 1, · · · , N

in which the binarized category-attribute matrix element sign(Ayj ,i) defines the presence/non-

presence of the i-th attribute for xj . The idea is to put higher penalties for misclassified

instances from categories with a stronger category-attribute association. Generalizing to

kernel version is straightforward. Note that if Ayj ,i is zero, we do not need to consider the

images of category yj when learning the i-th attribute. Therefore, after (13.10), we also

force some values of a close to 0 to be 0, in order to improve efficiency.

13.4.3 Building the Visual Proximity Matrix

In the proposed algorithm in Section 13.4.1, one important issue is to build the visual

proximity matrix S ∈ RM×M used in (13.7). This matrix is key towards making the

attributes learnable, and sharable across categories. Similar to [211], we first build a distance

matrix D ∈ RM×M , in which Dij measures the distance between category i and j. S is

modeled as a sparse affinity matrix, with the non-zero elements Sij = e−Dij/σ.

D is built dependent on type of kernel used for learning the attribute classifiers f(·)

(Section 13.4.2)3. When nonlinear kernels are used, SVM margins of M(M − 1)/2 one-vs-

one SVMs modeled on low-level features are used as distance measurement for categories;

when linear kernels are used (which is usually used for large-scale problems), we simply

use the distances of category centers (category mean of the low-level features) as distance

3The visual proximity matrix S is only dependent on the kernel type, not the learned attribute classifiers.

Therefore, designing attributes (Section 13.4.1) and learning the attribute classifiers (Section 13.4.2) are two

sequential steps, requiring no expensive iterations on the image features.
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Figure 13.4: The influence of the two parameters. Left: the influence of λ: larger λ means

smaller ρ for the category-attribute matrix. Right: the influence of η: larger η means less

redundancy r for the designed attributes. The visual proximity matrix S used for this figure

is a 50×50 randomly generated non-negative symmetric matrix.

measurements. Because the category centers can be pre-computed, the latter process is

very fast, with computational complexity linear to the number of images, and quadratic to

the number of categories.

13.4.4 Parameters of the Algorithm

There are two parameters in the attribute design algorithm, λ and η. Larger λ means

smaller ρ for the category-attribute matrix, and larger η means less redundancy r for the

designed attributes. Figure 13.4 visualizes the influence of the parameters based on a

randomly generated visual proximity matrix S.

13.5 Discussions

Efficiency and Scalability. The attribute design algorithm requires no expensive

iterations on the image features. The computational complexity of designing an attribute

(a column of A) is as efficient as finding the eigenvector with the largest eigenvalue of

matrix R in (13.10) (quadratic to the number of categories). For example, on a 6-core Intel

2.5 GHz workstation, it just takes about 1 hour to design 2,000 attributes based on 950

categories on the large-scale ILSVRC2010 dataset (Section 13.6.2).

Known Categories vs. Novel Categories. Though the above algorithm is for
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designing attributes to discriminate known categories, the application of the designed at-

tributes is for recognizing novel categories, the categories that are not used in the attribute

designing process. In specific, we will show by experiment:

• The designed attributes are discriminative for novel, yet related categories (Section 13.6.2

AwA dataset).

• The designed attributes are discriminative for general novel categories, provided we can

design a large number of attributes based on a diverse set of known categories (Section

13.6.2 ILSVRC2010 dataset).

• The attributes are effective for the task of zero-shot learning (Section 13.6.3).

Interpretations of the Category-Level Attributes. One unique advantage of the

designed attributes is that they can provide interpretable cues for visualizing the machine

reasoning process. In other words, the designed attributes can be used to answer not

only “what”, but also “why” one image is recognized as a certain category. First, the

attributes are designed on category level, the descriptions are readily available through

weighted categories names (e.g., the attribute that has high association with polar bear, and

low association with walrus, lion). Second, the regularization term J2(A) in the attribute

design formulation can, in fact, lead to human interpretable attributes, by inducing “similar”

categories not to be far away in attribute space. Some examples of using the computed

attributes to describe the images of novel categories are shown in Figure 13.5.

13.6 Experiments

Datasets. We evaluate the performance of the designed attributes on Animal with At-

tributes (AwA) [119], and ILSVRC2010 datasets4. AwA contains 30,475 images of 50

animal categories. Associated with the images, there is a manually designed category-

attribute matrix of 85 attributes shown in Figure 13.2. ILSVRC2010 contains 1.2M images

from 1,000 diverse categories. The experiments are performed 10 times, and we report the

mean performance.

Baselines. We first demonstrate that our designed category-level attributes are more

4http://www.image-net.org/challenges/LSVRC/2010/download-public
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Figure 13.5: Using category-level attributes to describe images of novel categories. In the ta-

ble below, three attributes are described in terms of the corresponding top positive/negative

known categories in the category-attribute matrix. Some designed attributes can be further

interpreted by concise names: the first two can be described as small land animals vs. ocean

animals, black vs. non/partial-black. Some may not be interpreted concisely: the third one

looks like rodent vs. tiger and cloven hoof animals. The figure above shows the computed

attribute values for images of novel categories.

discriminative than other category-level representations. In the task of discriminating known

categories (Section 13.6.1), we use the framework proposed in Section 13.3, and compare

the performance of the designed attributes with the manual attributes [119] (85 manually

defined attributes with a manually specified category-attribute matrix), random category-

level attributes [60] (attributes defined as a randomly generated category-attribute matrix),

and one-vs-all classifiers (equivalent to attributes defined as a matrix, with diagonal elements

as 1 and others as −1). In the task of novel category recognition in Section 13.6.2, we

use the extracted attributes as features to perform classification on the images of novel

categories. Our approach is compared with the manual attributes, random attributes,

classemes [203] (one-vs-all classifiers learned on the known categories), and low-level features

(one-vs-all classification scheme based on low-level features of the novel categories). We also

test the retrieval and classification performance of our approaches based on the large-scale

ILSVRC2010 data. To demonstrate the capability of zero-shot learning of the designed

attributes, we compare our approach with the best published results to date in Section

13.6.3.
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Figure 13.6: Multi-class classification accuracy on known categories. The numbers in paren-

thesis are the numbers of attributes. The standard deviation is around 1%.

13.6.1 Discriminating Known Categories

In this section, we verify the multi-class classification performance and other proper-

ties described in Section 13.3.2 on 40 known categories of AwA dataset. The attributes

are designed based on 40 training categories defined in [119]. The same low-level features

(10,940D), and kernel (χ2 with bandwidth as 0.2 times median distance) are used. For

random attributes, each element of the random category-attribute matrix is generated uni-

formly from [−1, 1]5.

We select different amount of images per category for training, 25 images per category

for testing, and 10 images per category for validation. The parameters are tuned based on

the validation set. The margins of 40×39/2 = 780 one-vs-one classifiers on the training data

are used as distance measurements D of animal categories (the C parameter for one-vs-one

SVMs is simply fixed as 10). The visual proximity matrix S is built as the mutual 10-NN

adjacent matrix with bandwidth parameter σ set as 0.5 times the average distance [211].

We first fix the weighed SVM penalty C = 2, and tune λ ∈ {2, 3, 4, 5}, η ∈ {6, 8, 10, 12, 14}.

Then we tune C ∈ {0.02, 0.2, 2, 20}.

5Other alternatives including binary random matrix, sparse binary random matrix, yield similar perfor-

mance.



CHAPTER 13. DESIGNING CATEGORY-LEVEL ATTRIBUTES FOR VISUAL
RECOGNITION 169

Measurement Designed Manual Random

Encoding error ε 0.03 0.07 0.04

Minimum row separation ρ 1.37 0.57 1.15

Average row separation 1.42 1.16 1.41

Redundancy r 0.55 2.93 0.73

Table 13.2: Properties of different attributes. The number of attributes is fixed as 85.

Encoding error ε is defined in (13.2). Minimum row separation ρ is defined in (13.3).

Averaged row separation is value of the objective function in (13.6). Redundancy r is

defined in (13.4). The category-attribute matrices are column-wise l2 normalized in order

to be comparable. The measurements are computed on the test set.

Figure 13.6 demonstrates the performance of multi-class classification. Table 13.2 fur-

ther verifies the properties of the designed attributes.

• The designed attributes perform significantly better than the manual attributes and ran-

dom category-level attributes (Figure 13.6 left).

• The designed attributes is competitive to, if not better than the low-level features paired

with one-vs-all χ2 classifiers (Figure 13.6 right). The designed attributes significantly

outperform the one-vs-all classifiers (known as classemes) for the task of recognizing

novel categories (Section 13.6.2), due to the fact that classemes are not shared across

categories.

• The designed attributes have smaller encoding error, larger row separation and smaller

redundancy. This justifies the theoretical analysis in Section 13.3.2.

One interesting observation is that even the random category-attribute matrix has better

properties compared with the manually defined category-attribute matrix (Table 13.2). The

random attributes therefore outperform the manual attributes (Figure 13.6 left).

13.6.2 Discriminating Novel Categories

We show that the designed attributes are also discriminative for novel categories. Specif-

ically, we use the attributes, and other kinds of category-level representations as features, to
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Figure 13.7: Multi-class classification accuracy on novel categories. The 64.6% accuracy

with one-vs-all classifier using 50/50 (HALF) split is similar to the performance (65.9%)

reported in [119]. The numbers in bracket are the number of attributes. The standard

deviation is around 1%.

perform the multi-class classification (AwA, ILSVRC2010) and the category-level retrieval

(ILSVRC2010) tasks.

Animals with Attributes. We use the 40 animal categories in Section 13.6.1 to design the

attributes. Efficient linear SVM classifiers are trained based on different kinds of attribute

features to perform classification on the images of 10 novel categories. The optimally tuned

parameters in Section 13.6.1 are used for the task.

Figure 13.7 shows the performance. The designed attributes perform significantly better

than other types of representations, especially with few training examples. This means

that attributes are discriminative representation for the novel categories, by leveraging

knowledge learned from known categories. As the number of training images increases, the

performance of low-level features is improved, due to sufficient supervision. Note that the

manual attributes and classemes are with fixed dimensions, whereas the dimension of the

designed category-level attributes is scalable.

ILSVRC2010. In the previous experiments on AwA, we showed that the designed at-

tributes are discriminative for the novel, yet related categories. We now demonstrate that

the designed attributes can be discriminative for general novel categories, provided that we
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Method Low-level feature Classeme (950) Ours (500) Ours (950) Ours (2,000)

Precision@50 33.40 39.24 39.85 42.16 43.10

Table 13.3: Category-level image retrieval result on 50 classes from ILSVRC2010. The

numbers in bracket are the numbers of attributes. We closely follow the settings of [72].

Percentage for training

Method 1% 5% 10% 50% 100%

Low-level feature 35.55 52.21 57.11 66.21 69.16

Classemes (950) 38.54 51.49 56.18 64.31 66.77

Ours (500) 39.01 52.86 56.54 62.38 63.86

Ours (950) 41.60 55.32 59.09 65.15 66.74

Ours (2,000) 43.39 56.51 60.36 66.91 68.17

Table 13.4: Image classification accuracy on 50 classes from ILSVRC2010. The training set

contains 54,636 images. The number in the bracket is the number of attributes. Standard

deviation is around 1%. We closely follow the settings of [72].

can design a large amount of attributes based on a diverse set of known categories. The

ILSVRC2010 dataset is used for this experiment. Following the settings in [72], the low-

level features are 4,096 dimensional fisher vectors [166]. 950 categories are used as known

categories to design attributes. We test the performance of using attribute features for

category-level retrieval and classification on the remaining 50 disjoint categories.

The distances of category centers (based on low-level features) are used as distance

measurements D of categories. The visual proximity matrix S is built as a 30-NN mutual

adjacent matrix, with bandwidth parameter σ as 0.5 times the mean distance [211]. The at-

tributes are trained by linear weighted SVM models. All other detailed experiment settings,

including data splits, and ways for parameter tuning are identical to [72].

We first test the performance of the designed attributes for category-level image retrieval.

1,000 randomly selected images are used as queries to retrieve the nearest neighbors from the

remaining 67,295 images. Table 13.3 shows the performance in terms of precision@50. The
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designed attributes outperform low-level features and classemes, even with 500 dimensions.

And 2,000-dimensional attributes outperform the baselines by 9.70% and 3.86% respectively.

Next, we use the attribute feature, combined with linear SVM classifiers to classify the

images of the 50 novel categories. 80% of the data are used for training (54,636 images), 10%

for testing, and 10% for validation. Table 13.4 shows multi-class classification accuracy, us-

ing different amount of training images from the training set. Similar to the experiments on

AwA dataset, attribute representation outperforms the baselines, especially when training

with a small number of examples. It means attributes are effective for leveraging infor-

mation of the known categories to recognize novel categories. As the number of training

images increases, the performance of low-level features goes up, due to sufficient amount of

supervision.

A standard eigenvalue solver and a modified Liblinear SVM are used for computing

eigenvectors and learning the encoding models, respectively. We report the time for the

algorithm on a 4-core 2.5GHz Intel workstation, with all the training data from the 950

categories without sub-sampling. Building the similarity matrix takes less than 1 min;

Designing 2,000 attributes takes 42 min; Learning the 2,000 dimensional encoding model

takes about 4 hours (this step can be speedup by considering only top positive/negative

categories for each attribute); Attribute encoding on low-level features is instant.

13.6.3 Zero-Shot Learning

Building the New Category-Attribute Matrix. Zero-shot learning can be seen as a

special case of recognizing novel categories, without training data. In such case, human

knowledge [119, 157] is required to build a new category-attribute matrix A′ ∈ RM ′×l, to

relate the M ′ novel categories to the l designed attributes. After that, we can follow the

framework in Section 13.3.1 to recognize the novel categories. However, for each designed

attribute in our approach, there is no guarantee that it possesses a coherent human in-

terpretation. For example, while some may say the visual property separating tiger and

zebra from cat and dog is “striped”, others may say it is the sizes of animals that matter.

Therefore, given a new animal, e.g. skunk (both striped and small), the humans may come

up with different answers.
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Figure 13.8: The manually built visual similarity matrix. It characterizes the visual simi-

larity of the 10 novel categories and the 40 known categories. This matrix is obtained by

averaging the similarity matrices built by 10 different users. Each user is asked to build

a visual similarity matrix, by selecting 5 most visually similar known categories for each

novel category. The selected elements will be set as 1, and others as 0.

Motivated by the fact that the visual proximity matrix S in (13.7) is central to the

attribute design process, we propose a fairly straightforward solution: similar to [213],

given each novel category, and M known categories, we ask the user to find the top-M

visually similar categories. The user is free to use any similarity interpretation they wish.

We will then have a similarity matrix S′ ∈ {0, 1}M ′×M , in which S̃ij is the binary similarity

of the i-th novel category and the j-th known category. Figure 13.8 visualizes the averaged

similarity matrix based on the results of 10 users.

The novel categories are related to the designed attributes by the simple weighted sum:

A′ = S′A (13.12)

The amount of human interaction is minimal for the above approach, independent on the

number of attributes.

Experiment Results. We test the zero-shot learning performance on the AwA dataset,

with same settings of [119] (40 animal categories for training and 10 categories for testing).

For each novel category, we ask the users to provide up to top-5 similar categories when

building the similarity matrix. Empirically, fewer categories cannot fully characterize the

visual appearance of the animals, and more categories will lead to more human burdens.
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Method # Attributes Accuracy

Lampert et al.[119] 85 40.5

Yu and Aloimonos [236] 85 40.0

Rohrbach et al.[176] - 35.7

Kankuekul et al.[102] - 32.7

Ours 10 40.52 ± 4.58

Ours 85 42.27 ± 3.02

Ours 200 42.83 ± 2.92

Ours (Fusion) 200 46.94

Ours (Adaptive) 200 45.16 ± 2.75

Ours (Fusion + Adaptive) 200 48.30

Table 13.5: Zero-shot multi-class classification accuracy with standard deviation on the 10

novel animals categories.

Ten graduate students, who were not aware of the zero-shot learning experiments, were

included in the study. When performing the tasks, they were asked to think about visual

similarities, rather than similarities otherwise. The time spent for the task ranges from 15

to 25 minutes. Because there is no validation set for zero-shot learning, we empirically set

λ, η and SVM penalty C as 3, 15 and 20, throughout the experiments. The performance is

not sensitive to the parameters for the range described in Section 13.6.1.

Figure 13.5 shows the experiment results in comparison with various published baselines.

Our approach achieves the state-of-the-art performance, even with just 10 attributes. The

accuracy and robustness can be improved by using more attributes, and by averaging the

multiple binary visual similarity matrices (Fusion). The former helps to fully explore the

visual similarities S′, and the later helps to filter out noise from different users. We have

achieved accuracy of 46.94%, which significantly outperforms all published results.

Adaptive Attribute Design. In the experiments above, the attributes are designed to

be discriminative for the known categorizes. As a refinement for zero-shot learning, we can

modify the algorithm to design attributes adaptively for discriminating the novel categories.
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Figure 13.9: Average Precision results base on low-level feature and attributes for the full

exemplar task of TRECVID MED 2012. The results are evaluated on the internal threshold

split containing 20% of the training data. Linear SVMs are used for event modeling. The

same low-level features are used for training attributes.

This can be achieved by changing the first objective J1(A) (Section 13.4.1) to

J1
′(A) = J1(S′A). (13.13)

In other words, we want to design a category-attribute matrix A which is specifically dis-

criminative for the novel categories. The modified problem can be solved with minor mod-

ifications of the algorithm. The last two rows of Table 13.5 demonstrate the performance

of adaptive attribute design. Combined with averaged similarity matrix (Fusion + Adap-

tive), we have achieved the multi-class classification accuracy of 48.30%, outperforming all

published results with a larger margin. The drawback for the adaptive attribute design is

that we need to redesign the attributes for different tasks. Because the proposed attribute

design algorithm is highly efficient, the drawback can be alleviated.

13.6.4 Designing Attributes for Video Event Modeling

We show one additional application: using attributes for video event classification on the

TRECVID 2012 MED task. Traditionally, the semantic features for video event modeling

are learned from the taxonomy with the labeled images [28]. The taxonomy is manually

defined based on expert knowledge, and a set of images must be labeled by human experts.
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Similar to the manually specified attributes, the semantic features suffer from the following

problems.

• The human defining and labeling processes are very expensive, especially if we need

large-amount of concepts, with enough clean training data.

• Though the taxonomy is semantically plausible, it may not be consistent to the visual

feature distributions. Consequently, some dimensions of the semantic feature vector are

difficult to be modeled.

Motivated by the above facts, we use the proposed category-level attributes as a data-

consistent way of modeling “semantics”. Specifically, we design attributes based on 518 leaf

nodes of the IMARS taxonomy [28] (as the known categories).

To test the performance of the proposed approach, we have trained and extracted 2,500-

dimensional attribute feature for the pre-specified task of TRECVID MED 2012. Following

the framework [28], the attributes are used as features which are later plugged into linear

SVM for the task of event classification. Figure 13.9 shows the performance of the low-level

feature and the proposed attribute feature. Impressively, attributes have achieved relative

performance gain over 60%, improving the mAP from 0.075 to 0.123.

13.7 Conclusion and Future Works

We proposed a novel method for designing category-level attributes. Such attributes

can be effectively used for tasks of cross-category knowledge transfer.

Not all attributes designed can be semantically interpreted. For the future works, one

possible way to enhance the semantics in the attribute designing process is by human in-

teractions, which have have been successfully applied to mobile visual search [228], and

complex video event recognition [17]. The solution is to modify the attribute design al-

gorithm with an additional semantic projection step: after getting each a (a column of

the category-attribute matrix), make some minimal changes to a to make it semantically

meaningful. Specifically, given an initial pool of pre-defined attributes, together with their

manually specified category-attribute matrix, we can define some rules of what kinds of

category-level attributes are semantically meaningful. For instance, it is intuitive to say
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the union (black or white), intersection (black and white), and subset (chimpanzee kinds

of black, attributes are often category-dependent) of the manually defined attributes are se-

mantically interpretable. The operations of union, intersection etc. can be modeled by

operations on the manually specified category-attribute matrix. The designed attributes

can then be projected to the nearest semantic candidate. This method can potentially be

used to efficiently expand the predefined semantic attributes.
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Chapter 14

Conclusions

14.1 Contributions and Open Issues

In the thesis, we identified challenges facing machine learning methods for large-scale

visual data: the large-scale of data, and the limited supervision. We proposed solutions

to scale up machine learning for very high-dimensional data, and weak supervision. We

highlight our contributions as well as some open issues in this section.

For learning with high-dimensional data, we showed that a type of special structured

matrix, the circulant matrix, can be used to improve the efficiency of machine learning

for high-dimensional data. We proposed to use the circulant structure in different machine

learning models, including binary embedding, neural network, and compact nonlinear maps.

Surprisingly, the method reduces the number parameters from O(d2) to O(d), where d is the

feature dimension, without hurting the performance. The success of the method in all the

applications means that for high-dimensional data, redundancy exists in the conventional

unstructured projection matrices. The circulant matrix provides a way to reduce such

redundancy, as well as to reduce the computational cost. To foster a deeper understanding of

the matter, as well as to develop more general tools for scalable learning for high-dimensional

data, it is important to characterize and find the relationship of the redundancies in the

three machine learning models and those in dimensionality reduction.

For learning with weak supervision, we studied a weakly supervised learning setting

called learning from label proportions (LLP). It scales learning methods by incorporating
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non-conventional types of supervision, which are widely available yet not utilized by other

learning methods. The proposed approach has been applied in video event detection and

attribute learning with category-attribute proportions. Besides enabling new applications,

the feasibility of learning from label proportions also poses concerns in terms of protecting

the sensitive information of the individuals. An important future direction is to study the

ways of releasing group-level statistics without compromising individual information.

For learning with weak supervision, we also studied attribute modeling, which is widely

used in knowledge transfer in computer vision. We provided two ways of scalable design

and learning of mid-level visual attributes without the human labeling process. The pro-

posed methods achieved the state-of-the-art results in multi-attribute based retrieval and

recognition with few or zero examples. One important open problem is to more accurately

characterize the semantic meanings of the designed attributes.

We note that there are many more challenges facing machine learning for large-scale vi-

sual data, such as the design and implementation of large-scale parallel computing systems,

learning with noisy and incomplete labels, learning with computer-human interactions etc.

The problems addressed by the thesis only covered a tip of the iceberg. We hope the work

can stimulate further research addressing different perspectives of the whole puzzle.

14.2 Applications Beyond Visual Data

Visual data provides a valuable platform to motivate and study machine learning meth-

ods. One unique advantage is that such data is relatively easy to collect due to the vast

availability of digital cameras, and online photo resources. Most of the methods of the

thesis are proposed and evaluated based on applications on visual data, yet they can also

be applied to a broader spectrum of applications.

• The circulant projection-based method can be applied to all types of data with high-

dimensionality which is common in, for example, finance, biology, and marketing.

• The learning from label proportion approaches are applicable to areas ranging from online

advertisement, computational social science to health care. Due to privacy concerns,

sensitive information is often released on group level, such as the voting rate of certain
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demographic area, the attrition rate of certain department in a company, and the average

income of certain ethnic groups. By combining the group statistics with individual-

level features (which can be easily obtained from sources such as the social media), the

approaches can lead to novel applications, such as forecasting election result based on

polling, and predicting income based on census.

• The proposed attribute-based recognition and retrieval methods can be used in modeling

general attributes in additional to those in computer vision. For example, they can be

used in understanding the unique attributes separating different groups of users, and

characterizing new users in applications like content recommendation.
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[8] S. Ayache and G. Quénot. Video corpus annotation using active learning. In Proceed-

ing of European Conference on Information Retrieval, 2008.



BIBLIOGRAPHY 184

[9] B. Babenko, N. Verma, P. Dollár, and S. J. Belongie. Multiple instance learning with

manifold bags. In Proceedings of the International Conference on Machine Learning,

2011.

[10] F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the

smo algorithm. In Proceedings of the International Conference on Machine Learning,

2004.

[11] F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods.

In Proceedings of the International Conference on Machine Learning, 2005.

[12] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds

and structural results. Journal of Machine Learning Research, 3:463–482, 2003.
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Appendix A

Additional Proofs

A.1 Proof of Lemma 3.1

Proof. For convenience, define u⊥ = u − Πu, and similarly define v⊥. Based on Lemma

3.1,

E
[(

1− sign(rTa) sign(rTb)

2
− θ

π

)(
1− sign(rTu⊥) sign(rTv⊥)

2
− θ

π

)]
= 0. (A.1)

Thus the quantity we wish to bound is

E
[(

1− sign(rTa) sign(rTb)

2
− θ

π

)(
sign(rTu) sign(rTv)− sign(rTu⊥) sign(rTv⊥)

2

)]
.

Now by using the fact that E[XY ] ≤ E[|X||Y |], together with the observation that the

quantity |(1− sign(rTa) sign(rTb))/2− θ/π| is at most 2, we can bound the above by

E
[
| sign(rTu) sign(rTv)− sign(rTu⊥) sign(rTv⊥)|

]
.

This is equal to

2P[sign(rTu) sign(rTv) 6= sign(rTu⊥) sign(rTv⊥)],

since the term in the expectation is 2 if the product of signs is different, and 0 otherwise.

To bound this, we first observe that for any two unit vectors x,y with ∠(x,y) ≤ ε, we have

P[sign(rTx) 6= sign(rTy)] ≤ ε/π (it follows from (3.5)). We can use this to say that

P[sign(rTu) 6= sign(rTu⊥)] =
∠(u,u⊥)

π
.
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This angle can be bounded in our case by (π/2) · δ by basic geometry.1 Thus by a union

bound, we have that

P[
(

sign(rTu) 6= sign(rTu⊥)
)
∨
(

sign(rTv) 6= sign(rTv⊥)
)
] ≤ δ.

This completes the proof.

A.2 Proof of Lemma 3.3

Proof. We are to show that P[s→t(Dx)TDz ≥ γ] ≤ e−γ2/8ρ2 .

We have s→t(Dx)TDz =
∑d−1

i=0 zixi+tσiσi+t (the subindex is modulo d), let us define

f(σ0, σ1, · · · , σd−1) :=
d−1∑
i=0

zixi+tσiσi+t

and

Zi := f(σ0, σ1, · · · , σi, 0, · · · , 0).

In this notion we have s→t(Dx)TDz = Zd−1 − Z0. For all i, we have

E(Zi − Zi−1|Z0, · · · , Zi−1) = 0.

This is because σi is ±1 with equal probability. Therefore, the sequence Z0, Z1, · · · is a

martingale. Further, we have |Zi−Zi−1| ≤ |zixi+t|+ |zi−txi|. Based on Azuma’s inequality:

for any γ > 0,

Pr [|Zd−1 − Z0| ≥ γ] ≤ e
− γ2

2
∑d−1
i=0

(|zixi+t|+|zi−txi|)2

≤ e−
γ2

8ρ2 .

The last step is based on the fact that

1u is a unit vector, and u⊥ + Πu = u, and ‖Πu‖ ≤ δ, so the angle is at most sin−1(δ).
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d−1∑
i=0

(|zixi+t|+ |zi−txi|)2

=
d−1∑
i=0

z2
i x

2
i+t + x2

i z
2
i−t + 2|zixi+tzi−txi|

≤
d−1∑
i=0

z2
i x

2
i+t + x2

i z
2
i−t + z2

i z
2
i−t + x2

i+tx
2
i

≤ 4ρ2.

A.3 Proof of Theorem 7.1

Proof. One important tool used in the proof is the lemma below bounding the covering num-

ber of bag proportion hypothesis class H̄ by the covering number of the instance hypothesis

class H.

Lemma A.1. [181, 180] Let r ∈ N. Let γ > 0, p ∈ [1,∞], and H ∈ RX . For any M ≥ 0,

Np(γ, H̄,M) ≤ Np(
γ

r1/p
,H, rM).

Covering number [6] can be seen as a complexity measure on real-valued hypothesis

class. The larger the covering number, the larger the complexity. Another lemma we use is

the uniform convergence for real function class.

Lemma A.2. [6]. Let Ŷ,Y ⊆ R, G ⊆ ŶX , and L : Ŷ × Y → [0, 1], such that L is Lipschitz

in its first argument with Lipschitz constant αL > 0. Let D be any distribution on X . Let

S be a set of M iid samples generated from D, then for any 0 < ε < 1 and g ∈ G:

P

(
sup
g∈G

∣∣erLD(g)− erLS(g)
∣∣ ≥ ε) ≤ 4N1(ε/(8αL),G, 2M)e−Mε2/32,

in which erLS (g) = 1
|S|
∑

x∈S L(g(x), y), erLD(g) = Ex∼DL(g(x), y).
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Based on the definition of covering number: N1(ε,W,M) ≤ N∞(ε,W,M). Applying

Lemma A.1:

4N1(ε/(8αL),H, 2M)e−Mε2/32 ≤4N∞(ε/(8αL),H, 2M)e−Mε2/32

≤4N∞(ε/(8αL),H, 2rM)e−Mε2/32. (A.2)

The loss functions L we are considering is 1-Lipschitz. Based on the definition of covering

number, for H ⊆ {−1, 1}X , for any ε < 2, N (ε,H|xM1 , d∞) = |H|xM1 |. Thus,

N∞(ε,H,M) = ΠH(M).

Refer to [6] for the definition of restriction H|xM1 and growth function ΠH(M). In

addition, we have the following lemma to to bound the growth function by VC dimension

of the hypothesis class.

Lemma A.3. [184] Let G ⊆ {−1, 1}X with VC(G) = d ≤ ∞. For all M ≥ d, ΠG(M) ≤∑d
i=0

(
M
i

)
≤
(
eM
d

)d
.

Let d = V C(H). By combining the above facts, and 0 < ε < 1, (A.2) leads to

4ΠH(2rM)e−Mε2/32 ≤ 4

(
2erM

d

)d
e−Mε2/32.

Therefore, with probability at least 1− δ,

erLD(f) ≤ erLS(f) +

(
32

M
(d ln(2eMr/d) + ln(4/δ))

)1/2

⇐M ≤ 32

ε2
(d lnM + d ln(2er/d) + ln(4/δ)).

Since lnx ≤ ax− ln a− 1 for all a, x > 0, we have

⇐ 32d

ε2
lnM ≤ 32d

ε2

(
ε2

64d
M + ln

(
64d

ε2

))
≤ M

2
+

32d

ε2
ln

(
64d

eε2

)
.

⇐M ≥ M

2
+

32

ε2
(d ln(128r/ε2) + ln(4/δ)).

⇐M ≥ 64

ε2
(2d ln(12r/ε) + ln(4/δ)).
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A.4 Proof of Proposition 7.2

Proof. Let B be a bag containing x1, · · · ,xr. Assume that |h̄(B) − ȳ(B)| ≤ ε. Let yi be

the ground-truth label for xi. Let

A1 = {i ∈ {1, ..., r} : h(xi) = +1 ∧ y(xi) = −1},

A2 = {i ∈ {1, ..., r} : h(xi) = −1 ∧ y(xi) = +1},

A3 = {i ∈ {1, ..., r} : h(xi) = +1 ∧ y(xi) = +1},

A4 = {i ∈ {1, ..., r} : h(xi) = −1 ∧ y(xi) = −1}.

We have: h̄(B) = (|A1|+ |A3|)/r, ȳ(B) = (|A2|+ |A3|)/r. Thus, from the assumption:

|h̄(B)− ȳ(B)| ≤ ε, we have: ||A1| − |A2|| ≤ εr.

Assume that B is (1 − η)-pure. Without loss of generality we can assume that |A1| +

|A4| ≤ ηr. This implies that |A1| ≤ ηr. Thus we also have that |A2| ≤ (η+ ε)r. Hypothesis

h correctly classifies |A3| + |A4| instances of the bag B. From what we have just derived,

we conclude that h correctly classifies at least (1− 2η − ε)r instances of the bag B.

So far in the analysis above we assumed that: |h̄(B)− ȳ(B)| ≤ ε and B is (1− η)-pure.

From the statement of the theorem we know that the former happens with probability at

least 1−δ and the latter with probability at least 1−ρ. Thus, by the union bound, we know

that with probability at least 1− δ − ρ, h classifies correctly at least (1− 2η − ε) instances

of the bag drawn from the distribution D.

A.5 Proof of Proposition 7.3

Proof. This can be shown by construction. Let B be a bag containing x1, · · · ,xr. Assume

that the bag is formed such that

y(xi) =


1, 1 ≤ i ≤ ηr.

−1, otherwise.

Assume that the hypothesis h satisfies

h(xi) =


−y(xi), 1 ≤ i ≤ 2ηr.

y(xi), otherwise.
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Then h predicts the bag proportions with 0 error, yet misclassifies 2η instances.

A.6 Proof of Proposition 8.1

Proof. We consider the k-th bag in this proof. We first note that the influence of yi,

∀i ∈ Bk to the first term of the objective function,
∑

i∈Bk L
′(yi,w

Tϕ(xi)+b), is independent.

Without loss of generality, we assume Bk = {1, · · · , |Bk|}. Also without loss of generality,

we assume δi’s are already in sorted order, i.e. δ1 ≥ δ2 ≥ ... ≥ δ|Bk|.

Define B+
k = {i|yi = 1, i ∈ Bk}, and B−k = {i|yi = −1, i ∈ Bk}. In order to satisfy the

label proportion, the number of elements in {yi|i ∈ Bk} to be flipped is θ|Bk|. We are to

solve the following optimization problem.

max
B+k

∑
i∈B+k

δi −
∑
i∈B−k

δi, s.t. |B+
k | = θ|Bk|.

What we need to prove is that B+
k = {1, 2, ..., θ|Bk|} is optimal.

Assume, on the contrary, there exists B+∗
k , and B−∗k , |B+∗

k | = θ|Bk|, B+∗
k 6= {1, 2, ..., θ|Bk|},

B+∗
k ∪ B

−∗
k = Bk, B+∗

k ∩ B
−∗
k = ∅, such that ∑

i∈B+∗k

δi −
∑
i∈B−∗k

δi

−
θ|Bk|∑

i=1

δi −
|Bk|∑

i=θ|Bk|+1

δi

 > 0.

However,
∑

i∈B+∗k
δi −

∑θ|Bk|
i=1 δi ≤ 0,

∑|Bk|
i=θ|Bk|+1 δi −

∑
i∈B−∗k

δi ≤ 0, a contradiction.

A.7 Proof of Proportion 13.1

Proof. Given example (x, y), we assume the example is misclassified as some category z 6= y,

meaning that

‖ Ay· − f(x) ‖>‖ Az· − f(x) ‖ .

Then

‖ Ay· − f(x) ‖> ‖ Ay· − f(x) ‖ + ‖ Az· − f(x) ‖
2

.

From triangle inequality and the definition of ρ:

‖ Ay· − f(x) ‖ + ‖ Az· − f(x) ‖≥‖ Ay· −Az· ‖≥ ρ.
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So we know misclassifying (x, y) implies that

‖ Ay· − f(x) ‖> ρ

2
.

Therefore given N samples (x1, y1), ..., (xN , yN ), the number of category recognition mis-

takes we make is at most ∑N
i=1 ‖ Ayi· − f(xi) ‖

ρ/2
=

2Nε

ρ
.

Thus the empirical error is upper bounded by 2ε/ρ.
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