Supplement for "New Insights into Laplacian Similarity Search"

Xiao-Ming Wu¹ Zhenguo Li² Shih-Fu Chang¹
¹Department of Electrical Engineering, Columbia University
²Huawei Noah's Ark Lab, Hong Kong

{xmwu,sfchang}@ee.columbia.edu li.zhenguo@huawei.com

Abstract

This is the supplement for our main paper "New Insights into Laplacian Similarity Search" [3]. Here, we show the proofs of all the theoretical arguments in the main paper.

Proof of Statements in Sec. 2.1: M is positive and symmetric, i.e., $\forall i, j, m_{ij} > 0$, and $m_{ij} = m_{ji}$. Regardless of Λ , m_{ii} is always the unique largest element in the i-th column and row of M.

Proof. (a) Since $L + \alpha \Lambda$ is symmetric, $M = (L + \alpha \Lambda)^{-1}$ is symmetric.

(b) Note that

$$M = (L + \alpha \Lambda)^{-1} = (D + \alpha \Lambda - W)^{-1}$$

= $(I - (D + \alpha \Lambda)^{-1} W)^{-1} (D + \alpha \Lambda)^{-1}$
= $\left(\sum_{k=0}^{\infty} [((D + \alpha \Lambda)^{-1})W]^k\right) (D + \alpha \Lambda)^{-1},$

from which we can see that M is positive since the graph is connected.

(c) Now we show that m_{jj} is the unique largest in its column. Assume, to the contrary, there exists $i,j,i\neq j$, such that $m_{jj}\leq m_{ij}$. Denote $k=\arg\max_{i\neq j}m_{ij}$. Note that M is symmetric and M>0. Let $B=(b_{ij}):=D+\alpha\Lambda-W$. Note that B is symmetric and strictly diagonally dominant, i.e., $\forall k,b_{kk}>\sum_{i\neq k}|b_{ki}|$. By BM=I, we have $0=B(k,:)M(:,j)=\sum_i b_{ki}m_{ij}=b_{kk}m_{kj}+\sum_{i\neq k}b_{ki}m_{ij}\geq b_{kk}m_{kj}-(\sum_{i\neq k}|b_{ki}|)m_{kj}=(b_{kk}-\sum_{i\neq k}|b_{ki}|)m_{kj}>0$, which contradicts the assumption.

Proof of Theorem 2.1:

$$M = C + E, \text{ where } C = \frac{1}{\alpha \sum_{i} \lambda_{i}} \mathbf{1} \mathbf{1}^{\top}, \text{ and } E = \Lambda^{-\frac{1}{2}} \left(\sum_{i=2}^{n} \frac{1}{\gamma_{i} + \alpha} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \right) \Lambda^{-\frac{1}{2}}.$$

Proof. By definition,

$$M = (L + \alpha \Lambda)^{-1}$$

$$= \Lambda^{-\frac{1}{2}} (\Lambda^{-\frac{1}{2}} L \Lambda^{-\frac{1}{2}} + \alpha I)^{-1} \Lambda^{-\frac{1}{2}}$$

$$= \Lambda^{-\frac{1}{2}} \left(\sum_{i=1}^{n} (\gamma_i + \alpha) \mathbf{u}_i \mathbf{u}_i^{\top} \right)^{-1} \Lambda^{-\frac{1}{2}}$$

$$= \Lambda^{-\frac{1}{2}} \left(\sum_{i=1}^{n} \frac{1}{\gamma_i + \alpha} \mathbf{u}_i \mathbf{u}_i^{\top} \right) \Lambda^{-\frac{1}{2}}$$

$$= \frac{1}{\alpha \sum_{i} \lambda_i} \mathbf{1} \mathbf{1}^{\top} + \Lambda^{-\frac{1}{2}} \left(\sum_{i=2}^{n} \frac{1}{\gamma_i + \alpha} \mathbf{u}_i \mathbf{u}_i^{\top} \right) \Lambda^{-\frac{1}{2}}.$$

Proof of Corollary 2.2: $\lim_{\alpha \to 0} E = \Lambda^{-\frac{1}{2}} \bar{L}^{\dagger} \Lambda^{-\frac{1}{2}}$.

Proof. It follows from $\bar{L}^{\dagger} = \sum_{i=2}^{n} \frac{1}{\gamma_i} \mathbf{u}_i \mathbf{u}_i^{\top}$.

Proof of Statements in Sec. 2.1:

Ranking by $(h_{ij})_{i=1,\dots,n}$ is equivalent as ranking by the j-th column of $D^{-\frac{1}{2}}L^{\dagger}_{sym}D^{-\frac{1}{2}}$.

Proof. Let e_i denote the *i*-th unit vector in \mathbb{R}^n . The hitting time that a random walk from vertex *i* to hit vertex *j* can be computed by [1]:

$$H_{ij} = d(\mathcal{V}) \langle \frac{1}{\sqrt{d_j}} e_j, L_{sym}^{\dagger} (\frac{1}{\sqrt{d_j}} e_j - \frac{1}{\sqrt{d_i}} e_i) \rangle$$
$$= d(\mathcal{V}) \left(\frac{1}{d_j} e_j^{\top} L_{sym}^{\dagger} e_j - \frac{1}{\sqrt{d_i d_j}} e_i^{\top} L_{sym}^{\dagger} e_j \right).$$

Thus given j, ranking by $(h_{ij})_{i=1,\dots,n}$ is determined by $-\frac{1}{\sqrt{d_id_j}}e_i^{\top}L_{sym}^{\dagger}e_j$. Denote by $B=(b_{ij}):=D^{-\frac{1}{2}}L_{sym}^{\dagger}D^{-\frac{1}{2}}$. Then $b_{ij}=\frac{1}{\sqrt{d_id_j}}e_i^{\top}L_{sym}^{\dagger}e_j$. This shows that ranking by $(h_{ij})_{i=1,\dots,n}$ in ascending order is the same as ranking by $(b_{ij})_{i=1,\dots,n}$ in descending order. Note that a smaller h_{ij} means vertices i and j are closer on the graph.

Proof of Lemma 3.1: (a) [2] $\mathcal{L}_{\mathfrak{f}}(\mathcal{S}_k) = \sum_{j \in \bar{\mathcal{S}}_k} a_{1j}$, (b) $\lim_{\alpha \to 0} \mathcal{L}_{\mathfrak{f}}(\mathcal{S}_k) = \lambda(\bar{\mathcal{S}}_k)/\lambda(\mathcal{V})$, $1 \le k \le n$.

Proof. (a) Recall that \mathfrak{f} is the first column of $M = (L + \alpha \Lambda)^{-1}$. We have $(L + \alpha \Lambda)\mathfrak{f} = e_1$, which can be written as:

$$\sum_{j \neq 1} w_{1j}(\mathfrak{f}_1 - \mathfrak{f}_j) = 1 - \alpha \lambda_1 \mathfrak{f}_1, \tag{1}$$

$$\sum_{j \neq i} w_{ij}(\mathfrak{f}_i - \mathfrak{f}_j) = -\alpha \lambda_i \mathfrak{f}_i, \quad i \neq 1.$$
 (2)

By Eq. (1) and Eq. (2), we have

$$\mathcal{L}_{\mathfrak{f}}(\mathcal{S}_k) = \sum_{i=1}^k \sum_{j \neq i} w_{ij}(\mathfrak{f}_i - \mathfrak{f}_j) = 1 - \sum_{i=1}^k \alpha \lambda_i \mathfrak{f}_i$$
$$= 1 - \sum_{j \in \mathcal{S}_k} a_{1j} = \sum_{j \in \bar{\mathcal{S}}_k} a_{1j}. \tag{3}$$

Note that in Eq. (3), since $A=(a_{ij})=(L+\alpha\Lambda)^{-1}\alpha\Lambda$, $\alpha\lambda_i\mathfrak{f}_i=a_{1i}$. We also use the fact that $\sum_j a_{1j}=1$. (b) By Theorem 2.1.,

$$A = (L + \alpha \Lambda)^{-1} \alpha \Lambda$$
$$= \frac{1}{\sum_{i} \lambda_{i}} \mathbf{1} \mathbf{1}^{\top} \Lambda + \alpha \Lambda^{-\frac{1}{2}} \left(\sum_{i=2}^{n} \frac{1}{\gamma_{i} + \alpha} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \right) \Lambda^{\frac{1}{2}}.$$

Therefore, $\lim_{\alpha\to 0} A = \frac{1}{\sum_i \lambda_i} \mathbf{1} \mathbf{1}^\top \Lambda$. By Eq. (3), we have $\lim_{\alpha\to 0} \mathcal{L}_{\mathbf{f}}(\mathcal{S}_k) = \lambda(\bar{\mathcal{S}}_k)/\lambda(\mathcal{V})$.

Proof of Theorem 3.4: $\mathcal{R}_f(\mathcal{S}_c) < 1/(c-1)$.

Proof. Since $\mathcal{L}_{\mathfrak{f}}(\mathcal{S}_k) = \sum_{j \in \bar{\mathcal{S}}_k} a_{1j}$ strictly decreases when k increases, $\forall k < c$, $\mathcal{L}_{\mathfrak{f}}(\mathcal{S}_c) < \mathcal{L}_{\mathfrak{f}}(\mathcal{S}_k)$.

Proof of Theorem 3.5:

- (a) If $d_i = b$, $\forall i$, for some constant b, then $\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{i}}(\mathcal{S}_c) = \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c)$.
- (b) Suppose for $1 \leq k < c$, $\frac{d(S_c \setminus S_k)}{|S_c \setminus S_k|} > \frac{d(\bar{S}_c)}{|\bar{S}_c|}$. Then $\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{i}}(S_c) > \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(S_c)$.
- (c) Suppose for $1 \leq k < c$, $\frac{d(\mathcal{S}_c \setminus \mathcal{S}_k)}{|\mathcal{S}_c \setminus \mathcal{S}_k|} < \frac{d(\bar{\mathcal{S}}_c)}{|\bar{\mathcal{S}}_c|}$. Then $\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{i}}(\mathcal{S}_c) < \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c)$.

Proof. (a) It follows from $d(S_k) = b|S_k|$, for $1 \le k \le c$. (b) Since for $1 \le k < c$, $\frac{d(S_c \setminus S_k)}{d(\bar{S}_c)} > \frac{|S_c \setminus S_k|}{|\bar{S}_c|}$, we have $\frac{d(\bar{S}_k)}{d(\bar{S}_c)} = \frac{d(S_c \setminus S_k) + d(\bar{S}_c)}{d(\bar{S}_c)} > \frac{|S_c \setminus S_k| + |\bar{S}_c|}{|\bar{S}_c|} = \frac{|\bar{S}_k|}{|\bar{S}_c|}$. (c) The proof is similar to that of (b).

Proof of Lemma 3.6:

$$\lim_{d(\mathcal{S}_c)/d(\bar{\mathcal{S}_c})\to 0} \lim_{\alpha\to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c) = \frac{1}{c-1}.$$

$$\begin{array}{lll} \textit{Proof.} & \frac{1}{\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c)} & = & \frac{\sum_{k=1}^{c-1} d(\mathcal{S}_k)}{d(\mathcal{S}_c)} & = & \\ \frac{\sum_{k=1}^{c-1} (d(\mathcal{S}_c \backslash \mathcal{S}_k) + d(\mathcal{S}_c))}{d(\mathcal{S}_c)} & = & c - 1 + \frac{\sum_{k=1}^{c-1} d(\mathcal{S}_c \backslash \mathcal{S}_k)}{d(\mathcal{S}_c)}. \text{ As } \\ \frac{d(\mathcal{S}_c)}{d(\mathcal{S}_c)} \to & 0, \text{ we have } \frac{d(\mathcal{S}_c \backslash \mathcal{S}_k)}{d(\mathcal{S}_c)} \to & 0 \text{ for } k < c, \text{ which completes the proof.} \\ \end{array}$$

Proof of Lemma 3.7: $\lim_{d(\mathcal{S}_c)/d(\bar{\mathcal{S}}_c)\to\infty}\lim_{\alpha\to 0}\mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c)=0,$ if $d_1< td(\mathcal{S}_c)$ for a fixed scalar t,0< t<1.

$$\begin{array}{lll} \textit{Proof.} \ \frac{1}{\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c)} = & \frac{\sum_{k=1}^{c-1} d(\bar{\mathcal{S}}_k)}{d(\bar{\mathcal{S}}_c)} & \geq & \frac{d(\bar{\mathcal{S}}_1)}{d(\bar{\mathcal{S}}_c)} & \geq \\ \frac{d(\bar{\mathcal{S}}_1) + d_1 - d_1}{d(\bar{\mathcal{S}}_c)} & \geq & \frac{d(\mathcal{S}_c) - d_1}{d(\bar{\mathcal{S}}_c)} & \geq & \frac{(1 - t)d(\mathcal{S}_c)}{d(\bar{\mathcal{S}}_c)} & \rightarrow & \infty, \text{ as } \frac{d(\mathcal{S}_c)}{d(\bar{\mathcal{S}}_c)} & \rightarrow \\ \infty. & & \square \end{array}$$

Proof of Theorem 3.8: Suppose for $1 \leq k < c$, $\frac{d(\mathcal{S}_c \backslash \mathcal{S}_k)}{|\mathcal{S}_c \backslash \mathcal{S}_k|} < \frac{d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}}{|\mathcal{S}_c|}$. Then $\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{i}}(\mathcal{S}_c) < \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{h}}(\mathcal{S}_c)$.

Proof. Since for $1 \leq k < c$, $\frac{d(\mathcal{S}_c \backslash \mathcal{S}_k)}{d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}} < \frac{|\mathcal{S}_c \backslash \mathcal{S}_k|}{|\bar{\mathcal{S}}_c|}$, we have $\frac{d(\mathcal{S}' \backslash \mathcal{S}_k) + \tau \hat{d}}{d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}} = \frac{d(\mathcal{S}_c \backslash \mathcal{S}_k) + d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}}{d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}} < \frac{|\mathcal{S}_c \backslash \mathcal{S}_k| + |\bar{\mathcal{S}}_c|}{|\bar{\mathcal{S}}_c|} = \frac{|\bar{\mathcal{S}}_k|}{|\bar{\mathcal{S}}_c|}$. Therefore, for $1 \leq k < c$, $\frac{d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}}{d(\mathcal{S}' \backslash \mathcal{S}_c) + \tau \hat{d}} > \frac{|\bar{\mathcal{S}}_c|}{|\bar{\mathcal{S}}_k|}$. This proves $\lim_{\alpha \to 0} \mathcal{R}_i(\mathcal{S}_c) < \lim_{\alpha \to 0} \mathcal{R}_b(\mathcal{S}_c)$.

Proof of Lemma 3.9:

$$\lim_{\max_{i \in \mathcal{S}_c} d_i / \hat{d} \to 0} \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{h}}(\mathcal{S}_c) = \frac{1}{c - 1}.$$

$$\begin{array}{ll} \textit{Proof.} \ \frac{1}{\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{h}}(\mathcal{S}_{c})} &= & \frac{d(\mathcal{S}' \backslash \mathcal{S}_{k}) + \tau d}{d(\mathcal{S}' \backslash \mathcal{S}_{c}) + \tau d} &= \\ \frac{\sum_{k=1}^{c-1} (d(\mathcal{S}_{c} \backslash \mathcal{S}_{k}) + d(\mathcal{S}' \backslash \mathcal{S}_{c}) + \tau d)}{d(\mathcal{S}' \backslash \mathcal{S}_{c}) + \tau d} &= c - 1 + \frac{\sum_{k=1}^{c-1} d(\mathcal{S}_{c} \backslash \mathcal{S}_{k})}{d(\mathcal{S}' \backslash \mathcal{S}_{c}) + \tau d}. \\ \text{As } \frac{\max_{i \in \mathcal{S}_{c}} d_{i}}{\hat{d}} &\to 0, \text{ we have } \frac{d(\mathcal{S}_{c} \backslash \mathcal{S}_{k})}{d(\mathcal{S}' \backslash \mathcal{S}_{c}) + \tau d} \to 0 \text{ for } k < c, \\ \text{which completes the proof.} & \Box \end{array}$$

Proof of Theorem 3.10: Suppose for $1 \leq k < c$, $\frac{d(\mathcal{S}_c \backslash \mathcal{S}_k)}{|\mathcal{S}_c \backslash \mathcal{S}_k|} > \frac{d(\bar{\mathcal{S}}_c)}{|\mathcal{S}^* \backslash \mathcal{S}_c| + d(\bar{\mathcal{S}}_*)/\mathring{d}}$. Then $\lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{h}}(\mathcal{S}_c) > \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c)$.

$$\begin{array}{lll} \textit{Proof.} & \text{Since for } 1 \leq k < c, & \frac{d(\mathcal{S}_c \backslash \mathcal{S}_k)}{d(\mathcal{S}_c)} > \\ & \frac{|\mathcal{S}_c \backslash \mathcal{S}_k| \hat{d}}{|\mathcal{S}^* \backslash \mathcal{S}_c| \hat{d} + d(\bar{\mathcal{S}_*})}, & \text{we have } & \frac{d(\bar{\mathcal{S}_k})}{d(\bar{\mathcal{S}_c})} = \frac{d(\mathcal{S}_c \backslash \mathcal{S}_k) + d(\bar{\mathcal{S}_c})}{d(\bar{\mathcal{S}_c})} > \\ & \frac{|\mathcal{S}_c \backslash \mathcal{S}_k| \hat{d} + |\mathcal{S}^* \backslash \mathcal{S}_c| \hat{d} + d(\bar{\mathcal{S}_*})}{|\mathcal{S}^* \backslash \mathcal{S}_c| \hat{d} + d(\bar{\mathcal{S}_*})} = \frac{|\mathcal{S}^* \backslash \mathcal{S}_k| \hat{d} + d(\bar{\mathcal{S}_*})}{|\mathcal{S}^* \backslash \mathcal{S}_c| \hat{d} + d(\bar{\mathcal{S}_*})}. & \text{Therefore, for } \\ 1 \leq k < c, & \frac{d(\bar{\mathcal{S}_c})}{d(\bar{\mathcal{S}_k})} < \frac{|\mathcal{S}^* \backslash \mathcal{S}_c| \hat{d} + d(\bar{\mathcal{S}_*})}{|\mathcal{S}^* \backslash \mathcal{S}_c| \hat{d} + d(\bar{\mathcal{S}_*})}. & \text{This proves} \\ \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{d}}(\mathcal{S}_c) < \lim_{\alpha \to 0} \mathcal{R}_{\mathfrak{h}}(\mathcal{S}_c). & \Box \end{array}$$

References

- [1] U. von Luxburg, A. Radl, and M. Hein. Hitting and commute times in large random neighborhood graphs. *Journal of Machine Learning Research*, 15:1751–1798, 2014. 1
- [2] X.-M. Wu, Z. Li, and S.-F. Chang. Analyzing the harmonic structure in graph-based learning. In *NIPS*, 2013.
- [3] X.-M. Wu, Z. Li, and S.-F. Chang. New insights into laplacian similarity search. In *CVPR*, 2015. 1