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Abstract

This is the supplement for our main paper “New Insights
into Laplacian Similarity Search” [3]. Here, we show the
proofs of all the theoretical arguments in the main paper.

Proof of Statements in Sec. 2.1: M is positive and sym-
metric, i.e., Vi, j, my; > 0, and m;; = m;;. Regardless of
A, my; is always the unique largest element in the i-th col-
umn and row of M.

Proof. (a) Since L + oA is symmetric, M =
is symmetric.
(b) Note that

(L+aA)™t

M = (L+al)™'=(D+ar-W)!

(I —(D+aM)™'W) 1 (D4 aA)?

(Z[((D + aA)_l)W]’“> (D +ah)™h,

k=0

from which we can see that M is positive since the graph is
connected.

(c) Now we show that m;; is the unique largest in its col-
umn. Assume, to the contrary, there exists 4, j, ¢ # j, such
that mj; < m;;. Denote k = arg max;-; m;;. Note that
M is symmetric and M > 0. Let B = (b;;) :== D + aA —
W. Note that B is symmetric and strictly diagonally domi-
nant, i.e., Vk, by, > Z#k |b;|- By BM = I, we have 0 =
B(k, )Mz, ) = >2; brimuij = bremug + 32, 5, brimij =
brrmig — (X, [bri )k = Ok — 22,2y, 1bwi ) > 0,
which contradicts the assumption. O

Proof of Theorem 2.1:
M = C + E, where C =

n
1 1
Az ( E uiuiT> Az,
i Vit
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Proof. By definition,
M = (L+ah)™!
= ATF(ATELATE £ al)TTATE

n -1
= A <Z(%+Oé)uiuf> ATE

=1

= 117 + A2 A2
oS ( x )
O
Proof of Corollary 2.2: lim I = A2LTAE,
a—r
Proof. It follows from LT = > 271u1uT. O

Proof of Statements in Sec. 2.1:
Ranking by (hl )i=1,...,n is equivalent as ranking by the j-th
column of D™ 2 LT D3,

sym

Proof. Let e; denote the i-th unit vector in R™. The hitting
time that a random walk from vertex ¢ to hit vertex j can be
computed by [1]:

1 1
,\/76‘7’ sym \/7 \/7
1 1

=d —e; Ll e — LT :
(V) <d] e] Gym \/me sym

Thus given j, ranking by (h;;)i=1

€i))

» 1s determined

.....

by —\/dl—deZTLlym ;. Denote by B = (b;) :=
D~2L},,,D"=. Then bj; = \/;TijeiTLiymej~ This

shows that ranking by (h;;)i=1,... » in ascending order is
the same as ranking by (b;;);=1,... in descending order.
Note that a smaller h;; means vertices 7 and j are closer on
the graph. O
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Proof of Lemma 3.1: (a) [2] L;(Sk) =
1<k<n.

(b) lima—o Li(Sk) = A(Sk)/AV),

Proof. (a) Recall that f is the first column of M = (L +
al)~1. We have (L + aA)f = e, which can be written as:

D owiilh —f;) = 1-a\h, e
J#1
D owiii — 1) = —aNdi, i# 1. )
J#i

By Eq. (1) and Eq. (2), we have

k k
Li(Sk) =Y > wy(fi—f) = 1= Y o\
1=1

i=1 j#i
:17 Zalj: ZaU. (3)
JESk JESK

Note that in Eq. (3), since A = (a;;) = (L + aA) " taA,
a);fi = a1;. We also use the fact that Zj a;; = 1.
(b) By Theorem 2.1.,

A = (L+ah)taA

1 T _1 i ]. T 1
= 11'A Az a; | Az,
S e (Z%m‘“‘l)

=2

Therefore, lim,_,0 A = Z’_l/\i 117 A. By Eq. (3), we have
lima_m Lf(Sk) = )\(Sk)//\(V) O

Proof of Theorem 3.4: R;(S.) < 1/(c—1).

Proof. Since L;(Sk) = ) ics, a1 strictly decreases when

k increases, Vk < ¢, Ef(ch < L;(Sk). O
Proof of Theorem 3.5:
(a) If d; = b, Vi, for some constant b, then

lima_m Ri (Sc) = 1ima_>0 Ra (SC) ~

(b) Suppose for 1 < k < ¢, ﬁﬁc\\ij) > Cllgc).
limgy—0 Ri(Se) > limg—0 Ro(Se)- .
(c) Suppose for 1 < k < ¢, d‘(SS:\\i"") < dI(SSLCI) Then
limg—0 Ri(Se) < lima—s0 Ro(Se)-

Then

Proof. (a) It follows from d(Sy) = b|Sk|, for 1 < k < c.
(b) Since for 1 < k < ¢, dSc\Sk) ‘SC\S’“I, we have

g _ d(Se) |Sel
d(S) _ d(Sc\Sk)+d(Se) « |S\Skl+ISe| _ ISkl
d(Se) d(Se) IS Sel”
(c) The proof is similar to that of (b). O

Proof of Lemma 3.6: 1

li lim Ry(S.) = ——.
d(SC)/ldI(I‘lgic)%OQgI}J o(Se) c—1

1 _ Sio1 d(Sk) -

Proof. = Ry = FIEH) - =
SEoi(d(S\SK)+d(Se)) STy d(Se\Sk)

N = - L4 ST A

Zg’i; — 0, we have % — 0 for £ < ¢, which

completes the proof. O

Proof of Lemma 3.7: lim lim Ry(S.) = 0,

d(8.)/d(S.) o0 @0
if di < td(S,) for a fixed scalar ¢, 0 < ¢ < 1.

1 _ o XpIid(Sk) d(S1)
Proof ey = Tas) o 2 sy 2
d(S1)+di—d d(8.)—d (1—t)d(S.) d(S.)
ld(S_ca : 2 d(‘STC) : - d(S_C) - 0, a8 d(gc) -
00. O

Proof of Theorem 3.8: Suppose for 1 < k <
¢, GSss < UEMEITd Then limg o Ri(S.) <
lima_m Rh (S(-)

Proof. Since for 1 < k < ¢ FEAArET] A
|S\Sk| A(S\Sp)+7d (S \Sk)+d(S'\Se)+7d

EA have AS\Se)+rd A(S\So)+rd <
% = 1‘;"" Therefore, for 1 < k < ¢

S'\S.)+7d Se . .

% > |‘S—“ This proves lim, 0 Ri(S:) <
limaﬁo Rh (Sc) O

Proof of Lemma 3.9: ]
lim lim Ry(Se) = —.

maxies, di/dA—>O a—0 c—1

d(S'\S)+7d

1
Proo‘ﬁ limy o Rh (S(,)

d(8'\S.)+7d
SiSASO+AS\SI+Td) g S d(Se\SK)
d(8'\S.)+7d - d(S'\So)+7d
maX;cS,. d; d(Sc\Sk)
As — Y = 0, we have FEAArET] — 0fork < ¢,
which completes the proof. O

Proof of Theorem 3.10: Suppose for 1 < k < ¢

d(Sc\Sk) d(Se) :
AYSY EOVAEETEAYER Then lim,_,o Ry (S:) >
limaﬁo Rg (SC)

Proof. Since for 1 < k < ¢ d(f(“gjk) >
|Sc\Skld d(Sk)  _ d(S:\Sk)+d(Se)
s lira@): We have gy = FIEH) =

[S\Sk |d+]|S*\Seld+d(S,) _ |S*\Sk|d+d(S.)
TVAARTER) = Sn\s.|drdE) Therefore, for
d(S,) |S*\Se|d+d(S.) :
1 < k < ¢ FIEN) ST\5, |4 d(S)" This proves
limgy—0 Ro(Se) < limg—y0 R (Se)- O
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