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Abstract

We propose a family of structured matrices to speed
up orthogonal projections for high-dimensional data com-
monly seen in computer vision applications. In this, a
structured matrix is formed by the Kronecker product of
a series of smaller orthogonal matrices. This achieves
O(d log d) computational complexity and O(log d) space
complexity for d-dimensional data, a drastic improvement
over the standard unstructured projections whose compu-
tational and space complexities are both O(d2). We also
introduce an efficient learning procedure for optimizing
such matrices in a data dependent fashion. We demon-
strate the significant advantages of the proposed approach
in solving the approximate nearest neighbor (ANN) image
search problem with both binary embedding and quantiza-
tion. Comprehensive experiments show that the proposed
approach can achieve similar or better accuracy as the ex-
isting state-of-the-art but with significantly less time and
memory.

1. Introduction
Linear projection is one of the most widely used opera-

tions, fundamental to many algorithms in computer vision.
Given a vector x ∈ Rd, and a projection matrix R ∈ Rk×d,
the linear projection computes h(x) ∈ Rk:

h(x) = Rx.

In the area of large-scale search and retrieval in computer
vision, linear projection is usually followed by quantiza-
tion to convert high dimensional image features into bi-
nary embeddings [15, 23, 34, 25] or product codes [16, 26].
These compact codes have been used to speed up search
and reduce storage in image retrieval [32], feature match-
ing [31], attribute recognition [28], and object categoriza-
tion [6] among others. For example, the popularly used Lo-
cality Sensitive Hashing (LSH) technique applies a linear
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projection to the input data before converting it into a bi-
nary or a non-binary code. For instance, a k-bit binary code
is simply given as,

h(x) = sign(Rx). (1)

However, the projection operation becomes expensive as the
input dimensionality d increases. In practice, to achieve
high recall in retrieval tasks, it is often desirable to use long
codes with a large k such that k = O(d) [22, 8, 29]. In this
case, the space and computational complexity of projection
isO(d2), and such a high cost often becomes the bottleneck
at both learning and prediction time. For instance, when
k = d = 50, 000, projection matrix alone takes 10 GB (sin-
gle precision) and projecting one vector can take 800 ms on
a single core.

In addition, in many applications, it is desired that the
projection matrix is orthogonal. An orthogonal transfor-
mation preserves the Euclidean distance between points.
And it can also distribute the variance more evenly across
the dimensions. These properties are important to make
several well-known techniques perform well on real-world
data [10, 26]. Another motivation for orthogonal projec-
tion comes from the goal of learning maximally uncor-
related bits while learning data-dependent binary codes.
One way to achieve that is by imposing orthogonal (or
near orthogonal) constraints on the projections [10, 37].
In binary embedding, many independent empirical exper-
iments [18, 15, 31, 10] have shown that imposing orthogo-
nality constraint on the projection achieves better results for
approximate nearest neighbor search. Ji et al. [19] provided
theoretical analysis to support the use of orthogonal pro-
jection. In quantization, the orthogonality constraint of the
projection matrix makes some critical optimization prob-
lems possible to solve [26, 35]. However, the main chal-
lenge is that the computational complexity of building an
orthogonal matrix isO(d3) while space and projection com-
plexity is O(d2), both of which are expensive for large d.

In order to speed up projection for high-dimensional
data, researchers have studied various types of structured
matrices, including Hadamard matrix, Toeplitz matrix and
circulant matrix. The idea behind projecting with struc-
tured matrices instead of the traditional unstructured ma-
trices is that one can exploit the structure to achieve better



space and computational complexity than quadratic. Pro-
jecting vectors with structured matrices has been studied
in a variety of contexts. In dimensionality reduction, Alon
and Chazelle [1] studied projection using a sparse Gaussian
matrix paired with a Hadamard matrix. This was followed
by Dasgupta et al. [5] who used a combination of permu-
tation and diagonal matrices along with Hadamard matrix
in LSH. These variants of Hadamard matrices were fur-
ther used by Jacques et al. in compressed sensing [14] and
Le et al. [21] in kernel approximation. These works uti-
lize the well-known fast Johnson-Lindenstrauss transform
to achieve O(d log d) time complexity. Researchers have
also used Toeplitz-structured matrices [2, 11] and circulant
matrices [12, 37, 38, 4] for projection, which also obtains
O(d log d) time complexity.

However, the main problem with the commonly used
structured matrices is that they are not orthogonal. Al-
though the Hadamard matrix is orthogonal by itself, it is
typically used in combination with other matrices (e.g.,
sparse Gaussian or diagonal/permutation matrices), which
convert it into a non-orthogonal matrix. Besides this, there
is another problem with using the Hadamard matrix di-
rectly: there are no free-parameters in Hadamard matri-
ces. Thus, one cannot learn a Hadamard matrix in a data-
dependent fashion.

In this work we introduce a very flexible family of or-
thogonal structured matrices formed by Kronecker prod-
uct of small element matrices, leading to substantially re-
duced space and computational complexity. One can vary
the number of free parameters in these matrices to adapt to
the needs of a given application. The most related work to
our proposed method is the bilinear projection [8], which is
also orthogonal and faster than quadratic. We show that the
bilinear method can be viewed as a special case of the pro-
posed method. Moreover, our structure is more flexible and
has lower computational complexity thanO(d1.5) of the bi-
linear method. Table 1 summarizes the space and time com-
plexity of the proposed method in comparison with other
structured matrices.

1.1. Our Contributions

In this work, we propose a novel method to construct a
family of orthogonal matrices by using the Kronecker prod-
uct of a series of small orthogonal matrices. Formally, the
Kronecker projection matrix is defined as

R = A1 ⊗A2 ⊗ · · · ⊗AM ,

where Aj , j = 1, · · · ,M are small orthogonal matrices.
We term them as the element matrices. Such Kronecker
product matrices have the following unique advantages:
1) They satisfy orthogonality constraint and therefore pre-
serve Euclidean distance in the original space; 2) Similar
to Hadamard and circulant matrices, there exists a fast al-
gorithm to compute Kronecker projection with a time com-

Method Time Space Time (Learning)
Unstructured [10] O(d2) O(d2) O(Nd2)

Bilinear [8] O(d1.5) O(d) O(Nd1.5)

Circulant [37] O(d log d) O(d) O(Nd log d)

Kronecker (ours) O(d log d) O(log d) O(Nd log2 d)

Table 1. Computational and space costs. d: data dimensionality,
N : number of training samples. The space and time complexities
of Kronecker projection are based on Aj ∈ Rde×de , ∀j, where de
is a small constant.

plexity ofO(d log d); 3) Changing the sizes of the small or-
thogonal matrices, the resulting matrix has varying number
of parameters (degrees of freedom), making it easier to con-
trol performance-speed trade-off; 4) The space complexity
isO(log d) in comparison toO(d) for most other structured
matrices.

We study Kronecker projection in two application set-
tings: binary embedding, and quantization (Section 2).
We propose a randomized version (Section 4) and a
data-dependent learned version (Section 5) of such ma-
trices. We conduct extensive image retrieval experiments
on ImageNet-32768, ImageNet-16384, and Flickr-16384
datasets (Section 6). The results show that with fixed num-
ber of bits, the method needs much less space and time than
the state-of-the-art methods to achieve similar or better per-
formance.

2. Background
We begin by reviewing the two settings where the fast or-

thogonal projection based on Kronecker Product is applied:
binary embedding, and quantization.

2.1. Binary Embedding

Binary embedding methods map original vectors into k-
bit binary vectors such that h(x) ∈ {+1,−1}k. Since data-
points are stored as binary codes, the storage cost is reduced
significantly even when k = O(d). The approximate near-
est neighbors are retrieved using Hamming distance in the
binary code space, which can be computed very efficiently
using table lookup, or the POPCNT instruction on modern
computer architectures.

Locality Sensitive Hashing (LSH) is a popular method
for generating binary codes that preserves cosine dis-
tance [3, 27] and typically uses randomized projections in
(1) to generate binary codes. However, many works have
shown the advantages of learning data-dependent binary
codes by optimizing the projection matrix R in (1) instead
of using the randomized ones [20, 25, 36, 24, 8]. Specifi-
cally, Iterative Quantization (ITQ) [10] showed that by us-
ing a PCA projection followed by a learned orthogonal pro-
jection, the resulting binary embedding outperforms non-
orthogonal or randomized orthogonal projection in retrieval



experiments. The projection is learned by alternating be-
tween projecting datapoints and solving for projections via
SVD. However, for high dimensional features, this becomes
infeasible unless one radically reduces the dimensionality,
which hurts performance. We found that the projections
learned with Kronecker product have similar performance
as ITQ, while being substantially more efficient.

2.2. Quantization

Quantization methods represent datapoints via a set of
quantizers, which are typically obtained by vector quanti-
zation algorithms such as k-means. To search for nearest
neighbors of a given query q, its Euclidean distances to
all datapoints in the database are computed, which are ap-
proximated by vector-to-quantizer distances. Furthermore,
when the data is high dimensional, quantization is often
carried out in subspaces independently. A commonly used
set of subspaces is obtained simply by chunking the vec-
tors, which leads to the Product Quantization (PQ) [16, 7].
Formally, the distance between the query vector q and a
database point x is given as:

||q− x|| ≈

√√√√ m∑
i=1

||q(i) − µi(x(i))||2,

where m is the total number of subspaces, x(i) and q(i) are
subvectors and µi(x

(i)) is the quantization function on sub-
space i. Because of its asymmetric nature, only the database
points are quantized, not the query vector. Quantization
methods have been shown to outperform LSH based method
in many cases [16]. However, for quantization methods to
work well, it is desirable that different subspaces have sim-
ilar variance for the given data. One way to achieve that
is by applying an orthogonal transformation R to the data.
Thus,

||q−x|| = ||Rq−Rx|| ≈

√√√√ m∑
i=1

||(Rq)(i) − µi(Rx)(i)||2.

(2)
Since the projection matrix R is orthogonal, it also pre-
serves the Euclidean distance. Norouzi and Fleet [26] pro-
posed Cartesian k-means (ck-means) where they showed
that instead of using a random projection matrix, it can be
learned from given data leading to improved retrieval re-
sults. However, the projection operation can be time con-
suming in high-dimensional spaces.

In summary, for both binary embedding and quantiza-
tion, a fast projection that is both orthogonal and learnable
is needed. This motivates us to use the Kronecker prod-
uct to design such projections, as described in the following
sections.

3. Kronecker Product and Projection
We start by introducing the Kronecker product and its

properties [33]. Let A1 ∈ Rk1×d1 , and A2 ∈ Rk2×d2 . The
Kronecker product of A1 and A2 is A1⊗A2 ∈ Rk1k2×d1d2

defined as

A1 ⊗A2 =


a1(1, 1)A2 · · · a1(1, d1)A2

a1(2, 1)A2 · · · a1(2, d1)A2

...
. . .

...
a1(k1, 1)A2 · · · a1(k1, d1)A2

 ,
where a1(i, j) is the element of the i-th row, and j-th col-
umn of A1. The Kronecker product is also known as
the tensor product or direct product. We introduce two
operations: mat(x, a, b) reshapes a d dimensional vector
to an a × b matrix (ab = d), and vec(·) forms a vec-
tor by column-wise stacking the matrix into a vector, and
vec(mat(x, a, b)) = x.

We state two properties of Kronecker product which will
be used later in the paper:

• (A1 ⊗A2)x = vec(A2mat(x, d2, d1)AT
1 ).

• The Kronecker product preserves the orthogonality. That
is, if A1 and A2 are both orthogonal, A1 ⊗ A2 is also
orthogonal.

We define Kronecker projection matrix R ∈ Rk×d as the
Kronecker product of several element matrices.

R = A1 ⊗ . . .⊗Aj ⊗ . . .⊗AM = ⊗M
j=1Aj ,

where Aj ∈ Rkj×dj with
∏M

j=1 kj = k and
∏M

j=1 dj = d.
One advantage of forming a large matrix in this way is

that the Kronecker projection can be computed with a fast
algorithm. In order to simplify the discussion, we assume
that matrix R is square i.e., k = d, and all the element ma-
trices are also square with the same order de. We use float-
ing points operations (FLOPs) to give an accurate estimate
of the computational cost of different methods [13].

Let the FLOPs to compute the Kronecker projection on
a d-dimensional vector, with element matrices of the order
de, be f(d, de). According to the property of Kronecker
product,

Rx = (⊗M
j=1Aj)x = vec((⊗M

j=2Aj)mat(x, d/de, de)AT
1 ).

Performing mat(x, d/de, de)AT
1 needs d(2de − 1) FLOPs

(dde multiplications and dde−d additions). After that com-
puting (⊗M

j=2Aj)mat(x, d/de, de)AT
1 turns out to be de

smaller scale problems, each computing a Kronecker pro-
jection with feature dimension d/de, and element matrix of
order de. Therefore,

f(d, de) = d(2de − 1) + def(d/de, de).



Based on the above recursive relation, the FLOPs of per-
forming Kronecker projection on a d-dimension vector is
d(2de − 1) logde

d.
As a special case, when all the element matrices have an

order of 2 (i.e., de = 2) the FLOPs is 3d log2(d). When R
is composed by a single square matrix of order d, the Kro-
necker projection becomes the unstructured projection. And
when M = 2, the proposed method is exactly the bilinear
projection [8]. The unstructured projection (de = d) re-
quires 2d2 − d FLOPs, and the bilinear projection requires
at least 2d(2

√
d − 1) FLOPs, since de =

√
d. Circulant

projection needs one d-dim real to complex FFT, one d-dim
complex to real IFFT, and one d/2-dim complex multipli-
cation [37]. The cost is then 4d log2 d FLOPs for large d,
based on the split-radix implementation. Consequently, the
Kronecker projection with small de (such as 2) has the low-
est computational cost.

Another appealing property of Kronecker projection is
the flexibility of its structure: by controlling the size of Aj ,
j = 1, · · · ,M , one can easily balance the number of param-
eters (therefore the capacity) of the model and the compu-
tational cost. There are logde

d element matrices, each with
d2e parameters. The number of parameters in Kronecker pro-
jection is d2e logde

d, which ranges from d2 (when de = d)
to 4 log2 d (when de = 2)1.

Although we have only discussed the case when R and
all the element matrices are square, the analysis can be eas-
ily extended to the non-square cases. In practice, the sizes
of the element matrices can be chosen by factorizing d and
k. When d or k cannot be factorized as the product of small
numbers: for the input feature, one can change the dimen-
sion by subsampling or padding zeros; for the output, one
can always use a longer code and then subsample. In Sec-
tion 4 and Section 5, we will discuss the generation of Kro-
necker projection. First we assume the projection matrix
R to be square. The nonsquare case will be discussed in
Section 5.4.

4. Randomized Kronecker Projection
Similar to unstructured projection, circulant projection,

and bilinear projection etc., Kronecker projection can be
generated randomly. Generating an unstructured orthogo-
nal matrix of order d has time complexityO(d3). Therefore
it is not practical for high-dimensional data.

For the Kronecker projection, one needs to generate M
(small) element orthogonal matrices, which is done by gen-
erating small random Gaussian matrices and then perform-
ing QR factorization. If the element matrices are of the size
2 × 2, the time complexity of generating randomized Kro-
necker projection of order d is only O(log d).

1We assume storing all d2e parameters of an element matrix. Note that
an orthonormal matrix has only de(de − 1)/2 degrees of freedom, so the
number of parameters can be further reduced by at least 50%.

To apply the randomized Kronecker projection in binary
embedding and quantization, we replace the unstructured
projection matrix (R in (1) and (2)) with the randomized
Kronecker projection matrix.

5. Learning Kronecker Projection
The randomized projection is simple, but it does not uti-

lize the data distributions. Similar to the previous works
[26, 10, 8, 37], we provide an efficient algorithm to op-
timize Kronecker projection parameters. We first intro-
duce the optimization problem in binary embedding (Sec-
tion 5.1), and quantization (Section 5.2), and then show that
both can be formulated as solving orthogonal procrustes
problem for each element matrix. We term such a prob-
lem the Kronecker procrustes, and provide our solution in
Section 5.3. We assume that the training data is given as
X = [x1,x2, . . . ,xN ] ∈ Rd×N . Our analysis of Section
5.1 to Section 5.3 is based on the assumption that k = d.
Section 5.4 extends the solution to k 6= d cases.

5.1. Optimized Binary Embedding

We follow [10, 8] to minimize the binarization loss for
binary embedding. The optimization problem can be writ-
ten as,

argmin
B,R
‖ B−RX ‖2F , s.t. RRT = I, (3)

where binary matrix B = [b1,b2, . . . ,bN ] ∈ {−1, 1}d×N ,
and bi is the binary code of xi, i.e. bi = sign(Rxi). Dif-
ferent from [10, 8], we impose Kronecker structure on R.
Gong et al. [10] propose to find a local solution of (3) by
alternating minimization. When R is fixed, B is computed
by a straightforward binarization by definition. When B is
fixed, and k = d (we will discuss k < d case in Section
5.4), R is found by the orthogonal procrustes problem:

argmin
R
||B−RX||2F , s.t. RTR = I.

5.2. Optimized Quantization

For quantization, we consider the Cartesian K-Means
(ck-means) [26] method which is the state-of-the-art. Note
that the Product Quantization (PQ) [16] is a special case
of ck-means where the orthogonal projection is randomized
instead of optimized.

For ck-means, the input sample x is split into m sub-
spaces, x = [x(1);x(2); ...;x(m)], and each subspace is
quantized to h sub-centers. Here, we only consider the case
when all the sub-center sets have the same fixed cardinality.
Our method can be easily generalized in a way similar to
[26] for varying cardinalities.

Let p = [p(1);p(2); ...;p(m)], where p(j) ∈ {0, 1}h,
‖ p(j) ‖1= 1. In other words, p(j) is an indicator of which
sub-center x(j) is closest to. Let C(j) ∈ Rd×h be the j-
th sub-center matrix and C ∈ Rd×mh be a center matrix



which is formed by the concatenation (diagonal-wise) of all
the sub-centers:

C =

 C(1)

. . .
C(m)

 .
In ck-means, the center matrix C is parameterized by an

orthogonal matrix R ∈ Rd×d and a block diagonal matrix
D ∈ Rd×mh. The optimization problem of ck-means can
be written as,

arg min
R,P,D

‖ X−RDP ‖2F , s.t. RTR = I.

We impose the Kronecker structure on the orthogonal ma-
trix R with a similar alternating procedure. When R is
fixed, updating D and P is equivalent to vector quantization
in each subspace with k-means. This is efficient because
the number of centers is usually small since the number of
clusters for each subspace is always set to a small number
(h = 256 in [16, 26]). Updating R with fixed D and P is
also an orthogonal procrustes problem.

argmin
R
||X−RDP||2F , s.t. RTR = I.

5.3. Kronecker Procrustes

For both binary embedding and quantization, we need
to solve an orthogonal procrustes problem with Kronecker
structure, which we call Kronecker procrustes:

argmin
R
‖ RX−B ‖2F , (4)

s.t. R = A1 ⊗ · · · ⊗AM , A
T
j Aj = I, j = 1, . . . ,M.

The above optimization is non-convex and quite chal-
lenging. We note that there exists a closed-form solution
for the unstructured orthogonal procrustes problem, which
requires computing SVD of XBT and takes O(d3) time.
For Kronecker procrustes, there is no closed-form solution.
We develop an efficient iterative method to update each el-
ement matrix sequentially to find a local solution. We start
by rewriting ‖ RX−B ‖2F as,

‖ (⊗M
j=1Aj)X−B ‖2F

=tr(((⊗M
j=1Aj)X−B)T ((⊗M

j=1Aj)X−B))

= ‖ X ‖2F −2 tr((⊗M
j=1Aj)XBT )+ ‖ B ‖2F .

(5)

The second equality holds because Kronecker product
preserves orthogonality. Thus, we need to maximize
tr((⊗M

j=1Aj)XBT ). Using a property of trace, it can be
expressed as,

tr(BT (⊗M
j=1Aj)X) =

N∑
i=1

bT
i (⊗M

j=1Aj)xi,

where bi and xi are the i-th column of matrix B and matrix
X respectively. We solve this problem by updating one ele-
ment matrix at a time, while keeping all others fixed. With-
out loss of generality, consider updating Aj :

argmin
Aj

N∑
i=1

bT
i (Apre ⊗Aj ⊗Anext)xi

s.t. AT
j Aj = I,

(6)

where Apre = 1⊗(⊗j−1
i=1Ai), and Anext = (⊗M

i=j+1Ai)⊗
1. Let the dimension of Apre, Anext and Aj be kpre ×
dpre, knext × dnext and kj × dj , respectively. Obviously,
dpredjdnext = d and kprekjknext = k.

According to a property of Kronecker product, the ob-
jective function of Aj in (6) can be written as,

N∑
i=1

bT
i vec

(
(Aj ⊗Anext)mat(xi, djdnext, dpre)A

T
pre

)
.

(7)
Let Gi = mat(xi, djdnext, dpre)A

T
pre, and Fi =

mat(bi, kjknext, kpre). Then, (7) can be written as,
N∑
i=1

tr(FT
i (Aj ⊗Anext)Gi). (8)

The above is the same as the bilinear optimization problem
[8], which can be solved via polar decomposition, requir-
ing SVD on a matrix of size dj × kj , with computational
complexity min(O(d2jkj),O(k2jdj)).

When updating one element matrix, the computational
cost comes from three different sources: S1. Calculating
Kronecker projection of data with the fixed element ma-
trices. S2. Calculating the product of projected data and
codes. S3. Performing SVD to get the optimal element ma-
trix. When the element matrices are large, the optimization
bottleneck is SVD. When the element matrices are small,
say 2×2, performing SVD can be seen as roughly a constant
time operation. The main computational cost then comes
from S1 (O(Nd log d)) and S2 (O(Nd)). Since there are
a total of logde

d element matrices, the computational com-
plexity of the whole optimization is O(Nd log2 d).

In the optimization procedure, we use randomized Kro-
necker projection as initialization. In practice, we find that,
for both binary embedding (Section 5.1), and quantization
(Section 5.2), the objective decreases fast based on the pro-
posed algorithm. Similar to [8, 37], a satisfactory solution
can be found within a few iterations.

5.4. Learning with k 6= d

We have presented our algorithm in the case of k = d.
The projection matrix R with k 6= d can be formed by
the Kronecker product of non-square row/column orthog-
onal element matrices. It is easy to show that Kronecker
product also preserves the row/column orthogonality. When
k > d, the orthogonal procrustes optimization problem can
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Figure 1. Computational cost (measured by FLOPs count) and
space cost for different types of projections. Kronecker-de means
Kronecker projection formed by element matrices of order de.

be solved similarly to the k = d case [30]. When k < d,
RTR 6= I. Hence, the second equality in (5) does not hold.
‖ RX−B ‖2F becomes

tr(XTRTRX)− 2 tr(RXBT )+ ‖ B ‖2F .

We follow [9] and relax the problem by assuming that
tr(XTRTRX) is independent of R, same as in the k ≥ d
case.

6. Experiments
6.1. Datasets and Methods

We evaluate our proposed Kronecker projection in ap-
proximate nearest neighbor search experiments on three
high-dimensional datasets:

ImageNet-16384 contains 100k images sampled from Im-
ageNet with each image represented by a 16,384 di-
mensional VLAD feature vector [17].

ImageNet-32768 is constructed the same way except each
image represented by a 32,768 dimensional VLAD
feature vector.

Flickr-16384 contains 100K images sampled from noisy
internet image collection, represented by 16,384 di-
mensional VLAD feature vectors.

Following [8, 26, 37], we use 9,500 samples in training
and 500 samples as queries for all three datasets. The fea-
tures are `2 normalized.

We use the following baseline methods in the experi-
ments: LSH [27], ITQ [10], BBE (bilinear binary embed-
ding) [8], and CBE (circulant binary embedding) [37]. We
call the proposed Kronecker projection based binary em-
bedding Kronecker Binary Embedding (KBE), and KBE-de
represents KBE using element matrices of order de. We use
the suffix “-opt” and “-rand-orth” to denote the optimized
and randomized versions of each projection type. Follow-
ing [8], BBE-rand does not impose orthogonality. For quan-

tization methods, we use PQ [16] and ckmeans [26] as base-
lines. KPQ is PQ with randomized Kronecker projection
(with the element matrices of order 2). Kck-mean is ck-
means with optimized Kronecker projection (with the ele-
ment matrices of order 2). In the approximate nearest neigh-
bor retrieval experiments, for each query, we use its 10 near-
est neighbors based on the `2 distance as the ground truth,
and use recall as the evaluation metric. All the results are
averaged over 10 runs.

6.2. Computational and Space Costs

Table 2 summarizes the required computations and space
for different types of projections2. Table 2 also shows
the real-world execution time (ms) and space cost (MB).
Based on our implementation, the real-world costs approx-
imately match the theoretical estimations. Figure 1 further
shows the required computations and memory as a function
of d. Kronecker projection provides significant speedup
and space saving compared to the other methods. In addi-
tion, one advantage of Kronecker projection is its flexibility
in trading off the model complexity with the computation
time. In experiments, we used Kronecker projections with
element matrices of the order 2 and 4 for binary embedding
and order 2 for quantization, which gave satisfactory per-
formance3.

6.3. Approximate Nearest Neighbor Search

Low-dimensional data. We first test the proposed meth-
ods on a low-dimensional dataset ImageNet-256, which
is constructed by randomly sampling 256 dimensions of
ImageNet-16384. Such a study is required as many pop-
ular methods such as ITQ and ck-means are not practical
for very high-dimensional data. The results are shown in
Figure 2. Note that the quantization methods outperform
binary embedding methods, but they come with the extra
cost of center-based distance computation, which is more
expensive than computing the Hamming distance [26].

Among all the quantization methods, ck-means outper-
forms PQ since it has an optimized orthogonal matrix. Re-
placing the orthogonal matrix by randomized Kronecker
projection (KPQ) or optimized Kronecker projection (Kck-
means) leads to very competitive performance.

Among all the binary embedding methods, ITQ outper-
forms all the others, since it uses an optimized unstructured
orthogonal matrix. BBE-opt, CBE-opt, KBE-2 and KBE-4
give similar performance, and they outperform LSH, CBE-
rand, and BBE-rand. A zoomed-in view of ITQ, BBE-opt,

2 Kronecker-de represents Kronecker projection with element matrices
of order de. The computational and space costs (as a function of d) is
computed based on the assumption that d is large, and k = d.

3The use of a few non-square matrices is sometimes required to match
the input and output dimensions correctly. In the following experiments,
for KBE-2, we use 2× 2 and 2× 4 element matrices. For KBE-4, we use
4× 4, 4× 8 and 2× 2 element matrices.



Unstructured Bilinear Circulant Kronecker-2
Time Space Time Space Time Space Time Space

d 2d2 d2 4d1.5 2d 4dlog2d d 3dlog2d 4log2d
28 2.3e-1 2.5e-1 3.1e-2 2.0e-3 1.6e-2 9.8e-4 1.1e-2 1.2e-4
210 3.7 4.0 2.3e-1 7.8e-3 7.4e-2 3.9e-3 5.6e-2 1.5e-4
212 6.0e1 6.4e1 1.9 3.1e-2 3.8e-1 1.6e-2 3.0e-1 1.8e-4
214 9.5e2 1.0e3 1.5e1 1.2e-1 1.6 6.3e-2 1.2 2.1e-4
216 1.5e4 1.6e4 1.3e2 5.0e-1 8.4 2.5e-1 6.4 2.4e-4

Table 2. Execution time (ms) and space cost (single precision) (MB) of different types of projections. The result is based on a C implemen-
tation and a single core on a 2.6GHz Intel CPU.
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Figure 2. Retrieval performance on a low-dimensional dataset
ImageNet-256.

CBE-opt and KBE is given in Figure 2(b). It shows that
the performance of KBE can be improved by using more
parameters (ITQ aka. KBE-256 > BBE aka. KBE-16 >
KBE-4 > KBE-2). Yet, with only 48 and 32 parameters
(KBE-4, KBE-2), we already have very competitive perfor-
mance compared to ITQ (65,536 parameters) and BBE (512
parameters). The proposed optimization algorithm further
improves the recall (KBE-opt-4 > KBE-rand-orth-4, KBE-
opt-2 > KBE-rand-orth-2).
High-dimensional data. Figure 4 shows the retrieval
performance with fixed number of bits on three high-
dimensional datasets. One may notice that we did not com-
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KBE-2
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CBE

Figure 3. Number of FLOPs for projecting d = 16, 384 dimen-
sional data to create different number of bits.

pare with ITQ, ITQ with randomized unstructured orthog-
onal projection, ck-means, and ck-means with randomized
unstructured orthogonal projection. The reason is that both
the optimization and the generation of a randomized un-
structured orthogonal matrix are prohibitively expensive for
high-dimensional data (detailed in Section 4 and Section 5).
Instead we can only do ck-means without rotation (which is
exactly PQ), and ITQ without orthogonal constraint and op-
timization (which is exactly LSH).

One interesting finding is that in many cases PQ does not
work well in such high-dimensional settings (also shown
in [8]). The reason could be that the selection of the sub-
space is critical in PQ [17, 16]. Therefore [17] suggests us-
ing PCA followed by unstructured randomized orthogonal
projection as pre-processing. However, such operations are
impractical for very high-dimensional data. The proposed
Kronecker projection makes orthogonal projections possi-
ble for high-dimensional data: both KPQ and Kck-means
achieve very impressive performance.

For binary embedding, the results of KBE-opt-2, KBE-
opt-4, KBE-rand-orth-2 and KBE-rand-orth-4 are competi-
tive to CBE, which is the state-of-the-art. Beside the com-
petitive performance, the proposed method has the advan-
tage of reduced space and computational cost. This is most
obvious in the cases when k < d. Due to the nature of
the method, the space and computational costs of CBE for
k < d are identical to k = d [37]. On the contrary, both
the space and computational costs of KBE can be reduced.
Figure 3 compares the computational cost of CBE and KBE
with different structures and different number of bits.
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Figure 4. Retrieval performance with fixed number of bits on ImageNet-32768 (first row), ImageNet-16384 (second row), and Flickr-16384
(third row). “#bits” is the number of bits used by each method.

For all settings, we found that the randomized Kronecker
projection already gives competitive performance (this is
especially true for high-dimensional data). It means that
the orthogonal property of the projection plays an impor-
tant role for guaranteeing the retrieval performance of ANN.
And the proposed optimization algorithm can further im-
prove the recall.

7. Conclusion

We proposed a special structured matrix to speed up
orthogonal linear projections. The proposed method has
O(d log d) computational complexity and O(log d) space

complexity, dramatically lower than that of unstructured
projection (O(d2)). The method is also very flexible in
trading off the number of parameters and the computa-
tional cost. We successfully applied the Kronecker pro-
jection to binary embedding and quantization tasks for
large-scale approximate image retrieval. We also found
that the orthogonal property of the projection is impor-
tant to the performance of ANN techniques. Compre-
hensive experiments showed that, with the same number
of bits, the proposed method can achieve competitive or
even better performance with much lower space and com-
putational cost. The implementation of the method is
available at https://github.com/spongezhang/
Kronecker_Projection.git.

https://github.com/spongezhang/Kronecker_Projection.git
https://github.com/spongezhang/Kronecker_Projection.git
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