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A Proofs

A.1 Proof of Lemma 1

Proof. Let us select a matrix U′ ∈ Rd×(d−m) such that the columns of [U,U′] form an orthonormal basis in

Rd. Notice U>U′ = 0 and define a matrix Q =

[
Q11 Q12

Q21 Q22

]
= [U,U′]>M?[U,U′], where Q11 = U>M?U,

Q12 = Q>21 = U>M?U′, and Q22 = U′
>

M?U′. Since M? ∈ Sd+, we know Q ∈ Sd+, Q11 ∈ Sm+ , and Q22 ∈ Sd−m+ .
We also have M? = [U,U′]Q[U,U′]>.

We first prove that Q22 must be 0 for any optimal M?. On the contrary, we assume Q22 6= 0. Denote by
M′ = UQ11U

> another feasible solution. We now compare the values of f(M?) and f(M′). Since [U,U′] is

orthonormal, we have range(U′) =
(
range(U)

)⊥
=
(
range(X)

)⊥
, which implies x>U′ = 0 for any x ∈ range(X).

Accordingly, for any i, j ∈ [1 : n] we can derive

x>i M?xj = x>i [U,U′]Q[U,U′]>xj

= [x>i U,0]

[
Q11 Q12

Q21 Q22

] [
U>xj

0

]
= x>i UQ11U

>xj = x>i M′xj .

Then for the first term in f(·), we have∑
i,j

[ỹij − yijSM?(xi,xj)]+ ≡
∑
i,j

[ỹij − yijSM′(xi,xj)]+

For the second term (the trace norm), we have

tr(M?) = tr

(
[U,U′]

[
Q11 Q12

Q21 Q22

]
[U,U′]>

)
= tr

([
Q11 Q12

Q21 Q22

])
= tr(Q11) + tr(Q22)

> tr(Q11) = tr
(
UQ11U

>) = tr(M′),

in which the strict inequality holds due to the assumption Q22 6= 0. Then we obtain f(M′) < f(M?), which
contradicts with the fact that M? is an optimal solution. Thus, we have shown Q22 ≡ 0 for any optimal M?.

On the other hand, Q22 = 0 automatically makes Q12 = Q>21 = 0 since Q ∈ Sd+, which quickly leads to

M? = [U,U′]

[
Q11 0
0 0

]
[U,U′]> = UQ11U

>. Therefore, we can say that any optimal solution M? must be in

the set
{
UWU>|W ∈ Sm+

}
.



A.2 Proof of Theorem 1

Proof. The proof is straightforward by showing that

f(M?) = min
M∈Sd+

n∑
i,j=1

[ỹij − yijSM(xi,xj)]+ + αtr(M)

= min
W∈Sm+

n∑
i,j=1

[
ỹij − yijx>i UWU>xj

]
+

+ αtr
(
UWU>

)
= min

W∈Sm+

n∑
i,j=1

[
ỹij − yijx̃>i Wx̃j

]
+

+ αtr(W) = f̃(W?),

where the second line is due to Lemma 1.

A.3 Proof of Theorem 2

Our target optimization problem can be rewritten as

min f1(Z) + f2(W)

s.t. Z = Ỹ −Y ◦
(
X̃>WX̃

)
,

(A.1)

where f1(Z) =
∑n
i,j=1[zij ]+, f2(W) = αtr(W) + I(W � 0), and I(W � 0) = 0 if W � 0 and +∞ otherwise.

Note that I(W � 0) is a convex function.

Our linearized ADMM developed for solving Eq. (A.1) is

Zk+1 := arg min
Z

f1(Z) +
ρ

2

∥∥Z− Ỹ + Y ◦ Sk + Λk/ρ
∥∥2
F
, (A.2)

Wk+1 := arg min
W

f2(W) +
ρ

2τ

∥∥∥W −
(
Wk − τX̃CkX̃> − τX̃SkX̃>

)∥∥∥2
F
, (A.3)

Λk+1 := Λk + ρ
(
Zk+1 − Ỹ + Y ◦ Sk+1

)
, (A.4)

where Ck = Y ◦
(
Zk+1 + Λk/ρ− Ỹ

)
and Sk = X̃>WkX̃.

Before we prove the global convergence of the linearized ADMM, we need to prove the following lemma. We
define an inner-product operator of matrices as 〈A,B〉 = tr

(
A>B

)
.

Lemma 2. Suppose that (Z?,W?) is an optimal solution of Eq. (A.1) and Λ? is the corresponding optimal
dual variable. Let ‖ · ‖op denote the operator norm of matrices, and the initial Z0, W0 and Λ0 be any sym-
metric matrices. If the step size τ satisfies 0 < τ < 1

‖X̃‖4op
, then there exists a ξ > 0 such that the sequence{(

Zk,Wk,Λk
)}
k

produced by the linearized ADMM in Eqs. (A.2)-(A.4) satisfies∥∥Rk −R?
∥∥2
H
−
∥∥Rk+1 −R?

∥∥2
H
≥ ξ
∥∥Rk −Rk+1

∥∥2
H
, (A.5)

where R? =

[
W? 0
0 Λ?

]
, Rk =

[
Wk 0
0 Λk

]
, H =

[ ρ
τ Im×m 0

0 1
ρIn×n

]
, and the norm ‖ · ‖H is defined by ‖R‖H =√

〈R,R〉H along with its corresponding inner-product 〈·, ·〉H being defined as 〈A,B〉H = 〈A,HB〉.

Proof. Since (Z?,W?,Λ?) is optimal to Eq. (A.1), it follows the KKT conditions that lead to:

0 ∈ ∂f1(Z?) + Λ?, (A.6)

0 ∈ ∂f2(W?) + X̃(Λ? ◦Y)X̃>, (A.7)

and

0 = Z? − Ỹ + Y ◦
(
X̃>W?X̃

)
. (A.8)



Note that the first-order optimality conditions for Eq. (A.2) are given by

0 ∈ ∂f1
(
Zk+1

)
+ ρ
(
Zk+1 − Ỹ + Y ◦ Sk + Λk/ρ

)
. (A.9)

Using Eq. (A.4), Eq. (A.9) is reduced to

0 ∈ ∂f1
(
Zk+1

)
+ Λk+1 + ρY ◦

(
Sk − Sk+1

)
. (A.10)

Combining Eqs. (A.6)(A.10) and utilizing the fact that ∂f1(·) is a monotone operator, we have〈
Zk+1 − Z?,Λ? −Λk+1 − ρY ◦

(
Sk − Sk+1

)〉
≥ 0. (A.11)

The first-order optimality conditions for Eq. (A.3) are given by

0 ∈ ∂f2
(
Wk+1

)
+
ρ

τ

(
Wk+1 −Wk + τX̃CkX̃> + τX̃SkX̃>

)
. (A.12)

Using Eq. (A.4), Eq. (A.12) can be reduced to

0 ∈ ∂f2
(
Wk+1

)
+
ρ

τ

(
Wk+1 −Wk + τX̃

(
Y ◦Λk+1/ρ

)
X̃> + τX̃

(
Sk − Sk+1

)
X̃>
)
. (A.13)

Combining Eqs. (A.7)(A.13) and also utilizing the fact that ∂f2(·) is a monotone operator, we have〈
Wk+1 −W?, X̃

(
(Λ? −Λk+1) ◦Y

)
X̃> − ρ

τ

(
Wk+1 −Wk

)
− ρX̃

(
Sk − Sk+1

)
X̃>
〉
≥ 0. (A.14)

Integrating Eqs. (A.11)(A.14)(A.4)(A.8), we obtain

ρ

τ

〈
Wk+1−W?,Wk−Wk+1

〉
+

1

ρ

〈
Λk+1−Λ?,Λk−Λk+1

〉
≥ −

〈
Λk −Λk+1,Y ◦

(
X̃>(Wk −Wk+1)X̃

)〉
. (A.15)

Using the notations of Rk, R? and H, Eq. (A.15) can be rewritten as〈
Rk+1 −R?,Rk −Rk+1

〉
H
≥ −

〈
Λk −Λk+1,Y ◦

(
X̃>(Wk −Wk+1)X̃

)〉
, (A.16)

which can further be written as〈
Rk −R?,Rk −Rk+1

〉
H
≥
∥∥Rk −Rk+1

∥∥
H
−
〈
Λk −Λk+1,Y ◦

(
X̃>(Wk −Wk+1)X̃

)〉
. (A.17)

Combining Eq. (A.17) with the following equation∥∥Rk+1 −R?
∥∥2
H

=
∥∥Rk+1 −Rk

∥∥2
H
− 2
〈
Rk −Rk+1,Rk −R?

〉
H

+
∥∥Rk −R?

∥∥2
H
,

we derive ∥∥Rk −R?
∥∥2
H
−
∥∥Rk+1 −R?

∥∥2
H

= 2
〈
Rk −Rk+1,Rk −R?

〉
H
−
∥∥Rk+1 −Rk

∥∥2
H

≥
∥∥Rk+1 −Rk

∥∥2
H
− 2

〈
Λk −Λk+1,Y ◦

(
X̃>(Wk −Wk+1)X̃

)〉
. (A.18)

Let A represent the linear operator A[W] = Y ◦
(
X̃>WX̃

)
with A? being its adjoint operator. The operator

norm of A is defined as ‖A‖op := sup‖W‖F=1

∥∥A[W]
∥∥
F

. Then we have

‖A‖2op = sup
‖W‖F=1

∥∥A[W]
∥∥2
F

= sup
‖W‖F=1

∥∥∥Y ◦ (X̃>WX̃
)∥∥∥2

F
= sup
‖W‖F=1

∥∥X̃>WX̃
∥∥2
F

≤ sup
‖W‖F=1

(
‖X̃‖op‖W‖F‖X̃‖op

)2
= ‖X̃‖2op

(
sup

‖W‖F=1

‖W‖2F

)
‖X̃‖2op = ‖X̃‖4op = ‖X‖4op, (A.19)



where we have used the fact that for any matrices A, B and C of compatible size, ‖AB‖F ≤ ‖A‖op‖B‖F and

‖BC‖F ≤ ‖B‖F‖A‖op. Let η =
τ‖A‖2op+1

2ρ , then
τ‖A‖2op

ρ < η < 1
ρ holds because 0 < τ < 1

‖X̃‖4op
≤ 1
‖A‖2op

. By

taking advantage of the Cauchy-Schwartz inequality, we can derive

− 2
〈
Λk −Λk+1,Y ◦

(
X̃>(Wk −Wk+1)X̃

)〉
≥ − η

∥∥Λk −Λk+1
∥∥2
F
− 1

η

∥∥∥Y ◦ (X̃>(Wk −Wk+1)X̃
)∥∥∥2

F

≥ − η
∥∥Λk −Λk+1

∥∥2
F
−
‖A‖2op
η

∥∥Wk −Wk+1
∥∥2
F
. (A.20)

Combining Eqs. (A.18)(A.20), eventually we obtain∥∥Rk −R?
∥∥2
H
−
∥∥Rk+1 −R?

∥∥2
H

≥

(
ρ

τ
−
‖A‖2op
η

)∥∥Wk −Wk+1
∥∥2
F

+

(
1

ρ
− η
)∥∥Λk −Λk+1

∥∥2
F

≥ ξ
∥∥Rk −Rk+1

∥∥2
H
, (A.21)

where ξ = min
{
ρ
τ −

‖A‖2op
η , 1ρ − η

}
> 0. This completes the proof.

We are now ready to give the main convergence result of the linearized ADMM. Recall our Theorem 2 in the
main paper.

Theorem 2. Given 0 < τ < 1
‖X̃‖4op

= 1
‖X‖4op

, the sequence
{(

Zk,Wk,Λk
)}
k
generated by the linearized ADMM

in Eqs. (A.2)-(A.4) starting with any symmetric
(
Z0,W0,Λ0

)
converges to an optimal solution of the original

problem in Eq. (A.1).

Proof. Due to Lemma 2, we can easily achieve that

• (i)
∥∥Rk −Rk+1

∥∥
H
→ 0;

• (ii)
{
Rk
}
k

lies in a compact region;

• (iii)
∥∥Rk −R?

∥∥2
H

is monotonically non-increasing and thus converges.

It follows from (i) that Λk − Λk+1 → 0 and Wk −Wk+1 → 0. Then Eq. (A.4) implies Zk − Zk+1 → 0 and
Zk − Ỹ + Y ◦

(
X̃>WkX̃

)
→ 0. From (ii) we know that

{
Rk
}
k

must have a subsequence
{
Rkj

}
j

converging to

R̂ =
(
Ŵ, Λ̂

)
, i.e., Wkj → Ŵ and Λkj → Λ̂. Zk−Ỹ+Y◦

(
X̃>WkX̃

)
→ 0 leads to Zkj → Ẑ = Ỹ−Y◦

(
X̃>ŴX̃

)
.

Therefore,
(
Ẑ,Ŵ, Λ̂

)
is a limit point of the sequence

{(
Zk,Wk,Λk

)}
k
. Note that Eq. (A.10) implies

0 ∈ ∂f1
(
Ẑ
)

+ Λ̂, (A.22)

and Eq. (A.13) implies

0 ∈ ∂f2
(
Ŵ
)

+ X̃
(
Λ̂ ◦Y

)
X̃>. (A.23)

Eqs. (A.22)(A.23) and Ẑ−Ỹ+Y◦
(
X̃>ŴX̃

)
= 0 imply that

(
Ẑ,Ŵ, Λ̂

)
satisfies the KKT conditions for Eq. (A.1)

and is thus an optimal solution to Eq. (A.1). Therefore, we have shown that any limit point of
{(

Zk,Wk,Λk
)}
k

is an optimal solution to Eq. (A.1).

To complete the proof, we need to further show that such a limit point is unique. Let
(
Ẑ1,Ŵ1, Λ̂1

)
and(

Ẑ2,Ŵ2, Λ̂2

)
be any two limit points of

{(
Zk,Wk,Λk

)}
k
. As we have shown, both

(
Ẑ1,Ŵ1, Λ̂1

)
and(

Ẑ2,Ŵ2, Λ̂2

)
are optimal solutions to Eq. (A.1). Thus, R? in Eq. (A.21) can be replaced by R̂1 =

(
Ŵ1, Λ̂1

)
or

R̂2 =
(
Ŵ2, Λ̂2

)
, which results in ∥∥Rk+1 − R̂i

∥∥2
H
≤
∥∥Rk − R̂i

∥∥2
H
, i = 1, 2.



Thus, we know the existence of the limits

lim
k→∞

∥∥Rk − R̂i

∥∥
H

= ηi < +∞, i = 1, 2.

Now using the equation∥∥Rk − R̂1

∥∥2
H
−
∥∥Rk − R̂2

∥∥2
H

= −2
〈
Rk, R̂1 − R̂2

〉
H

+
∥∥R̂1

∥∥2
H
−
∥∥R̂2

∥∥2
H

and passing the limits, we arrive at

η21 − η22 = −2
〈
R̂1, R̂1 − R̂2

〉
H

+
∥∥R̂1

∥∥2
H
−
∥∥R̂2

∥∥2
H

= −
∥∥R̂1 − R̂2

∥∥2
H
,

and
η21 − η22 = −2

〈
R̂2, R̂1 − R̂2

〉
H

+
∥∥R̂1

∥∥2
H
−
∥∥R̂2

∥∥2
H

=
∥∥R̂1 − R̂2

∥∥2
H
.

Then, we must have
∥∥R̂1 − R̂2

∥∥2
H

= 0, indicating that the limit point of
{(

Zk,Wk,Λk
)}
k

is unique.

Consequently, we can conclude that starting from any symmetric
(
Z0,W0,Λ0

)
the sequence

{(
Zk,Wk,Λk

)}
k

produced by the linearized ADMM in Eqs. (A.2)-(A.4) converges to an optimal solution of the original problem
in Eq. (A.1).

B Theoretic Analysis

A primary advantage of our analysis in Lemma 1 and Theorem 1 is avoiding the expensive projection onto
the high-dimensional PSD cone Sd+, which was required by the previous trace norm regularized metric learning
methods such as ([McFee and Lanckriet, 2010, Lim et al., 2013]). In this section, we further provide in-depth
theoretic analysis (see Lemma 3 and Theorem 3) to comprehensively justify the low-rank solution structure
M? = UW?U> for any convex loss function in terms of x>i Mxj regularized by trace norm tr(M) or squared
Frobenius norm ‖M‖2F.

As a result, our analysis would directly lead to scalable O(d) algorithms for a task of low-rank distance or
similarity metric learning supervised by instance-level, pairwise, or listwise label information. For example, our
analysis would give an O(d)-time algorithm for optimizing the low-rank distance metric learning objective (a
hinge loss based on listwise supervision plus a trace norm regularizer) in ([McFee and Lanckriet, 2010]) through
following our proposed two-step scheme, SVD projection + lower dimensional metric learning.

Suppose that we have a collection of data examples
{
xi ∈ Rd

}n
i=1

for training a metric. We formulate a more
general convex objective as follows

min
M∈Sd+

h(M) := `
({

x>i Mxj
}
i,j∈[1:n]

)
+ α1tr(M) + α2

∥∥M∥∥2
F
, (B.1)

where `(·) denotes any convex loss function, and α1, α2 ≥ 0 are two regularization parameters. This extended
learning framework in Eq. (B.1) is capable of adapting to a much larger class of loss functions (squared loss,
`1 loss, hinge loss, logistic loss, etc.), supervision types (instance-level label, pairwise label, and triplet-level
rank), and regularizers (trace norm, squared Frobenius norm, and mixed norm), which will also encompass many
distance and similarity metric learning approaches including our proposed Low-Rank Similarity Metric Learning
(LRSML), Online Regularized Distance Metric Learning (Online-Reg) ([Jin et al., 2009]), and Metric Learning
to Rank (MLR) ([McFee and Lanckriet, 2010]).

It turns out that the optimality characterization for the objective of LRSML (hinge loss based on pairwise labels
+ trace norm regularizer), shown in Lemma 1 and Theorem 1 in our main paper, can still be applied to the
generic objective in Eq. (B.1) with minor modifications. The techniques for the proofs are very similar but we
still provide the proofs for completeness.

Write the singular value decomposition (SVD) of the data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n as

X = UΣV> =

m∑
i=1

σiuiv
>
i ,



where m (≤ n� d) is the rank of X, σ1, · · · , σm are the positive singular values, and U = [u1, · · · ,um] ∈ Rd×m,
V = [v1, · · · ,vm] ∈ Rn×m are the matrices containing left- and right-singular vectors, respectively. Then the
optimal solutions to the problem in Eq. (B.1) can be characterized in what follows.

Lemma 3. If α1 + α2 > 0, then any optimal solution M? to Eq. (B.1) must be in the set
{
UWU>|W ∈ Sm+

}
.

Proof. Let us select a matrix U′ ∈ Rd×(d−m) such that [U,U′] forms an orthonormal matrix. Notice U>U′ = 0

and define a matrix Q =

[
Q11 Q12

Q21 Q22

]
= [U,U′]>M?[U,U′], where Q11 = U>M?U, Q12 = Q>21 = U>M?U′,

and Q22 = U′
>

M?U′. Since M? ∈ Sd+, we know Q ∈ Sd+, Q11 ∈ Sm+ , and Q22 ∈ Sd−m+ . We also have
M? = [U,U′]Q[U,U′]> as [U,U′] is an orthonormal matrix.

We first prove that Q22 must be 0 for any optimal M?. On the contrary, we assume Q22 6= 0. Denote
by M′ = UQ11U

> another feasible solution. Let us compare the values of h(M?) and h(M′). Since [U,U′] is

orthonormal, we have range(U′) =
(
range(U)

)⊥
=
(
range(X)

)⊥
, which implies x>U′ = 0 for any x ∈ range(X).

Accordingly, for any i, j ∈ [1 : n] we can derive

x>i M?xj = x>i [U,U′]Q[U,U′]>xj

= [x>i U,0]

[
Q11 Q12

Q21 Q22

] [
U>xj

0

]
= x>i UQ11U

>xj = x>i M′xj .

Hence, for the first term in h(·) we obtain `
({

x>i M?xj
}
i,j∈[1:n]

)
≡ `

({
x>i M′xj

}
i,j∈[1:n]

)
.

For the second term (the trace norm), we have

tr(M?) = tr

(
[U,U′]

[
Q11 Q12

Q21 Q22

]
[U,U′]>

)
= tr

([
Q11 Q12

Q21 Q22

])
= tr(Q11) + tr(Q22)

> tr(Q11) = tr
(
UQ11U

>) = tr(M′),

in which the strict inequality holds due to the assumption Q22 6= 0 that implies tr(Q22) > 0 (notice Q22 ∈ Sd−m+ ).

For the third term (the squared Frobenius norm), we have

∥∥M?
∥∥2
F

=

∥∥∥∥[U,U′]

[
Q11 Q12

Q21 Q22

]
[U,U′]>

∥∥∥∥2
F

=

∥∥∥∥[Q11 Q12

Q21 Q22

]∥∥∥∥2
F

≥
∥∥Q11

∥∥2
F

+
∥∥Q22

∥∥2
F

>
∥∥Q11

∥∥2
F

=
∥∥UQ11U

>∥∥2
F

=
∥∥M′∥∥2

F
,

where the strict inequality holds due to the assumption Q22 6= 0 that implies
∥∥Q22

∥∥2
F
> 0.

Because at least one of α1, α2 is positive, we arrive at h(M′) < h(M?), which contradicts with the fact that M?

is an optimal solution. So far, we have proven Q22 ≡ 0 for any optimal M?.

On the other hand, Q22 = 0 automatically makes Q12 = Q>21 = 0 since Q ∈ Sd+, which quickly leads to

M? = [U,U′]

[
Q11 0
0 0

]
[U,U′]> = UQ11U

>.

Therefore, we can say that any optimal solution M? must be in the set
{
UWU>|W ∈ Sm+

}
.

Theorem 3. Project each data point xi ∈ Rd (i ∈ [1 : n]) onto the subspace range(U) = range(X), obtaining
a new data point x̃i = U>xi ∈ Rm. If α1 + α2 > 0, then M? is an optimal solution to the raw problem in



Eq. (B.1) if and only if M? = UW?U> in which

W? ∈ arg min
W∈Sm+

h̃(W) := `
({

x̃>i Wx̃j
}
i,j∈[1:n]

)
+ α1tr(W) + α2

∥∥W∥∥2
F
. (B.2)

Proof. The proof is straightforward by showing that

h(M?) = min
M∈Sd+

`
({

x>i Mxj
}
i,j∈[1:n]

)
+ α1tr(M) + α2

∥∥M∥∥2
F

= min
W∈Sm+

`
({

x>i UWU>xj
}
i,j∈[1:n]

)
+ α1tr

(
UWU>

)
+ α2

∥∥UWU>
∥∥2
F

= min
W∈Sm+

`
({

x̃>i Wx̃j
}
i,j∈[1:n]

)
+ α1tr(W) + α2

∥∥W∥∥2
F

= h̃(W?),

where the second line is due to Lemma 3.

Lemma 3 and Theorem 3 immediately indicate that under the small sample setting n � d, low-rank distance
or similarity metric learning with trace norm or squared Frobenius norm regularization guarantees to yield an
optimal low-rank solution as M? = UW?U>, and can therefore be implemented efficiently by specialized scalable
O(d) algorithms. Such algorithms may follow the two-step scheme, SVD projection + lower dimensional metric
learning, which has been employed by our LRSML algorithm.

Finally, we would like to point out that our generic objective in Eq. (B.1) for learning low-rank metrics does not
accommodate `1 norm ‖M‖1 which has been exploited for encouraging sparse metrics ([Qi et al., 2009, Liu et al.,
2010]), nor `2,1 norm ‖M‖2,1 which has been used for inducing group sparsity in the learned metrics ([Rosales
and Fung, 2006, Ying et al., 2009, Lim et al., 2013]). When being imposed on the target metric matrix M, the
`1 and `2,1 norms may not result in the justified low-rank solution structure

{
UWU>|W ∈ Sm+

}
.

C Extended Experiments

Under a single training/validation/testing trial of the experiments, the eight compared metric/similarity learning
methods leverage the validation data subset to acquire the optimal parameters associated with their models or
algorithms. For linear SVM, MLR and LRSML, the regularization (or trade-off) parameters need to be tuned;

for LSA, FLDA, LSA-ITML and MLNCM which use the low-rank basis L0 ∈ Rd×r0 produced by LSA in a
preprocessing step or as a heuristic, the initial rank r0 (or the output dimension of the corresponding linear
transformation (L0)>) requires a tuning as well. Since any of LSA, FLDA, LSA-ITML, CM-ITML, MLR,
MLNCM and LRSML yields a low-rank basis L ∈ Rd×r eventually, we record the final rank r (i.e., the output
dimension of the resulting linear transformation L>). Note that r differs in various metric learning methods.
FLDA always gives rise to r ≡ C − 1, while CM-ITML always results in r ≡ C.

To thoroughly evaluate our proposed approach LRSML which applies the linearized ADMM optimization al-
gorithm to seek the low-rank similarity metric, we need to know the convergence property of the linearized
ADMM. Across all datasets we have tried, we find out that in almost all cases, the linearized ADMM converges
within T = 1, 000 iterations under the setting of ρ = 1, τ = 0.01. Figure 1 shows the convergence curves of the
linearized ADMM working with four different groups of training samples. From Figure 1, we also observe that
the linearized ADMM decreases the objective function value abruptly during the earliest 20 iterations, thereby
achieving a fast convergence rate. To point out, we plot the following scaled objective function values

Q(M) =

 n∑
i,j=1

[
ỹij − yijSM(xi,xj)

]
+

+ αtr(M)

 /n2

in Figure 1.

Further, we present more experimental results in Tables 1 and 2, and Figures 2, 3, 4 and 5, where the classification
error rates (or recognition rates) as well as the output dimensions achieved by various metric/similarity learning



Table 1: UIUC-Sports dataset: classification accuracy and training time of eight competing methods.

10×8 training samples 70×8 training samples
Method Measure Accuracy Train Time Measure Accuracy Train Time

(%) (sec) (%) (sec)

Original – 58.89±2.64 – – 74.81±1.44 –
Linear SVM – 69.64±1.69 0.78 – 83.87±1.13 5.9

LSA
distance 58.89±2.64

0.22
distance 74.81±1.44

8.9
cosine 58.89±2.64 cosine 74.81±1.44

FLDA
distance 48.21±5.52

0.19
distance 80.89±1.32

8.1
cosine 46.27±5.91 cosine 78.12±2.26

LSA-ITML
distance 69.33±1.82

20.2
distance 57.87±6.79

1611.7
cosine 67.21±1.85 cosine 77.06±1.80

CM-ITML
distance 62.44±2.28

2.0
distance 74.75±1.64

47.9
cosine 62.94±2.38 cosine 74.50±1.53

MLR
distance 65.44±2.89

17.4
distance 74.18±2.16

1317.8
cosine 65.48±2.36 cosine 78.33±1.67

MLNCM
distance 43.16±3.87

0.80
distance 72.13±1.97

105.1
cosine 42.29±3.19 cosine 71.20±1.62

AROMA similarity 31.09±3.55 169.8 similarity 37.87±2.16 2773.8

LRSML
inner-product 70.75±1.58

2.5
inner-product 84.85±1.40

278.3
cosine 70.92±1.51 cosine 84.96±1.36

Table 2: UIUC-Scene dataset: classification accuracy and training time of eight competing methods.

10×15 training samples 100×15 training samples
Method Measure Accuracy Train Time Measure Accuracy Train Time

(%) (sec) (%) (sec)

Original – 54.39±0.93 – – 66.29±1.11 –
Linear SVM – 65.31±1.45 1.1 – 81.09±0.78 12.8

LSA
distance 54.39±0.93

0.37
distance 66.29±1.11

45.1
cosine 54.39±0.93 cosine 66.29±1.11

FLDA
distance 53.54±2.77

0.44
distance 79.50±0.93

32.3
cosine 53.41±3.09 cosine 78.38±0.75

LSA-ITML
distance 65.34±1.35 38.2 distance 77.98±0.86

6519.2
cosine 63.84±1.49 cosine 76.70±1.12

CM-ITML
distance 61.11±1.76

4.7
distance 70.39±1.02

2139.6
cosine 58.73±2.24 cosine 69.90±1.81

MLR
distance 55.13±2.32

23.8
distance 63.17±1.60

3925.7
cosine 60.88±1.86 cosine 74.33±1.28

MLNCM
distance 48.94±1.66

3.3
distance 67.72±0.92

1010.1
cosine 49.33±1.52 cosine 67.19±0.34

AROMA similarity 45.65±3.63 42.2 similarity 60.67±2.24 8565.0

LRSML
inner-product 67.63±1.51

12.4
inner-product 81.15±0.86

3534.9
cosine 68.12±1.30 cosine 82.38±0.87

methods working with an increasing amount of supervision are plotted. Note that for each method in comparison,
we choose a proper measure among distance, inner-product, and cosine, such that higher classification accuracy is
obtained. These results again corroborate that the proposed low-rank similarity metric learning method LRSML
is superior to the state-of-the-art metric/similarity learning methods in terms of 1NN classification accuracy on
high-dimensional datasets. Compared against the competing low-rank distance metric learning methods LSA-
ITML, MLR and MLNCM, LRSML achieves faster metric training than LSA-ITML and MLR (MLNCM is
fastest because of its nonconvex and stochastic metric optimization), and yields the basis L with a much lower
rank in most cases. Figures 2(b), 3(b) and 5(b) disclose that the output dimension of L produced by LRSML is
usually very close to the class number C.

Last but not least, we would like to discuss the scalability in the training sample size n of our proposed LRSML.
It is true that LRSML scales cubically with n. Nonetheless, our extensive experiments have confirmed that
LRSML is able to accomplish good classification performance with just a relatively small number of training
samples (e.g., 80 ≤ n ≤ 1500), which implies that our approach LRSML trained on a relatively small training
set could well adapt to a much larger test set. Please note that the scalability to a large data size claimed by the
method MLNCM in ([Mensink et al., 2013]) is achieved by a Stochastic Gradient Descent (SGD) based inexact
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Figure 1: Convergence test of the linearized ADMM optimization algorithm. (a) On the Reuters-28 dataset
with 30 × C training samples, (b) on the TDT2-30 dataset with 30 × C training samples, (c) on the UIUC-
Sports dataset with 60 × C training samples, and (d) on the UIUC-Scene dataset with 60 × C training
samples.

optimization algorithm over a nonconvex objective. In our experiments, we have found that MLNCM performs
worse than linear SVM, but our LRSML outperforms linear SVM consistently. For a more fair comparison, we
would make LRSML scalable to the training data size n by developing a stochastic version of the linearized
ADMM algorithm. We will pursue it in future work.
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Figure 2: The results with a varying number of training samples on the Reuters-28 dataset.
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Figure 3: The results with a varying number of training samples on the TDT2-30 dataset.
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Figure 4: The results with a varying number of training samples on the UIUC-Sports dataset.



10 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
(a) Recognition rate vs. # training samples @ UIUC−Scene

# Training Samples (× C)

R
ec

og
ni

tio
n 

R
at

e

 

 

LSA
FLDA
LSA−ITML
CM−ITML
MLR
MLNCM
AROMA
LRSML

10 20 40 60 80 100
0

500

1000

1500
(b) Output dimension vs. # training samples @ UIUC−Scene

# Training Samples (× C)

O
ut

pu
t D

im
en

si
on

 

 

LSA
LSA−ITML
MLR
MLNCM
LRSML

Figure 5: The results with a varying number of training samples on the UIUC-Scene dataset.
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