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Abstract— Late fusion is one of the most effective approaches
to enhance recognition accuracy through combining prediction
scores of multiple classifiers, each of which is trained by a specific
feature or model. The existing methods generally use a fixed
fusion weight for one classifier over all samples, and ignore the
fact that each classifier may perform better or worse for different
subsets of samples. In order to address this issue, we propose
a novel sample specific late fusion (SSLF) method. Specifically,
we cast late fusion into an information propagation process that
diffuses the fusion weights of labeled samples to the individual
unlabeled samples, and enforce positive samples to have higher
fusion scores than negative samples. Upon this process, the
optimal fusion weight for each sample is identified, while positive
samples are pushed toward the top at the fusion score rank list
to achieve better accuracy. In this paper, two SSLF methods are
presented. The first method is ranking SSLF (R-SSLF), which
is based on graph Laplacian with RankSVM style constraints.
We formulate and solve the problem with a fast gradient projec-
tion algorithm; the second method is infinite push SSLF (I-SSLF),
which combines graph Laplacian with infinite push constraints.
I-SSLF is a l∞ norm constrained optimization problem and
can be solved by an efficient alternating direction method of
multipliers method. Extensive experiments on both large-scale
image and video data sets demonstrate the effectiveness of our
methods. In addition, in order to make our method scalable to
support large data sets, the AnchorGraph model is employed to
propagate information on a subset of samples (anchor points)
and then reconstruct the entire graph to get the weights of all
samples. To the best of our knowledge, this is the first method
that supports learning of sample specific fusion weights for late
fusion.

Index Terms— Image recognition, video recognition, late
fusion, infinite push, l∞ norm.

I. INTRODUCTION

THE idea of “multimodal fusion” has been advocated in
the computer vision community during the past decades.

The fusion strategies can be classified into early fusion (feature
level fusion) or late fusion (decision score level fusion) [1].
Recently late fusion has been proven effective on various
applications such as object recognition [2]–[4], biometric
analysis [5], affect recognition [6], image retrieval [7] and
video event detection [4], [8]–[10]. Given multiple classifiers
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trained with different low-level features, late fusion attempts
to find optimal combination of all classifiers’ prediction scores
(the prediction scores of each sample are generated by classi-
fiers to indicate the confidences of classifying the sample as
positive). Such a fusion method is expected to assign positive
samples higher fusion scores than the negative ones to improve
the overall performance. During past studies on this topic, late
fusion has shown to be capable of boosting the performance
of each individual classifier and producing comparable or even
better results than early fusion methods [4], [11].

An intuitive way for late fusion is to estimate a fixed weight
for each classifier and then sum the weighted prediction
scores as the fusion result. This approach assumes all samples
share the same weight for a classifier, and hence fails to
consider the differences of a classifier’s prediction capability
on individual sample. In fact, each classifier has different
prediction capabilities on different samples. Therefore,
instead of using a fixed weight for each classifier, a promising
alternative is to estimate the specific fusion weights for each
sample to achieve optimal fusion result.

However, discovering the sample specific fusion weights is
a challenging task due to the following two issues. First, since
there is no label information of the test samples, it is not clear
how to derive the specific fusion weights for those unlabeled
samples. Second, to get a robust late fusion result, positive
samples need to have higher prediction scores (confidence
level) than negative samples. Therefore, the proposed method
needs to ensure the positive samples having higher final fusion
scores during the learning process.

In this paper, we propose to address the above two issues by
the Sample Specific Late Fusion (SSLF) method, which learns
the optimal sample specific fusion weights from supervision
information while directly imposing the positive samples
to have the highest fusion scores in the fusion result.
Figure 1 illustrates the framework of our proposed method.
Suppose we have a classifier score vector si = [s1

i , . . . , sm
i ]�

of a sample, where each s j
i denotes the prediction score

produced by the j -th classifier ( j = 1, . . . , m), and m is
the total number of classifiers. Our target is to learn an
optimal fusion weight vector wi = [w1

i , . . . , w
m
i ]� such

that the fusion score fi (si ) = w�
i si precisely reflects

the confidence of classifying the given sample as positive.
Specifically, we define the fusion process as an information
propagation procedure that diffuses the fusion weights learned
on the individual labeled samples to the unlabeled ones.
The propagation is guided by a graph built on low-level
features of all samples, which enforces visually similar
samples to have similar fusion scores. By incorporating the
graph Laplacian in the learning objective, our method offers
the capability to infer the fusion weights for the unlabeled
samples.
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Fig. 1. Illustration of the Sample Specific Late Fusion (SSLF) method.
Each image has a prediction score vector si . The images with green and
red borders are labeled as positives and negatives respectively, or unlabeled
otherwise. Our goal is to learn a fusion weight vector wi for each sample.
Learning is cast into an information propagation process that the fusion
weights of the labeled images are diffused to the individual unlabeled ones
along a graph built on low-level features. During the propagation, the ranking
constraints are applied to ensure the positive samples to have higher fusion
scores (w�

i si ) than the negative samples.

To achieve higher recognition accuracy, we propose to
apply ranking constraints to guarantee positive samples having
higher fusion scores than negative samples. We extend the
work in [12] by developing new algorithm and including
support of large scale dataset. In this paper, two ranking
approaches are introduced and applied in our SSLF
framework. The first approach is Ranking SSLF (R-SSLF),
which utilizes RankSVM style constraints [13]. The objective
function is formulated and solved by a fast gradient projection
method. The second approach uses the �∞ norm infinite push
constraint [14] to maximize the number of positive samples
scored higher than the negative ones. In later experiments,
we will show that the proposed SSLF methods can achieve
significant performance gains over various visual recognition
tasks.

Additionally, in order to apply SSLF to large-scale visual
dataset, we adopted the AnchorGraph method [15] to scale up
our methods linearly with the size of the dataset. The idea
of AnchorGraph is to select a subset of samples, which is
called anchor points, to effectively represent the entire data set.
An efficient algorithm is introduced to construct a graph based
on the anchor points. By employing this model, we can prop-
agate information quickly on the much smaller AnchorGraph
and learn weights of all samples in a large dataset. This
approach enables us to run SSLF on a large number of visual
data efficiently without sacrificing the recognition accuracy.

In summary, the main contributions of our paper are:
• Proposing a novel Sample Specific Late Fusion (SSLF)

method that adaptively determines the optimal fusion
weights for each sample.

• Combining ranking constraints with graph-based
regularization to enhance recognition accuracy by

enforcing positive samples to have higher fusion scores
than negative samples during learning process.

• Adopting AnchorGraph model to efficiently scale up the
proposed SSLF methods to large-scale datasets.

The rest of our paper is organized as below: in the next
section we first review related works about late fusion; the
notations and definitions are introduced in section III; the
Ranking-SSLF (R-SSLF) is presented in section IV, while
Infinite Push SSLF (I-SSLF) is elaborated in section V.
In section VI, we demonstrate the approach for scaling
up SSLF through AnchorGraph. The experimental results
are shown in section VII, and the conclusions are made
in section VIII.

II. RELATED WORK

Many late fusion techniques have been proposed to enhance
visual recognition accuracy during the past few years.
Nandakumar et al. [5] applied the Gaussian mixture model
to estimate the distributions of the classifier scores, and
fused the prediction scores based on the likelihood ratio test.
Terrades et al. [3] proposed a supervised late fusion method
that aims to minimize the misclassification rates under the �1
constraints on the score combination weights. However, the
above works focused on classifier-level fusion that learns a
fixed weight for all prediction scores of a specific classifier.
Fixed-weight fusion methods may blindly treat the prediction
scores of a classifier as equally important for all samples, and
hence cannot determine the optimal fusion weight for each
sample.

Liu et al. [9] recently proposed a local expert forest model
for late fusion, which partitions the score space into local
regions and learns the local fusion weights in each region.
Nonetheless, the learning can only be performed on the
training samples whose label information is provided, and
cannot be used to learn the fusion weights on the test samples.
Moreover, the partition requires a threshold, which is difficult
to predefine. One promising work that attempts to learn sample
specific fusion scores is the low rank late fusion proposed by
Ye et al. [4]. The authors converted the prediction score vectors
of multiple classifiers into several pairwise relation matrices,
and extracted a shared rank-2 matrix by decomposing each
original matrix into a common rank-2 matrix and a sparse
residual matrix. Finally, a score vector is extracted from the
rank-2 matrix as the late fusion result. Despite its advantages,
the supervision information is not present in the practice of
seeking shared score patterns across the classifiers. As a result,
the proposed method depends entirely on the agreement of
different classifiers, which may blindly bring the common
prediction errors shared across different classifiers into the
final fusion results. On the contrary, our method focuses
on learning the optimal fusion weights for the individual
samples by exploiting the supervision information, and hence
can achieve robust fusion results by considering the different
prediction abilities of all classifiers on the each sample.

Methodologically, our work is also inspired by the recent
success of optimizing ranking results at the top methods
in machine learning [14], [16], [17]. One representative
work is the support vector infinite push method [14],
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which introduces the �∞ push loss function into the
learning-to-rank problem with the goal of maximizing the
number of positive samples on the absolute top of the list.
Later on, Rakotomamonjy et al. [18] further developed a
sparse support vector infinite push method, which incorporates
the feature selection into the support vector infinite push
method. However, these methods can only learn a uniform
ranking function for all the test samples, and cannot be
applied to the sample specific fusion weight learning. Related
work can also be found in graph-based semi-supervised
learning [19], [20], but they are restricted to estimating the
classification or ranking score of each node, and thus cannot
be used to learn the weights for fusion purpose.

Since our method is based on graph-based semi-supervised
learning [21], [22], the learning process could be difficult
and slow on large-scale datasets. Therefore, we need to find
an efficient way to scale up our method. The complexity of
typical graph-based semi-supervised learning is O(n3) due to
the inverse step of n × n graph Laplacian. Although many
methods have been proposed to reduce the complexity, most
methods are still not satisfactory. For example, the complexity
of classical Transductive SVM (T-SVM) [23] grows expo-
nentially with n, while the latest large-scale T-SVM based
on CCCP [24] still has O(n2) complexity. To tackle this
problem, we leverage the AnchorGraph approach [15] to scale
up our SSLF method linearly. The model adopts the manifold
assumption and utilizes a selected subset of samples (anchor
points) to cover the entire point cloud. The anchor-based
label prediction and adjacency matrix are simultaneously
learnt by the formulation proposed in [15]. Therefore, we can
accelerate the information propagation process by diffusing
weights on anchor points first, then reconstruct the adjacency
matrix to assign fusion weights to all samples. This approach
enables the proposed SSLF method to be efficiently applied on
large-scale dataset.

III. LEARNING SAMPLE SPECIFIC FUSION WEIGHT

In this section, we will introduce the two proposed Sample
Specific Late Fusion (SSLF) methods in details. The nota-
tions and definitions are first presented, and optimization
formulations are then elaborated.

A. Notation and Definition

The proposed method works in a transductive setting.
Suppose we have a set of m classifier Ci (i = 1, . . . , m),
each of which is learned based on one type of feature. There
are l labeled samples {xi , yi }l

i=1 and u unlabeled samples
{xi }l+u

i=l+1 available, where yi ∈ {0, 1} is the label of sam-
ple xi . Specifically, the labeled samples are “fusion weight
training set”, which are responsible for providing supervision
information. Since our method works on the prediction scores
of the classifiers, it is important that the labeled samples in
fusion weight training set should be disjoint from the samples
in classifier training set. This is because that the ground-truth
labels of the classifier training set have been utilized by the
classifiers, making the prediction scores on classifier training
samples bias towards the ground-truth labels. Such prediction

TABLE I

THE TABLE OF NOTATIONS

scores cannot reflect the classifier’s prediction capabilities on
the unseen samples, mitigating the value of any deliberate
fusion method. In the real-world visual classification tasks, the
fusion weight training set can be easily obtained. For example,
besides training and test set, many visual classification tasks
also provide the validation set for parameter selection. In this
case, we can directly select it as our fusion weight training set.
Even if the validation set is not available, we can still retrieve
such sample set by splitting from the classifier training samples
before training, or even crawling additional labeled samples
from the online resources.

By applying the classifiers on the labeled samples and
unlabeled samples, we obtain a labeled score vector set
{si , yi }l

i=1 and unlabeled score vector set {si }l+u
i=l+1, where

si = [s1
i , . . . , sm

i ]� denotes the prediction score vector of
sample xi (i = 1, . . . , l +u) with s j

i being the prediction score
of the j -th classifier C j . To ease the following discussion, we
divide the fusion weight training set into a positive subset
P = {s+

i }p
i=1 and a negative subset N = {s−

i }n
i=1, where

s+
i and s−

i respectively denote the score vector of a positive
sample and a negative sample, p and n are the total number
of positive and negative samples. Finally, we stack all score
vectors into a matrix S = [s1, . . . , sl+u ], which includes
the score vectors of the labeled and unlabeled samples. The
notations used in this paper are summarized in Table I.

B. Problem Formulation

Our objective is to learn a sample specific fusion function
fi (si ) = w�

i si for each sample (i = 1, . . . , l + u), where
wi = [w1

i , . . . , w
m
i ]� is a non-negative fusion weight vector

with w
j
i being the fusion weight of s j

i . While one can easily
learn the fusion weights for the labeled samples based on
the given label information, learning the fusion weights for
the unlabeled samples is not trivial since there is no direct
supervision available.

As visually similar samples share similar labels, the fusion
score distribution should be locally smooth. To leverage
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this property, we build a nearest neighbor graph based on the
low level features. For each sample xi , we find its K nearest
neighbors and connect edges between xi and its neighbors. The
entry Gij in the weight matrix G associated with the graph is
defined as

Gij =
{

exp(− d̄(xi ,x j )
σ ), if i ∈ NK ( j) or j ∈ NK (i),

0, otherwise,
(1)

where NK (i) denotes the index set of the K nearest
neighbors of samples xi (K = 6 in this work), d̄(xi , x j ) =
1
m

∑m
k=1 dk(xi , x j ) is the average distance between

two samples, in which dk(xi , x j ) denotes the distance
calculated based on the k-th feature type (In our experiment,
we use L1, L2 and χ2 distance functions for different
features). σ is the radius parameter of the Gaussian function,
which is set as the mean value of all pairwise average
distances among the samples. In practice, the graph can be
constructed offline.

Then our late fusion method is formulated as follows:

min
W

�(W) + λ�({ fi }l
i=1;P,N ),

s.t. wi ≥ 0, i = 1, . . . , l + u, (2)

where W = [w1, . . . , wl+u ] consists of l + u fusion weight
vectors to be learned for both labeled and unlabeled samples,
and λ is a trade-off parameter among the two competing terms.
The first term is a regularization term responsible for the
implicit fusion weight propagation:

�(W) =
l+u∑

i, j=1

Eij (w�
i si − w�

j s j )
2

= (
π(W)

)�L
(
π(W)

)
, (3)

where E = U− 1
2 GU− 1

2 is a normalized weight matrix of G.
U is a diagonal matrix whose (i, i)-entry is the i -th
row/column sum of G. L = (I − E) is the graph laplacian.
π(W) is a vector defined as π(W) = (

(W�S)◦I
)
1, in which ◦

is the Hadamard matrix product. Intuitively, the minimization
of Eq. (3) enforces a smooth fusion score propagation over the
graph structure, making visually similar samples have similar
fusion scores.

The second term �({ fi }l
i=1;P,N ) is a loss function.

In this paper we use two kinds of constraints and derive
two algorithms: Ranking SSLF (R-SSLF) and Infinite Push
SSLF (I-SSLF). The first one utilizes the RankSVM style con-
straints while the second one adopts recent developed infinite
push loss function. The formulations of the two algorithms are
elaborated in the following sections.

IV. RANKING SAMPLE SPECIFIC LATE FUSION (R-SSLF)

The first proposed algorithm is Ranking SSLF (R-SSLF).
In the algorithm we adopted RankSVM style constraints
in a large-margin framework, which enforces each positive
sample to have higher fusion scores than all negative samples.
We define the loss function as:

�({ fi }l
i=1;P,N ) =

∑
i∈P

∑
j∈N

I fi (s
+
i )< f j (s

−
j ), (4)

where I(·) is the indicator function whose value is 1 if the
argument is true and 0 otherwise. The loss function compares
each positive fusion score fi (s+

i ) to all negative fusion scores∑
j∈N f j (s

−
j ) and sum up the loss where negative samples

have higher scores. As the indicator function I(·) is a discrete
function and not differentiable, we choose to minimize on the
hinge ranking loss, which is the convex upper bound of I(·):

�({ fi }l
i=1;P,N ) =

∑
i∈P

∑
j∈N

max(0, 1 − ( fi (s+
i ) − f j (s−

j )),

(5)

where (wi �= w j , i �= j ). As can be seen, the hinge loss of all
positive-negative sample pairs are considered. The objective
function of Ranking SSLF is defined as:

min
w

. �(W) + λ

P∑
i=1

N∑
j=1

ξi j

s.t. 1 − ( fi (s
+
i ) − f j (s

−
j )) ≤ ξi j (6)

To solve this objective function, we can use the alternating
descent method to solve the weights one by one [25]. First we
rewrite the objective function as below:

min
w

.
∑l+u

i, j=1
Eij (w�

i si − w�
j s j )

2 + λ
∑P

i=1

∑N

j=1
ξi j

s.t. 1 − (w�
i s+

i − w�
j s−

j ) ≤ ξi j , i ∈ P, j ∈ N
ξ ≥ 0, wi ≥ 0, i = 1, . . . , l + u. (7)

To solve all weights, we need to fix w j and solve wi (i �= j)
in each iteration. Furthermore, we need to solve weights of
positive and negative samples respectively. Let us solve the
weights of positive samples first. The objective function of
positive weight wi can be written as a standard QP problem:

min
w

.
∑l+u

i, j=1
Eij (w�

i si s�
i wi − 2w�

i si s�
j w j ) + λ

∑N

j=1
ξi j

s.t. 1 − (w�
i s+

i − w�
j s−

j ) ≤ ξi j , j ∈ N
ξ ≥ 0, wi ≥ 0 (8)

where N is the set of negative samples. By introducing
Lagrange multipliers, we get the following equation:

L(wi , α, γ, ξ, β)

=
∑l+u

i, j=1
Eij (w�

i si s�
i wi − 2w�

i si s�
j w j )

+
∑N

j=1
αi j (1 − ((s+

i )�wi − (s−
j )�w j ) − ξi j )

+ λ1�ξ − β�ξ − γ �wi (9)

The derivative of the Lagrangian equation is shown as:

∂L

∂wi
= 2(

l+u∑
j=1

Eij si s�
i )wi − 2

l+u∑
j=1

Eij si s�
j w j

−
N∑

j=1

s+
i αi j − γ = 0 (10)

Thus,

wi = 1

2
B−1(s+

i 1�α + γ + 2Ci ) (11)
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Algorithm 1 Gradient-Projection for Ranking SSLF

where B = ∑l+u
j=1 Eij si s�

i , Ci = ∑l+u
j=1 Eij si s�

j w j .
Substituting (11) back into (9) yields the following dual
problem:

min
α

. ((s+
i )�α + γ + 2Ci )

�B−1((s+
i )�α + γ + 2Ci )

+ 4
∑N

j=1
((s−

j )�w j − 1)αi j )

s.t. 0 ≤ α ≤ λ, γ ≥ 0 (12)

For calculation, we can expand and rewritten dual problem
formula as below:

min
α

. ((s+
i )�α + γ )� B−1((s+

i )�α + γ )

+ 4C�
i B−1((s+

i )�α + γ ) + 4(
∑N

j=1
(s−

j )�w j −1)α

s.t. 0 ≤ α ≤ λ, γ ≥ 0 (13)

In terms of weights of negative samples w j , the inference
steps are the same and the objective functions are similar:

w j = 1

2
B−1(−(s−

j )�α + γ + 2C j ) (14)

where B = ∑l+u
i=1 Eij s j s�

j , C j = ∑l+u
i=1 Eij si s�

j wi .
Substituting (14) back into the Lagragian equation we will
get the dual problem:

min
α

. ((s−
j )�α − γ )� B−1((s−

j )�α − γ )

− 4C�
j B−1((s−

j )�α − γ ) − (4
∑l

i=1
(s+

i )�wi + 4)α

s.t. 0 ≤ α ≤ λ, γ ≥ 0 (15)

The equation (13) and (15) are standard Quadratic
Programming problems that global optimal of α can be
found. However, the typical QP solvers require O((PN )3)
time. To accelerate the process, we propose to employ the
gradient projection method in [14] with O((P + N )2) time.
Let Q(α) denote the quadratic objective function and 	Q
denotes the gradient of Q, the optimization procedure is listed
in Algorithm 1.

V. INFINITE PUSH SAMPLE SPECIFIC

LATE FUSION (I-SSLF)

The second proposed algorithm is to employ an infinite
push loss function [26], which tries to maximize the number
of positive samples scored above the highest-scored negative
sample. Actually, the number of positives scored above the
highest-scored negative is exactly the largest number of pos-
itives scored above any negative, which as a fraction of the
total number of positives p, is defined as:

�({ fi }l
i=1;P,N ) = max

1≤ j≤n

( 1

p

p∑
i=1

I fi (s
+
i )< f j (s

−
j )

)
, (16)

where I is the indicator function. The maximum over j
corresponds to taking the �∞ norm of the vector containing n
terms in the parentheses of (16). This essentially ensures the
positive samples have higher fusion scores than the negative,
leading to more accurate fusion results.

While directly minimizing (16) is difficult due to its discrete
nature, we minimize instead a convex upper bound:

�({ fi }l
i=1;P,N ) = max

1≤ j≤n

(
1

p

p∑
i=1

(
1 − (w�

i s+
i − w�

j s−
j )

)
+

)
,

(17)

where (u)+ = u if u > 0 and 0 otherwise.
Finally, the objective function can be written as:

min
W

(
π(W)

)�L
(
π(W)

)
+ λ max

1≤ j≤n

(
1

p

p∑
i=1

(
1 − (w�

i s+
i − w�

j s−
j )

)
+

)
,

s.t. wi ≥ 0, i = 1, . . . , l + u. (18)

The above objective function is convex, and thus can achieve
the global optimum. The main difficulty in optimizing (18)
arises from the non-smoothness of the �∞ norm loss function.
In this section, we will derive an Alternating Direction Method
of Multipliers (ADMM) method [16] for the optimization.
To this end, we first drop the wi ≥ 0 constraint, so that the
ADMM method can be applied to solve (18), and then we
project the solution back to the feasible region.

A. Deriving ADMM Formulation

We rewrite the optimization problem in (18) as the following
linearly-constrained problem:

min
W,ai j

�(W) + λ max
1≤ j≤n

( 1

p

p∑
i=1

(ai j )+
)
,

s.t. ai j = 1 − (w�
i s+

i − w�
j s−

j ). (19)

Then, by defining the matrix J = [(A ⊗
B)�,

(C
⊗

D)�, (F
⊗

B)�]�, where A = Ip , B = 1�
n×1, C = In ,

D = −1�
p×1, F = 0u×p ,

⊗
denotes the Kronecker product,

X = (W�S) ◦ I, the vector a composing of all ai j ’s and the
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function g(a) = λ max1≤ j≤n
( 1

p

∑p
i=1 max(ai j , 0)

)
, we arrive

at the following formulation:

min
W,a

�(W) + g(a),

s.t. J�X1 + a − 1 = 0. (20)

The augmented Lagrangian of the above problem is

L(W, a, γ , μ) = �(W) + g(a) + γ �(J�X1 + a − 1)

+ μ

2
‖J�X1 + a − 1‖2

2, (21)

where γ is the vector of Lagrangian multipliers of the linear
constraints and μ is a weighting parameter of the quadratic
penalty. Following the experimental practices of ADMM [16],
we set μ to be 10−4. The above formulation can be equally
rewritten as

L(W, a, β) = �(W) + g(a) + μ

2
‖J�X1 + a − 1 + β‖2

2,

(22)

where β = γ /μ. Finally, the optimization becomes iteratively
solving the saddle point of the augmented Lagrangian.
At iteration k, we need to solve the following three
sub-problems:

Wk+1 = arg min
W

L(W, ak , βk), (23)

ak+1 = arg min
a

L(Wk+1, a, βk), (24)

βk+1 = βk + J�Xk+11 + ak+1 − 1, (25)

where Xk+1 = (
(Wk+1)�S

) ◦ I. In the next subsection,
we will show how to solve these sub-problems.

B. Alternating Optimization

The optimization of Eq. (23) can be stated as

min
W

(W) ≡ μ

2
‖J�X1 − t‖2

2 + �(W), (26)

where t = 1 − ak − βk and its gradient can be calculated as

∇(W)

Wij
= tr

[(
μJ(J�X1 − t)1� + 2LX11�)� ∂X

∂Wij

]
, (27)

through which the optimization problem can be solved by a
conjugate gradient descent method.

The optimization problem in Eq. (24) boils down to be

min
a

g(a) + μ

2
‖a − t‖2

2, (28)

where t = 1 − βk − J�Xk+11. To solve the two nested max
operators in g(a), the double trick can be used to convert the
problem as:

min
a+,a−

1

2
‖a+ − a− − t‖2

2 + max
1≤ j≤n

( λ

μp

∑
i∈G j

a+
i

)
s.t. a+ ≥ 0, a− ≥ 0, (29)

where a = a+ − a− and G j denotes the indices of the
positive samples in vector a that are coupled with the neg-
ative sample s j . This problem can be solved by iterative
optimization by employing the optimization method in [18],
where a− has a closed-form solution while a+ can be solved

Algorithm 2 ADMM for Infinite-Push SSLF

Fig. 2. The convergence curve of I-SSLF on the 1st category of Oxford
Flower 17 dataset.

by Douglas-Rachford method [27], which alternately performs
two proximal operators on the positive quadrant and the
�1,∞ mixed norm until convergence [28]. The optimization
procedure is shown in Algorithm 2.

C. Algorithmic Analysis

Algorithm 2 is built upon ADMM and Douglas-Rachford
procedure, each of which has shown very good convergence
property. Since the objective function is convex, the algorithm
will approach the global optimum. Figure 2 shows the conver-
gence process of the iterative optimization which is captured
in our later experiment. As can be seen, the objective function
value converges to the minimum after about 6 iterations, which
is rather fast. For example, in the experiment on Oxford Flower
17 dataset (see Section VII-A) implemented on the MATLAB
platform on an Intel Xeon X5660 workstation with 3.2 GHz
CPU and 18 GB memory, Algorithm 2 can be finished within
3.56 seconds on average for each category, which verifies
its efficiency. Note that the scalability of our algorithm is
dominated by the total number of samples involved in the
optimization. We will introduce a technique named Anchor
Graph to support large-scale datasets.

D. Learning Fusion Weight for a New Test Sample

Note that we can adopt the classical out-of-sample extension
method in transductive learning to estimate the fusion score
of a new sample [29], [30]. For a new test sample z, we can
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use the low-level feature to search a set of nearest neighbors
{xi }q

i=1 from all samples in the original dataset, where xi is a
neighbor of z and q is the total number of neighbors. Based on
the neighborhood set, the late fusion score can be determined
as f (z) = ∑q

i=1
G(z,xi )∑q

i=1 G(z,xi )
(w∗

i )�si , where G(z, xi ) is the

similarity between z and xi , and (w∗
i )�si is the fusion score

of xi obtained on the original dataset. In this way, we obtain
the fusion score for the unseen sample.

VI. SCALING UP SSLF WITH ANCHOR GRAPH

As mentioned in previous sections, the running time of
proposed SSLF framework grows quadratically with sample
size. In order to apply SSLF to large scale dataset efficiently,
we propose to utilize the AnchorGraph model [15] to reduce
the size of the graph. The AnchorGraph is defined as

x = Za, Z ∈ R
n×na , na � n, (30)

where a is the anchor points vector, na is the number of anchor
points, and Z is the weights. To design good estimation of the
graph adjacency matrix G with Z, the authors propose three
design principles:

•
∑m

k=1 Zik = 1 and Zik ≥ 0. The manifold assumption
suggests the contiguous data points should have similar
labels and distant data points are very unlikely to take
similar labels. Therefore, we can impose the nonnegative
normalization constraints

∑m
k=1 Zik = 1 and Zik ≥ 0.

• The weighted adjacency matrix G ≥ 0. The nonnegative
adjacency matrix is sufficient to make the resulting graph
Lapalcian L positive semidefinite, which can guarantee
global optimum of many graph-based semi-supervised
learning.

• The weighted adjacency matrix G should be sparse.
A sparse adjacency matrix has less spurious connections
between dissimilar points and can lead to better quality.
Empirically sparse graphs have better performances than
fully connected dense graphs [22].

Following the three principles, the authors [15] proposed
to design the matrix Z based Local Linear
Embedding (LLE) [31], which is named Local Anchor
Embedding (LAE):

min
zi

1

2
||xi − U<i>zi ||2

s.t. 1T z = 1, zi ≥ 0, (31)

where U is a sub-matrix composed of k nearest anchor points
of xi . In practice it turns out that k-means is the most effective
way to find anchor points. Beyond LLE, the LAE applies
the nonnegative constraint and turn (31) into a multinomal
simplex:

S = {z ∈ R
s : 1T z = 1, z ≥ 0}, (32)

where s is the number of anchors used to reconstruct a
data point. The standard QP solver needs to calculate the
approximation of Hessian matrix and therefore quite ineffi-
cient. The authors proposed to use projected gradient method
to accelerate the process. As the result, the complexity of
designing Z is O(snab + s2T n), where T is the iterations

during optimization. To apply AnchorGraph in our framework,
we first apply k-means to learn anchor points, and learn
sample specific fusion weights for each anchor. Once the
fusion weights of anchors are learnt, we reconstruct the fusion
weights of all samples by using sparse weight matrix Z:

W = ZWa, W ∈ R
n×m , Z ∈ R

n×h , Wa ∈ R
na×m . (33)

where Wa is the fusion weight matrix of anchor points.

VII. EXPERIMENTS

In this section, we will evaluate the proposed late fusion
method by applying it to various visual recognition tasks
including object classification and video event detection.
Six different methods are run on each dataset to compare
the performances: (1) Kernel Averaging (KA). The kernel
matrices of different features are averaged to obtain a fused
kernel matrix. This is actually the most common way for
early fusion of multiple features and is proved to achieve
highly comparative results as multiple kernel learning [32].
(2) Average Late Fusion (ALF). After getting the prediction
scores from all the classifiers, we simply average the scores
as the fusion result. (3) Low Rank Late Fusion (LRLF).
In this method, the prediction scores of each classifier are first
converted into a binary comparative relationship matrix and
a shared rank-2 matrix is then discovered across all matrices.
The final fusion score vector can be extracted from the rank-
2 matrix by matrix decomposition. (4) Uniform Weight Late
Fusion (UWLF). Instead of learning sample specific fusion
functions, we learn a uniform fusion function f (s) = w�s
for all the samples. This essentially applies the same weight
wi to all the scores of the i -th classifier. To achieve this, we
replace the fusion function fi (si ) = w�

i si in our objective
function with f (si ) = w�si (i = 1, . . . , l + u). (5) Our
proposed Ranking Sample Specific Late Fusion (R-SSLF)
and (6) Infinite-Push Sample Specific Late Fusion (I-SSLF)
method.

Following previous work on late fusion [4], we employ
the probabilistic outputs of the one-vs-all SVM classifier
as the prediction scores, in which each value measures the
possibility of classifying a sample as positive. To evaluate the
performance of each method, the Average Precision (AP) is
employed as the evaluation metric. The AP for each visual
category is calculated and the mean Average Precision (mAP)
across all categories of the entire dataset are reported as the
final evaluation metric. To search the appropriate parameter
for our method and UWLF, we vary the value of λ in the
grid of {10−3, 10−2, . . . , 103}, and run 2-fold cross validation
on the fusion weight training set to select the best parameter
value based on validation performance. Regarding with the
parameter setting of LRLF, we follow the suggested parameter
setting strategy as in [4] and choose the best parameter values
based on 2-fold cross-validation. The tradeoff parameter for
SVM is selected from {10−1, . . . , 103} through 5-fold cross-
validation on the training set.

A. Results for Object Classification

In this subsection, we evaluate our proposed method on
the object classification task. The following two benchmark
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TABLE II

PER-CATEGORY PERFORMANCE COMPARISON (AP %) OF DIFFERENT METHODS ON PASCAL VOC’07 DATASET

Fig. 3. Precision/recall curves of different methods on three categories (cow, dog, sheep) of PASCAL VOC’07 dataset.

datasets are utilized in our experiment: PASCAL VOC’07 and
Oxford Flower 17.

1) PASCAL VOC’07: This dataset consists of 9, 963 images
which were crawled by querying for images of 20 different
object categories from Flickr website. For feature represen-
tations, we directly downloaded the 15 features provided
by [33], including 4 kinds of SIFT Bag-Of-Words (BoW)
histograms [36], 4 kinds of Hue BoW histograms [37], 2 kinds
of RGB color histograms, 2 kinds of HSV histograms, 2 kinds
of LAB color histograms and 1 GIST feature [38]. The details
on the features can be found in [33]. Following [33], we use L1
distance for the color histograms, L2 for GIST, and χ2 for the
visual word histograms. For a given distance matrix, the kernel
matrix of SVM classifier is calculated as exp(−d(x, y)/σ )
where d(x, y) is the distance between x and y and σ is the
mean value of all the pairwise distances on the training set.

In our experiment, we follow the standard training
(5, 011 images) and test (4, 952 images) data split provided
by this dataset. To generate the fusion weight training set for
late fusion, we uniformly divide the training samples of each
category into 5 folds, and select 4 folds as the training data
for SVM training while using the remaining 1 fold as the
fusion weight training set for late fusion.1 The experiments are
repeated 5 times so that each fold can be used as the fusion
weight training set, and the average result is reported. Note
that such splits are only applied to the UWLF and two SSLF
methods which need supervision information for late fusion.
For other methods including KA, ALF, LRLF, we still use the
original data splits.

Table II shows the per-category performances of all the
methods in comparison. From the results, we have the

1For the sake of simplicity, we set the ratio of fusion weight training set
to be 1/5 of the training set. Studying the effect of varying the ratio is a
legitimate topic but not the main focus of this current work.

following observations: (1) The proposed two SSLF methods
consistently beat all the other baseline methods by a large
margin, which demonstrates its effectiveness in determining
the optimal fusion weights for each sample. (2) The LRLF,
UWLF and two SSLF late fusion methods all outperform the
ALF method. This is due to the fact that the former methods
take advantages of additional knowledge (either consistent
score patterns across the classifiers or supervision information)
while the latter only blindly averages the scores from different
classifiers without accounting their difference. (3) The sample
level late fusion methods including LRLF and SSLF methods
outperform the UWLF. The reason may be that UWLF only
tries to learn uniform fusion weights for all the samples
and hence cannot discover the optimal fusion weights for
each sample. (4) Our SSLF methods perform better than
LRLF method, since LRLF does not exploit the supervision
information. In Figure 3, we show the precision-recall curves
of different methods for some representative categories. As can
be seen, the precisions of our methods are higher than the
other methods when the recall varies from 0 to 1. This
clearly demonstrates that our method is able to assign higher
fusion scores to the positive samples. Figure 4 shows the rank
positions of some example images after ranking the 4, 952 test
images based on fusion scores of different methods. The
SSLF method successfully ranks the positive images at higher
positions in the fusion score rank list.

2) Oxford Flower 17: The Oxford Flower 17 dataset is a
benchmark dataset for multi-feature object classification [39].
This dataset contains 1, 360 images falling into 17 different
species of flowers, and each class contains 80 images. In our
experiment, the predefined training (17 × 40), validation
(17 × 20) and test (17 × 20) data splits are used along with
the χ2 distance matrices calculated from different features.
There are seven features provided by this dataset,
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Fig. 4. Example images and their rank positions in the fusion score rank
list obtained from different fusion methods. For each method, the rank list is
obtained by ranking all 4, 952 test images in descending order based on the
fusion scores.

TABLE III

PERFORMANCE COMPARISONS ON OXFORD FLOWER 17

Fig. 5. Top 15 images ranked with the fusion scores of different methods.
Images with red borders are incorrect.

including color, shape, texture, HOG [40], clustered HSV
values, SIFT feature on the foreground boundary (SIFTbdy)
and SIFT feature on the foreground internal region (SIFTint).
For SVM classifier, we use the χ2 kernel and the best
parameter C is selected via validation performance on the
validation set. We use the validation set as fusion weight
training set for UWLF and SSLF.

The results of our proposed method and all other baseline
methods are shown in Table III. As can be seen, our proposed
method outperforms all the baseline methods. Again, the
experiment results demonstrate the superiority of the proposed
method. Figure 5 shows the image ranking results of different
fusion methods.

B. Results for Video Event Detection

We also test our method on the task of video event
detection, in which the Columbia Consumer Video (CCV) and
TRECVID 2011 Multimedia Event Detection (MED) datasets
and are utilized as the testbed.

Fig. 6. Per-category performance comparison on TRECVID MED 2011
development (DEVT) dataset, which contains first five events.

TABLE IV

20 EVENTS OF COLUMBIA CONSUMER VIDEO (CCV) DATASET

1) Columbia Consumer Video (CCV): This dataset con-
tains 9, 317 YouTube videos annotated over 20 semantic
categories, where 4, 659 videos are used for training and
4, 658 videos are used for testing [41]. The event names are
listed in Table IV. Three kinds of low-level features provided
by this dataset, which include 5, 000-dimension SIFT BoW,
5, 000-dimension Spatial-Temporal Interest Points (STIP)
BoW feature [42] and 4, 000-dimension Mel-Frequency
Cepstral Coefficients (MFCC) BoW feature, are downloaded
as underlying feature representation. We follow the same
setting as in the TRECVID MED dataset and the per-category
results are shown in Figure 7. From the results, we can see that
the proposed I-SSLF method achieves the best performance in
terms of mean AP, where it outperforms KA, ALF, LRLF and
UWLF by 8.7%, 9.3%, 5.4% and 4.9% respectively.

2) TRECVID 2011 Multimedia Event Detection (MED):
This official TRECVID MED 2011 dataset contains
three dataset: Event Collection (EC), the development
collection (DEVT) and test collection (DEVO). There are
2,680 videos in EC set, 10, 803 videos videos in DEVT set,
and 32,061 videos in DEVO set. There are 15 events defined
in MED11, which are listed in Table V. Some video clips of
training data are shown in Figure 9.

We first evaluate our methods on the DEVT set. The videos
in DEVT set falling into five event classes and the background
class. The five events are attempting a board trick, feeding an
animal, landing a fish, wedding ceremony, and working on
a woodworking project respectively. The dataset is partitioned
into the training set (8, 783 videos) and test set (2, 021 videos).
The training set contains 8, 273 background videos that do not
belong to any of the event classes, making the detection task
challenging.
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Fig. 7. Per-category performance comparison on CCV dataset. The standard deviations of mAP for R-SSLF and I-SSLF are respectively 0.36% and 0.41%.

Fig. 8. Per-category performance comparison on TRECVID MED 2011 DEVT dataset. The mAP of the methods are 0.111 (KA), 0.159 (ALF),
0.174 (LRLF), 0.189 (R-SSLF) and 0.198 (I-SSLF).

TABLE V

THE 15 EVENTS DEFINED IN TRECVID MED 2011 DATASET

Given a video clip, we extract three different
low-level features including 5, 000-dimension SIFT BoW,
5, 000-dimension STIP BoW and 4, 000-dimension MFCC
BoW. We use L2 distance to calculate the distance matrix of
each feature and then train SVM classifiers with χ2 kernel.
Following the experiment setting on PASCAL VOC’07,
we uniformly split the training samples into 5 folds and
use 4 folds for SVM training and 1 fold for learning
fusion weight. The experiments are repeated 5 times and the
averaged result is reported.

Figure 6 shows the per-event performance of all the
methods. As can be seen, our method achieves the best perfor-
mance on four out of the five events. Specifically, our method
outperforms the KA, ALF, LRLF and UWLF by 10.3%,
10.1%, 5.3% and 5.1% respectively in terms of mAP. More-
over, it achieves the best performances on most of the event
categories. For instance, on the event “feeding an animal,” our
method outperforms the best baseline UWLF by 7.4%.

TABLE VI

THE MEAN APs AND RUNNING TIME ON TRECVID MED11 DEVO

DATASET WITH 10 EVENTS. WE SELECT 150 POSITIVE SAMPLES

AND 1000 NEGATIVE SAMPLES FOR EACH CATEGORY

TABLE VII

SOME STATE-OF-THE-ART RESULTS ON TRECVID MED 2011 DATASET

We conducted the second experiment on MED11 by
following the official data splits, i.e. using EC and DEVT
as training set and DEVO as testing set. Five kinds of
features are extracted: SIFT, STIP, MFCC, Motion Boundary
Histogram (MBH) [43], and GIST. All features are quantized
into 5000-dimension BoW feature vector except MFCC is
quantized into 4000-dimension. The L2 distance is used to
calculate the distance matrix and χ2 kernels are computed
to train SVM classifiers through 3 fold cross validation.
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Fig. 9. Exemplar video clips from some of the events defined in TRECVID MED 2011. (a) Event 5: woodworking project. (b) Event 13: parkour.

The experimental results are shown in Figure 8. Again the pro-
posed R-SSLF and I-SSLF methods show better performance
than other existing methods. Some state-of-the-art results are
shown in Table VII.

In order to compare the running time of different algorithms,
especially with and without AnchorGraph, we list the fusion
time for each experiment in Table VI. All experiments are
conducted on servers with Intel Xeon X5650 2.66 GHz CPU
and 60 GB memory. For each event, we select 150 positive
samples of the event in the Event Collection, and randomly
choose 50 negative samples from remaining 14 events, and
300 from the DEVT set, which are 1000 negatives in total.
In terms of AnchorGraph, the number of anchors are set to
200, with 20 positive and 180 negative anchors. The results
show that AnchorGraph can achieve similar performance with
much faster processing time. In summary, the Infinite-Push
method can indeed optimize the ranking list by maximizing
the number of positive samples at the top, and hence I-SSLF
can achieve better results than R-SSLF on most datasets.

VIII. CONCLUSIONS

We have introduced two sample specific late fusion
methods to learn the optimal fusion weights for each sample.
The proposed methods work in a transductive setting that
propagates the fusion weights of the labeled samples to the
individual unlabeled samples, while leveraging the ranking
constraints to enhance recognition accuracy. Two variants
of SSLF were presented. The first algorithm is Ranking
SSLF (R-SSLF) that employs the traditional ranking-
SVM constraints. The second algorithm is Infinite Push
SSLF (I-SSLF), which adopts latest Infinite Push con-
straints. The I-SSLF can be solved by the ADMM method.
Additionally, we also present an efficient method to scale up
our algorithms by using AnchorGraph. Extensive experiments
on large-scale dataset have demonstrated the effectiveness of
the proposed method on various visual category recognition
tasks including object categorization and video event detection.
For future work, we will pursuit the sample specific late fusion
for multi-class and multi-label visual recognition tasks.
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