
Object-Based Visual Sentiment Concept
Analysis and Application

Tao Chen, Felix X. Yu, Jiawei Chen, Yin Cui, Yan-Ying Chen, Shih-Fu Chang

Columbia University, USA
{tc2650,xy2154,jc3960,yc2776,sc250}@columbia.edu yanying@gmail.com

ABSTRACT
This paper studies the problem of modeling object-based
visual concepts such as “crazy car” and “shy dog” with
a goal to extract emotion related information from social
multimedia content. We focus on detecting such adjective-
noun pairs because of their strong co-occurrence relation
with image tags about emotions. This problem is very
challenging due to the highly subjective nature of the adjec-
tives like “crazy” and “shy” and the ambiguity associated
with the annotations. However, associating adjectives with
concrete physical nouns makes the combined visual concepts
more detectable and tractable. We propose a hierarchical
system to handle the concept classification in an object
specific manner and decompose the hard problem into object
localization and sentiment related concept modeling. In
order to resolve the ambiguity of concepts we propose a
novel classification approach by modeling the concept sim-
ilarity, leveraging on online commonsense knowledgebase.
The proposed framework also allows us to interpret the
classifiers by discovering discriminative features. The com-
parisons between our method and several baselines show
great improvement in classification performance. We further
demonstrate the power of the proposed system with a few
novel applications such as sentiment-aware music slide shows
of personal albums.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Indexing
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1. INTRODUCTION
The explosive growth of social media and the ever-growing

volume of online visual content have greatly motivated the
research on large-scale social multimedia analysis. Among
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Figure 1: We propose a novel framework to detect
visual concepts corresponding to adjective-noun
pairs that statistically correlate with sentiments
or emotions expressed in images. The proposed
framework focuses on detection of objects and
associated attributes. (photos from through-
pan*flashing@Flickr and allenthepostman@Flickr)

these research efforts, understanding the emotion and sen-
timent in visual media content shows its emerging impor-
tance. Images and videos embedding strong sentiments
can strengthen the opinion conveyed in the content and
influence the public viewer with viral effects. Understanding
sentiment expressed in visual content will greatly benefit
social media communication and enable broad applications
in education, advertisement and entertainment.
While the modeling of generic visual concepts (nouns)

such as “sky” and “dog” has been studied extensively in
computer vision, modeling adjectives correlated with visual
sentiments like “amazing” and “shy” directly is very difficult,
if not impossible, due to the big “affective gap” between
the low-level visual features and the high-level sentiment.
Therefore, we follow a more tractable approach proposed
by Borth et al. [2] which models sentiment related visual
concepts as a mid-level representation to fill the gap. Those
concepts are Adjective Noun Pairs (ANPs), such as “happy
dog” and “beautiful sky”, which combine the sentimental
strength of adjectives and detectability of nouns. Though
these ANP concepts do not directly express emotions or sen-
timents, they were discovered based on strong co-occurrence
relationships with emotion tags of web photos, and thus
are useful as effective statistical cues for detecting emo-
tions depicted in the images. In this work, we systemically
study the modeling of these sentiment related visual con-
cepts (termed visual sentiment concepts in this paper) by
addressing two important challenges:
Many concepts are object based and need to be

localized. These include popular content in social media



such as “face”, “dog” and “car”. Modeling concepts using
the features extracted from the whole image as in [2] will
lose the specific characteristics of the objects and unavoid-
ably encompass noise from the background. However, it is
very difficult and time consuming to localize each concept
because of the lack of bounding box annotation of the ANPs,
and the prohibitive computational complexity required in
training the local concept detectors.
The ambiguity of the visual sentiment annota-

tion. The existing annotation of visual sentiment con-
cepts are highly ambiguous and they are often hard to
distinguish since semantically related adjectives often have
similar visual reflexes in images. For example, “cute dog”
and “adorable dog”. Traditional multiclass classification
using hard labels will not work. In contrast, the nouns
representing objects are much less ambiguous.
Therefore a natural and efficient approach is to model the

object (noun) first, and then model the object based senti-
ment attributes (adjective) with a specific aim to tackle the
ambiguity. The requirement of the hierarchical scheme can
be further justified by several observations. First, visual sen-
timent concepts are inconsistent across objects. For exam-
ple, the visual characteristics that indicate a girl is beautiful
could be very different from those indicate a beautiful sunset
scene. Second, the features that effectively detect sentiment
concepts is usually different from those effective for object
detection. For example, Machajdik et al. [20] proposed
to use features inspired by psychology and art to model
affect in images. Third, to extract the features such as
the composition of the image and the color distribution
inside the object, we also need to first localize the object.
Moreover, instead of modeling visual sentiment concepts
directly with an object detection method such as Deformable
Part Model (DPM) [10], the hierarchical method allows us
to apply special approaches like soft weight SVM to address
the concept overlap among multiple adjectives of the same
noun. Traditional object detection methods do not allow
this.
In this work we first build object detection models to rec-

ognize six frequent objects in social media including “car”,
“dog”, “dress”, “face”, “flower” and “food” to model the
135 ANP concepts associated with those nouns. We then
build object-based sentiment concept models, based on the
detected objects, with location and composition informa-
tion. In order to resolve the visual ambiguity among the
adjectives, we propose a novel method exploiting rich seman-
tic similarity information computed from an online common-
sense knowledgebase, conceptNet [19]. The method models
the ambiguity by two kinds of visual similarity, namely
attributive and proportional similarity. The implemen-
tation is based on a fusion of weighted SVM and a recently
proposed machine learning model, called proportion-SVM
or pSVM. Several visual sentiment concepts detected by
our system are shown in Figure 1. The very significant
performance improvement (up to 50% relatively) compared
to the previous work proves the success of our model. To
understand how these high-level models work, we interpret
the classifiers by discovering the discriminative features for
each visual sentiment concept classifier.
Additionally, we demonstrate an innovative application

that benefit from our model. The application is to auto-
matically generate sentiment-aware personalized music slide
show. We also show our model can improve the existing

affective application such as an image commenting assistant.
The user studies and comparisons show that our hierarchical
classification greatly improves the quality of these applica-
tions.
To the best of our knowledge, this is the first work sys-

tematically studying the modeling of sentiment concepts
related to objects. Our technical contributions include a
complete hierarchical system for object based visual senti-
ment modeling in which we i) exploit an online commonsense
knowledgebase to model the visual sentiment relations from
ambiguous and incomplete Internet labels, ii) propose a
unique classification model to handle attributive and pro-
portional similarity between visual sentiment concepts. We
prove the sentiment modeling technique is a highly useful
tool for solving various real-world problems by demonstrat-
ing novel applications and improving existing ones.
The rest of the paper is organized as follows. Section 2

summarizes the related work. Section 3 includes an overview
of the problem and our solution. In Section 4 and Section 5,
we present the proposed object-based visual sentiment mod-
els in detail. Section 6 evaluates our results by various
comparisons and further explains and justifies our hierar-
chical classification framework. Section 7 shows applications
that greatly benefit from our new visual sentiment concept
detection.

2. RELATED WORK

2.1 Modeling Sentiment
Most work on sentiment analysis so far has been based on

textual information [31, 8, 28]. Sentiment models have been
demonstrated to be useful in various applications including
human behavior prediction [8], business [23], and political
science [29].
Compared to text-based sentiment analysis, modeling sen-

timent based on images is much less studied. Perhaps the
most relevant work is [2], which proposed to design a large-
scale visual sentiment ontology based on Adjective-Noun
Pairs (the sentiment modeling is then based on one-vs-all
SVMs). Our work is clearly distinct from [2], as we focus
on the fundamental understanding of visual sentiment con-
cepts, rather than ontology construction and basic detector
training. Such understanding is important for identifying
successful components and open issues in designing features
and detection models. This work is also necessary as the
performance of the modeling has been shown to be critical
for various applications of visual sentiment analysis [2, 3].

2.2 Modeling Visual Concepts
Concept modeling has been widely studied in multimedia

[22, 27], and computer vision (often referred as “attributes”)
[11]. The concepts being modeled are mostly objects [27],
scenes [24], or activities [12]. There is work trying to solve
the “fine grained recognition” task, where the categories
are usually organized in a hierarchical structure. [6, 7,
5]. There is also work trying to model “non-conventional”
concepts or properties of the images, such as image aesthetic
and quality [17, 21], memorability [15], interestingness [15],
and affection/emotions [20, 30, 16, 20, 30, 32]. Our work
is different from the above as our objective is to model
mid-level sentiment concepts, e.g., “beautiful flower”, and



Figure 2: The pipeline of our hierarchical system (details in Section 3).

“happy dog”, which have been shown promising in support-
ing several exciting applications [2, 3], but have not been
analyzed with sufficient rigors and robustness.
We propose to use a hierarchical approach to model

object-based sentiment concepts by firstly localizing the
objects, and then modeling the object-specific adjectives.
An alternative approach is to train a detection model for
each object-based sentiment concept separately. One piece
of related work is [25], where a DPM model is trained for
each “visual phrase” such as “person riding a horse”, and
“dog laying on sofa”. Different from the a visual phrase,
which is a combination of two objects, an object-based
sentiment concept is an adjective noun pair. As mentioned
in the introduction, the hierarchical approach is necessary
due to the ambiguity of the ANP labels and efficiency
considerations.

3. OVERVIEW
Our goal is to detect visual sentiment concepts from

images. Following [2], visual sentiment concepts are defined
as Adjective Noun Pairs (ANPs), such as “beautiful girl”
and “happy dog”. In [2], more than 3,000 ANPs were
discovered by a data-driven method and form the Visual
Sentiment Ontology (VSO). Image based classifiers were
trained for these ANPs with standard SVM. 1,200 ANPs
among VSO were considered detectable based on the
classifier performance and their classifiers are known as
SentiBank. The 1,200 dimensional detector response of
SentiBank has been proven effective as mid-level features in
tasks such as predicting the sentiments of photo tweets.
However we find the individual concept detector of Sen-

tiBank less reliable and interpretable, especially for object-
based concepts such as “adorable dress” and “abandoned
car”. The ANPs containing the same noun are often con-
fused with each other. This drawback limits the application
and reliability of SentiBank as mentioned in [3]. This is due
to the fact that the difference of the sentiment concepts of
these objects are usually reflected in the subtle difference
within the image region of the object in addition to the con-
text in the surrounding background. Because the classifiers
trained in SentiBank use features extracted from the whole
image without considering object localization, the inability
to separate foreground and background features as expected

Figure 3: Example images with ANP pseudo label.

limits the detection accuracy and interpretability of ANP
concept classifiers. To address this problem, we propose a
hierarchical classification system that detects and localizes
the object first, and then classify the sentiment concepts.

3.1 Data Collection
Our data is from the VSO image dataset mentioned in [2].

For each ANP, it contains URLs of about 500 Flickr images,
which are tagged with the ANP by the image uploader.
Note that as the tags may not be fully reliable, such labels
are considered as pseudo labels, rather than the ground
truth. Figure 3 shows example images of several ANPs.
Without losing generality, we focus on the aforementioned
“detectable” ANPs and our experiment in this paper is
limited to the six most popular nouns, namely “car”, “dog”,
“dress”, “face”, “flower” and “food”. These nouns are not
only frequently tagged in the social multimedia, but also
associated with diverse adjectives to form a large set of
ANPs. In addition, if we can successfully model such ANPs,
we can easily extend the proposed approach to cover more
nouns. The total number of ANPs associated with the 6
nouns is 135, as shown in Table 1. We download the images
of these ANPs as our training and test data. The data
partition will be discussed in Section 6.1.



Table 1: ANPs used in our experiment (categorized
by nouns).

Adjective Noun
abandoned, amazing, awesome, bad, broken, classic,
clean, crazy, damaged, derelict, dirty, expensive,
famous, fancy, fantastic, filthy, hot, lonely, powerful,
safe, shiny, super, tiny, ugly

car

adorable, aggressive, cuddly, cute, dirty, faithful,
fluffy, friendly, funny, happy, lonely, muddy, playful,
sad, scared, shy, silly, sleepy, smiling, tiny, tired, wet

dog

adorable, colorful, cute, elegant, fancy, favorite,
gorgeous, pretty, sexy, stunning, traditional dress
adorable, angry, attractive, bright, chubby, clean,
crazy, crying, cute, dirty, dumb, excited, funny,
grumpy, handsome, hilarious, innocent, mad,
pensive, pretty, scared, scary, sick, silly, sleepy,
stupid, sweet, tired, tough, ugly, weird, worried

face

amazing, attractive, awesome, beautiful, cheerful,
colorful, delightful, dry, dying, fantastic, fascinating,
favorite, fragile, fresh, gentle, golden, little, magical,
magnificent, pretty, prickly, smelly, strange,
stunning, sunny, tiny, wild

flower

amazing, awesome, colorful, delicious, dry, excellent,
fancy, favorite, greasy, great, gross, healthy, hot,
natural, super, tasty, traditional, weird, yummy

food

3.2 Pipeline
Figure 2 shows the pipeline of our hierarchical classifica-

tion. The left part of the figure shows the training pipeline.
Given the training images of the same noun Figure 2(a), we
first train an object (noun) detector and apply it to those
images (b). Only the images with relatively high detection
response will be kept on into the next level of the hierarchy.
Each training image passed contains at least one object
bounding box. Next, for each bounding box a group of
comprehensive features including low-level visual features
and aesthetic features are extracted (c) for the sentiment
concept classification. The details of the features will be
described in Section 5. To train each classifier, the ANP
pseudo labels of each object passed from the image is treated
as soft labels to take into account the semantic overlap
of multiple ANPs. We use semantic similarities between
concepts to compute the weights (d). Fusion of weighted
SVM and proportional SVM [34] (e) is specifically used to
learn from the overlapped class labels. The fusion employs
a rank minimization technique, which also provides us the
ability to select the most discriminative features (f).
The predicting pipeline is illustrated on the right part of

Figure 2. In the first level of the hierarchy, we apply all
the noun detectors to the test image (g). All the detected
bounding box candidates will be considered in the second
level. For each candidate, we extract the aforementioned
comprehensive features (h) and apply the ANP classifiers
corresponding to (e.g., “shy dog” after “dog” detector)
detected nouns (i). The ANP predicted probability score is
fused with the corresponding noun detection score so that
the confidence of noun detection is taken into consideration
(j). The maximum score among all the candidates is then
chosen as the ANP score (k).

4. NOUN DETECTION
Our object dependent visual sentiment classifiers are

designed as hierarchical classifiers. The goal of the first

level of the hierarchy is to detect the object. There are
several reasons for such a design. First, the objects or
nouns are much easier to detect than the visual sentiment
attributes described in the adjectives. Second, the features
suitable for object detection and sentiment attribute
detection are usually different. For example, Histogram
of Oriented Gradients (HOG) is known to be efficient for
object detection, but sentiment attributes may be more
sensitive to aesthetic based features [20]. Third, object
detectors can localize an object and enable the extraction of
object-based features for training the sentiment attributes.
Removal of the interference from the background improves
the possibility of success for the difficult task of sentiment
attribute classification.
For objects that have clear parts (car, dog, and dress),

we adopt the 5th release [13] of Deformable Part Model
(DPM) [10], one of state-of-the-art object detection meth-
ods. The method models the object as several movable
parts attached to a root and uses latent SVM to train the
model. Specifically, for car and dog, we use the pre-trained
models in the release. For dress, we train our own models
using manually labeled bounding boxes on 500 randomly
selected images from all the training images associated with
the noun “dress”. For the objects which has no clear parts
(flower and food), we train SVM models for them (with
the same features used for DPM). For “face”, instead of
using a general object detector, we apply a rotation invariant
multiview face detection method [14] for face images.
In the prediction step, we apply the noun detector on

test images with a loose threshold, so that more object
candidates can be detected to improve the recall. The
detection scores are also fused with the subsequent ANP
classifier step.

5. MODELING VISUAL ADJECTIVES
The second step in the hierarchy is the ANP classification.

The goal is to train classifiers for different ANPs that contain
the same noun, e.g., “happy dog” vs. “sad dog” vs. “lonely
dog”. In this subsection, when we mention ANPs, we are
referring to ANPs of the same noun by default.

Training set and pseudo labels.
For each noun, every instance in the training set corre-

sponds to a detected object bounding box passed from the
noun detection step. This implies multiple instances may
come from same training image and some training images
are discarded. Each instance inherits the pseudo ANP labels
from its original training image.

Feature extraction.
Intuitively, the best set of features is different for different

adjectives. Instead of manually designing features for each
adjective, we target extracting a comprehensive set of fea-
tures for all images, and we then rely on automatic feature
selection to choose the most discriminative features. The
features we used can be classified as low-level features and
aesthetic features.
The low-level features include BoW features of SIFT, Gist,

LBP and Color. The dictionary size of BoW is 500. These
features are extracted in an “object-based” manner based
on three different settings: whole image, inside the object
bounding box, and background only. For the features of the



whole image, we further apply two-level Spatial Pyramid
Matching. Thus each BoW feature has 3,500 dimensions
and the overall low-level feature has 14,000 dimensions. We
further extract aesthetic features including dark channel,
luminosity feature, sharpness, symmetry, low depth of field,
white balance, colorfulness, color harmony, eye sensitivity
as well as the relative position and size of the bounding box.
Details of such features can be found in [1]. These features
are also computed for both the whole image and inside the
bounding box if applicable. Overall the aesthetic features
have 301 dimensions. By extracting object-based features
we are able to utilize the object localization in the ANP
classification.

Leveraging ConceptNet.
With the extracted features and pseudo labels, one naive

way of modeling the ANPs is to train a one-vs-all classifier
for each ANP. However, this is not a good approach as dif-
ferent adjectives with related meanings can be applied to the
same images. For example, an image of “cute dog” can also
be an image of “lovely dog”. Therefore, the adjective model-
ing process is a multi-label learning problem rather than
a multi-class learning problem. Unfortunately, although
there might be multiple labels for each image, due to the
image collection process, one image is usually associated
with a single adjective label. The incomplete labels create
difficulties in training the ANP classifiers.
Labeling training images manually is infeasible due to

the large number of categories and instances. While there
exist abundant accurately labeled image datasets for vari-
ous objects and even fine grained categories, there are no
annotated datasets for ANPs.
We propose to learn ANP from incomplete labels by

incorporating an additional similarity measure between
ANPs. We observed two types of similarity between
adjectives related to visual sentiment, which we call
“attributive similarity” and “proportional similarity”. The
former refers to cases in which every instance of one ANP
shares certain visual similarity with another. For example,
every “cute dog” is usually considered as “adorable dog”
too. The later refers to cases in which a certain proportion
of the instances of one ANP can be labeled as another.
For example, some “dirty dogs” are also “wet dogs”, but
not all. Modeling these similarities are very challenging.
Our hypothesis is that both types are correlated with
the semantic similarity between adjectives in the domain
of language. Thus we build a n × n matrix of semantic
similarities S for n ANPs. Each entry Si,j indicates the
semantic similarity between the adjectives of the ith and
the jth ANPs. Note we also normalize each row of S so
that Si,i = 1 and the entry of the least similar ANP in each
row equals to −1.
We compute the semantic similarities between adjectives

by ConceptNet [19]. The ConceptNet is a hypergraph that
links a large amount of concepts (words) by the knowledge
discovered from Wikipedia and WordNet, or provided by
community contributors. The concept similarity can be
computed by searching for the shortest path in this graph.
We apply the association function of the Web API of Con-
ceptNet 5 1 to get the semantic similarity of two adjectives.
If an adjective does not exist as a concept in ConceptNet, we

1http://conceptnet5.media.mit.edu/

manually select one of its synonyms or derivatives instead.
The similarity value generated by ConceptNet is between
-1 and 1, where 1 corresponds to the similarity to itself.
We will explain how we approximate the attributive and
proportional similarity by semantic similarity in the next
paragraph.

Training the Classifiers.
By considering the two types of similarity between visual

sentiment attributes, we design our classification methods
as follows.
For “attributive similarity” it is natural to use weighted

SVM (wSVM), where each instance in the training data has
a weight between 0 and 1 to regulate its contribution to
the classifier. Given training samples of multiple ANPs of
the same noun, when training a classifier for an ANPi, an
image of the ANPj will be treated as a training sample with
a label equaling the sign of Si,j and a sample weight equaling
the absolute value of Si,j . We subsample from the training
instances so that the ratio of positive to negative is 1:1. We
employ weighted linear SVM to train the classifiers for each
ANP.
To deal with “proportional similarity”, our solution is

pSVM (∝SVM) [34]. The input of pSVM is a “bag” of the
training instances. Each bag is assigned a proportion value
indicating the proportion of positive instances in the bag.
In our case each bag consists of the instances with the same
ANP pseudo labels, and while training the classifier for the
ith ANP the proportion value of the jth bag is set as follows:

pi,j =
{

0 if Si,j ≤ 0
Si,j if Si,j > 0

We use the alter-∝SVM algorithm [34]. It iteratively
trains the linear SVM model and updates the inferred labels
until convergence.

Model fusion and feature selection.
To combine multiple features and select the most discrim-

inative features for each ANP model, we employ the low-
rank fusion proposed by Ye et al. in [33], which has been
shown to work much better than naive late fusion. Multiple
models trained from wSVM and pSVM with different low-
level features and aesthetic features, different regions of the
image (whole, object, background) are used for prediction
and their confidence scores are fused by rank minimization
as mentioned above. The process also provides us individual
feature weights that can be used to find the most discrimi-
native features for each ANP classifier.
Following the approach used in detecting noun phrase [25],

we further combine the noun detection score with the ANP
detection score of each candidate bounding box. If a test
image has multiple candidates for an ANP, the maximal
score is chosen as the final ANP score.

6. EXPERIMENTS AND DISCUSSIONS

6.1 Test Set and Ground Truth
To evaluate the performance of hierarchical classification,

we prepare two test sets from the dataset. Test set A
evaluates the performance of distinguishing multiple related
ANPs of the same noun. For each ANP, we choose 240
images from the dataset; 40 of them are randomly sampled



Figure 4: The curves show AP@20 (avg. over 5 runs) for test set A. Only a subset of ANP names are shown
due to space limit.

Figure 5: Comparison of ANP detectors with
different baselines. ANPs are sorted on the
horizontal axis based on the detection performance.
Performance is computed by averaging over 5 runs
on test set A.

from pseudo-labeled images of each ANP class. The other
200 are randomly sampled from the pseudo-labeled images
of other ANPs containing the same noun. Since we cannot
rely on the pseudo labels from testing, each image is manu-
ally labeled by three individuals (graduate students without
detailed knowledge of our work). Each individual answers
yes or no to the question “Does the image contain the ANP”.
The ANP ground truth label of the image is decided by the
majority vote of the individual labels. All 240 images are
excluded from the training set of the ANP; 20 positives and
40 negatives are randomly sampled from the 240 images to
form the test set A of the ANP.
Test set B evaluates the overall visual sentiment classifi-

cation performance on the real world data. For each ANP
(whose noun is denoted by N), 20 positives are sampled in
the same way as test set A. To get the negatives, we first
randomly select one image from each of the 1,200 SentiBank
ANPs by using the pseudo labels from the web except those
containing the same noun N. Then we sample additional
negatives from the manually labeled ground truth set of the
ANPs sharing the same noun. The total number of negative
examples in the test set B for each ANP is 1,200.
Our test sets and the trained ANP detectors will be made

available to the community at http://visual-sentiment-
ontology.appspot.com/.

6.2 Performance and Comparisons
We conduct our experiments on a eight-core CPU work-

station. In the training step, training each noun detector
takes about six hours including feature extraction, which
is the most time consuming step. Fortunately we only
need to train once for each noun. In the second level of
the hierarchy, feature extraction takes two seconds for each
image. Training each ANP classifier in the second level
of the hierarchy only takes ten seconds on average using
LibLinear library [9]. In the prediction step, it takes about
three seconds to compute all 135 ANP scores for each image
including feature extraction.
In our experiments all the parameters are chosen by 5-fold

cross validation on the training set with pseudo labels. For
both test sets, we evaluate the classification performance in
terms of AP@20 averaged over five runs, and in each run
we randomly sample the test images as mentioned above.
The result for test set A is shown in Figure 4. It shows
two thirds of ANPs have a AP@20 score above 0.3. The
hierarchical classification results are also compared with
following baseline and variations:

• SentiBank. A straightforward linear SVM classifica-
tion in a one-against-all setting using pseudo labels
and features extracted from the whole images.

• Without hierarchy. Noun detection is skipped.
Features are extracted only from the whole image.
Weighted SVM and pSVM are used to handle
similarity over multiple related ANPs

• Without similarity among concepts. One-vs-all classi-
fication is directly trained based on pseudo labels in
the second level of the hierarchy.

The comparison results on test set A are shown in Fig-
ure 5. The mean AP on test set A and B for each noun and
all nouns along with comparison are also shown in Figure 6.
Figure 7 further shows the top results detected by ANP

classifiers using our method. The corresponding object
bounding box is shown as blue rectangle. Misclassified
images are surrounded by red frames.
For both test set A and test set B, our proposed approach

improves over the SentiBank classifiers reported in [2] by
a very large margin. The improvement can be as high as
50% as shown in Fig 6: the AP for all nouns for test set
A increases from 0.24 to 0.36. The results also provide
justification for both the hierarchical framework in Section 3



Figure 6: The mean AP on test set A (top) and B
(bottom) for each noun and all nouns.

and the similarity modeling technique in Section 5 proposed
in this paper.

6.3 Evaluation of Components
We further justify each component of our system. These

experiments are conducted on test set A and measured by
the mean AP@20 of all nouns averaged over 5 runs. We first
evaluate the multi-concept similarity model. In the second
level of the hierarchy, if we only use semantic similarity to
generate hard labels for each instance and use standard SVM
for classification, the AP@20 will be reduced from 0.36 to
0.33. The result for each noun and all nouns are shown as
the “Hard Label” in Figure 6. It indicates that leveraging
ConceptNet similarity as soft labels is more effective. Next
we evaluate the classification model. If we only use weighted
SVM or pSVM, the mean AP will both decline to around
0.35. The two groups of results are shown as “wSVM Only”
and “pSVM Only” in Figure 6 respectively, and thus confirm
the benefit of fusing the two models. At last, we test the
classification model with naive late fusion instead of the
low-rank fusion, the mean AP is also reduced to 0.35. The
result is shown as “Naive Fusion” in Figure 6. It verifies our
assumption that it is useful to fuse models of different visual
features. Although the improvement due to low-rank fusion
is not significant, the more important benefit of this fusion
method is generating a sparse error matrix for each feature
so that we can achieve feature selection, as well as classifier
interpretation, which will be discussed in Section 6.4.

6.4 Discussion

Further justification of the hierarchical framework.
Previous research suggests that phrase detection or a com-

bination of phrase and object detection performs better
than general object detection [25]. For example, “jump-
ing dog” can be better detected using a combination of
“jumping dog” detector and “dog” detector. Therefore, one
may argue against our choice of general object detector and
suggest using specific object detector for each ANP. Several
observations lead to our decision. First, most ANPs are
different from the visual phrases mentioned in [25]. The
additional visual cues involving many global and aesthetic
related features extracted from localized regions usually do

Figure 7: Top 5 detection results of ANP classifiers
trained by our hierarchical model. Misclassified
images are red framed. Detected concept regions
are shown as blue bounding boxes. For image credits
see footnote 3.

not contribute much to the typical object detection features
such as HoG. However, there are exceptions such as “sleepy
dog”, which has a very different pose from normal dogs. Sec-
ond, it is very difficult and inefficient to integrate our com-
prehensive features into the object detection method such as
DPM. Third, it is too time consuming and impracticable to
label object bounding boxes for each ANP. Therefore, our
hierarchical classification offers the best trade-off between
accuracy and efficiency.

Extension to scenes or settings.
According to Figure 6, even without object localization

our method still outperforms the baseline, thanks to the
soft labels that exploit the concept similarity and the delib-
erately designed model. This means that we can apply our
method to “global nouns” such as “sunset” and “sky”. These
concepts do not need localization.

The factors for classification accuracy.
Some of our ANP classifiers cannot achieve good classi-

fication accuracy. An important reason is that some ANP
categories may still be ambiguous. Some adjectives, such as
“favourite”, are subjective because the interpretations may
vary significantly among individuals. This causes greater
diversity in the image labels and also the visual features.
Other reasons include the lack of visual cues of the adjective
such as “smelly”, low performance of noun detection such as
“food” and the lack of more efficient features such as the lack
of facial marker features for “face”.



Table 2: The examples of the discriminative features
of ANP.

ANP Discriminative features

abandoned car object SIFT, white balance, background
color histogram, background Gist

crazy car object LBP, object colorfulness, color
harmony, object color histogram

lonely dog background Gist, composition, depth of
field, colorfulness

shy dog object luminosity, dark channel, object
symmetry, object white balance

ugly face object color harmony, object symmetry,
object Gist, color histogram

Discriminative features.
Other than improving the classification accuracy, it is also

interesting to understand how the classification works by
studying the contributions of different features. Specifically
we try to interpret the classifiers by discovering discrimina-
tive features.
Low-rank fusion [33] provides us with statistics on the

discrimination ability of each feature during ANP classifi-
cation. For each ANP we rank the features according to
the average over the fusion weights of all the test exam-
ples. Table 2 shows the top features for some ANPs. The
result shows the features extracted from the object are more
discriminative than those extracted from the whole image,
and the background features are also useful. For example,
images of “abandoned car” are usually shot in the wild and
with a dim tone, thus the white balance and background
features are important. Many crazy cars modeled by our
method are with exaggerated color combinations (Figure 7).
Images of “lonely dog” contain more uniform background,
and are mostly black and white with relatively small object
(dog). “Shy dogs” images usually show half face, thus object
symmetry is important. The similar reasons can be found
for “ugly face”.

Limitations and future work.
Our work has several limitations. First, object detection

may not be always reliable, especially when applied to ANPs
associated with unique postures of the corresponding noun
such as “sleepy dog”. Training specific object detectors
for such ANPs may be a solution. Second, the seman-
tic similarity derived from ConceptNet might be incorrect.
For such cases manually provided similarity can be help-
ful. Third, our feature set can be more comprehensive, for
example including the shape based and “Wang histogram”
features that are proved efficient for aesthetics and emotion
classification [4, 20], or even the recently proposed “Over-
Feat” feature based on deep learning [26]. And finally,
our discriminative features are limited to our feature set,
further work can be done to discover new features for better
interpretation of sentiment concept model.

7. APPLICATIONS
We demonstrate two applications that benefit from our

visual sentiment concept detection. Note since our exper-
iments are limited to six nouns, the following applications
also focus on the images associated with these nouns. More

nouns can be easily incorporated by training more ANP
detectors using our system.

7.1 Mood-Aware Personalized Music
Slide show

Music slide shows are popular for personal entertainment
and photo sharing. Modern music playing software is capa-
ble of showing visual effects, album covers or photo albums
when playing music. Recently, GettyImages presents Mood-
stream2, a web-based application that is able to show photos
according to the mood of the music. However the photos are
from a pre-selected set where the mood labels are already
available. Given the ability of our system to detect visual
sentiment concepts, we can generate such mood-aware music
slide shows directly from users’ personal photo albums.
To generate a slide show, we first compute the real-time

mood of the music. We adopt Mood Cloud [18] to detect the
mood of the music. This method predicts a five dimensional
mood vector for any given time stamp of the music in
real-time using SVM model trained from manually labeled
data. The five dimensions correspond to aggressive, happy,
relaxed, sad and party. Next we classify every candidate
photo to one of these five moods. We build a 135×5 matrix
to map each of the 135 ANPs to the mood vector, where each
entry of the matrix is the mean of the semantic similarity
and co-occurrence rate between corresponding ANP and
name of the mood. The semantic similarity is computed
from ConceptNet. The co-occurrence rate is a normalized
value of the returned image count while searching the ANP
and mood together on Flickr. The mood vector of the photo
can be estimated by the mean mood vector of its top three
detected ANPs, and we classify the photo to the mood class
with the highest score.
Given a music track, we repeatedly decide the slide show

photo of each segment from the beginning of the track. Each
time we take three seconds of music to compute a dominant
mood. A photo of same mood is randomly selected for this
segment. If the mood is sad or relaxed, the segment is
extended to three seconds. The next segment starts right
after the previous one. This process repeats until the end of
the track. We also apply several rules for photo transition.
The length of each transition is 0.5 seconds. The type
includes fade, zoom in and out, and flying in from eight
surrounding directions. If the detected mood is “aggressive”
and “party”, the transition type is restricted to zoom in and
flying in, randomly selected otherwise. Since our system
also provides ANP bounding boxes, we generate the zooming
path according to the center of the top ANP bounding box.
We conduct the experiment on five music tracks and three

Creative Common licensed personal photo albums with a
total of 100 images downloaded from Flickr. The music
tracks are within the length of 15 to 20 seconds. Generating
all the slide shows on the machine mentioned in Section 6
takes 4.5 minutes, where 99% of the time is spent on ANP
detection of the photos. This indicates that our method can
generate a slide show of a real-time music stream with pre-
processed photo albums. Figure 8 shows several screenshots
from the music slide shows. Please refer to our supplemental
video for better illustration of the sidle show results.
We evaluated our result by a preliminary user study.

We generate another five slide shows by randomly selecting
photos, and ask evaluators to choose the preferred one.
2http://moodstream.gettyimages.com/



sad happy aggressive

Figure 8: Screenshots of the music slide show with
detected moods. Please refer to the supplemental
material for the video. For image credits see
footnote 3.

Each pair of the five music slide shows is shown to ten
evaluators. These evaluators are graduate students majoring
in computer science, engineering, art and physics without
detailed knowledge of our project. In 42 of 50 evaluations,
the evaluator preferred the mood-aware music slide show.

7.2 Image Commenting Assistant
A novel application of visual sentiment concept detection

presented in [3] is the automatic image commenting assis-
tant. In their work, the authors first compute the ANP
response of the image by SentiBank, then select proper
elements from a comment database as the comment on the
image. The selection is based on the correlation between the
top three detected visual sentiment concepts and affective
concepts extracted from large-scale user comments. While
showing promising results, this method suffers from low
detection accuracy of the object-based ANPs. We follow
this pipeline and replace the sentiment concept predictors
with our hierarchical predictors to generate comments. The
quality of the comments generated by the two methods
is compared. For fair comparison, we only consider the
response of the 135 object based ANPs for both SentiBank
and our method. We randomly select 20 images from test
set A to test the commenting assistants.
Figure 9 shows the comments of five images generated

by the two commenting assistants. The top three detected
concepts are listed for both methods. The concepts detected
by our method are constantly better than [3]. The com-
parison of top three detected concepts clearly shows two
advantages of our method. Our approach can more reliably
detect the objects (nouns), especially when they are rela-
tively small in the image, as shown in the first example.
Second, our method provides better classifiers for the sen-
timent attributes (adjective) since ambiguity is considered.
We further evaluate the comment quality with a user study.
The two comments generated from each of the 20 images
are shown to five evaluators. These evaluators are graduate
students majoring in engineering and art without detailed
knowledge of our project. For each comparison, they are
asked “which comment is from the real user”. In 78 of the 100
evaluations, the evaluator prefers the comment generated by
our approach. 3

8. CONCLUSIONS
This paper presents a novel hierarchical system to model

object-based visual sentiment concepts. The system is
designed to handle sentiment concept classification in an
3Credits of the images used in Figure 7, 8, 9 can be found
at http://www.ee.columbia.edu/dvmm/vso/credits.html

Figure 9: Image comments generated by our method
and [3]. Top 3 detected ANPs are listed for both.
For image credits see footnote 3.

object specific manner and tackle the challenge of concept
localization and resolving sentiment attribute ambiguity.
By leveraging an online commonsense knowledgebase
and proposing novel classification to model concept
similarity, our system has greatly improved the classification
performance over previous work (by up to 50%). The
proposed framework also allows us to interpret the classifiers
by discovering discriminative features. We demonstrate the
power of the proposed system with a few novel applications
such as sentiment-aware music slide show of personal
albums. Although our experiments currently focus on
a visual sentiment dataset, the proposed framework of
discovering visual concepts as mid-level representation may
be extended to handle other important yet challenging
topics such as in aesthetics, style, credibility and intent.
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