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Abstract

This paper presents a novel algorithm which uses com-
pact hash bits to greatly improve the efficiency of non-linear
kernel SVM in very large scale visual classification prob-
lems. Our key idea is to represent each sample with compact
hash bits, over which an inner product is defined to serve as
the surrogate of the original nonlinear kernels. Then the
problem of solving the nonlinear SVM can be transformed
into solving a linear SVM over the hash bits. The proposed
Hash-SVM enjoys dramatic storage cost reduction owing to
the compact binary representation, as well as a (sub-)linear
training complexity via linear SVM. As a critical component
of Hash-SVM, we propose a novel hashing scheme for arbi-
trary non-linear kernels via random subspace projection in
reproducing kernel Hilbert space. Our comprehensive anal-
ysis reveals a well behaved theoretic bound of the deviation
between the proposed hashing-based kernel approximation
and the original kernel function. We also derive require-
ments on the hash bits for achieving a satisfactory accuracy
level. Several experiments on large-scale visual classifica-
tion benchmarks are conducted, including one with over 1
million images. The results show that Hash-SVM greatly
reduces the computational complexity (more than ten times
faster in many cases) while keeping comparable accuracies.

1. Introduction
Kernel based methods [23] are powerful machine learn-

ing tools for visual classification tasks. Despite the en-
hanced data separability through feature dimension up-
lifting, non-linear kernel machines suffer from the high
time/space complexities associated with the need to operate
the kernel matrix. A naive kernel SVM solver is prohibitive-
ly expensive either by loading pre-computed kernel matrix
into computer memory (e.g., 1 million data requires several
tera-bytes memory) or tremendous kernel function execu-
tion. The scalability issue of kernel machines has inevitably
become a bottleneck for advancing the frontiers of large-
scale visual classification systems, which motivates recent
research interest in developing more scalable solvers.

In this work, we propose a scalable kernel learning algo-
rithm named Hash-SVM, which demonstrates striking su-
periority in terms of both training time and memory require-
ment particularly in a large-scale setting. The idea is appli-
cable to general kernel methods. Without loss of generality
we choose kernel support vector machine (SVM) [6] as the
exemplar application. Though parallel systems prove useful
for scaling up large-scale learning techniques after properly
tailoring the machine learning algorithms [3], we target s-
ingle machines with limited memory capacity which do not
require the expensive cost (communication, energy, hard-
ware etc.) of parallel systems. The proposed algorithm rep-
resents the first algorithm that explores the idea of approxi-
mating arbitrary nonlinear kernels using compact hash bits
towards accelerated kernel machine optimization. The idea
is a natural marriage of the hashing technique and kernel-
based methods. Our work presents the following key con-
tributions:

Hash Bits for Surrogate Kernel Function: Recent years
have witnessed the success of accelerated similarity search
by using binary hash bits as the signatures of the original
samples [1]. As a new exploration of the hashing tech-
nique, we propose to define a linear function over these
hash bits, which serves as a surrogate for the original high-
ly non-linear kernel function. This idea benefits the SVM
optimization in two-folds. First, the linear surrogate kernel
function transforms the problem to a simple linear SVM.
Therefore the proposed Hash-SVM can avoid the super-
linear time complexity typically required by classic kernel
SVM solvers.

Meanwhile, after obtaining the compact hash bits for the
data, we need not access the original (possibly ultra high-
dimensional) data. It immediately enables loading all data
into the main memory in a single-machine setting, avoiding
the time-consuming data swap between memory and disk as
in classic kernel SVM. Our theoretic analysis shows that the
required number of hash bits for a specific level of accuracy
is irrelevant to the intrinsic dimension of the kernel-induced
Hilbert space. In most cases several thousand bytes are suf-
ficient to represent a sample, which resolves the memory
bottleneck in conventional kernel learning.
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Similarity-Preserving Kernel Hashing Scheme: A cru-
cial ingredient of Hash-SVM is a hashing scheme which
operates in the kernel space and provably preserves the da-
ta similarity defined by the original kernel function. Such
hashing schemes have been critically missing in the litera-
ture and we propose a novel solution to fill the gap. Con-
ventional kernel hashing algorithms (e.g., KLSH [15]) rely
on estimation of the covariance matrix in the kernel-induced
Hilbert space. Such estimation is highly unreliable consid-
ering the gap between the huge number of free parameters
to estimate and the limited number of samples that KLSH
uses. In contrast, our proposed kernelized random subspace
hashing (KRSH) makes the least assumption about the data.

The remainder of this paper is organized as the follow-
ing: after a brief survey of related work in Section 2, we
present the idea of Hash-SVM as well as the proposed hash-
ing scheme in Section 3, followed by theoretic analysis in
Section 4 and experimental evaluation in Section 5. Final
conclusions are included in Section 6.

2. Related Work
Related work can largely be categorized into two lines.

We briefly summarize each of them.
SVM Optimization by Kernel Linearization: Scaling up
non-linear kernel SVM is a long-standing topic in machine
learning and optimization. A variety of solutions have been
proposed in the past decade [21, 2, 26, 30, 3]. On the other
hand, training linear SVM [14, 25, 32, 24, 12, 10] is favored
in practice owing to its low computation/storage overhead
and being free from storing support vectors. The linear or
sublinear complexity of these algorithms enables efficient
training of linear SVM on gigantic samples, which moti-
vates the adventure of linearizing non-linear kernels to con-
vert the otherwise nonlinear SVM problem into linear SVM.
Examples include the algorithms for shift-invariant kernels
(e.g., Gaussian, Cauchy or Laplacian) [22] or homogeneous
additive kernels [27]. The work in [17] provides a conver-
gent analytic series to approximate χ2 kernel defined on his-
togram feature. Besides the afore-mentioned random fea-
tures derived from specific kernel properties, another strong
competitor is the Nyström method [9, 16], which relies on
landmark sampling for kernel approximation [29, 31].
Hashing Technique for Large-Scale Optimization: The
original motivation of locality-Sensitive hashing (LSH) [13,
5, 8, 1] is to find an approximate nearest neighbor for a
query point in sub-linear time. It is only recently discov-
ered the power of the hashing techniques for large-scale op-
timization. For example, Li et al. [18] use b-bit minwise
hashing to compress high-dimensional sparse text feature.
Mu et al. [20] identify two common operations in a fami-
ly of large-scale learning algorithms and make acceleration
by concomitant statistics. These works are both limited to
special kernels (Jaccard index and cosine similarity respec-

tively), leaving the hashing scheme for general kernels an
open problem in the field. Existing hashing schemes for
general kernels either lack theoretic guarantee [11, 19] or
suffer from unreliable estimate of the covariance matrix in
high-dimensional (even infinite) Hilbert space (e.g., kernel-
ized locality sensitive hashing [15]).

3. The Proposed Algorithm
This section details our proposed Hash-SVM. We first

present the idea of hash bit based kernel approximation
(Section 3.1), which is a principled method and the ker-
nel approximation error is highly dependent on the choice
of hashing functions. Section 3.2 shows our proposed k-
ernel hashing algorithm, which is surprisingly simple yet
effective. Finally Section 3.3 elaborates on how the idea is
seamlessly incorporated into optimizing kernel SVMs.
Notations: Let x1,x2 ∈ R

d denote two points in a specific
feature space, whose similarity can be measured by a well-
defined kernel function κ(x1,x2) = φ(x1)

�φ(x2). Here
φ(·) defines a mapping function to a high-dimensional re-
producing kernel Hilbert space (RKHS) in R

D (D � d).
φ(·) is often implicitly defined and we need not specify
it. ‖φ(x)‖H represents the vector norm

√〈φ(x), φ(x)〉
in RKHS. In a supervised learning setting, let X =
{x1, . . . ,xn} be the training data which are associated with
ground truth binary labels y = (y1, . . . , yn)

�. For nota-
tion simplicity we also use Φ = [φ(x1), . . . , φ(xn)] and
K = Φ�Φ ∈ R

n×n to represent the data collection and
kernel matrix respectively.

3.1. Surrogate Kernel Function with Hash Bits

Review of LSH: A binary hashing function defines a map-
ping h(x) from R

D to the discrete set {0, 1}. In practice,
each sample will be fed into a number of independent ran-
dom hashing functions. Let Hk(x) = (h1(x), . . . , hk(x))
be the k-bit hash code for x. Hash code dissimilarity is mea-
sured by the Hamming distance Dham(Hk(x1), Hk(x2))
which returns the count of different bits.

LSH [13, 1] is a special type of hashing algorithms
with the locality-sensitive property, which basically states
that if two samples are similar in the original feature s-
pace, their corresponding hash codes shall be alike. A
key notion to quantify this property is collision probabil-
ity, which is defined as Pr(h(x1) = h(x2)) (the expec-
tation of identical hash bit over all possible hashing func-
tions). By definition, the normalized Hamming distance
Dham(Hk(x1), Hk(x2))/k converges to 1 − Pr(h(x1) =
h(x2)) when k approaches infinity. The locality-sensitive
property also implies that the collision probability should be
monotonically increasing with respect to the pairwise data
similarity.

Surrogate Kernel Function: It is easily seen that an arbi-



trary kernel function can be written as:

κ(x1,x2)

= ‖φ(x1)‖H × ‖φ(x2)‖H × cos(θx1,x2
), (1)

where θx1,x2
is the angle between φ(x1), φ(x2) in RKHS.

The corner stone of our proposed Hash-SVM is a sur-
rogate function κ̂(x1,x2) to Equation (1). To ensure the
surrogate kernel function is in linear form, a simple way
is to assume that it is a linear function with respect to the
normalized Hamming distance, parameterized by a and b:

κ̂(x1,x2) = ‖φ(x1)‖H × ‖φ(x2)‖H
×
(
a+ b · Dham(Hk(x1), Hk(x2))

k

)
. (2)

To calibrate the values of a, b, note that when the normal-
ized Hamming distance in Equation (2) achieves the value
of 1 (or 0), cos(θx1,x2

) in Equation (1) reaches the value
of -1 (or 1). Such correspondences immediately give us the
choice that a = 1 and b = −2. In fact, the surrogate k-
ernel function always induces positive semi-definite (p.s.d.)
kernel matrix.

Theorem 3.1. The surrogate kernel function in Equa-
tion (2) on binary hash bits defines a linear p.s.d. kernel.

Proof. The claim trivially holds by verifying that

1− 2

k
Dham(Hk(x1), Hk(x2))

=
1

k

∑
i=1...k

(2hi(x1)− 1) · (2hi(x2)− 1), (3)

which introduces the following explicit feature mapping:

h(x) =

(
2h1(x)− 1√

k
, . . . ,

2hk(x)− 1√
k

)
. (4)

The feature mapping is linear with respect to the hash
bits and it is well known that all kernel matrices for linear
kernels are p.s.d..

3.2. Kernelized Random Subspace Hashing

To ensure κ(x1,x2) ≈ κ̂(x1,x2) for arbitrary points
x1,x2, the hashing scheme should be deliberately designed
to properly approximate cos(θx1,x2), which is a non-trivial
task. Given the assumption that only the information of the
kernel value κ(x1,x2) is accessible, it is impossible to ap-
ply the classical random vector based hashing [8]. The most
popular work named KLSH proposed by Kulis et al. [15]
enables drawing Gaussian random vector in RKHS by ap-
plying central limit theorem (CLT) to the training data.
However, KLSH needs to estimate the covariance matrix of
the data in possibly infinite-dimensional RKHS using only

Algorithm 1 Algorithmic Pipeline of Kernelized Random
Subspace Hashing (KRSH)

1: Input: data set X = {x1, . . . ,xn}, sizes m < n (random
subspace dimension) and k (hash bit number).

2: Output: bases matrix and Gaussian random vector pair
(Vi,wi), i = 1 . . . k used for defining the hashing functions,
and binary hash bits h1(x), . . . , hk(x) for any new sample x;
Phase of Hash Function Generation

3: Use the kernelized Gram-Schmidt process in Section 3.2 to
obtain bases matrix V in RKHS;

4: Draw random vector w ∈ R
m from the normal distribution to

define the hashing function;

Phase of Hashing New Samples
5: for i = 1 to k do
6: hi(x) = 1 if w�

i V�
i φ(x) ≥ 0, otherwise 0;

7: end for

a partial set of the training data, which is computational-
ly unreliable. Most other kernel hashing schemes [19, 11]
learn the hashing functions in a data-driven manner and lack
theoretic collision analysis, which are thus not satisfactory.

We propose a strikingly simple scheme named kernel-
ized random subspace hashing (KRSH) to circumvent the
aforementioned challenge in kernel hashing. It is applica-
ble to arbitrary kernels. The key idea is to randomly gen-
erate the orthogonal bases for an m-dimensional subspace
in kernel-induced RKHS from the subspace spanned by al-
l training data, i.e., span(φ(x1), . . . , φ(xn)). Afterwards
each sample is projected into this random subspace, obtain-
ing a new representation with m dimensions. The final data
hashing operates on the new representation by employing
the classical hashing scheme in [5]. The pseudo-code is
found in Algorithm 1.

The proposed KRSH is inspired by the seminal work of
KPCA [23]. The key operation of KRSH is maintaining
a set of landmarks {z1, . . . , zm} which defines a random
subspace. The set is initialized to be empty and iterative-
ly expanded via Gram-Schmidt process in RKHS. In other
words, after k−1 iterations, we will obtain k−1 orthogonal
bases in RKHS. Denote them by V(k−1) = [v1, . . . ,vk−1],
where the i-th basis vi ∈ R

D is a linear combination of
φ(z1), . . . , φ(zi) and v�

i vj = 0 if i 	= j. To obtain vk,
a new sample x is drawn from the training samples. We
first calculate the residual vector δx for x (which is orthog-
onal to any vi ∈ V(k−1)) by subtracting its projections onto
the bases in V(k−1). The computation can be accomplished
merely using the kernel function κ(·, ·), whose details are
omitted due to space limit. If the residual vector has negli-
gible magnitude in RKHS, it will be discarded for numerical
stability. Otherwise we set zm ← x, vk ← δx/

√〈δx, δx〉
to expand the landmark set.

After obtaining the random subspace, we perform the
hashing procedure proposed by Datar et al. [8] within the



subspace. Specifically, for a new sample x, h(x) = 1 if
w�V�φ(x) ≥ 0, otherwise 0, where w ∈ R

m denotes a
random vector whose elements are drawn from the normal
distribution (zero-mean and unit-variance 1-D Gaussian).

3.3. Integrating Hash Bits with Linear SVM

Given the training data X = {x1, . . . ,xn} and corre-
sponding binary labels y = {y1, . . . , yn}, according to
Theorem 3.1 the approximate solution of kernel SVM can
be pursued through linear SVM:

min
ω

1

2
‖ω‖2

+C
n∑

i=1

max
{
1− yi ·

√
κ(xi,xi) · ω�h(xi), 0

}
, (5)

where h(xi) is the transformed hash bit vector for sam-
ple xi whose definition is found in Equation (4). The fac-
tor

√
κ(xi,xi) is to compensate the vector norms in E-

quation (2), which must be kept when samples have non-
uniform lengths in RKHS. The hyperplane vector ω will be
learned and used for determining the label of a new sample
according to the prediction function f(x) =

√
κ(x,x) ·

ω�h(x). We have a fully-optimized implementation in
C++ for the above formulation based on the dual coordi-
nate descent method [12], which is one of state-of-the-art
solvers for linear SVM.

4. Algorithm Analysis
Our proposed Hash-SVM trades accuracy for scalabil-

ity at several aspects. The approximation stems from
three sources: random subspace projection as described
in Section 3.2, finite number of hash bits due to budget-
ed memory, and hashing-based kernel approximation (i.e.,
κ̂(x1,x2) ≈ κ(x1,x2) in Section 3.1). This section elab-
orates on the detailed analysis of the algorithm, particular-
ly on the accuracy-scalability tradeoff and space/time com-
plexities. Our analysis adopts the methodology of investi-
gating one factor with others fixed. For example, the theo-
retic observation in Theorem 4.1 has assumed infinite hash
bits are used to ensure the collision bound is rigourously
reached.

Hash-SVM v.s. Original Kernel SVM: Let θx1,x2 be the
angle between two samples x1,x2 in RKHS. In the ide-
al case, if the normalized Hamming distance of a hashing
scheme converges to (1− cos(θx1,x2

))/2 when the hash bit
number k approaches infinity, it can be verified from Equa-
tions (1)(2) that κ̂(x1,x2) = κ(x1,x2). In other words,
the surrogate kernel function is an exact one. It is the very
case for minHash which is designed for Jaccard index sim-
ilarity [18]. However, for the general cases the existence
of such hashing scheme remains an open issue. In our pro-

posed Hash-SVM algorithm, κ̂(x1,x2) ≈ κ(x1,x2) with
upper bound of the approximation error.

To compare the solutions obtained by Hash-SVM and
the original kernel SVM, recall that the dual form of kernel
SVM is as below:

min
α∈Rn

1

2
α�K� (

yy�)α− 1�α, (6)

s.t. α ≥ 0, α�y = 0, 0 ≤ αi ≤ C, ∀i.

where K(i, j) = κ(xi,xj) and � is the Hadamard product.
The proposed Hash-SVM can be re-formulated into similar
form, except that it utilizes a different kernel matrix K̂ with
K̂(i, j) = κ̂(xi,xj). Both K, K̂ are p.s.d. matrices (by
definition of κ(·, ·) or Theorem 3.1 respectively). We have
an observation on the approximation error:

Theorem 4.1. Let α∗, α̂∗ be the optimal solutions by plug-
ging K, K̂ into Problem (6), respectively. For test da-
ta, their labels can be determined by the induced predic-
tion functions, e.g., f(x) = 〈Φα∗, φ(x))〉 for original
kernel SVM and f̂(x) = 〈Φα̂∗, φ(x))〉 for Hash-SVM,
where Φ = (φ(x1), . . . , φ(xn)) are the training samples
in RKHS. When κ(x,x) is uniform for any sample x, the
following approximation error bound holds for any x (x is
not necessarily training sample) with high probability:∣∣∣f(x)− f̂(x)

∣∣∣ (7)

≤ C0 (ε‖K‖2 +D)
1/4

[
1 + C1 (ε‖K‖2 +D)

1/4
]
,

where ε is a tiny positive scalar. C0, C1 are both con-
stant; ‖K‖2 is the spectral norm of K, which return-
s the largest singular value of K. D = σm+1 + n0s0,
where σm+1 is the m + 1-th largest singular value of K,
s0 = 1 − 1

π arcsin 2
π −

√
π2−4
π and n0 is the cardinality of

supp(α∗) ∪ supp(α̂∗), where supp(α∗), supp(α̂∗) denote
the sets of nonzero elements in α∗, α̂∗ respectively.

The above theorem states that the prediction function
learned by our proposed surrogate kernel function deviates
the original one by a factor of O

(√
ε‖K‖2 +D

)
. The

bound takes both the fixed-rank random subspace projec-
tion and the hashing binarization into account. The proof is
deferred to the supplemental material due to space limit.

KRSH Collision Probability: The proposed KRSH is es-
sentially a kernelized extension of the seminal work by
Charikar [5]. In the ideal case that the m-dimensional sub-
space learned in Algorithm 1 sufficiently reconstructs the
original data space, the collision probability (CP) of two ar-
bitrary samples is [5],

(Ideal CP) : Pr(h(x1) = h(x2)) = 1− θx1,x2

π
, (8)



where θx1,x2 = φ(x1)
�φ(x2)

‖φ(x1)‖H‖φ(x2)‖H
. Intuitively the non-

collision probability is proportional to the inter-vector an-
gle. In our proposed KRSH, the random subspace projec-
tion is a critical operation to enable kernel-based hashing,
although it introduces some additional approximation er-
ror. Let V = [v1, . . . ,vm] be the projection bases of the
random subspace learned in Algorithm 1, and θ′x1,x2

=
(V�φ(x1))

�(V�φ(x2))
‖V�φ(x1)‖H‖V�φ(x2)‖H

be the angle between x1,x2 after
projecting to the m-dimensional random subspace. The col-
lision probability of KRSH is,

(KRSH CP) : Pr(h(x1) = h(x2)) = 1− θ′x1,x2

π
. (9)

Though many kernels are of high (even infinite) dimen-
sions in Hilbert space, the landmark count m is not neces-
sarily huge to ensure θ′x1,x2

≈ θx1,x2
since the kernels often

have long-tailed singular value distributions. To quantify
the approximation error in KRSH, it is desired to bound the
deviation of θ′x1,x2

away from θx1,x2 . A closed-form bound
for θ′x1,x2

is only available for specific data distributions.
Let us consider the simplest case that samples are uniformly
distributed on the hypersphere in RKHS, which is approx-
imately achievable by whitening operation. Based on the
concentration arguments in proving Johnson-Lindenstrauss
lemma [7], we show that for any ε in (0, 1), with probability
at least 1− 3 exp(−mε2

4 )− 3 exp(−m(ε2/2−ε3/3)
2 ),

cos θx1,x2 − ε

1 + ε
≤ cos θ′x1,x2

≤ cos θx1,x2 + ε

1− ε
. (10)

The proof is found in the supplemental material. Above
inequalities essentially address that cos θ′x1,x2

approaches
cos θx1,x2

with sufficient m and near-uniform data distribu-
tion. We also provide empirical investigation of inter-vector
angle preservation on real-world data in Section 5.

How Many Hash Bits Are Needed?: The collision prob-
ability converges to the theoretic result when infinite hash
bits are independently generated. And more hash bits tend
to boost the level of solution accuracy. However, practition-
ers always adopt finite k hash bits due to budgeted memory
consumption. It is important to investigate the “optimal” k
that well balances the storage cost and accuracy loss. Given
the independence of multiple hashing functions, the Ham-
ming distance for k-bit code follows a binomial distribu-
tion:

Pr(Dham(Hk(x1), Hk(x2)) = t)

=

(
k

t

)(
1− θx1,x2

π

)k−t (
θx1,x2

π

)t

. (11)

Deriving from binomial distribution, the expectation
and standard deviation of 1− 2Dham(Hk(x1), Hk(x2))/k
in Equation (2) are known to be (μ, σ) ∼ (1 −
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Figure 1. Top: approximating cos θx1,x2 in original kernel func-
tion with 1 − 2θx1,x2/π in our proposed surrogate function.
Bottom: standard deviation of hashing-based approximation to
cos θx1,x2 with varying hash bits. k denotes the hash bit number.

2θx1,x2/π,
√

(1− θx1,x2/π) · θx1,x2/π/k ). It indicates
that our proposed surrogate kernel function in Equation (2)
converges to 1 − 2θx1,x2

/π, which is an approximation to
cos(θx1,x2

) in Equation (1). Moreover, the standard devia-
tion drastically drops at linear rate with respect to k.

Figure 1 graphically illustrates the original and hashing-
approximated inter-vector cosine values whose implications
can be found at Equations (1)(2), respectively, as well as the
effect of different hash bits on the estimation variations. It
is also worth noting that the standard deviation is irrelevant
to the random subspace parameter m, which is a desired
property since m is often large in order to capture sufficient
data variations. Empirically even only a small number of
bytes (e.g., 1024 bytes for k = 8096) are able to achieve
reasonable level of accuracy, which is much more compact
than other competing algorithms.

Time/Storage Complexity: In the proposed KRSH, learn-
ing the m-dimensional random subspace is accomplished
by a Gram-Schmidt process, which requires a computation-
al complexity of O(m3) and storage O(m2) for bases ma-
trix V. Each sample is represented by k hash bits, or e-
quivalently k/8 bytes. Given a new sample, the produc-
tion of k-bit hash code requires executing m kernel func-
tions between the new sample and landmark points, and
O(mk) algebraic operations. For the Hash-SVM imple-
mentation, we adopt the framework of dual-coordinate de-
scent method [12], which enjoys a linear storage complexity
with respect to the sample number and at least linear con-
vergence rate towards the global optimum.



Dataset Train/Test Size #Dim #Class Kernel
MED11 30,000/16,904 5,000 25 χ2

IJCNN 49,990/91,701 22 2 RBF
WebSpam 280,000/70,000 254 2 RBF
CIFAR10 50,000/10,000 800 10 RBF
ImageNet 1,261,406/50,000 1,000 1,000 RBF

Table 1. Summary of the benchmarks used in the experiments.

5. Experiments

This section reports the comparison between our pro-
posed Hash-SVM and other competing algorithms.

Dataset Description: We adopt five benchmarks which
cover a variety of tasks in multiple data scales: TRECVID
MED11, which is a video corpus collected by NIST to fos-
ter the research on detecting semantic events from videos.
Each video either contains one of 15 pre-defined events or
is “null” video, ImageNet which consists of more than 1
million photographs with the presence or absence of 1000
object categories (10 categories are randomly chosen for
our evaluation), and CIFAR10 which is comprised of im-
ages from ten semantic categories. To make the experiments
more comprehensive, we also include two widely-used non-
vision machine learning benchmarks: time-series data IJC-
NN and annotated spam/nonspam data WebSpam.

Table 1 summarizes the important information of the ex-
perimental data. Regarding the features, both TRECVID
MED11 and ImageNet adopt SIFT bag-of-words represen-
tation with or without spatial pyramid. CIFAR10 uses a vari-
ant of convolutional neuron features. For non-vision bench-
marks IJCNN and WebSpam, we extract standard time-
series feature and uni-gram feature, respectively. We would
like to highlight that most features may not bring state-of-
the-art recognition accuracy since our focus is optimizing
the way to learn the classification models instead of just
driving for higher recognition accuracy. On most bench-
marks we adopt RBF kernel, except for MED11 which
adopts histogram χ2 kernel owing to its empirical superi-
ority. The kernel width parameter σ in RBF kernel is em-
pirically estimated from training data. For fair comparison,
on each benchmark σ is identical for all non-linear learn-
ing algorithms. Five independent trials are performed for
all algorithms with randomized operation.

Baseline Algorithms: We report the mean accuracies av-
eraged over all classes for the proposed Hash-SVM and
competitors, including 1) LibSVM and LibLinear: the most
popular SVM solvers based on decomposition method [2]
and dual coordinate descent [12], respectively. 2) Core vec-
tor machine (CVM) [26]: which accelerates SVM training
using core-set approximation on very large scale data set-
s. Our experiments adopt the implementation from the au-
thors. 3) Adaptive Multi-hyperplane Machine (AMM) [28]:
which utilizes multiple linear classifiers to approximate de-

cision boundary for non-linear data. 4) Low-rank lineariza-
tion SVM (LLSVM) [31]: it utilizes similar idea of Nys-
tröm method to generate data-dependant kernel lineariza-
tion. The resultant linear features are fed into the Selective
block minimization (SBM) based linear SVM solver as de-
scribed in [4]. 5) Random features followed by linear SVM
(denoted as RF-SVM): for the shift-invariant RBF kernel,
random Fourier features are generated according to [22].
For histogram χ2 kernel, there are two popular approxima-
tion algorithms, i.e., [27] and [17]. We use the Chebyshev
approximation based random feature [17] since it is a more
recent work and already contains an extensive comparison
with [27]. 6) KLSH-SVM: we also plug the hash bits ob-
tained by KLSH into our proposed framework.

Accuracy and Speed: For all baselines, we use the code
provided by the authors and properly tune the parameters.
In training visual classification model on large scale data,
the key bottleneck often lies in the tremendous memory re-
quirement rather than CPU. For example, it is known that
the performance of LL-SVM will be significantly improved
if more landmarks are used. However, even an moderate
landmark set of 4000 points implies more than 32G bytes
for loading the transformed features on ImageNet. In light
of this, we set the feature storage to be the key factor for
fairly comparing those randomized algorithms (RF-SVM,
LLSVM and Hash-SVM). Specifically, all aforementioned
algorithms are allocated 2,048 bytes for storing each sam-
ple’s feature, which implies a 512-dimensional random fea-
ture representation for RF-SVM, LLSVM1 and 16K hash
bits for Hash-SVM. In addition, note that the performances
of LL-SVM and Hash-SVM are heavily affected by the
number of landmarks sampled from the training set, or the
random subspace parameter m in the proposed Hash-SVM.
For fairness we sampled 4,096 landmarks for all algorithms.

Table 2 presents the computing time (including data I/O,
training and testing time) and accuracies. For multi-class
data sets, we train a one-vs-rest classifier for each class
and calculate the average accuracy over all classes. Ta-
ble 2 shows that kernel SVM consistently outperforms lin-
ear SVM in terms of classification accuracy, yet suffering
from the curse of high feature dimension and large data s-
cale. The proposed Hash-SVM proves to be a good rem-
edy to the slow optimization of kernel SVM. Regarding
the prediction accuracy, the proposed Hash-SVM consis-
tently outperforms other competing randomized algorithm-
s (RF-SVM, LLSVM) on all benchmarks. It also deliv-
ers comparable accuracy to the best one achieved by Lib-
SVM (except for MED11, which has huge intrinsic dimen-
sion in RKHS and can hardly be embedded into any 4096-

1It is assumed that these features are stored in single-precision floating
format (4 bytes per dimension). For LL-SVM, we sample 4,096 landmarks
in accord with the setting of Hash-SVM, but only keep the first 512 princi-
pal components of the kernel matrix to fulfill the 2K-bytes budget.



MED11 CIFAR10 IJCNN WebSpam ImageNet
time acc.(%) time acc.(%) time acc.(%) time acc.(%)

Linear SVM 396 17.37 906 60.28 0.78 91.79 9.77 92.63 1044 12.68
LibSVM 47160 25.59 32849 69.24 66.5 98.16 4860 98.54 – –

CVM – – 9861 63.42 159 98.22 6660 98.83 – –
AMM – – – – 4.95 92.18 154 91.96 – –

RF-SVM 383 5.08 924.7 38.04 4 93.28 67 93.84 131 4.84

LL-SVM 7740 20.90 292 60.35 68 98.20 505 96.82 775 13.12

KLSH-SVM 7745 20.94 1424 62.74 1260 98.48 2304 98.36 14221 14.29
Hash-SVM 7308 21.74 1137 63.13 85 98.51 405 98.50 14976 14.70

Table 2. Experimental results in terms of computing time and test accuracies. The marks ‘–’ indicate that the program crashes, or fails to
converge within reasonable time, or is unable to report accuracy in specific format (e.g., AMM on MED11 and CIFAR10). The unit of
the reported time is in seconds. Experiments for CVM and AMM are conducted on a Windows machine (quad-core Intel CPU and 16GB
RAM). The rest are on a Ubuntu-OS machine (12-core Intel CPU and 64 GB RAM).
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Figure 2. Investigation on the angle-preserving property of KRSH and KLSH. We record | cos θx1,x2 − cos θ′x1,x2

|. The numbers of
random subspace in KRSH or the sampler count in KLSH vary over a large range. All estimations are obtained using 16K hash bits.

dimensional random subspace with high fidelity) but enjoys
much less training time and lower complexity of induction
to new samples. Considering that only a small portion of
4096 landmarks are used in building the final classifiers, the
performance of Hash-SVM is quite striking.

Angle Preservation: One critical index of the effec-
tiveness of the proposed hashing scheme is angle p-
reservation, i.e., θx1,x2

≈ θ′x1,x2
such that the sur-

rogate kernel function induces less approximation er-
rors. For clarity, let us first review how θx1,x2

, θ′x1,x2

are calculated. By definition, θx1,x2 is computed as
arccosκ(x1,x2)/

√
κ(x1,x1)

√
κ(x2,x2). According to

KRSH collision probability in Equation (9),

θ′x1,x2
= lim

k→∞
1

k
Dham(Hk(x1), Hk(x2)). (12)

In other words, θ′x1,x2
shall be estimated from sufficient

hash bits.
In Figure 2, we demonstrate how the inter-vector angles

in kernel-induced Hilbert space are preserved. To quanti-
tatively evaluate the discrepancy between them, the resid-
ual | cos θx1,x2 − cos θ′x1,x2

| is estimated from 4 million
random sample pairs. For contrastive study, we also show
the performance of the prominent kernel hashing algorithm
KLSH [15] since it also effectively preserves pairwise an-

gles in kernel space. Other kernel hashing algorithms are
not included, since most of them rarely provide any theo-
retic analysis on angle preservation or collision probability.
We use the KLSH code provided by the authors and perform
a fine tuning on its key parameters such as number of Gaus-
sian approximation elements. The results on three out of the
five benchmarks are shown due to space limit. We observe
consistent superiority of KRSH under identical key param-
eters (the dimension m of random subspaces in KRSH, and
the number of active samples used for covariance estima-
tion in KLSH), which partially supports our concerns about
KLSH’s unreliable covariance parameter estimation and the
application of CLT in high-dimensional Hilbert space.

Parameter Sensitivity: Finally an investigation of param-
eter sensitivity is conducted. In Figure 3 the evaluation on
CIFAR10 is shown. For the evaluation the angle residue
| cos θx1,x2 − cos θ′x1,x2

| is used as the criterion since it is
tightly related to the final performance. The values are plot-
ted as a surface parameterized by random subspace dimen-
sion and hash bit number in KRSH. It is observed that the
approximation errors of RKHS continue to drop when the
dimension of random subspace is increased. It is also worth
to note that enlarging the parameter m produces more and
more marginal gains, which indicates that a moderate value
of m is sufficient for reasonable performance. We can also
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observe that a parsimony choice of the hash bit number still
brings reasonable accuracy level, which justifies the analy-
sis in Section 4.

6. Limitations and Future Work
In this paper we present a novel large-scale kernel SVM

solver based on the locality-sensitive hashing technique. It
conveys some fresh ideas on general kernel approximation
and SVM optimization. We provide extensive theoretic
analysis as well as comprehensive empirical study for the
proposed Hash-SVM. The major limitations of Hash-SVM
lie in 1) our current implementation of SVM optimization is
based on dual coordinate descent, which does not effective-
ly utilize the special property of our hashing features (e.g.,
the feature is binary) for further acceleration; and 2) long
hash bit vectors are required to ensure reasonable perfor-
mance, which unfortunately may increase the risk of over-
fitting. We will address these limitations in the future work.
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