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Abstract. Newly emerged probabilistic image patch priors, such as Ex-
pected Patch Log-Likelihood (EPLL), have shown excellent performance
on image restoration tasks, especially deconvolution, due to its rich ex-
pressiveness. However, its applicability is limited by the heavy compu-
tation involved in the associated optimization process. Inspired by the
recent advances on using regression trees to index priors defined on a
Conditional Random Field, we propose a novel discriminative indexing
approach on patch-based priors to expedite the optimization process.
Specifically, we propose an efficient tree indexing structure for EPLL, and
overcome its training tractability challenges in high-dimensional spaces
by utilizing special structures of the prior. Experimental results show
that our approach accelerates state-of-the-art EPLL-based deconvolu-
tion methods by up to 40 times, with very little quality compromise.

1 Introduction

Image priors have been widely used in many ill-posed image restoration prob-
lems, such as deconvolution and denoising, to help resolve the ambiguity. One
classic family of image priors is defined on image gradients, which assume that
the magnitude of image gradients follows certain distributions such as exponen-
tial distributions [1], hyper Laplacian distributions [2], or a mixture of Gaus-
sians [3]. These priors are computationally efficient using simple gradient filters
and the Half-Quadratic Splitting optimization framework [2]. However, due to
the extremely small spatial support of gradient filters, gradient priors cannot
faithfully capture image structures.

To address this issue, image priors with larger spatial support have been
proposed. One popular direction is to formulate the image restoration problem
within a Conditional Random Field (CRF) framework, and associate nonad-
jacent pixels by connecting them in the field. Field of Experts (FoE) [4] as a
typical example, constructs a CRF on all the pixels and define priors on the
cliques of the CRF, with pixels within each local patch fully connected. While
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providing much larger spatial support than the gradient priors, the complicated
field structure also suffers from the optimization tractability problem. To this
end, approximate inference is often adopted, still resulting in slow speed.

While other challenges such as pixel saturation [5] and outliers [6] also exist in
the image restoration field, the critical problem of optimization framework still
remains open, and an emerging trend is to define probabilistic priors on image
patches (i.e probabilistic patch-based prior), without explicit connections among
pixels despite the natural pixel sharing between adjacent patches. An exem-
plar is Expected Patch Log-Likelihood (EPLL) [7], which shows state-of-the-art
performance on image deblurring and competitive results on denoising and in-
painting. These methods use Half-Quadratic Splitting for optimization which is
more efficient than the inference of the CRFs. Unfortunately, they still require
an excessive amount of computation which severely limits their practical usage.
For example, the non-blind deconvolution method of Zoran and Weiss takes tens
of minutes for an one megapixel image [7] on a decent PC. It becomes even worse
for blind deconvolution, where the non-blind deconvolution component needs to
be applied repeatedly and typically requires hours to finish [8].

Prior Indexing. The speed issue of the non-gradient priors is a well-known
problem and various approaches have been proposed to address it. For the
random-field-based priors, Jancsary et al. [9] restrict the potential functions of
the CRF to be Gaussian functions for faster inference. To compensate for the
performance drop from limiting forms of potential functions, regression trees are
trained to discriminatively determine the mean and covariance of the potential
functions, resulting in a Regression Tree Field formulation [10] that provides
state-of-the-art performance for denoising and inpainting. This method can be
interpreted as using random forests to pre-index a flexible prior defined on cliques
in the random field. A similar idea of using pre-trained tree structures to effi-
ciently construct a Regression Tree Field is also used in deblurring recently [11].

For the newly emerged probabilistic patch-based prior direction, however, lit-
tle exploration has been done in expediting the associated optimization process,
albeit such expedition can potentially benefit a series of practical applications
and possibly reveal more insights about the patch-based priors. Inspired by the
pre-indexing view of the Regression Tree Fields, we propose to pre-index the
probabilistic patch-based priors to speed up their optimization. And we adopt
EPLL as an example to demonstrate the novel prior indexing approach.

Challenges. However, indexing the patch-based priors is fairly challenging
and the existing approaches are not readily extended to its unique settings. First,
the image patches lie in a relatively high dimensional space. This makes straight-
forward lookup tables, as used in the hyper Laplacian prior [2], not able to work
properly because of the huge memory consumption. Content-based hashing is
known to be compact and fast, especially for high-dimensional data, but its ac-
curacy is insufficient for image restoration tasks. Second, from the motivation
of acceleration, we have a tight budget in the tree depth and the natural image
patches have special structures different from the common distributions. There-
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fore as we will show shortly, existing tree indexing structures as used in [9][11]
also suffer from the computational cost problem in our settings.

To address the challenges, we propose an efficient and compact tree indexing
structure, whose training algorithm is specifically tailored for the patch distri-
butions of natural images for efficient computation. Specifically, we observe that
the EPLL prior can be well approximated with one single Gaussian in each opti-
mization step, although such Gaussians may be different in each step. Therefore
we propose to train a tree structure to efficiently determine the mean and co-
variance of the Gaussian, with a training algorithm similar to decision tree but
using a more efficient candidate generation scheme.We take image deblurring as
the primary application because of the state-of-the-art performance EPLL shows
on it. Complexity analysis and experimental results show our indexing approach
leads to significant acceleration, while preserving the power of patch-based pri-
ors. Qualitative experiments also demonstrate the potential of proposed indexing
approach in deblurring real-life photos and image denoising.

Our main technical contributions include:

1. A novel framework of indexing patch-based natural image priors using deci-
sion trees (Section 3).

2. An efficient way of constructing the indexing tree by exploring the special
structure of the parametric patch prior components (Section 4).

2 Observations and Our General Framework

2.1 Background and Notations

Before introducing our approach in more detail, we first provide a formal de-
scription of the problem. Image degradation is typically modeled as

y = Ax + n, (1)

where y, x are n are vectors representing an observed blurry image, its latent
image to be recovered, and noise. For denoising, A = I, an identity matrix. For
deconvolution, A is a convolution matrix.

The restored image x̂ can be estimated using Maximum A Posteriori (MAP)
estimation, with a Gaussian likelihood function and Gaussian noise:

x̂ = argmin
x

{
λ

2
‖y −Ax‖2 − log p(x)

}
, (2)

where λ is a parameter to control the restoration strength.

GMM based Patch Prior proposed by Zoran and Weiss [7] is defined as:

p(x) ∝
∏
i

p(xi) =
∏
i

K∑
k=1

πkN (xi|µk, Σk), (3)

where i is a pixel index, and xi is a patch centered at the i-th pixel. A Gaussian
Mixture Model (GMM) {µk, Σk, πk}Kk=1 is learned from a large collection of
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natural image patches, with k as the index of the Gaussian components, µk, Σk

and πk as the mean, covariance and weights of the Gaussians respectively.
Directly optimizing Equation (2) is difficult due to the coupling of the two

terms. For efficient optimization, auxiliary variables {zi} can be introduced as
done in [7], reformulating Equation (2) with a popular half-quadratic scheme as:

x̂ = argmin
x

{λ
2
‖y −Ax‖2 +

β

2

∑
i

‖zi − xi‖2

−
∑
i

log p(zi)
}
, (4)

The optimization starts from a small value of β, and develops by fixing x to
solve for z (the z-step), and fixing z to solve for x (the x-step) alternatingly,
with increasing β values. When β becomes large enough, the optimal x̂ and ẑ
will be nearly the same with negligible difference.

Bottleneck. While the x-step can be computed quickly as the first and sec-
ond terms in Equation (4) are quadratic, the z-step is a much slower optimization
process. With fixed x, the z-step tries to solve the following problems for all i:

ẑi = argmin
zi

{
β

2
‖zi − xi‖2 − log

K∑
k=1

πkN (zi|µk, Σk)

}
, (5)

which is a complex and expensive non-linear optimization problem involving a
lot of matrix multiplications. To alleviate the optimization difficulty, Zoran and
Weiss [7] only use the Gaussian component with the largest conditional likelihood
p(k|Pix) instead of all the components to do the optimization. More specifically,

with the chosen Gaussian k̂i, they solve the following simplified problem:

ẑi = argmin
zi

{
β

2
‖zi − xi‖2 − logN (zi|µk̂i

, Σk̂i
)

}
. (6)

However, this approximation still needs a huge amount of computation. Specifi-
cally, to find k̂i for the i-th patch, we need to compute

arg max
k

p(k|xi) ∝ p(xi|k)p(k)

=

∫
zi

p(xi|zi)p(zi|k)p(k)

=

∫
zi

N (xi|zi, β−1I)N (zi|µk, Σk)πk

= πkN (xi|µk, β
−1I +Σk) (7)

for all the K Gaussian components, resulting in 2K expensive matrix multipli-
cation operations for every patch.

That is, the bottleneck of EPLL lies in using the naive linear scan to solve
the optimization problem in Equation (7).
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2.2 Observations and Our Approach

Given that Equation (7) is a discrete optimization problem for which efficient
gradient-based methods cannot be applied, we propose to use a discriminative
tree structure to output an approximate k̂i directly based on a series of simple
operations. This can also be interpreted from an information retrieval perspec-
tive, i.e. instead of an exhaustive scan on all the candidates, we use a series of
quick tests to determine the rough area in the feature space that the patch lies
in, and directly adopt the corresponding k̂i as the approximate solution. Another
interpretation from a machine learning perspective is, it is equivalent to treating
Equation (7) as a classification problem and using a discriminative classifier to
directly predict the most likely class.

One immediate concern one may have is that this is only an approximated
solution, which may affect the quality of the restored image. However, our ex-
periments show that with properly constructed indexing trees, we can achieve a
high approximation accuracy in real applications. Furthermore, as we will show
shortly, for the patches that are harder to be classified properly, on which error
is more likely to be introduced, the value of final k̂i actually has less effects on
the quality of the restored patch ẑi. Therefore, such indexing on the patch-based
priors can provide significant acceleration with very little quality compromise.

Now the question is: is it possible to build an efficient index for dominant
Gaussian identification? Fortunately the patch-based prior has its special struc-
tures which allow us to further improve its efficiency. If we take a closer look at
the GMM learned from natural image patches, most Gaussian components have
very elongated shapes, i.e. Σk has only a few large eigenvectors, and they do not
overlap each other much except for small parts [12]. This leads us to believe that
it may be possible to use a hierarchy of simple classifiers, e.g. linear classifiers, to
break the high-dimensional space to different subspaces that belong to different
Gaussians. One subsequent concern is that since all the mixture components
share the same center which is the origin as observed in [7], such overlap may
confuse the linear classifiers. We found this is not a big deal because what the
optimizer in Equation (6) does is to push the patch a bit to the center along
the path determined by the dominant Gaussian, and it makes little difference
when the patch is already close to the shared center even if a wrong Gaussian is
identified and used for it.

Our Approach. We thus propose to build a decision tree based on lin-
ear classifiers to index the dominant Gaussian components in EPLL. However,
traditional decision tree algorithms cannot be directly applied here because its
random generation scheme of classifier candidates is extremely inefficient in a
high-dimensional space. To make the training process more stable and efficient,
we utilize the structure of the GMM and overcome the challenges of candidate
classifier generation with a Gibbs sampling approach. A filter-based fast inference
of Markov Random Field [13] is also employed to improve indexing accuracy.
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3 Index-Assisted Patch Prior Optimization

In this section we assume the decision tree has already been built, and describe
how to quickly find the most dominant component k̂i, which gives the largest
p(k|xi) for a given noisy patch xi. Specifically, from a given noisy patch xi, the
search process goes from the root of the tree to one of the leaves. Each non-leaf
node in the tree has a linear classifier sgn(wTx + b), determining where xi goes
in the next level as follows:

Next(xi|w, b) =

{
Left child wTxi + b ≥ 0,

Right child wTxi + b < 0.
(8)

While traversing the tree from its root to a leaf node, the space of patches
is recursively bisected by the linear classifiers, ending with a polyhedron Li =
{x|Wix + Bi ≤ 0}, with Wi and Bi determined by the traversal path of xi.
We store the expected probability of each Gaussian component dominating a
random point within this polyhedron φik = Ex∈Li

[Prob(N̂ (x) = Nk)] in the leaf
node, and then use it to approximate the probability of xi having Nk as the
dominant Gaussian.

Note that this tree testing process is very efficient. First, each linear classifier
only requires a dot product operation. Second, only a few levels of tree nodes
(e.g. 12 levels) are enough for reasonable accuracy in practice. This makes it even
faster than the hashing-based approaches which typically require more than 20
bits for reasonable accuracy.

Refinement Using MRFs. To find the dominant Gaussian k̂i for a given
patch xi, instead of the winner-take-all selection of k with the largest φik, which
will introduce possibly large errors, we use a discrete Markov Random Field
(MRF) to infer the final k̂is, with the enforcement on the spatial consistency
in terms of the dominant Gaussians. Specifically, the potential function of the
MRF is defined as:

Ψ({k̂i}) = λ1
∑
i

Ψ1(k̂i) + λ2
∑

Neighbors i,j

Ψ2(k̂i, k̂j) (9)

where Ψ1(k̂i) = −φik̂i
, and Ψ2(k̂i, k̂j) is defined as:

Ψ2(k̂i, k̂j) =

{
0 if k̂i = k̂j

|Ii − Ij |2 otherwise
. (10)

Ii and Ij are the average intensities of the patches xi and xj , respectively.

Equation (9) is minimized to find the refined dominant Gaussians {k̂i} for all
the patches, where we adopt an approximation approach, cost-volume filter-
ing [13]. Similarly to Loopy Belief Propagation, the cost-volume filters update
the marginal distribution stored in each node. However, instead of message col-
lection and passing, such updates are performed with the guided filter [14], which
is accelerated by integral images and extremely fast. More specifically, K “im-
ages” with intensities as φik are first collected, and the guided filter is applied
on every “image”, with the smoothed input from the x-step as the guidance.
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Wiener Filtering. Once the dominant mixture component k̂i for each patch
xi is found, it is fed to the optimizer for Equation (6), which has a close form
solution as the Wiener filter:

ẑi = (Σk̂i
+ σ2I)−1(Σk̂i

xi + σ2Iµk̂i
). (11)

Time Complexity. Given an index tree with depth D for a K-component
GMM defined on n × n patches, since on each level we only need to apply one
dot product, the tree traversal for each patch requires O(n2D) operations. The
cost-volume filtering needs O(K) time for each patch. Therefore the overall time
complexity is O(mn2D +mK) for an image with m patches, with a very small
coefficient for O(K), which is from the guided filter. In contrast, the original
EPLL needs O(mn4K) time.

4 Prior Index Construction

Given an observed patch x, we expect the trained index tree to output the k
which approximately maximizes p(k|x) (Equation (7)). As p(k|x) also depends on
β, which is the pre-defined parameter for the alternating optimization, we build
different index trees with respect to different values of β , with the algorithm
introduced in this section.

Although the testing phase of our index tree is similar to a decision tree,
the training algorithm of decision trees cannot be directly applied here. In the
decision tree training algorithm, given a set of training examples, many classifier
candidates are randomly generated, each of which will divide the training exam-
ples into two partitions. And then the best classifier with the largest information
gain computed from the partitions will be selected and stored in the node. This
can be viewed as a naive optimizer randomly searching for the classifier with the
largest information gain. When incorporated with linear classifiers, this works
fine on low-dimension data. However, with the increase of the dimensionality, the
feasible space to search is expanding much faster than the small space where the
good solutions lie. This leads to the failure of the naive random search optimizer
when the dimensionality of x is not trivially small, i.e. a huge number of trials
are required before it reaches the optimal or even near-optimal solutions.

To demonstrate such inefficiency of the random search scheme, we collect two
million 8 × 8 training patches with ground truth labels of the dominant Gaus-
sian. The traditional decision tree training algorithm is applied on the dataset,
with 1000 candidates randomly generated for every node. It takes 48 hours to
obtain a 12-level tree on a Core i7 3.0GHz desktop computer with a MATLAB
implementation, and we plot the average entropy of each level as the green curve
in Figure 1. From the figure, we can see that even after 12 levels, the average
entropy is still close to 0.6, indicating the distributions in the leaf nodes are still
not far away from uniform and contains not much information. Given we have
a high expectation on the testing speed thus a tight budget on the tree depth,
decision tree training algorithm actually does not fit our problem settings.
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To mitigate this challenge, we exploit the special structure of the GMM
learned from natural image patches, and formulate the candidate classifier gen-
eration as an optimization problem coupled with random sampling. The recursive
greedy training framework of the decision tree is still used in our approach due
to its simplicity and robustness. In the following paragraphs, we will discuss each
step of our training process in more detail.

Training Data Generation. To train an index tree for a given β, we collect
a set of noisy patches {x} from the output of the x-steps of EPLL [7] as the
X for training because that is the input our index will face in real applications.
The ground truth labels Y are then determined with Equation (7). While there
is no theoretical clue about how many training examples are “enough”, we will
revisit this step in Section 5 for the practical concern of the size of the training
dataset.

Candidate Classifier Generation. Given a set of noisy patches X and
the ground truth labels Y , the problem we are facing is to find a linear classifier
sgn(ŵTx + b̂) so that the information gain is maximized:

ŵ, b̂ = argmax
w,b

E(Y )− |Y+|
|Y |

E(Y+)− |Y−|
|Y |

E(Y−), (12)

in which E(·) is the entropy function, and Y+ and Y− are the positive and
negative partitions divided by the classifier:

Y+ = {yi|wTxi + b ≥ 0, ∀i}, and

Y− = {yi|wTxi + b < 0, ∀i}. (13)

It has been shown that naive random search does not work for high dimensional
x. Given this problem is non-differentiable with the discrete training examples,
we do not use classical continuous optimization methods such as gradient descent
or BFGS. Instead, we adopt a Gibbs sampling approach, while some heuristics
are introduced to restrict the space from which the candidates are generated.

There are two important observations of the learned GMM. First, for most
components, only a few strongest eigenvectors of the covariance matrix take
the most energy of the Gaussian. This indicates it is possible to dramatically
reduce the computation complexity by only doing sampling based on these a
few strong principal directions, which are the eigenvectors of the Gaussians’
covariance matrices. Second, all of the Gaussian components share the same
center which is the origin, as observed in [7]. This can be explained with the
inherent symmetry of the natural image patches.

These two properties inspire us a simple heuristic to generate a classifier
candidate for two principal directions from two Gaussians. Take Figure 2 for an
example, if two 2-D Gaussians are given with the two principal directions e1 and
e2 marked as red, a reasonable guess of the decision (hyper)plane would be

w = λ1e1 − λ2e2, (14)
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Fig. 1. Comparison of how the entropy de-
creases in different levels of the index tree,
with different training schemes. The tra-
ditional decision tree training algorithm is
plotted in green, with the proposed ap-
proach in blue.

e1 e2

Fig. 2. A toy example of the proposed
heuristic to generate a candidate classi-
fier from two given principal directions
e1, e2. The dashed green line shows the
generated classifier when b = 0, with
the green arrow as its normal vector.

in which λ1, λ2 are the corresponding eigenvalues of e1, e2, as the green arrow
shows. Note −e1 and −e2 are also the principal directions. Therefore this scheme
will actually generate four w-s.1

With this candidate generation scheme, the problem turns to how to sample
the principal directions such that we can partition the training data “effectively”.
With the expectation of minimizing the tree depth with a target accuracy, we add
a balance factor to the objective function in Equation (12). More specifically, we
expect the positive and negative examples predicted by the classifier sgn(ŵTx+

b̂) is roughly the same in number. Given this is hard to optimize, we further relax
it to expect the average projection values to be as small as possible. Then the
objective function becomes,

E(Y )− |Y+|
|Y |

E(Y+)− |Y−|
|Y |

E(Y−)− γ

∣∣∣∣∣∑
x

(
wTx + b

)∣∣∣∣∣ ,
s.t. ‖w‖2 = 1 generated from Equation (14).

(15)

Here γ = 0.5 is a parameter controlling the strength of the balance factor.
Note both the terms in Equation (15), the information gain and the balance

factor, would only change when some example xi changes its predicted label.
That is, it will change faster if the w swipes along some high-density area with
more training examples, while slower in the low-density areas. Therefore it is
reasonable to sample more w-s from the regions with low GMM probabilistic
densities, which are the analogy to stationary points in the continuous case. More
specifically, we put more priority in sampling the decision boundaries between

1 One classifier may not be able to distinguish the two Gaussians shown in Figure 2.
But a simple two-level decision trump from the four candidate classifiers would have
enough discrimination power.
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Algorithm 1: Index construction for patch priors.

Input: the patch prior {πk, µk, Σk}Kk=1, training examples X, the ground truth
labels Y , and the max tree depth D

Output: a decision tree T based on linear classifiers
1 if D = 0 then
2 return a leaf node with label distribution of Y .
3 end
4 foreach 1 ≤ I ≤ Imax do
5 Sample two Gaussians k1, k2 without replacement with probability

p(k) = πk.
6 Given each Gaussian k from k1, k2 , sample one eigenvector from the

eigenvectors of the covariance matrix {eki} with probability p(i|k) = λki,
where λki are the corresponding eigenvalues.

7 Use Equation (14) to generate w-s given the two eigenvectors e1, e2.
8 Sample b from N (0, 1).

9 end
10 Collect all the candidate w and b, store the one maximizing Equation (15) in

the tree node T .
11 Train the left and right child of T with (D − 1) tree depth and Y+, Y− as

training data, which are defined in Equation (13).
12 return T.

two principal directions with large eigenvalues. That is, given the weights of
the Gaussians {πk}, we first sample two Gaussians with probability p(k) = πk,
and then sample one principal direction from the eigenvectors of the covariance
matrix of each Gaussian {eki} with corresponding eigenvalues as the probability
p(i|k) = λki. After that, Equation (14) is applied on the principal directions
to obtain the final w-s, which forms a Gibbs sampling process. Since all the
Gaussians share the same center as the origin, we use N (0, 1) to sample the b-s.

A complete algorithm is illustrated in Algorithm 1. We apply the proposed
approach to the same data in the experiment shown in Figure 1, and obtain
much better training efficiency, with average entropy below 0.3 in the 12th level,
which is plotted as the blue curve in Figure 1. This proves the effectiveness of
our training scheme, and in the next section, we will do more justification on
our approach, followed by the evaluations on actual applications.

5 Experiments

We conduct a series of experiments to quantitatively verify (1) how well the dis-
criminative prior indexing performs for dominant Gaussian identification; and (2)
how well the proposed approach performs on real applications in terms of quality
and speed. In this section we first quantitatively evaluate the proposed method
in non-blind image deblurring, and then justify its components, especially on the
performance of domainant Gaussian identification. Other applications inlcuding
deblurring real-life photos and denoising are also demonstrated.
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5.1 Evaluation on Non-Blind Image Deblurring

Dataset and Evaluation Protocol. We use the standard benchmark [15],
which contains 48 blurry photos and 12 motion kernels collected from real life
for the evaluation. Different deblurring approaches are applied on the input
images, and average PSNRs among all the kernels on each image are reported
as quantitative measurements. We compare our deblurring approach with tree-
based indexing with several state-of-the-art algorithms, including Discriminative
non-blind deblurring [11] (referred as Schmidt), `0 based deblurring [16] (referred
as Xu), and Cho’s fast deblurring [17] (referred as Cho).

Implementation Details. We collect two million patches from 100 training
images from the Berkeley Segmentation Dataset [18], convolve them with one
blur kernel different from all the testing kernels, and add Gaussian noise to
obtain the training data. Then an index tree with 12 levels is trained for each
β in Half-Quadratic Splitting is trained using Algorithm 1 for our deblurring
approach. As observed in [12], increasing the component number of the GMM
hardly improves EPLL’s performance after it reaches 10. Subsequently we adopt
a 10-component GMM as the prior for both our approach and the EPLL baseline.

We implement our algorithm in MATLAB, with the core components such
as the index tree testing written in C++. We further integrate Fast Fourier
Transform to accelerate the x-step [1], resulting in a comprehensive fast non-
blind deblurring algorithm, whose running time is adopted as the time of our
approach. All the running time is measured on a desktop computer with a Core
i7 3.0GHz CPU.

Results and Discussions. The average PSNRs of all approaches are shown
in Table 1. OursC shows our PSNRs based on the kernels estimated from Cho’s
approach [17], and OursX is based on Xu’s kernel [16]. We can see our non-
blind deblurring component improves the performance of both Cho’s and Xu’s
approaches in most cases. Although our PSNR is slightly worse than Schmidt’s
approach [11], the running time per each RGB image is 2 minites in average,
which is about 20 times faster than [11]2 and 40 times faster than EPLL. Also
note that this is achieved when the blur kernel for index construction is dramat-
ically different from the blur kernels used in the test images. It suggests that our
index construction is not sensitive to the blur kernel used for training.

5.2 Evaluation on Prior Indexing and Parameter Tuning

We also evaluate the performance of our prior indexing in terms of component
identification accuracy. With the same training data and training algorithm in
Section 5.1, we vary the depth of the decision trees to explore how it affects the
indexing performance. The classification accuracy of the dominant Gaussian is
calculated with ground truth from brute-force search, and is averaged on all the
stages and all the test images as the evaluation protocol.

2 The authors of [11] didn’t report the running time on [15], but on smaller images.
We project their running time to [15] based on the (linear) time complexity on
resolution.
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Table 1. Average PSNRs of each
testing image on non-blind deblurring.
OursC and OursX indicate our non-
blind deblurring approach based on ker-
nels estimated from Cho and Xu.

Img 1 2 3 4

Cho [17] 30.61 26.03 31.32 27.98
Xu [16] 31.64 26.64 31.45 28.42

Schmidt [11] 32.05 26.99 32.13 28.90
OursC 30.75 26.12 32.28 28.00
OursX 31.69 26.68 32.31 28.65

Table 2. Quantitative evaluation results on
image denoising. The PSNR in dB is shown for
each baseline and noise level (σ) setting. The
average running time (in seconds) is shown in
the rightmost column.

σ 0.1 0.25 0.5 1.0 Time

BM3D[19] 30.33 26.92 23.91 17.85 4.4
BM3DS [20] 30.46 26.62 23.22 19.73 782
K-SVDG [21] 29.39 25.57 22.68 19.31 60.1
K-SVDI [21] 29.76 25.68 22.70 19.38 177.7

EPLL [7] 29.57 26.13 23.44 20.62 61.7
Our approach 29.47 26.08 23.49 20.62 4.5
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Fig. 3. Quantitative evaluation on the dominant Gaussian identification

The results with different tree depth settings are plotted in Figure 3(a), where
we also show the classification accuracy before and after the spatial consistency
refinement step. Firstly, it shows that the identification accuracy reaches 80%
with 16 levels of tree nodes. Given we have 10 components in the GMM, this
proves that the tree index does a reasonable job in approximating the brute-
force search with merely a few dot product operations. Considering the trade-off
between quality and efficiency, we use 12 level trees in all the other experiments.
In addition, it also suggests that the cost-volume based MRF inference improves
the identification accuracy by 10% consistently over the raw identification re-
sults. This verifies our observation on the spatial coherence of the distributions
of dominant Gaussians.

Training Data Collection. With the same training and testing image sets,
we also explore how many training patches are required for achieving reasonable
quality of dominant Gaussian identification. Figure 3(b) plots the identification
accuracy against different training data sizes. It suggests that with a 12-level tree,
the accuracy saturates after the training dataset reaches two million patches.
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Input photo and kernel EPLL [5] Our approach

Fig. 4. Qualitative evaluation on deblurring high-resolution photos from real life. The
input with the motion kernel estimated with [17], the deblurring results of EPLL and
the proposed approach are shown from left to right.

We thus use this setting for all the experiments, including the non-blind image
deblurring, deblurring high-reslution photos and image deblurring.

5.3 Deblurring High-Resolution Photos from Real Life

To demonstrate the capability to handle real-life data of our deblurring ap-
proach, we collect some blurred photos taken from real life, run [17]’s approach
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to estimate a blur kernel, and then apply the proposed algorithm on the R,
G, B channels seperately. While all the collected photos have resolution larger
than 800 × 800, EPLL [7] needs more than half an hour to deblur each image,
and therefore is not practical for deblurring applications in real life. On the
other hand, our algorithm generally outputs the result within 3 minutes. Fig-
ure 4 shows a comparison between the results from our approach and EPLL.
From the figure, we can see that the proposed approach is able to achieve de-
blurring results with nearly unnoticable difference from the original patch-based
approaches.

5.4 Evaluation on Image Denoising

To demonstrate the potential of the proposed approach in other low-level vision
applications, we also report the performance on denoising. We use the stan-
dard benchmark in denoising, eight 512 × 512 gray-scale standard test images
Babara, Boat, Cameraman, Hill, House, Lena, Man and Peppers for this evalu-
ation. Gaussian noise with standard variance as 0.1, 0.25, 0.5 and 1 is added to
the original images respectively as the noisy inputs. Average PSNR as well as
the running time for all the images are measured for different noise levels. We
compare our approach with the state-of-the-art denoising algorithms BM3D[19],
BM3D-SAPCA[20] (referred as BM3DS), K-SVD[21] with global dictionary (re-
ferred as K-SVDG) and learned dictionary from the noisy image (referred as
K-SVDI), and EPLL[7], with the authors’ implementations and recommended
parameters. The quantitative results are reported in Table 2. The results show
that the performance of EPLL is slightly worse than BM3D and BM3D-SAPCA,
which is reasonable given that the latter two are specially designed for denoising.
Our approach achieves very similar performance to EPLL, with < 0.1dB PSNR
drop on average, but is much faster than EPLL and other denoising methods
except BM3D. We further confirmed that there are no noticeable differences
between our and EPLL’s results.

6 Conclusion

We have presented an indexing method to improve the efficiency of applying
patch-based image priors to image restoration tasks. We show that directly ap-
plying the traditional decision tree training algorithm is not optimal in our case
due to the high dimensionality of the patch data. We therefore propose a training
algorithm with a novel classifier candidate generation scheme utilizing the struc-
ture of the patch prior. Experimental results show that our approach achieves
up to 40 times acceleration, and at the same time comparable high quality re-
sults with the original EPLL approach. The performance is also competitive with
other state-of-the-art deconvolution algorithms.

There are also several interesting directions for future exploration, such as
how to analytically construct the index solely from the prior model and how to
apply the index to other vision problems.
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